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ABSTRACT. Motivated by reformulating Furstenberg’s ×p,×q conjecture via
representations of a crossed product C∗-algebra, we show that in a discrete
C∗-dynamical system (A, Γ), the space of (ergodic) Γ-invariant states on A is
homeomorphic to a subspace of (pure) state space of A o Γ. Various applica-
tions of this in topological dynamical systems and representation theory are
obtained.
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1. INTRODUCTION

Let S, T : X → X be two commuting continuous maps on a compact Haus-
dorff space X. A Borel probability measure µ on X is called S, T-invariant if
µ(S−1 A) = µ(T−1 A) = µ(A) for every Borel subset A of X. An S, T-invariant
measure µ is called ergodic if every Borel set E with S−1E = E = T−1E satisfies
that µ(E) = 0 or 1.

Assume that p, q are two positive integers greater than 1 with log p
log q irrational.

Denote the unit circle by T. Define maps Tp, Tq : T → T as Tp(z) = zp and
Tq(z) = zq for all z ∈ T.

A Borel probability measure µ on T is called ×p,×q-invariant if it is Tp, Tq-
invariant. A Borel set E ⊂ T is called ×p,×q-invariant if E = TpE = TqE.

H. Furstenberg gives the classification of closed ×p,×q-invariant subsets of
T, which says that such a set is either finite or T ([7], Theorem IV.1). He also gives
the following conjecture concerning the classification of ergodic×p,×q-invariant
measures on T.

FURSTENBERG’S ×p,×q CONJECTURE. An ergodic ×p,×q-invariant Borel
probability measure on T is either finitely supported or the Lebesgue measure.
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Furstenberg’s conjecture is the simplest case of conjectures concerning clas-
sifications of invariant measures, and there are vast literatures about its general
versions and their applications in number theory. See [6] for a survey.

For Furstenberg’s conjecture, the best known result is the following theo-
rem, which is proven by D. J. Rudolph under the assumption that p, q is coprime
([16], Theorem 4.9), later improved by A.S.A. Johnson ([9], Theorem A).

RUDOLPH–JOHNSON’S THEOREM. If µ is an ergodic ×p,×q-invariant mea-
sure on T, then either hµ(Tp) = hµ(Tq) = 0 or µ is the Lebesgue measure.

Here hµ(Tp) and hµ(Tq) stand for the measure-theoretic entropy of ×p and
×q with respect to µ, respectively. See Chapter 4 of [18] for the definition of
entropy for measure preserving maps.

For a×p,×q-invariant measure on T, denote the two isometries on L2(T, µ)
induced by continuous maps ×p,×q : T→ T by Vp, Vq.

By Rudolph–Johnson’s theorem, to classify ergodic ×p,×q-invariant mea-
sures on T, it suffices to classify such ergodic measures with zero entropy for Tp
or Tq.

J. Cuntz notices that when hµ(Tp) = hµ(Tq) = 0, the operators Vp and Vq

are two commuting unitary operators on L2(T, µ) ([18], Corollary 4.14.3).
For the unitary operator Mz : L2(T, µ)→ L2(T, µ) given by Mz f (z) = z f (z)

for all f ∈ L2(T, µ) and z ∈ T, one has Vp Mz = Mp
z Vp and Vq Mz = Mq

zVq. So
a ×p,×q invariant measure µ with zero entropy gives rise to a representation πµ

of the universal unital C∗-algebra C∗(s, t, z) generated by three unitaries s, t and
z with the relations

st = ts, sz = zps, tz = zqt

in the following way:

πµ(s) = Vp, πµ(t) = Vq, πµ(z) = Mz.

With the above observation, Cuntz suggests that one can consider ergodic
×p,×q-invariant measures on T via representations of C∗(s, t, z) ∼= C∗(Z[ 1

pq ])o
Z2, where the two generators of Z2 act on C∗(Z[ 1

pq ]) by automorphisms induced

by ×p,×q maps on Z[ 1
pq ], and the isomorphism Φ : C∗(s, t, z) → C∗(Z[ 1

pq ])oZ2

is given by Φ(s) = a, Φ(t) = b and Φ(z) = 1. Here a = (1, 0) and b = (0, 1) are
in Z2 and 1 is in Z[ 1

pq ] ([3]).
Motivated by Cuntz’s observation, firstly one has to answer the following

question:
What kind of representation of C∗(Z[ 1

pq ])oZ2 is induced by a ×p,×q-invariant
measure on T?

Denote the dual of Z[ 1
pq ] by Spq, the pq-solenoid ([13], A.1). The ×p,×q

isomorphisms on Z[ 1
pq ] give rise to ×p,×q isomorphisms on Spq.

