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ABSTRACT. For an arbitrary Hilbert space E , the Segal–Bargmann spaceH(E)
is the reproducing kernel Hilbert space associated with the kernel K(x, y) =
exp(〈x, y〉) for x, y in E . If ϕ : E1 → E2 is a mapping between two Hilbert
spaces, then the composition operator Cϕ is defined by Cϕh = h ◦ ϕ for all
h ∈ H(E2) for which h ◦ ϕ belongs toH(E1). We determine necessary and suf-
ficient conditions for the boundedness and compactness of Cϕ. In the special
case where E1 = E2 = Cn, we recover results obtained by Carswell, MacCluer
and Schuster. We also compute the spectral radii and the essential norms of a
class of operators Cϕ.
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1. INTRODUCTION

Let B be a Banach space of functions on a set X and ϕ : X → X be a
mapping. We define the composition operator Cϕ by Cϕh = h ◦ ϕ for any function
h ∈ B for which the function h ◦ ϕ also belongs to B. We are often interested in
investigating how the function theoretic properties of ϕ affect the operator Cϕ

and vice versa. One of the fundamental problems is to classify the mappings
ϕ which induce bounded or compact operators Cϕ. After such classification is
obtained, we then try to compute the norms and study the spectral properties
of these operators. There is a vast literature on those problems when B is the
Hardy, Bergman or Bloch space over the unit disc on the plane, the unit ball, or
the unit polydisc in Cn (see, just to list a few, [2], [5], [6], [9], [12], [16], [19] and the
references therein). In [7], Carswell, MacCluer and Schuster studied composition
operators on the Segal–Bargmann space (also known as the Fock space) over Cn.
They obtained necessary and sufficient conditions on the mappings ϕ that give
rise to bounded or compact Cϕ. They showed that any such mapping must be
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affine with an additional restriction. They also found a formula for the norm
of these operators. The purpose of the current paper is to investigate similar
problems for composition operators that act between (possibly different) Segal–
Bargmann spaces over arbitrary Hilbert spaces.

Let n > 1 be an integer. We denote by dµ(z) = π−n exp(−|z|2)dV(z) the
Gaussian measure on Cn, where dV is the usual Lebesgue volume measure on
Cn ≡ R2n. The Segal–Bargmann (Fock) space H(Cn) is the space of all entire
functions on Cn that are square integrable with respect to dµ. For f , g ∈ H(Cn),
the inner product of f and g is given by

〈 f , g〉 =
∫
Cn

f (z)g(z) dµ(z) =
1

πn

∫
Cn

f (z)g(z) exp(−|z|2) dV(z).

It is well known that H(Cn) has an orthonormal basis consisting of monomials.
In fact, for any multi-index α = (α1, . . . , αn) of non-negative integers, if we put
fα(z) = (α!)−1/2zα, where α! = α1! · · · αn! and zα = zα1

1 · · · z
αn
n , then { fα : α ∈

Zn
>0} is an orthonormal basis for H(Cn). It is also well known that H(Cn) is

a reproducing kernel Hilbert space of functions on Cn with kernel K(z, w) =
exp(〈z, w〉). For more details on H(Cn), see, for example, Section 1.6 in [11]
or Chapter 2 in [22]. We would like to alert the reader that other authors use
slightly different versions of the Gaussian measure (for example, dµ(z) = (2π)−n

exp(−|z|
2

2 )dV(z)) and hence the resulting reproducing kernels have different for-

mulas (for example, K(z, w) = exp( 〈z,w〉
2 )).

The following theorem ([7], Theorems 1 and 2) characterizes bounded and
compact composition operators onH(Cn).

THEOREM 1.1 (Carswell, MacCluer and Schuster). Suppose ϕ : Cn → Cn is a
holomorphic mapping. Then

(i) Cϕ is bounded on H(Cn) if and only if ϕ(z) = Az + b, where A is an n × n
matrix with ‖A‖61 and b is an n×1 vector such that 〈Aζ, b〉=0 whenever |Aζ|= |ζ|.

(ii) Cϕ is compact on H(Cn) if and only if ϕ(z) = Az + b, where ‖A‖ < 1 and b is
any n× 1 vector.

The formula for the norm of Cϕ is given in the next theorem, which is The-
orem 4 of [7]. Note that the formula presented here is slightly different from
the original formula given in [7] because our reproducing kernel is K(z, w) =

exp(〈z, w〉) whereas theirs was exp( 1
2 〈z, w〉).

THEOREM 1.2 (Carswell, MacCluer and Schuster). Suppose ϕ(z) = Az + b,
where ‖A‖ 6 1 and 〈Aζ, b〉 = 0 whenever |Aζ| = |ζ|. Then the norm of Cϕ onH(Cn)
is given by

(1.1) ‖Cϕ‖ = exp( 1
2 (|w0|2 − |Aw0|2 + |b|2)),

where w0 is any solution to the equation (I − A∗A)w0 = A∗b.



COMPOSITION OPERATORS BETWEEN SEGAL–BARGMANN SPACES 137

Now suppose E is an arbitrary Hilbert space. There are various approaches
that can be used to construct the Segal–Bargmann space H(E). In Section 2, we
shall discuss in more detail such constructions and some elementary properties of
H(E). Motivated by Theorems 1.1 and 1.2, we would like to study composition
operators between Segal–Bargmann spaces. More specifically, let E1 and E2 be
two Hilbert spaces and let ϕ : E1 → E2 be a mapping. We shall characterize
bounded and compact operators Cϕ fromH(E2) toH(E1). We shall also compute
the essential norms and the spectral radii of a class of Cϕ.

The proof of Theorem 1.1 in [7] makes use of the singular value decomposi-
tion of n× n matrices and the change of variables. Since this approach relies on
the assumption that E1 = E2 = Cn, it does not seem to work when E1 6= E2 or
when theses spaces are infinite dimensional. It turns out that there is an alterna-
tive approach, based on the theory of reproducing kernels. The idea of using re-
producing kernels to study the boundedness of composition operators appeared
in Nordgren’s work [18] and it played a main role in [13], where Jury proved the
boundedness of composition operators on the Hardy and Bergman spaces of the
unit disk without using Littlewood subordination principle.

We shall see that Cϕ : H(E2) → H(E1) is bounded if and only if ϕ(z) =
Az+ b as in Theorem 1.1 but we need a stronger condition on the vector b when E1
is an infinite dimensional Hilbert space (in the case E1 = E2 = Cn, our condition
on b is equivalent to the condition in Theorem 1.1). In the course of proving
boundedness, we also obtain a formula for ‖Cϕ‖. Our formula is stated in a
different way but it agrees with the formula in Theorem 1.2 when E1 = E2 = Cn.
For the compactness of Cϕ, besides the condition that ϕ(z) = Az + b for some
linear operator A : E1 → E2 with ‖A‖ < 1, it is also necessary that A be a compact
operator.

We now state some of our main results. These results, to the best of our
knowledge, are new even in the case where the spaces E1 and E2 are finite dimen-
sional but have different dimensions.

THEOREM 1.3. Let ϕ : E1 → E2 be a mapping. Then the composition operator
Cϕ : H(E2) → H(E1) is bounded if and only if ϕ(z) = Az + b for all z ∈ E1, where
A : E1 → E2 is linear with ‖A‖ 6 1 and A∗b belongs to the range of (I − A∗A)1/2.
Furthermore, the norm of ‖Cϕ‖ is given by

(1.2) ‖Cϕ‖ = exp( 1
2‖v‖

2 + 1
2‖b‖

2),

where v is the unique vector in E1 of minimum norm satisfying A∗b = (I − A∗A)1/2v.

If ψ is an arbitrary holomorphic self-map of the open unit disc D, then it
is well known that Cψ is a bounded operator on the Hardy space H2(D). In [8],
Cowen obtained a formula for the spectral radius r(Cψ). He showed that if ζ ∈ D
is the Denjoy–Wolff fixed point of ψ, then the spectral radius of Cψ is 1 if |ζ| < 1
and is (ψ′(ζ))−1/2 if |ζ| = 1. Jury [14] extended this spectral radius formula
to composition operators with linear fractional symbols acting on a wide class
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of Hilbert spaces over the unit ball in higher dimensions. On the other hand,
the situation for composition operators on Segal–Bargmann spaces over Cn is
different. This is due to the results in Theorem 1.3, which shows that mappings
that give rise to bounded composition operators are quite restrictive.