We answer the above question in the following way.
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Firstly, the space of ergodic ×p,×q-invariant measures on T is homeomor-
phic to the space of ergodic ×p,×q-invariant measures on Spq, hence the classi-
fication of ergodic ×p,×q-invariant measures on T amounts to classification of
ergodic ×p,×q-invariant measures on Spq. Secondly, ergodic ×p,×q-invariant
measures on Spq 1-1 corresponds to irreducible representations of C∗(Z[ 1

pq ])oZ2

whose restriction to Z2 contains the trivial representation.
Moreover, in a more general context, we prove the following which briefly

shows how the problem of invariant states relates to crossed product C∗-algebras.
Assume that a discrete group Γ acts on a unital C∗-algebra A as automor-

phisms. Denote this action by α, which is a group homomorphism from Γ to the
automorphism group Aut(A) of A.

A state ϕ on A is Γ-invariant if ϕ(αs(a)) = ϕ(a) for all s in Γ and a in A.
An extreme point of the set of Γ-invariant states on A (this is a closed convex set
when equipped with weak* topology, hence when nonempty, the set of extreme
points is also nonempty) is called ergodic.

Denote by A o Γ the full crossed product of the C∗-dynamical system
(A, Γ, α).

THEOREM 1.1. The space of (ergodic) Γ-invariant states on A is homeomorphic to
the space of (pure) states on A o Γ whose restriction to Γ is the trivial character.

We give some applications of Theorem 1.1 to topological dynamical systems
and representation theory.

Suppose a discrete group Γ acts on a compact Hausdorff space X as home-
omorphisms (this is the same as Γ acting on the unital C∗-algebra C(X), the
space of continuous functions on X, by automorphisms). For a representation
π : C(X)o Γ → B(H), denote the space of Γ-invariant vectors in H by HΓ.

THEOREM 1.2. Every irreducible representation π of C(X)o Γ on a Hilbert space
H satisfies that dim HΓ 6 1. When dim HΓ = 1, the representation π is uniquely
induced by an ergodic Γ-invariant regular Borel probability measure µ on X.

A special case of Theorem 1.2 is the following corollary.

COROLLARY 1.3. Suppose that a discrete group Γ acts on a discrete abelian group
G by group automorphisms.

Every irreducible unitary representation π of G o Γ on a Hilbert space H satisfies
that dim HΓ 6 1.

When dim HΓ = 1, the representation π is uniquely induced by an ergodic Γ-
invariant regular Borel probability measure µ on the Pontryagin dual Ĝ of G.

The paper is organized as follows.
In the preliminary section, we recall some background of crossed product

C∗-algebras. The proof of Theorem 1.1 is given in Section 3. At the end of that
section, we include two immediate applications of Theorem 1.1 to C∗-dynamical
systems, namely, Proposition 3.6 and Proposition 3.4. In Section 3.2, we prove
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Proposition 3.8 and Theorem 1.2. In the last section we prove Theorem 4.2 which
enables us to reformulate Furstenberg’s ×p,×q problem in terms of representa-
tion theory of the semidirect product group Z[ 1

pq ]oZ2.

2. PRELIMINARIES

In this section, we list some background for C∗-dynamical systems.
Within this article Γ stands for a discrete group and A stands for a unital C∗-

algebra whose state space and pure state space are denoted by S(A) and P(A),
respectively.

Denote the GNS representation of A with respect to a ϕ ∈ S(A) by πϕ :
A → B(L2(A, ϕ)) where L2(A, ϕ) stands for the Hilbert space corresponding to
πϕ. Let Iϕ = {a ∈ A : ϕ(a∗a) = 0}. Denote a + Iϕ by â for all a ∈ A.

DEFINITION 2.1. An action of Γ on A as automorphisms is a group homo-
morphism α : Γ → Aut(A), where Aut(A) stands for the set of ∗-isomorphisms
from A to A (this is a group under composition). We call (A, Γ, α) a dynamical
system.

A Γ-invariant state is a state ϕ on A such that ϕ(αs(a)) = ϕ(a) for all s ∈ Γ
and a ∈ A [17]. Denote the set of Γ-invariant states on A by SΓ(A). It is clear that
SΓ(A) is a convex closed set under weak* topology. If SΓ(A) is nonempty, then it
contains at least one extreme point. We call an extreme point of SΓ(A) an ergodic
Γ-invariant state on A. The set of ergodic Γ-invariant states on A is denoted by
EΓ(A).

A representation of a C∗-algebra B on a Hilbert space H is a ∗-homomor-
phism π : B → B(H) and it is called irreducible if the commutant C(π(B)) con-
sisting of elements in B(H) commuting with every element in π(B) contains only
scalar multiples of identity operator.

A covariant representation (π, U, H) of a dynamical system (A, Γ, α) consists
of a representation π of A and a unitary representation U of Γ on a Hilbert space
H such that, for all a ∈ A and s ∈ Γ,

π(αs(a)) = Usπ(a)U∗s .

Let Cc(Γ, A) be the space of finitely supported A-valued functions on Γ. For
f , g ∈ Cc(Γ, A), the product f ∗ g is given by

f ∗ g(t) = ∑
s1s2=t

f (s1)αs1(g(s2))

and f ∗ is given by
f ∗(t) = αt( f (t−1)∗)

for every t ∈ Γ. Then Cc(Γ, A) is a ∗-algebra . Given a covariant representation
(π, U, H) of a dynamical system (A, Γ, α), one can construct a representation π̃ of
Cc(Γ, A) on H.
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DEFINITION 2.2. For a dynamical system (A, Γ, α), the crossed product C∗-
algebra Ao Γ is the completion of Cc(Γ, A) under the norm ‖ f ‖ = sup ‖π̃( f )‖ for
f ∈ Cc(Γ, A) where the supremum is taken over all representations of Cc(Γ, A).
Denote by us the unitary in A o Γ corresponding to an s ∈ Γ.

There is a one-to-one correspondence between representations of Ao Γ and
covariant representations of (A, Γ, α).

We refer readers to Chapter VIII of [4] for more about discrete crossed prod-
ucts.

3. MAIN RESULTS

If ϕ ∈ SΓ(A), then there is a unitary representation (the Koopman represen-
tation) Uϕ of Γ on L2(A, ϕ) given by

Uϕ(s)(â) = α̂s(a)

for all s ∈ Γ and a ∈ A ([12], [14], [17]).
Given ϕ ∈ SΓ(A), the triple (πϕ, Uϕ, L2(A, ϕ)) gives a covariant represen-

tation of (A, Γ, α). So there is a representation of A o Γ on L2(A, ϕ), which we
denote by ρϕ, given by the following, for any ∑

s∈Γ
asus ∈ Cc(Γ, A):

ρϕ

(
∑
s∈Γ

asus

)
= ∑

s∈Γ

πϕ(as)Uϕ(s).

3.1. Γ-INVARIANT STATES ON A AND STATES ON Ao Γ. Denote {ϕ ∈ S(Ao Γ) :
ϕ(us) = 1 for all s ∈ Γ} by S1(A o Γ) and {ψ ∈ P(A o Γ) : ψ(us) = 1 for all
s ∈ Γ} by P1(A o Γ).

We have the following.

THEOREM 3.1. When equipped with weak* topologies, the restriction maps R :
S1(A o Γ)→ SΓ(A) and R : P1(A o Γ)→ EΓ(A) are homeomorphisms.

To prove this theorem, we first prove the following lemma which says that
for every ϕ in S1(A o Γ), the restriction ϕ|A belongs to SΓ(A).

LEMMA 3.2. For any state ϕ on A o Γ such that ϕ(us) = 1 for every s ∈ Γ, we
have ϕ(usaut) = ϕ(a) for all a ∈ A and s, t ∈ Γ. Consequently the restriction ϕ|A is a
Γ-invariant state on A.

The proof follows from Proposition 1.5.7 of [1] since by assumption every
us is contained in the multiplicative domain of ϕ.

For a Γ-invariant state ϕ, there is a representation ρϕ of A o Γ on L2(A, ϕ)
given by the following,

ρϕ

(
∑
s∈Γ

asus

)
= ∑

s∈Γ

πϕ(as)Uϕ(s),
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for every ∑
s∈Γ

asus ∈ Cc(Γ, A).

Proof of Theorem 3.1. The restriction map R : S1(A o Γ) → SΓ(A) given by
R(ϕ) = ϕ|A for every ϕ ∈ S1(A o Γ), is well-defined by Lemma 3.2. Since A is a
C∗-subalgebra of A o Γ, the map R is continuous under weak* topology.

If R(ϕ1) = R(ϕ2) for ϕ1, ϕ2 ∈ S1(A o Γ), then ϕ1(a) = ϕ2(a) for all a ∈ A.
Also

ϕ1(aus) = ϕ2(aus),

for all a ∈ A and s ∈ Γ. Since every element in Cc(Γ, A) is a linear combination
of aus and Cc(Γ, A) is a dense subspace of A o Γ, it follows that ϕ1 = ϕ2 and R is
injective.