THEOREM 1.4. Let ϕ : Cn → Cn be a mapping such that Cϕ is a bounded operator
onH(Cn). Then r(Cϕ) = 1.

Given the above result, it is natural to ask whether there exist bounded com-
position operators that have spectral radii strictly bigger than one. The answer
is yes and of course we need to consider operators acting on H(E), where E has
infinite dimension. Details will be presented in Section 3.

The last two theorems that we would like to mention in this section concern
the compactness and essential norms. In Section 4, we discuss the proofs and
related results.

THEOREM 1.5. Let ϕ : E1 → E2 be a mapping. Then Cϕ : H(E2) → H(E1) is
compact if and only if there is a compact linear operator A : E1 → E2 with ‖A‖ < 1 and
a vector b ∈ E2 such that ϕ(z) = Az + b for all z ∈ E1.

THEOREM 1.6. Suppose ϕ(z) = Az + b is a mapping from Cn into Cm such
that Cϕ : H(Cm) → H(Cn) is a bounded operator. If ‖A‖ < 1, then ‖Cϕ‖e = 0. If
‖A‖ = 1, then ‖Cϕ‖e = ‖Cϕ‖ > 1.

To conclude the section, we note that several mathematicians have also
studied the boundedness and compactness of composition operators between
Hardy and weighted Bergman spaces over the unit balls and the unit polydiscs in
different dimensions. The situations there are quite different and many problems
remain unsolved. See, for example, [15], [20] and the references therein for more
details.

2. THE SPACESH(E) AND THEIR COMPOSITION OPERATORS

In the first half of this section we study the space H(E), where E is an ar-
bitrary Hilbert space. Our construction of H(E) is similar to that of the Drury–
Arveson space given in [4]. In the second half of the section, we consider compo-
sition operators acting between these spaces. Using the reproducing kernels, we
provide a criterion for the boundedness of such operators.

2.1. THE CONSTRUCTION OF H(E). For each integer m > 1, we write Em for the
symmetric tensor product of m copies of E . We also define E0 to be C with its
usual inner product. We have E1 = E and for m > 2, Em is the closed subspace
of the full tensor product E⊗m which consists of all elements that are invariant
under the natural action of the symmetric group Sm. The action of Sm on E⊗m is
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defined on elementary tensors by

π · (x1 ⊗ · · · ⊗ xm) = xπ(1) ⊗ · · · ⊗ xπ(m) for π ∈ Sm and x1, . . . , xm ∈ E .

By definition, Em = {x ∈ E⊗m : π · x = x for all π ∈ Sm}. Each Em is a Hilbert
space with an inner product inherited from the inner product on E . To the end of
the paper, we shall generally write 〈·, ·〉 for any inner product without referring
to the space on which it is defined. The defining space will be clear from the
context.

For any z ∈ E , we use zm = z⊗ · · · ⊗ z ∈ Em to denote the tensor product
of m copies of z (here z0 denotes the number 1 in E0 = C). A function p : E → C
is called a continuous m-homogeneous polynomial on E if there exists an element ζ
in Em such that p(z) = 〈zm, ζ〉 for z ∈ E . A function f : E → C is called a con-
tinuous polynomial if f can be written as a finite sum of continuous homogeneous
polynomials. In other words, there is an integer m > 0 and there are elements
a0 ∈ C, a1 ∈ E1, . . . , am ∈ Em such that

(2.1) f (z) =
m

∑
j=0
〈zj, aj〉 = a0 + 〈z, a1〉+ · · ·+ 〈zm, am〉.

When E = Cn for some positive integer n, the notion of polynomials that
we have just given coincides with the usual definition of polynomials in n com-
plex variables. In fact, each polynomial in z = (z1, . . . , zn) is a linear combina-
tion of monomials of the form zj1

1 · · · z
jn
n for non-negative integers j1, . . . , jn. Let

{e1, . . . , en} denote the standard basis for Cn, where ek = (0, . . . , 0, 1, 0, . . .) with
the number 1 in the kth component. Then

zj1
1 · · · z

jn
n = 〈z, e1〉j1 · · · 〈z, en〉jn = 〈zl , e⊗j1

1 ⊗ · · · ⊗ e⊗jn
n 〉E⊗l = 〈zl , ej1

1 · · · e
jn
n 〉El ,

where l = j1 + · · ·+ jn and ej1
1 · · · e

jn
n denotes the orthogonal projection of e⊗j1

1 ⊗
· · · ⊗ e⊗jn

n on E l . This implies that any polynomial in the variables z1, . . . , zn can
be written in the form (2.1).

We denote byPm(E) the space of all continuous m-homogeneous polynomi-
als and P(E) the space of all continuous polynomials on E . For more detailed dis-
cussions of polynomials between Banach and locally convex spaces, see [10], [17].

For two continuous polynomials f , g in P(E), we can find an integer m > 0

and elements aj, bj ∈ E j for 0 6 j 6 m such that f (z) =
m
∑

j=0
〈zj, aj〉 and g(z) =

m
∑

j=0
〈zj, bj〉. We then define

〈 f , g〉 =
m

∑
j=0

j! 〈bj, aj〉.(2.2)

It is not difficult to check that (2.2) defines an inner product on P(E). We denote
byH(E) the completion of P(E) in the norm induced by this inner product.



140 TRIEU LE

There is a natural anti-unitary operator fromH(E) onto the symmetric (bo-
son) Fock space F (E) = E0 ⊕ E1 ⊕ E2 ⊕ · · · , where the sum denotes the infinite
direct sum of Hilbert spaces. We skip the proof which is straightforward from the
definition ofH(E) and F (E).

PROPOSITION 2.1. For each element f ∈ P(E) given by formula (2.1), we define
an element in F (E) by

J f = (a0,
√

1! a1,
√

2! a2,
√

3! a3, . . .),

where aj = 0 for j > m. Then J is an anti-unitary operator from Pm(E) onto Em for
each m > 0 and it extends uniquely to an anti-unitary operator fromH(E) onto F (E).

As in the case of the Drury–Arveson space [4], we can realize the elements
ofH(E) in more concrete terms, as entire functions on E .

PROPOSITION 2.2. Each element f inH(E) can be identified as an entire function
on E having a power expansion of the form

f (z) =
∞

∑
j=0
〈zj, aj〉 for all z ∈ E ,

where a0 ∈ C, a1 ∈ E , a2 ∈ E2, . . .. Furthermore, ‖ f ‖2 =
∞
∑

j=0
j! ‖aj‖2.

Conversely, if
∞
∑

j=0
j! ‖aj‖2 < ∞, then the power series

∞
∑

j=0
〈zj, aj〉 defines an element

inH(E).
Proof. By Proposition 2.1, each element f has a formal power series of the

form

(2.3) f (z) =
∞

∑
j=0
〈zm, am〉,

where aj belongs to E j for j > 0 and
∞
∑

j=0
j! ‖aj‖2 = ‖ f ‖2 < ∞. For any z ∈ E , since

‖zm‖ = ‖z‖m, we have
∞

∑
j=0
|〈zj, aj〉| 6

∞

∑
j=0
‖zj‖‖aj‖ =

∞

∑
j=0
‖z‖j‖aj‖ =

∞

∑
j=0

‖z‖j√
j!

√
j! ‖aj‖

6
( ∞

∑
j=0

‖z‖2j

j!

)1/2( ∞

∑
j=0

j! ‖aj‖2
)1/2

= exp( ‖z‖
2

2 )‖ f ‖.

This shows that the power series (2.3) converges uniformly on any bounded ball
in E . It follows that f can be regarded as an entire function on E .

The converse follows from the fact that the sequence {pm}∞
m=1 of polynomi-

als defined by pm(z) =
m
∑

j=0
〈zj, aj〉 is a Cauchy sequence inH(E).
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For every w in E , we put

Kw(z) = exp(〈z, w〉) =
∞

∑
j=0

1
j!
〈z, w〉j =

∞

∑
j=0

〈
zj,

wj

j!

〉
for z ∈ E .

By Proposition 2.2, Kw belongs toH(E). For any f given by (2.3), we have

〈 f , Kw〉 =
∞

∑
j=0

j!
〈wj

j!
, aj

〉
= f (w).