Moreover, every ϕ ∈ SΓ(A) gives a representation ρϕ of A o Γ on L2(A, ϕ).
Let ϕ̃ be the state of A o Γ given by ϕ̃(b) = 〈ρϕ(b)(1̂), 1̂〉 for all b ∈ A o Γ. By
the definition of ρϕ, we see that ϕ̃ ∈ S1(A o Γ) and ϕ̃|A = ϕ. This shows the
surjectivity of R.

Consequently, R is a bijective continuous map between two compact Haus-
dorff spaces S1(A o Γ) and SΓ(A). Therefore R is a homeomorphism.

Note that R is an affine map between two convex spaces S1(A o Γ) and
SΓ(A), so the set of extreme points of S1(A o Γ) is homeomorphic to EΓ(A).

Suppose that ϕ is an extreme point of S1(A o Γ) and ϕ = λϕ1 + (1− λ)ϕ2
for two states ϕ1, ϕ2 on A o Γ and some 0 < λ < 1. Then 1 = ϕ(us) = λϕ1(us) +
(1 − λ)ϕ2(us) for every s ∈ Γ. It follows that ϕ1(us) = ϕ2(us) = 1, that is,
ϕ1, ϕ2 ∈ S1(A o Γ). Hence ϕ = ϕ1 = ϕ2 and ϕ is a pure state, which means
P1(A o Γ) is the set of extreme points of S1(A o Γ).

For a character ξ on Γ (a group homomorphism from Γ to T), denote {ϕ ∈
S(Ao Γ) : ϕ(us) = ξ(s) for all s ∈ Γ} by Sξ(Ao Γ) and {ϕ ∈ P(Ao Γ) : ϕ(us) =
ξ(s) for all s ∈ Γ} by Pξ(A o Γ).

For a representation of A o Γ on a Hilbert space H, define Hξ = {x ∈ H :
π(us)(x) = ξ(s)x for all s ∈ Γ}.

We have the following improvement of Theorem 3.1.

COROLLARY 3.3. Let ξ be a character on Γ. When equipped with weak* topolo-
gies, SΓ(A) ∼= Sξ(A o Γ) and EΓ(A) ∼= Pξ(A o Γ).

Proof. By Theorem 3.1, SΓ(A) ∼= S1(A o Γ). Note that S1(A o Γ) ∼= Sξ(A o
Γ) (P1(A o Γ) ∼= Pξ(A o Γ) follows) and the homeomorphism is induced by the

isomorphism Λ : A o Γ → A o Γ given by Λ
(

∑
s∈Γ

asus

)
= ∑

s∈Γ
ξ(s)asus for all

∑
s∈Γ

asus ∈ Cc(Γ, A).

For a representation π : A o Γ → B(H), denote {x ∈ H : π(us)(x) =
x for all s ∈ Γ} by HΓ.
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PROPOSITION 3.4. For a C∗-dynamical system (A, Γ, α), the following are equiv-
alent:

(i) The set SΓ(A) is nonempty.
(ii) The canonical homomorphism C∗(Γ)→ A o Γ is an embedding.

(iii) There exists a representation π : A o Γ → B(H) such that HΓ 6= 0, or equiva-
lently, there exists a covariant representation (π, U, H) of (A, Γ, α) such that U contains
the trivial representation of Γ.

Proof. (i)⇒ (ii) Take a ϕ ∈ SΓ(A). Let Γ act on C trivially. By the invariance,
the map ϕ : A → C is a Γ-equivariant contractive completely positive map.
By Exercise 4.1.4 of [1], there exists a contractive completely positive map ϕ̃ :

Ao Γ → C∗(Γ) such that ϕ̃
(

∑
s∈Γ

asus

)
= ∑

s∈Γ
ϕ(as)us. Immediately one can check

that the composition of maps

C∗(Γ)→ A o Γ →
ϕ̃

C∗(Γ)

is the identity map. Hence the canonical homomorphism C∗(Γ) → A o Γ is an
embedding.

(ii)⇒ (i) By Theorem 3.1, it suffices to show S1(A o Γ) is nonempty.
Let π0 : Γ → C be the trivial unitary representation of Γ on C. Then π0

is a state on C∗(Γ) such that π0(us) = 1 for every s ∈ Γ. Note that C∗(Γ) is a
Banach subspace of A o Γ. By the Hahn–Banach theorem, one can extend π0 to
a bounded linear functional ϕ on A o Γ without changing its norm ([2], Corol-
lary 6.5). Hence ‖ϕ‖ = ‖π0‖ = 1 = π0(1) = ϕ(1). So ϕ is a state on A o Γ ([10],
Theorem 4.3.2), and satisfies that ϕ(us) = 1 for all s ∈ Γ.

(i)⇒ (iii) The GNS representation with respect to ϕ ∈ SΓ(A) gives the re-
quired covariant representation of (A, Γ, α).

(iii)⇒ (i) Take a unit vector x in HΓ and define a state ϕ on Ao Γ by ϕ(b) =
〈π(b)x, x〉 for all b ∈ A o Γ. It follows that ϕ ∈ S1(A o Γ).

REMARK 3.5. The equivalence of (i) and (ii) may be well-known. When A
is commutative and Γ is locally compact, this is mentioned in Remark 7.5 of [19].
To the best of our knowledge, it does not appear elsewhere in the literature.

Notice that Uϕ gives rise to an action of Γ on B(L2(A, ϕ)), also denoted by α

for convenience, defined by the following, for every T ∈ B(L2(A, ϕ)) and s ∈ Γ:

αs(T) = Uϕ(s)TUϕ(s−1).

Denote 〈T(1̂), 1̂〉 by ϕ(T) for all T ∈ B(L2(A, ϕ)). When ϕ is a Γ-invariant
state on A, it is also a Γ-invariant state on B(L2(A, ϕ)) since we have the follow-
ing, for all s ∈ Γ:

ϕ(αs(T)) = ϕ(Uϕ(s)TUϕ(s−1)) = 〈Uϕ(s)TUϕ(s−1)(1̂), 1̂〉

= 〈TUϕ(s−1)(1̂), Uϕ(s−1)(1̂)〉 = 〈T(1̂), 1̂〉 = ϕ(T).
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We can also see that

(3.1) αs(πϕ(a)) = πϕ(αs(a))

for every a ∈ A and s ∈ Γ.
We call T in B(L2(A, ϕ)) Γ-invariant if αs(T) = T for all s ∈ Γ. Denote the

set of Γ-invariant operators in B(L2(A, ϕ)) by B(L2(A, ϕ))Γ. Let

πϕ(A)′ = {T ∈ B(L2(A, ϕ)) : Tπϕ(a) = πϕ(a)T for all a ∈ A}.

PROPOSITION 3.6. A Γ-invariant state ϕ on A is ergodic if and only if ϕ(T∗T) =
|ϕ(T)|2 for every T ∈ B(L2(A, ϕ))Γ ∩ πϕ(A)′.

Proof. Recall that R : S1(A o Γ) → SΓ(A) is the restriction map. For ϕ ∈
SΓ(A), denote R−1(ϕ) by ψ.

Observe that B(L2(A, ϕ))Γ ∩ πϕ(A)′ = πψ(A o Γ)′.
Again by Theorem 3.1, the state ϕ on A is an ergodic Γ-invariant state if and

only if ψ is a pure state on A o Γ if and only if πψ(A o Γ)′ = C. The “only if”
part follows immediately.

Now suppose ϕ(T∗T) = |ϕ(T)|2 for every T ∈ B(L2(A, ϕ))Γ ∩ πϕ(A)′ =

πψ(A o Γ)′. A straightforward calculation shows that T(1̂) = ϕ(T)1̂. Then for
every a ∈ A, we have

T(â) = Tπϕ(a)(1̂) = πϕ(a)T(1̂) = πϕ(a)(ϕ(T)1̂) = ϕ(T)â.

This means T = ϕ(T), a scalar multiple of the identity operator. Hence πψ(A o
Γ)′ = C and ψ is a pure state.

REMARK 3.7. The key observation B(L2(A, ϕ))Γ ∩ πϕ(A)′ = πψ(A o Γ)′ in
the proof was pointed out to us by Sven Raum.

3.2. ERGODIC Γ-INVARIANT STATES ON A AND IRREDUCIBLE REPRESENTATIONS

OF A o Γ. We say a representation π1 : B → B(H1) of a C∗-algebra B is unitarily
equivalent to a representation π2 : B → B(H2) if there exists a surjective isometry
U : H1 → H2 such that Uπ1(b)(x) = π2(b)U(x) for all b ∈ B and x ∈ H1.

PROPOSITION 3.8. A representation π : A o Γ → B(H) is unitarily equivalent
to ρϕ : A o Γ → B(L2(A, ϕ)) for some ϕ ∈ EΓ(A) if and only if π is irreducible and
HΓ 6= 0.

Proof. For a ϕ ∈ EΓ(A), by Theorem 3.1, there exists a ψ ∈ P1(A o Γ) such
that R(ψ) = ϕ.