Therefore, the function K(z, w) = Kw(z) for z, w ∈ E is the reproducing kernel
function for H(E) and the linear span of the set {Kw : w ∈ E} is dense in H(E).
As a result, H(E) is a reproducing kernel Hilbert space. For a general theory of
these spaces, see, for example, [3] or Chapter 2 of [1].

REMARK 2.3. The space H(E) can be defined in an abstract way by the
kernel function K(z, w). However it is not immediately clear from the abstract
definition why H(E) consists of the power series given in Proposition 2.2. Our
construction above also exhibits the decomposition

(2.4) H(E) =
⊕
m>0
Pm(E) = C⊕P1(E)⊕P2(E)⊕ · · · ,

which will be useful for us later. When E = Cn, we obtain the space H(Cn),
which is defined using the Gaussian measure on Cn as discussed in the Introduc-
tion.

In a reproducing kernel Hilbert space, a sequence is weakly convergent if
and only if it is bounded in norm and it converges pointwise. Using this, we have
the following lemma.

LEMMA 2.4. The following statements hold inH(E):
(i) lim
‖z‖→∞

‖Kz‖−1Kz = 0 weakly inH(E);

(ii) let {um} be a sequence converging weakly to 0 in E (in particular, {um} is
bounded). For each m, put fm(z) = 〈z, um〉 for z ∈ E .
Then lim

m→∞
fm = 0 weakly inH(E).

It is well known that H(Cn) can be naturally identified as the tensor prod-
uct of n copies ofH(C). In fact, the map f1⊗ · · · ⊗ fn 7→ f1(z1) · · · fn(zn) extends
to a unitary operator from H(C)⊗ · · · ⊗ H(C) onto H(Cn). This is an immedi-
ate consequence of the fact that the Gaussian measure on Cn is the product of n
copies of the Gaussian measure on C. The situation is less obvious in the general
case since Gaussian measure may not be available. Nevertheless, similar tensor
product decomposition still exists.

PROPOSITION 2.5. Suppose E0 = E1 ⊕ E2 is a decomposition of E0 as an orthog-
onal sum of two Hilbert spaces. For f1 ∈ H(E1) and f2 ∈ H(E2), define the function
f1 ∗ f2 by ( f1 ∗ f2)(z) = f1(z1) f2(z2) for all z = z1 + z2, where z1 ∈ E1 and z2 ∈ E2.
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Then f1 ∗ f2 belongs to H(E0) and the map f1 ⊗ f2 7→ f1 ∗ f2 extends to a unitary
operator fromH(E1)⊗H(E2) ontoH(E0).

Proof. For j = 0, 1, 2, put K(j)
wj (zj) = exp(〈zj, wj〉) for zj, wj in Ej. It is clear

that K(1)
w1 ∗ K(2)

w2 = K(0)
w1+w2

. Define W(K(1)
w1 ⊗ K(2)

w2 ) = K(1)
w1 ∗ K(2)

w2 and extend it by
linearity. It follows from a direct computation that W is isometric on the linear
span of {K(1)

w1 ⊗ K(2)
w2 : w1 ∈ E1, w2 ∈ E2}. Since the linear span of {K(j)

wj : wj ∈ Ej}
is dense in H(Ej) for j = 0, 1, 2, the operator W can be extended to a unitary as
required.

2.2. COMPOSITION OPERATORS. Suppose E1 and E2 are two Hilbert spaces. In
what follows, we shall use K to denote the kernel functions of both H(E1) and
H(E2). This should not cause any confusion since the kernel functions on these
spaces have the same form.

For any mapping ϕ : E1 → E2, we recall that the composition operator Cϕ is
defined by Cϕh = h ◦ ϕ for all h in H(E2) for which h ◦ ϕ also belongs to H(E1).
Since Cϕ is a closed operator, it follows from the closed graph theorem that Cϕ is
bounded if and only if h ◦ ϕ belongs toH(E1) for all h ∈ H(E2).

Now we suppose that Cϕ is a bounded operator. A priori we do not impose
any condition on ϕ but the boundedness of Cϕ implies that 〈ϕ(·), a〉 is entire for
any a ∈ E2. This follows from the identity 〈ϕ(·), a〉 = Cϕ(〈·, a〉), which shows
that 〈ϕ(·), a〉 belongs to H(E1). For any z ∈ E1 and h ∈ H(E2), since 〈h, C∗ϕKz〉 =
〈Cϕh, Kz〉 = h(ϕ(z)) = 〈h, Kϕ(z)〉, we obtain the well known formula

(2.5) C∗ϕKz = Kϕ(z).

This formula was used in [7] for the proof of the necessity of Theorem 1.1. It turns
out that this formula plays an important role in our proof of both the necessity
and sufficiency on the boundedness of Cϕ.

For j = 1, 2, letMj denote the linear span of the kernel functions {Kz : z ∈
Ej}. We know thatMj is dense inH(Ej). Motivated by (2.5), for any mapping ϕ :
E1 → E2 (even when Cϕ is not a bounded operator), we define a linear operator
Sϕ fromM1 toM2 by the formula

(2.6) Sϕ

( m

∑
j=1

cjKxj

)
=

m

∑
j=1

cjKϕ(xj)
.

Here, the elements x1, . . . , xm ∈ E1 are distinct and c1, . . . , cm are complex num-
bers. Since reproducing kernels at distinct points are linearly independent, the
operator Sϕ is well defined. Furthermore, formula (2.6) remains valid even if the
elements x1, . . . , xm are not distinct. It follows from (2.5) that if Cϕ is bounded
from H(E2) to H(E1), then Sϕ = C∗ϕ onM1 and hence Sϕ extends to a bounded
operator from H(E1) to H(E2). On the other hand, if Sϕ extends to a bounded
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operator fromH(E1) intoH(E2), then

(Cϕh)(z) = h(ϕ(z)) = 〈h, Kϕ(z)〉 = 〈h, SϕKz〉 = (S∗ϕh)(z)

for all h ∈ H(E2) and all z ∈ E1. As a result, Cϕ is also a bounded operator. Note
that ‖Cϕ‖ = ‖Sϕ‖ whenever they are bounded operators.

For elements x1, . . . , xm in E1 and complex numbers c1, . . . , cm, since∥∥∥Sϕ

( m

∑
j=1

cjKxj

)∥∥∥2
=

m

∑
j,l=1

clcj〈Kϕ(xj)
, Kϕ(xl)

〉 =
m

∑
j,l=1

clcjK(ϕ(xl), ϕ(xj)), and

∥∥∥ m

∑
j=1

cjKxj

∥∥∥2
=

m

∑
j,l=1

clcjK(xl , xj),

we conclude that Sϕ is bounded with norm ‖Sϕ‖ 6 M if and only if

(2.7)
m

∑
j,l=1

cjcl(M2K(xl , xj)− K(ϕ(xl), ϕ(xj))) > 0.

Put ΦM(z, w) = M2K(z, w) − K(ϕ(z), ϕ(w)) for z, w ∈ E1. Since (2.7) holds for
arbitrary x1, . . . , xm in E1 and arbitrary complex numbers c1, . . . , cm, the function
ΦM is called a positive semi-definite kernel on E1. Therefore, Sϕ (and hence, Cϕ) is
bounded with norm at most M if and only if ΦM is a positive semi-definite kernel.
This criterion for boundedness of composition operators on general reproducing
kernel Hilbert spaces was discussed in Theorem 2 of [18]. Using the formula
K(z, w) = exp(〈z, w〉), we obtain the following.

LEMMA 2.6. Let ϕ : E1 → E2 be a mapping. The composition operator Cϕ :
H(E2)→ H(E1) is bounded with norm at most M if and only if the function

ΦM(z, w) = M2 exp(〈z, w〉)− exp(〈ϕ(z), ϕ(w)〉)

is positive semi-definite.
In particular, if Cϕ is bounded, then Φ‖Cϕ‖(z, z) > 0, which is equivalent to

(2.8) 2 ln ‖Cϕ‖ > ‖ϕ(z)‖2 − ‖z‖2

for all z ∈ E1.

As a corollary, we show that any mapping that induces a bounded compo-
sition operator must be affine.

COROLLARY 2.7. If Cϕ : H(E2) → H(E1) is bounded, then there exists a linear
operator A : E1 → E2 with ‖A‖ 6 1 and a vector b ∈ E2 such that ϕ(z) = Az + b for
all z ∈ E1.