Also ρϕ is unitarily equivalent to the GNS representation πψ : A o Γ →
B(L2(A o Γ, ψ)) of A o Γ with respect to ψ. Since ψ is a pure state, this shows ρϕ

is irreducible.
Note that 0 6= 1̂ ∈ L2(A, ϕ) and ρϕ(us)(1̂) = 1̂ for all s ∈ Γ. Hence

L2(A, ϕ)Γ 6= 0.
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Conversely, given an irreducible representation π : A o Γ → B(H) with
HΓ 6= 0, take a unit vector x ∈ HΓ and define a state ψ on A o Γ by

ψ(b) = 〈π(b)x, x〉

for all b ∈ A o Γ. Since π is irreducible, the state ψ is a pure state and the GNS
representation of A o Γ with respect to ψ, πψ is unitarily equivalent to π ([4],
Theorem I.9.8 and [5], 2.4.6). Also x ∈ HΓ implies that ψ(us) = 1 for all s ∈ Γ. So
ϕ = ψ|A ∈ EΓ(A), and πψ is unitarily equivalent to ρϕ. This finishes the proof.

Now we consider the case when A is commutative.

THEOREM 3.9. For any irreducible representation π : C(X)o Γ → B(H), we
have dim HΓ 6 1. If HΓ 6= 0, then there exists a unique ergodic Γ-invariant state ϕ on
C(X) (or a unique regular Γ-invariant Borel probability measure on X) such that π is
unitarily equivalent to ρϕ.

Proof. Suppose HΓ 6= 0 for an irreducible representation π : C(X)o Γ →
B(H).

Take unit vectors x, y ∈ HΓ. Define a state ψ on A o Γ by

ψ(b) = 〈π(b)x, x〉

for all b ∈ C(X)o Γ. Then ϕ = ψ|C(X) gives an ergodic Γ-invariant probability
measure µ on X with ϕ( f ) =

∫
X

f dµ for all f ∈ C(X). Also the GNS representa-

tion πψ of C(X)o Γ with respect to ψ, is unitarily equivalent to ρϕ : C(X)o Γ →
B(L2(A, ϕ)). Note that L2(A, ϕ) = L2(X, µ) and L2(A, ϕ)Γ consists of Γ-invariant
functions in L2(X, µ), which are always constant functions ([8], Chapter 3, 3.10).
Under surjective isometries H ∼= L2(A o Γ, ψ) ∼= L2(X, µ), both x and y are
mapped to Γ-invariant functions in L2(X, µ). Since µ is ergodic, their images
in L2(X, µ) are both constant functions. Hence there exists a constant λ with ab-
solute value 1 such that x = λy. This shows that dim HΓ = 1.

For the second part, the existence of ϕ follows from Theorem 3.8.
To prove the uniqueness of ϕ, we show the following claim.

Claim. If ρϕ ∼ ρψ for ϕ, ψ ∈ SΓ(C(X)), then ϕ = ψ.

Proof of Claim. Let Θ : L2(A, ϕ) → L2(A, ψ) be an isomorphism such that
ρψ( f ) = Θ−1ρϕ( f )Θ for every f in C(X). It is easy to see that Θ preserves Γ-
invariant vectors, i.e., Θ : L2(A, ϕ)Γ → L2(A, ψ)Γ is also an isomorphism. Hence
Θ(1̂) = λ1̂ for some complex number λ with |λ| = 1.

By definition of ρϕ, we have ϕ( f ) = 〈ρϕ( f )1̂, 1̂〉 for all f ∈ C(X). It follows,
for all f ∈ C(X), that

ϕ( f ) = 〈ρϕ( f )1̂, 1̂〉 = 〈Θ−1ρψ( f )Θ1̂, 1̂〉 = 〈ρψ( f )λ1̂, λ1̂〉 = ψ( f ).

Hence ϕ is uniquely determined by the unitary equivalence class of π.
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REMARK 3.10. (i) Proposition 3.8 and Theorem 3.9 say that classification of
ergodic Γ-invariant regular Borel probability measures on a compact Hausdorff
space X amounts to classification of equivalence classes of irreducible represen-
tations of C(X)o Γ whose restriction to Γ contains the trivial representation.

(ii) When A is non-commutative, Theorem 3.9 fails. For instance, one can take
a noncommutative C∗-algebra A and a discrete group Γ acting on A trivially.
An irreducible representation π : A → B(H) with dim H > 1 and the trivial
representation Γ → B(H) give rise to an irreducible representation of ρ : AoΓ →
B(H). But H = HΓ is not of dimension 1.

There is an immediate application of Theorem 3.9 to representation theory
of semidirect product groups.