Proof. For any unit vector a in E2, we put fa(w) = 〈w, a〉 for w ∈ E2 and
Fa(z) = 〈ϕ(z), a〉 for z ∈ E1. Then fa belongs to H(E2) and Fa, which is equal to
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Cϕ( fa), belongs toH(E1). Expand Fa as a power series

Fa(z) = Fa(0) +
∞

∑
m=1
〈zm, ζm〉 for all z in E1,

where ζ1 ∈ E1, ζ2 ∈ E2
1 , . . .. The inequality |Fa(z)| 6 ‖ϕ(z)‖ together with (2.8)

now gives |Fa(z)|2 6 ‖z‖2 + 2 ln(‖Cϕ‖) for all z in E1. It follows that ‖ζ1‖ 6 1
and ζm = 0 for all m > 2. Thus, Fa(z)− Fa(0) is a linear functional in z with norm
at most 1. Since 〈ϕ(z)− ϕ(0), a〉 = Fa(z)− Fa(0) is linear in z with norm at most
1 for any unit vector a ∈ E2, we conclude that ϕ(z) = Az + ϕ(0) for some linear
operator A from E1 to E2 with ‖A‖ 6 1. Taking b to be ϕ(0), we complete the
proof of the corollary.

In Section 3, we discuss in more detail positive semi-definite kernels and ob-
tain an additional condition on the vector b and the operator A. We then complete
the characterization of bounded composition operators.

To conclude the section, we show that some bounded composition opera-
tors Cϕ may be decomposed as a tensor product of two composition operators.
Such decompositions will be useful when we compute the spectral radii of certain
composition operators.

PROPOSITION 2.8. Let ϕ : E → E be a mapping such that Cϕ is bounded on
H(E). Assume that there is an orthogonal decomposition E = E1 ⊕ E2 such that ϕ =
ϕ1 ⊕ ϕ2, where ϕj : Ej → Ej for j = 1, 2. Then Cϕ and Cϕ1 ⊗ Cϕ2 are unitarily
equivalent.

Proof. Let W be the unitary operator from H(E1) ⊗ H(E2) onto H(E) in
Proposition 2.5. For f1 ∈ H(E1) and f2 ∈ H(E2), using the identity W( f1 ⊗ f2) =
f1 ∗ f2, we obtain

CϕW( f1 ⊗ f2) = Cϕ( f1 ∗ f2) = ( f1 ∗ f2) ◦ (ϕ1 ⊕ ϕ2) = (Cϕ1 f1) ∗ (Cϕ2 f2)

= W((Cϕ1 f1)⊗ (Cϕ2 f2)) = W(Cϕ1 ⊗ Cϕ2)( f1 ⊗ f2).

As a result, W∗CϕW and Cϕ1 ⊗Cϕ2 agree on the algebraic tensor product ofH(E1)
and H(E2). Since Cϕ is bounded, it follows that Cϕ1 and Cϕ2 are both bounded
and W∗CϕW = Cϕ1 ⊗ Cϕ2 .

3. BOUNDEDNESS OF COMPOSITION OPERATORS

3.1. POSITIVE SEMI-DEFINITE KERNELS. Let X be an arbitrary set. Recall that
a complex-valued function F on X × X is a positive semi-definite kernel if for
any finite set {x1, . . . , xm} of points in X , the matrix (F(xl , xj))16l,j6m is positive
semi-definite. That is, for any complex numbers c1, . . . , cm, we have

m

∑
j,l=1

clcjF(xl , xj) > 0.
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We shall write F � 0 to indicate that F is a positive semi-definite kernel. We list
here a few elementary facts that follows directly from the definition of positive
semi-definite kernels.

(A1) If Fj � 0 for all j = 1, 2 . . . , then
∞
∑

j=1
Fj � 0 provided that the series con-

verges pointwise on X .
(A2) If F, G � 0, then FG � 0. This follows from the fact that the Hadamard

(entry-wise) product of two positive semi-definite square matrices is a positive
semi-definite matrix.

(A3) Let F � 0. Suppose g is a function holomorphic on an open disk centered
at 0 that contains the range of F. If all the coefficients of the Maclaurin series of g
are non-negative, then it follows from (A1) and (A2) that g ◦ F � 0. In particular,
by choosing g(ζ) = exp(ζ)− 1, we have exp(F)− 1� 0.

(A4) Suppose M is a complex vector space with an inner product 〈·, ·〉M. If
there is a function f : X → M such that F(x, y) = 〈 f (x), f (y)〉M for x, y in X,
then F � 0. In fact, for any x1, . . . , xm in X and any complex numbers c1, . . . , cm,
we have

m

∑
j,l=1

clcjF(xl , xj) =
m

∑
j,l=1
〈c̄l f (xl), c̄j f (xj)〉M =

∥∥∥ m

∑
j=1

c̄j f (xj)
∥∥∥2

M
> 0.

It turns out ([1], Theorem 2.53; see also [3]) that any positive semi-definite kernel
arises in this way.

Now suppose E is a Hilbert space and T is a bounded linear operator on
E . Define F(z, w) = 〈Tz, w〉 for z, w ∈ E . If F � 0 on E , then F(z, z) > 0 for
all z ∈ E . This implies that T is a positive operator. Conversely, if T is positive,
then since F(z, w) = 〈T1/2z, T1/2w〉 (here T1/2 denotes the positive square root
of T), it follows from (A4) that F � 0. The following proposition provides a
generalization of this observation.

PROPOSITION 3.1. Let T be a self-adjoint operator on E . Let u be a vector in E
and M a nonnegative real number. Define the function

(3.1) F(z, w) = 〈Tz, w〉 − 〈z, u〉 − 〈u, w〉+ M2 for z, w ∈ E .

Then the following are equivalent:
(i) the function F is a positive semi-definite kernel;

(ii) F(z, z) > 0 for all z ∈ E ;
(iii) the operator T is positive and u = T1/2v for some v ∈ E with ‖v‖ 6 M.

Furthermore, if the conditions in (iii) are satisfied and vmin is a unique vector of smallest
norm in the set {v ∈ E : T1/2v = u}, then

(3.2) inf{F(z, z) : z ∈ E} = −‖vmin‖2 + M2.

The vector vmin is characterized by two conditions: (a) T1/2vmin = u and (b) vmin
belongs to ran(T1/2), the closure of the range of T1/2.
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Proof. It is immediate from the definition of positive semi-definite kernels
that (a) implies (b). Now suppose (b) holds. Let z be in E . Choose a complex
number γ of modulus one such that γ〈z, u〉 = |〈z, u〉|. For any real number r,
since F(rγz, rγz) > 0, we obtain

r2〈Tz, z〉 − 2r|〈z, u〉|+ M2 > 0.

Because this inequality holds for all real r, we conclude that 〈Tz, z〉 > 0 and
|〈z, u〉|2 6 M2〈Tz, z〉. As a result, T is a positive operator and we have |〈z, u〉| 6
M‖T1/2z‖ for all z ∈ E . From this, one can manage to apply Douglas’s lemma to
conclude that u belongs to the range of T1/2. But for completeness, we include
here a direct proof. Define a linear functional on the range of T1/2 by Λ(T1/2z) =
〈z, u〉. Then Λ is well defined and bounded on T1/2(E) with ‖Λ‖ 6 M. Extending
Λ to all E by the Hahn–Banach theorem and using the Riesz’s representation the-
orem, we obtain an element v in E with ‖v‖ = ‖Λ‖ 6 M such that Λ(w) = 〈w, v〉
for all w ∈ E . It then follows that for any z ∈ E ,

〈z, u〉 = Λ(T1/2z) = 〈T1/2z, v〉 = 〈z, T1/2v〉.

Thus u = T1/2v and hence (iii) follows.
Now assume that (iii) holds. For z, w in E , we have

F(z, w) = 〈T1/2z, T1/2w〉 − 〈T1/2z, v〉 − 〈v, T1/2w〉+ M2

= 〈T1/2z− v, T1/2w− v〉 − ‖v‖2 + M2.

Since−‖v‖2 + M2 > 0, (A1) and (A4) implies that F is positive semi-definite. Fur-
thermore, by Lemma 3.3 below, there exists a unique vector vmin of smallest norm
in the set (T1/2)−1({u}). This vector vmin must necessarily belong to ran (T1/2).
We then have

inf{F(z, z) : z ∈ E} = inf{‖T1/2z− vmin‖2 : z ∈ E} − ‖vmin‖2 + M2

= −‖vmin‖2 + M2.

REMARK 3.2. In the case E = Cn, since ran (T1/2) = ran (T1/2), the vector
vmin in the proposition is given by vmin = T1/2ζ for any ζ ∈ E that satisfies the
equation Tζ = u.

We close this section with an elementary lemma from the theory of Hilbert
spaces that we have used in the above proof.

LEMMA 3.3. Let S be a bounded operator on a Hilbert space E . Suppose y is an
element in the range of S. Then there exists a unique xmin ∈ E of smallest norm such
that Sxmin = y. Furthermore, for any x ∈ E , we have x = xmin if and only if Sx = y
and x belongs to ran(S∗), the closure of the range of S∗.

3.2. BOUNDED COMPOSITION OPERATORS. We now characterize bounded com-
position operators Cϕ between Segal–Bargmann spaces.
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Proof of Theorem 1.3. Suppose ϕ : E1 → E2 is a mapping such that the opera-
tor Cϕ : H(E2)→ H(E1) is bounded. Lemma 2.6 gives

(3.3) 0 6 ‖z‖2 − ‖ϕ(z)‖2 + 2 ln ‖Cϕ‖ for all z ∈ E1.

Furthermore, by Corollary 2.7, there is a linear operator A : E1 → E2 with ‖A‖ 6
1 and a vector b ∈ E2 such that ϕ(z) = Az + b. Now (3.3) gives ‖z‖2 − ‖Az +
b‖2 + 2 ln(‖Cϕ‖) > 0 for all z ∈ E1, which is equivalent to

〈(I − A∗A)z, z〉 − 〈z, A∗b〉 − 〈A∗b, z〉 − ‖b‖2 + 2 ln(‖Cϕ‖) > 0.(3.4)

Using Proposition 3.1, we conclude that the vector A∗b belongs to the range
of the operator (I − A∗A)1/2. Now we choose v ∈ E1 to be the vector of smallest
norm such that A∗b = (I − A∗A)1/2(v). By Proposition 3.1 again, the quantity
2 ln(‖Cϕ‖)− ‖v‖2 − ‖b‖2, being the infimum of the left hand side of (3.4), is non-
negative. We then obtain

‖Cϕ‖ > exp( 1
2‖v‖

2 + 1
2‖b‖

2).(3.5)

Conversely, suppose ϕ(z) = Az + b such that ‖A‖ 6 1; A∗b belongs to the
range of (I − A∗A)1/2; and v ∈ E1 is of smallest norm satisfying A∗b = (I −
A∗A)1/2(v). We shall show that Cϕ is bounded with norm at most the quantity
on the right hand side of (3.5) (hence the inequality in (3.5) is in fact an equality).

Define, for z, w ∈ E1,

F(z, w) = 〈z, w〉 − 〈ϕ(z), ϕ(w)〉+ ‖b‖2 + ‖v‖2

= 〈(I − A∗A)z, w〉 − 〈z, A∗b〉 − 〈A∗b, w〉+ ‖v‖2.

By the implication (iii) ⇒ (i) in Proposition 3.1, we have F � 0. It then follows
that exp(F)− 1� 0. Put G(z, w) = exp(〈ϕ(z), ϕ(w)〉) for z, w ∈ E1. Then G � 0
and hence, G · (exp(F)− 1)� 0. Since for z, w ∈ E1,

G(z, w)(exp(F(z, w))− 1) = exp(‖b‖2+‖v‖2)exp(〈z, w〉)− exp(〈ϕ(z), ϕ(w)〉),

we conclude, by Lemma 2.6, that Cϕ is bounded and

‖Cϕ‖ 6 exp( 1
2‖b‖

2 + 1
2‖v‖

2).(3.6)

This completes the proof of the theorem.

REMARK 3.4. If ‖A‖ < 1, then the operator I − A∗A is invertible, hence
(I − A∗A)1/2 is also invertible. As a result, A∗b belongs to (I − A∗A)1/2(E1)
for any b in E2. Theorem 1.3 shows that Cϕ is bounded for every ϕ of the form
ϕ(z) = Az + b, where b is an arbitrary vector in E2.

COROLLARY 3.5. Suppose ϕ : E → E is a mapping such that ϕ(0) = 0 and Cϕ is
bounded onH(E). Then r(Cϕ) = ‖Cϕ‖ = 1, where r(Cϕ) is the spectral radius of Cϕ.
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Proof. First of all, since 1 is an eigenvalue of Cϕ, we always have r(Cϕ) > 1.
Now the assumption that ϕ(0) = 0 together with Theorem 1.3 shows that ϕ(z) =
Az for all z ∈ E , where A : E → E is a linear operator with ‖A‖ 6 1. The norm
formula in Theorem 1.3 (with b = v = 0) gives ‖Cϕ‖ = 1. The conclusion of the
corollary then follows since r(Cϕ) 6 ‖Cϕ‖.

3.3. THE FINITE-DIMENSIONAL CASE. We now discuss the case when E1 is finite
dimensional. Suppose A : E1 → E2 is a linear operator with ‖A‖ 6 1 and b is a
vector in E2. We claim that A∗b belongs to the range of (I − A∗A)1/2 if and only
if 〈b, Aζ〉 = 0 whenever ‖Aζ‖ = ‖ζ‖. In fact, for ζ ∈ E1, we have

‖ζ‖2 − ‖Aζ‖2 = 〈ζ, ζ〉 − 〈A∗Aζ, ζ〉 = 〈(I − A∗A)ζ, ζ〉 = ‖(I − A∗A)1/2ζ‖2.

Therefore ‖Aζ‖ = ‖ζ‖ if and only if ζ belongs to ker(I − A∗A)1/2. This shows
that 〈b, Aζ〉 = 0 for all such ζ if and only if A∗b is in the orthogonal complement
of ker(I − A∗A)1/2, which is the same as ran (I − A∗A)1/2. Since E1 is finite di-
mensional, the identity ran (I − A∗A)1/2 = ran (I − A∗A)1/2 holds, so the claim
follows.

Let v ∈ E1 be the vector of smallest norm such that A∗b = (I − A∗A)1/2v.

Theorem 1.3 shows that ‖Cϕ‖ = exp( ‖v‖
2+‖b‖2

2 ). On the other hand, by Re-
mark 3.2, we have v = (I− A∗A)1/2w0 for any w0 ∈ E1 satisfying (I− A∗A)w0 =
A∗b. It follows that

‖v‖2 + ‖b‖2 = ‖(I − A∗A)1/2w0‖2 + ‖b‖2 = ‖w0‖2 − ‖Aw0‖2 + ‖b‖2.

We then obtain

‖Cϕ‖ = exp( 1
2 (‖w0‖2 − ‖Aw0‖2 + ‖b‖2)).

In the case E1 = E2 = Cn, we recover the results in Theorem 1.1 part (a), and
Theorem 1.2. In the case E1 6= E2, our results seem to be new.

3.4. SPECTRAL RADII. Theorem 1.3 involves the requirement that A∗b belongs to
the range of (I − A∗A)1/2. We first discuss how one may obtain a more direct
condition on the vector b. We then compute the spectral radii of a certain class of
composition operators.

We shall make use of the identities

A(I − A∗A)1/2 = (I − AA∗)1/2 A,(3.7)

A∗(I − AA∗)1/2 = (I − A∗A)1/2 A∗.(3.8)

LEMMA 3.6. Let A : E1 → E2 be a linear operator with ‖A‖ 6 1 and let b belong
to E2. Then the followings are equivalent:

(i) the vector A∗b belongs to the range of (I − A∗A)1/2;
(ii) the vector b belongs to the range of (I − AA∗)1/2.

Furthermore, if either (i) or (ii) holds (and hence both hold) and if vmin ∈ E1 is the
vector of smallest norm satisfying A∗b = (I − A∗A)1/2vmin and umin ∈ E2 is the
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vector of smallest norm satisfying b = (I − AA∗)1/2umin, then vmin = A∗umin and
‖umin‖2 = ‖vmin‖2 + ‖b‖2.

Proof. Suppose (i) holds. Then there is a vector v in E1 such that A∗b =
(I − A∗A)1/2v. Using (3.7), we have

AA∗b = A(I − A∗A)1/2v = (I − AA∗)1/2 Av.

From the identity b = (I − AA∗)b + AA∗b = (I − AA∗)b + (I − AA∗)1/2 Av, we
conclude that b belongs to the range of (I − AA∗)1/2.