COROLLARY 3.11. Suppose a discrete group Γ acts on a discrete abelian group G
by group automorphisms. Every irreducible unitary representation π : G o Γ → B(H)
of the semidirect product group G o Γ satisfies dim HΓ 6 1. When dim HΓ = 1, the
representation π is induced by an ergodic Γ-invariant regular Borel probability measure
µ on the Pontryagin dual Ĝ of G.

Proof. Note that Γ acts on the group C∗-algebra C∗(G) as automorphisms.
Also C∗(G) = C(Ĝ) for the dual group Ĝ of G and C∗(G) o Γ ∼= C∗(G o Γ).
There exists a 1-1 correspondence between irreducible unitary representations of
G o Γ and irreducible representations of C∗(G o Γ). Apply Theorem 3.9 to the
case C(X) = C(Ĝ).

4. FURSTENBERG’S ×p,×q PROBLEM VIA REPRESENTATION THEORY

We can define ×p,×q maps Tp, Tq on Z[ 1
pq ] by Tp(g) = pg, Tq(g) = qg for

every g ∈ Z[ 1
pq ]. Note that Tp and Tq are group automorphisms. Hence they

induce group automorphisms on the dual group Spq of Z[ 1
pq ]. For convenience

we also call them ×p,×q maps on Spq.
Denote the set of ×p, ×q-invariant measures on the unit circle by Mp,q(T),

the set of ergodic ×p, ×q-invariant measures on the unit circle by EMp,q(T), the
set of ×p, ×q-invariant measures on Spq by Mp,q(Spq), the set of ergodic ×p, ×q-
invariant measures on Spq by EMp,q(Spq).

4.1. ×p,×q-INVARIANT MEASURES ON pq-SOLENOID AND ×p,×q-INVARIANT

MEASURES ON THE UNIT CIRCLE. The following result is well-known for experts.
For completeness we give a proof here.

PROPOSITION 4.1. When equipped with weak* topologies, the restriction map R :
Mp,q(Spq)→ Mp,q(T) defined by R(µ)( f ) = µ( f ) for µ ∈ Mp,q(Spq) and f ∈ C(T) is
a homeomorphism. Also R restricts to a homeomorphism from EMp,q(Spq) to EMp,q(T).
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Proof. Take µ ∈ Mp,q(Spq). Since C(T) is a C∗-subalgebra of C(Spq) and this
inclusion intertwines endomorphisms on C(T) and C(Spq) induced by ×p,×q
on T and Spq, the restriction R(µ) of µ on C(T) belongs to Mp,q(T) and R is also
continuous under the weak* topology.

Conversely, assume that µ ∈ Mp,q(T). Note that the group algebra CZ([ 1
pq ])

is a dense ∗-subalgebra of C(Spq) and define ν(zkpmqn
) = µ(zk) for n, m, k ∈ Z. By

Bochner’s theorem ([15], 1.4.3) ν is a Borel probability measure on Spq if and only
if {ν(zk)}k∈Z[ 1

pq ]
is a positive definite sequence.

For any finite subset F of Z[ 1
pq ], there exist positive integers k, l such that

F′ = pkql F = {pkqls : s ∈ F} is a finite subset of Z. Then we have

ν
((

∑
s∈F

λszs
)∗(

∑
t∈F

λtzt
))

= ∑
s,t∈F

λsλtν(zt−s) = ∑
s,t∈F

λsλtµ(zpkql(t−s))

= µ
((

∑
s∈F′

λsp−kq−l zs
)∗(

∑
t∈F′

λtp−kq−l zt
))

> 0.

Furthermore the ×p, ×q-invariance of ν follows from the definition. This shows
that ν is in Mp,q(Spq). Moreover, µ(zk) = ν(zk) for all k ∈ Z by the ×p,×q-
invariance of µ, hence µ is the restriction of ν on C(T), and this proves the surjec-
tivity of R.

On the other hand, if R(µ1) = R(µ2) for µ1, µ2 ∈ Mp,q(Spq), then µ1(zk) =

µ2(zk) for all k ∈ Z. Since µ1 and µ2 are ×p,×q-invariant, we have µ1(zkpmqn
) =

µ2(zkpmqn
) for all n, m, k ∈ Z. This proves the injectivity of R.

So R is a bijective continuous map between two compact Hausdorff spaces
Mp,q(Spq) and Mp,q(T), this implies that R is a homeomorphism.

Furthermore R is a homeomorphism from EMp,q(Spq) to EMp,q(T) since R
is affine.

THEOREM 4.2. A representation π : C(Spq) o Z2 → B(H) is induced by a
finitely supported ergodic ×p,×q-invariant measure µ on T (here π is induced by µ
means that π is unitarily equivalent to πµ) if and only if

(i) π is irreducible;
(ii) HZ2 6= 0;

(iii) there exists nonzero N ∈ Z such that π(zN)x = x for every x ∈ HZ2 .