Conversely, suppose (ii) holds and we have b = (I − AA∗)1/2u for some
u ∈ E2. Using (3.8), we have

A∗b = A∗(I − AA∗)1/2u = (I − A∗A)1/2 A∗u,

which belongs to the range of (I − A∗A)1/2.
Now suppose both (i) and (ii) hold. Let vmin be the unique vector in E1 of

smallest norm that satisfies A∗b = (I − A∗A)1/2vmin and let umin be the unique
vector in E2 of smallest norm that satisfies b = (I − AA∗)1/2umin. By Lemma 3.3,
umin belongs to ran((I − AA∗)1/2). Since

A∗(ran((I − AA∗)1/2)) ⊆ ran(A∗(I − AA∗)1/2) = ran((I − A∗A)1/2 A∗)

we conclude that A∗umin belongs to ran((I − A∗A)1/2). Furthermore, we have
(I − A∗A)1/2 A∗umin = A∗b. Applying Lemma 3.3 again, we see that vmin =
A∗umin. As a result,

‖umin‖2 = ‖(I − AA∗)1/2umin‖2 + ‖A∗umin‖2 = ‖b‖2 + ‖vmin‖2.

Combining Lemma 3.6 and Theorem 1.3, we have the following theorem.

THEOREM 3.7. Let ϕ : E1 → E2 be a mapping. Then Cϕ : H(E2) → H(E1) is
bounded if and only if there is a linear operator A : E1 → E2 with ‖A‖ 6 1 and a vector
b in the range of (I − AA∗)1/2 such that ϕ(z) = Az + b for all z ∈ E1. Furthermore,

‖Cϕ‖ = exp( ‖u‖
2

2 ), where u is the unique vector in E2 of minimum norm that satisfies
the equation b = (I − AA∗)1/2u.

We now use the norm formula in Theorem 3.7 to determine the spectral radii
of the operators Cϕ for a certain class of mappings ϕ. Recall that for T a bounded
operator, r(T) denotes its spectral radius.

PROPOSITION 3.8. Let ϕ(z) = Az + b be a mapping on E such that Cϕ is
bounded on H(E). If A is an isometry or a co-isometry, then we have r(Cϕ) = ‖Cϕ‖ =
exp( ‖b‖

2

2 ) (which equals 1 when A is a co-isometry).

Proof. If A is a co-isometry, then AA∗ = I and hence by Theorem 3.7, b = 0.
The conclusion of the proposition follows from Corollary 3.5.

Now consider the case where A is an isometry. Since A∗b belongs to the
range of (I − A∗A)1/2 = 0, we conclude that A∗b = 0. This gives 〈Akb, Alb〉 = 0
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whenever k 6= l and hence,

(3.9) ‖As−1b + · · ·+ b‖2 = ‖As−1b‖2 + · · ·+ ‖b‖2 = s‖b‖2

for any positive integer s.
We shall make use of the formula r(Cϕ) = lim

m→∞
‖Cm

ϕ ‖1/m. For any integer

m > 1, Cm
ϕ = Cϕm , where ϕm = ϕ ◦ · · · ◦ ϕ is the composition of m copies of

ϕ. We have ϕm(z) = Amz + Am−1b + · · · + b for z ∈ E . The norm formula in

Theorem 3.7 gives ‖Cϕm‖ = exp( ‖um‖2

2 ), where um is the vector of smallest norm
satisfying Am−1b + · · · + b = (I − Am(Am)∗)1/2um. Since Am is an isometry,
I − Am(Am)∗ is a projection. Minimality then forces um = Am−1b + · · ·+ b. By

(3.9), we have ‖um‖2 = m‖b‖2. It follows that ‖Cϕm‖ = exp(m‖b‖2

2 ) and hence

r(Cϕ) = lim
m→∞

‖Cϕm‖1/m = exp( ‖b‖
2

2 ) = ‖Cϕ‖.

This completes the proof of the proposition.

PROPOSITION 3.9. Let ϕ(z) = Az + b be a mapping on E such that Cϕ is
bounded onH(E). If r(A) < 1, then r(Cϕ) = 1.

Proof. As in the proof of Proposition 3.8, we shall make use of the formula

r(Cϕ) = lim
m→∞

‖Cϕm‖1/m = lim
m→∞

exp( ‖um‖2

2m ),

where um is the vector of smallest norm in E that satisfies the equation Am−1b +
· · ·+ b = (I − Am(Am)∗)1/2um.

Assume first ‖A‖ < 1. Since (I − Am(Am)∗)1/2 is invertible, um is uniquely
determined by um = (I − Am(Am)∗)−1/2(Am−1b + · · ·+ b). Thus,

‖um‖ 6 ‖(I − Am(Am)∗)−1/2‖(‖A‖m−1 + · · ·+ 1)‖b‖

6 (1− ‖A‖2m)−1/2(1− ‖A‖)−1‖b‖ 6 (1− ‖A‖)−3/2‖b‖.

It follows that lim
m→∞

‖um‖2

2m = 0, which gives r(Cϕ) = 1.

Now consider the general case, where r(A) < 1 but ‖A‖may equal 1. Since
lim
k→∞
‖Ak‖1/k = r(A) < 1, there is an integer k > 1 such that ‖Ak‖ < 1. From

the case considered above, we have r(Cϕk ) = 1. Therefore, r(Cϕ) = (r(Ck
ϕ))

1/k =

(r(Cϕk ))
1/k = 1.

The composition operators considered in Propositions 3.8 and 3.9 are quite
restrictive. However, when the dimension of E is finite, any bounded composi-
tion operator onH(E) can be decomposed as a tensor product of such operators.
Using this, we obtain a proof of Theorem 1.4.

Proof of Theorem 1.4. Since Cϕ is bounded on H(Cn), Theorem 3.7 implies
that ϕ(z) = Az + b, where A : Cn → Cn is a linear operator with ‖A‖ 6 1 and b
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belongs to the range of (I − AA∗)1/2. Since ‖A‖ 6 1, for any vector z ∈ Cn and
any unimodular complex number λ, we have

‖A∗z− λz‖2 − ‖Az− λz‖2 = ‖A∗z‖2 − ‖Az‖2 6 ‖z‖2 − ‖Az‖2.

It follows that if Az = λz, then A∗z = λz. We conclude that there is an orthogonal
decomposition Cn = E1 ⊕ E2, with respect to which, A = A1 ⊕ A2, where A1 is
unitary and all eigenvalues of A2 have absolute values strictly less than 1. Note
that the case E1 = {0} or E2 = {0} is allowed.

Write b = b1 ⊕ b2, where b1 ∈ E1 and b2 ∈ E2. With j = 1, 2, we put ϕj(zj) =
Ajzj + bj for zj ∈ Ej. Then ϕ = ϕ1⊕ ϕ2. By Proposition 3.8, r(Cϕ1) = 1 (since A1 is
a co-isometry) and by Proposition 3.9, r(Cϕ2) = 1. Since Cϕ is unitarily equivalent
to Cϕ1 ⊗ Cϕ2 by Proposition 2.5, we have r(Cϕ) = r(Cϕ1)r(Cϕ2) = 1.

We raise here a question for the infinite dimensional case.

QUESTION 3.10. Let ϕ(z) = Az + b be a mapping on E such that Cϕ is bounded
on H(E). Suppose that dim(E) = ∞ and r(A) = 1. Find the spectral radius r(Cϕ).
Of course, we only need to consider mappings that cannot be written as a direct sum of
mappings in Propositions 3.8 and 3.9.

We provide here an example which shows that in the case dim(E) = ∞, the
spectral radius r(Cϕ) could be any number between 1 and ‖Cϕ‖. Let {βm}∞

m=0
be a non-increasing sequence of positive real numbers with β0 = 1. Let E be
a Hilbert space with an orthonormal basis {em}∞

m=0. Let A be the unilateral
weighted shift on E defined by Aem = βm+1

βm
em+1 for all m > 0. Consider ϕ(z) =

Az + e0. Since ‖A‖ 6 1 and A∗e0 = 0, Theorem 1.3 shows that Cϕ is a bounded
operator onH(E) with ‖Cϕ‖ = e1/2.

Let ϕk denote the iteration of ϕ with itself k times. Then Ck
ϕ = Cϕk and we

have for any z ∈ E ,

ϕk(z) = Akz + (Ak−1 + · · ·+ I)e0 = Akz + βk−1ek−1 + · · ·+ β0e0.

It follows that ‖ϕk(0)‖2 = β2
k−1 + · · · + β2

0. Since A∗k ϕk(0) = 0, Theorem 1.3
gives

‖Cϕk‖ = exp( ‖ϕk(0)‖2

2 ) = exp(
β2

k−1+···+β2
0

2 ).

We now compute r(Cϕ) as

r(Cϕ) = lim
k→∞
‖Ck

ϕ‖1/k = lim
k→∞

exp(
β2

k−1+···+β2
0

2k ) = exp( β2

2 ).

Here β = lim
k→∞

βk and we have used the fact that

β2 = lim
k→∞

β2
k−1 + · · ·+ β2

0

k
.
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By choosing an appropriate sequence, the limit β may be any number in the in-
terval [0, 1]. This shows that r(Cϕ) may be any number in the interval [1, e1/2] =
[1, ‖Cϕ‖].

4. COMPACTNESS OF COMPOSITION OPERATORS

In this section we characterize mappings ϕ that induce compact composi-
tion operators Cϕ. Before discussing the general case, let us consider first the case
ϕ(z) = Az : E → E , where A is a linear operator on E with ‖A‖ 6 1. In what
follows, we shall simply write CA for Cϕ.

It turns out that via the anti-unitary J that we have seen in Proposition 2.1,
the operator CA has an easy description. Let f be a continuous m-homogeneous
polynomial on E . Then there is an element am ∈ Em such that f (z) = 〈zm, am〉 for
z ∈ E . This gives

(CA f )(z) = 〈(Az)m, am〉 = 〈A⊗m(zm), am〉 = 〈zm, (A∗)⊗mam〉,

where A⊗m denotes the tensor product of m copies of A. We conclude that CA f
is also a continuous m-homogeneous polynomial. Therefore, the space Pm(E)
of continuous m-homogeneous polynomials is invariant under CA and we have
the identity CA|Pm(E) = J−1(A∗)⊗m J. This, together with the decomposition in
Remark 2.3, gives

CA = J−1(1C ⊕ A∗ ⊕ (A∗)⊗2 ⊕ (A∗)⊗3 ⊕ · · · )J,(4.1)

where the sum is an infinite direct sum of operators. The identity (4.1) shows that
CA is compact if and only if (A∗)⊗m is compact for each m > 1 and ‖(A∗)⊗m‖ → 0
as m→ ∞. Using the fact that (A∗)⊗m is compact if and only if A∗ (and hence A)
is compact and the well known identity ‖(A∗)⊗m‖ = ‖A∗‖m = ‖A‖m, we con-
clude that CA is compact if and only if A is compact and ‖A‖ < 1. We have thus
proved a special case of Theorem 1.5. A proof of the full version of Theorem 1.5
will be given later.

For T a bounded operator between two Hilbert spaces, we recall that the
essential norm of T, denoted ‖T‖e, is defined by

‖T‖e = inf{‖T + K‖ : K is a compact operator}.

It is clear that ‖T‖e 6 ‖T‖ and ‖T∗‖e = ‖T‖e. It is also standard that if {xm}∞
m=1 is

a sequence of unit vectors converging weakly to zero, then we have the inequality
‖T‖e > lim sup

m→∞
‖Txm‖.

PROPOSITION 4.1. Suppose ϕ(z) = Az + b is a mapping from E1 into E2 such
that Cϕ is a bounded operator fromH(E2) intoH(E1). If ‖A‖=1, then ‖Cϕ‖e=‖Cϕ‖.
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Proof. Since Cϕ is bounded, Theorem 1.3 implies that ‖A‖ 6 1 and there is a
vector v belonging to ran(I − A∗A)1/2 such that A∗b = (I − A∗A)1/2v. Further-
more, ‖Cϕ‖2 = exp(‖v‖2 + ‖b‖2).

If ‖A‖ = 1, then there is a sequence {wm}∞
m=1 of vectors in E1 such that

‖wm‖ = 1 and ‖Awm‖ → 1 as m→ ∞. Passing to a subsequence if necessary, we
may assume lim

m→∞
m2(1− ‖Awm‖2) = 0, which implies

lim
m→∞

m‖(I − A∗A)1/2wm‖ = lim
m→∞

m(1− ‖Awm‖2)1/2 = 0.

Let z be a vector in E1. Put zm = m wm + z. Then we have ‖zm‖ → ∞ and hence,
by Lemma 2.4, ‖Kzm‖−1Kzm → 0 weakly as m→ ∞. This gives

‖Cϕ‖2
e = ‖C∗ϕ‖2

e > lim sup
m→∞

‖Kzm‖−2‖C∗ϕKzm‖2 = lim sup
m→∞

‖Kzm‖−2‖Kϕ(zm)‖2

= lim sup
m→∞

exp(‖ϕ(zm)‖2 − ‖zm‖2).(4.2)

Now for each positive integer m, we have

‖ϕ(zm)‖2 − ‖zm‖2 = ‖Azm‖2 + 〈z, A∗b〉+ 〈A∗b, zm〉+ ‖b‖2 − ‖zm‖2

= −‖(I − A∗A)1/2zm − v‖2 + ‖v‖2 + ‖b‖2

= −‖m(I−A∗A)1/2wm+(I−A∗A)1/2z−v‖2+‖v‖2+‖b‖2.

Letting m→ ∞, we obtain

lim
m→∞

(‖ϕ(zm)‖2 − ‖zm‖2) = −‖(I − A∗A)1/2z− v‖2 + ‖v‖2 + ‖b‖2.

This identity, together with (4.2), gives

2 ln ‖Cϕ‖e > −‖(I − A∗A)1/2z− v‖2 + ‖v‖2 + ‖b‖2.

Since v belongs ran(I − A∗A)1/2, the supremum of the right hand side when z
varies in E1 is ‖v‖2 + ‖b‖2 = 2 ln ‖Cϕ‖. As a result, we have ‖Cϕ‖e > ‖Cϕ‖.
Since ‖Cϕ‖e 6 ‖Cϕ‖, we conclude that ‖Cϕ‖e = ‖Cϕ‖.

We now have the necessary tools for the proof of Theorem 1.5.

Proof of Theorem 1.5. Assume first that Cϕ is a compact operator fromH(E2)
into H(E1). By Theorem 1.3, ϕ(z) = Az + b for all z ∈ E1, where A : E1 → E2 is
linear with ‖A‖ 6 1 and b ∈ E2 with A∗b ∈ (I− A∗A)1/2(E1). By Proposition 4.1,
we have ‖A‖ < 1. It now remains to show that A is compact.

Let {um}∞
m=1 be a sequence in E2 that converges weakly to zero. For each m,

put fm(w) = 〈w, um〉 for w ∈ E2. Then fm → 0 weakly as m → ∞ by Lemma 2.4.
This implies that lim

m→∞
‖Cϕ fm‖ = 0. But for z ∈ E1,

(Cϕ fm)(z) = fm(ϕ(z)) = 〈Az + b, um〉 = 〈z, A∗um〉+ 〈b, um〉,

so ‖Cϕ fm‖2 = ‖A∗um‖2 + |〈b, um〉|2. We then obtain lim
m→∞

‖A∗um‖2 = 0. There-

fore, A∗ is compact and hence, A is also compact.
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Now suppose ϕ(z) = Az + b, where A : E1 → E2 is a compact operator
with ‖A‖ < 1 and b is an arbitrary vector in E2. Let A = U|A| be the polar
decomposition of A, where U : E1 → E2 is a partial isometry and |A| = (A∗A)1/2

is a compact operator on E1. Pick a real number α such that ‖A‖ < α < 1. Put
ϕ1(z) = α−1|A|z and ϕ2(z) = αUz + b for z ∈ E1. As we have shown, Cϕ1 is
compact. Since ‖αU‖ 6 α < 1, Theorem 1.3 implies that Cϕ2 is bounded. From
the identity ϕ = ϕ2 ◦ ϕ1, it follows that Cϕ = Cϕ1 Cϕ2 and hence, Cϕ is a compact
operator.

Proposition 4.1 and Theorem 1.5 together give us the essential norms of a
class of operators Cϕ. In fact, suppose ϕ(z) = Az + b, where A : E1 → E2 is
a linear operator with ‖A‖ 6 1 and b ∈ ran(I − AA∗)1/2. If ‖A‖ = 1, then
‖Cϕ‖e = ‖Cϕ‖ > 1. If ‖A‖ < 1 and A is compact (which is automatic if either E1
or E2 has finite dimension), then ‖Cϕ‖e = 0. This gives a proof of Theorem 1.6.
The remaining case is when ‖A‖ < 1 and A is not compact. In the following
result, we assume ϕ(0) = 0.

PROPOSITION 4.2. Suppose A : E1 → E2 is a linear operator with ‖A‖ < 1.
Then ‖CA‖e = ‖A‖e. (The case ‖A‖e = 0 is already covered by Theorem 1.5 so here we
are only interested in the case ‖A‖e > 0.)

Proof. We consider first E1 = E2. Using the identity (4.1) and the fact that
‖A∗‖ = ‖A‖ < 1, we obtain

‖CA‖e = ‖1C ⊕ A∗ ⊕ (A∗)⊗2 ⊕ (A∗)⊗3 ⊕ · · · ‖e = ‖A∗‖e = ‖A‖e.

In the general case, since A∗A is an operator on E1, the above argument
gives ‖CA∗A‖e = ‖A∗A‖e = ‖A‖2

e. The conclusion of the proposition follows
from the identity CAC∗A = CA∗A.

Unfortunately, we have not been able to find a formula in the case when
ϕ(0) is not zero. We raise here a question.

QUESTION 4.3. Assume that A : E → E is a linear operator which is not compact,
‖A‖ < 1 and b is an arbitrary non-zero vector. Put ϕ(z) = Az + b for z ∈ E . Find the
essential norm ‖Cϕ‖e.

The last result we would like to discuss in this section is the spectrum σ(Cϕ)
when Cϕ is a compact operator. The following theorem is similar to Theorem 7.20
of [9], which describes the spectra of certain compact composition operators act-
ing on weighted Hardy spaces over the unit ball in Cn. In the setting of Segal–
Bargmann spaces, our approach is less involved and it works also for the infinite
dimensional case.

THEOREM 4.4. Let ϕ : E → E be a mapping such that Cϕ is a compact operator
onH(E). Then we have

σ(Cϕ) = {0, 1} ∪ {λ1 · · · λs : λ1, . . . , λs ∈ σ(A) and s > 1}.
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Here A is a compact operator with ‖A‖ < 1 such that ϕ(z) = Az + b for z ∈ E .

Proof. Since Cϕ is compact, we have σ(Cϕ) = {0} ∪ σp(Cϕ), where σp(Cϕ)
is the point spectrum of Cϕ.

Because Cϕ1 = 1, we know that λ = 1 is an eigenvalue. Now suppose that
λ ∈ C\{0, 1} is an eigenvalue of Cϕ and f ∈ H(E) is a corresponding eigenvector.
Then f (Az + b) = λ f (z) for all z ∈ E . Let z0 = (I − A)−1(b) be the unique fixed
point of ϕ. Since f (z0) = f (ϕ(z0)) = λ f (z0) and λ 6= 1, we have f (z0) = 0. Let

f (z) =
∞

∑
j=1
〈(z− z0)

j, aj〉

be the power expansion of f around z0. It then follows from the identities Az0 +
b = z0 and f (A(z + z0) + b) = λ f (z + z0) that f (Az + z0) = λ f (z + z0) for all
z ∈ E . This gives

∞

∑
j=1
〈(Az)j, aj〉 = λ

∞

∑
j=1
〈zj, aj〉 ⇐⇒

∞

∑
j=1
〈zj, (A∗)⊗jaj〉 = λ

∞

∑
j=0
〈zj, aj〉.

We conclude that (A∗)⊗jaj = λaj for all j > 1. Since f is not the zero function,
there exists an l > 1 such that al 6= 0, which shows that λ an eigenvalue of (A∗)⊗l .
(Because ‖A‖ < 1, there are only a finite number of such l. This implies that f is
in fact a polynomial.) Since A is compact, we conclude that λ is an eigenvalue of
A⊗l . Hence, λ = λ1 · · · λl for some eigenvalues λ1, . . . , λl of A.

Conversely, suppose that λ = λ1 · · · λl is a product of l (not necessarily
distinct) eigenvalues of A. Let vj be an eigenvector of A∗ corresponding to the
eigenvalue λj for j = 1, . . . , l. Put f (z) = 〈z − z0, v1〉 · · · 〈z − z0, vl〉 for z ∈ E .
Then f is a non-zero polynomial of degree l and we have

f (Az + b) = 〈Az + b− z0, v1〉 · · · 〈Az + b− z0, vl〉
= 〈A(z− z0), v1〉 · · · 〈A(z− z0), vl〉
= 〈(z− z0), A∗v1〉 · · · 〈(z− z0), A∗vl〉 = λ f (z).

Since f clearly belongs to H(E), we conclude that λ is an eigenvalue of Cϕ on
H(E). This completes the proof of the theorem.

5. NORMAL, ISOMETRIC AND CO-ISOMETRIC COMPOSITION OPERATORS

We determine in this section the mappings ϕ : E → E that give rise to
normal, isometric or co-isometric operators Cϕ on H(E). (Recall that an operator
on the Hilbert space is called co-isometric if its adjoint is an isometric operator.)
We shall make use of the identities

(5.1) Cϕ1 = 1, C∗ϕ1 = Kϕ(0), and C∗ϕCϕ1 = Kϕ(0),



156 TRIEU LE

where 1 denotes the constant function with value one, which is also the repro-
ducing kernel function K0.

We first show that if Cϕ is either a normal, isometric or co-isometric operator
onH(E), then ϕ(0) = 0. The argument is fairly standard. In fact, if Cϕ is normal,
then we have ‖C∗ϕ1‖ = ‖Cϕ1‖, which, together with (5.1), gives ‖Kϕ(0)‖ = ‖1‖. If
Cϕ is isometric, then C∗ϕCϕ1 = 1, which gives Kϕ(0) = 1 and hence, in particular,
‖Kϕ(0)‖ = ‖1‖. If Cϕ is co-isometric then we also have ‖1‖ = ‖C∗ϕ1‖ = ‖Kϕ(0)‖.
Since ‖Kϕ(0)‖2 = exp(−‖ϕ(0)‖2) and ‖1‖2 = 1, we conclude that in each of the
above cases, ϕ(0) = 0.

Now since ϕ(0) = 0, Theorem 1.3 shows that ϕ(z) = Az for some operator
A on E with ‖A‖ 6 1. Then Cϕ = CA, C∗ϕ = CA∗ , and hence

C∗ϕCϕ = CA∗CA = CAA∗ and CϕC∗ϕ = CACA∗ = CA∗A.

As a result, we obtain the following proposition.

PROPOSITION 5.1. Let ϕ : E → E be a mapping such that Cϕ is a bounded
operator onH(E). Then

(i) Cϕ is normal if and only if there exists a normal operator A on E with ‖A‖ 6 1
such that ϕ(z) = Az for all z ∈ E .

(ii) Cϕ is isometric if and only if there exists a co-isometric operator A on E such that
ϕ(z) = Az for all z ∈ E .

(iii) Cϕ is co-isometric if and only if there exists an isometric operator A on E such
that ϕ(z) = Az for all z ∈ E .

REMARK 5.2. Statement (i) in Proposition 5.1 holds also for composition op-
erators on the Hardy and Bergman spaces of the unit ball (see Theorem 8.1 of [9]),
where a similar result to Theorem 1.3 is not available. (In fact, on the Hardy and
Bergman spaces, mappings that are not affine can give rise to bounded composi-
tion operators.) The proof of Theorem 8.1 in [9] can be adapted to prove Propo-
sition 5.1(i) without appealing to Theorem 1.3 in the case E has finite dimension.
On the other hand, since that proof relies on the finiteness of the dimension, it
does not seem to work when E is infinite dimensional.

REMARK 5.3. In the case E = Cn, isometric operators on E are also co-
isometric and vice versa, and all these operators are unitary. Statements (ii)
and (iii) in Proposition 5.1 then imply that Cϕ is isometric if and only if it is co-
isometric if and only if it is unitary.
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ADDED IN PROOFS. It has been brought to our attention that a version of Theorem 1.3
in the case E1 = E2 and Theorem 1.4 were obtained independently via a different approach
in [21].
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