Proof. Let µ be a finitely supported ergodic ×p,×q-invariant measure on
T. Since both ×p and ×q maps have zero entropy with respect to µ, there is a
representation πµ : C(Spq)oZ2 → B(L2(T, µ)) induced by µ (see Introduction
for the definition of πµ).

Suppose that π : C(Spq) o Z2 → B(H) is unitarily equivalent to πµ. By
Proposition 4.1, ν = R−1(µ) is an ergodic ×p,×q-invariant measure on Spq.
Hence the representation ρν of C(Spq)oZ2 on L2(Spq, ν) is irreducible.
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Note that L2(T, µ) is a subspace of L2(Spq, ν) since µ is the restriction of ν

from C(Spq) onto C(T). Also L2(T, µ) is a nonzero invariant subspace of L2(Spq, ν)

under ρν since Vp, Vq and Mz are all unitary operators on L2(T, µ). Hence L2(T, µ)

= L2(Spq, ν), which implies that πµ is unitarily equivalent to ρν. So π is irre-
ducible and HZ2 6= 0.

Moreover, µ is finitely supported in a subset of { i
N }

N−1
i=0 ⊂ [0, 1) (here we

identify T with [0, 1)). Hence µ(zN) = 1. It follows that zN = 1 µ-a.e, which
implies that π(zN)x = x for every x ∈ HZ2 .

Conversely, assume that π is an irreducible representation satisfying that
HZ2 6= 0 and π(zN)x = x for a nonzero N ∈ Z and every x ∈ HZ2 .

Claim. The Hilbert space H is finite dimensional.

Proof of Claim. Take a unit y ∈ HZ2 . Then spanπ(Z[ 1
pq ])y is an invariant

subspace of H under π. Since π is irreducible, we have H = span(π(Z[ 1
pq ])y). So

it suffices to prove span(π(Z[ 1
pq ])y) is finite dimensional.

Firstly, we prove that π(zM)y = y for a positive integer M coprime to
pq. Without loss of generality we can assume N > 0. There exist nonneg-
ative integers i, j, K, M such that KN = Mpiqj with M coprime to pq. Then
π(zMpiqj

)y = π(zKN)y = y.
Note that Z2 acts on Z[ 1

pq ] by ×p,×q, that is, (m, n) · zk = zkpmqn
for all

m, n ∈ Z and every k ∈ Z[ 1
pq ]. Since y is in HZ2 , we have π((i, j))π(zM)y =

π(zMpiqj
)π((i, j))y = π(zMpiqj

)y = y, which implies π(zM)y = y.
Secondly, we prove that π(Z[ 1

pq ])y = π(Z)y. For all nonnegative integers

i, j, there exists an integer l such that lpiqj = rM + 1 since M is coprime to pq.
Hence for every positive integer k, we have

π(zk/piqj
)y = π(zk(lpiqj−rM)/piqj

)y = π(zkl)π(z−krM/piqj
)y = π(zkl)y.

This shows that π(Z[ 1
pq ])y ⊆ π(Z)y.

Lastly, we prove that span(π(Z)y) is finite dimensional. Every k ∈ Z can
be written as k = lN + r for some l ∈ Z and 0 6 r < N. Hence π(zk)y =
π(zlN+r)y = π(zr)y. This implies that

π(Z)y ⊂ span{π(zi)y}N−1
i=0 .

So dim H 6 N.

Define a state ψ on C(Spq)oZ2 by ψ(b) = 〈π(b)y, y〉 for every b ∈ C(Spq)o
Z2. We have ψ ∈ P1(C(Spq)oZ2) since π is irreducible and y ∈ HZ2 . By Theo-
rem 3.1, ν = R(ψ) = ψ|C(Spq) is an ergodic ×p,×q-invariant measure on Spq.

By Theorem 3.8 and Theorem 3.9, we have π ∼ ρν. Of course H ∼= L2(Spq, ν).
From the claim, L2(Spq, ν) is finite dimensional.
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Hence ν is finitely supported in Spq. Let µ = R(ν) = ν|C(Spq). As before,
ρν is unitarily equivalent to πµ. Hence L2(T, µ) ∼ L2(Spq, ν) is finite dimen-
sional. Hence µ is a finitely supported ergodic ×p,×q-invariant measure on T
and π ∼ πµ.

Consequently we have the following corollary.

COROLLARY 4.3. Furstenberg’s conjecture is true if and only if there is a unique
irreducible unitary representation U : Z[ 1

pq ]o Z2 → B(H) such that HZ2 6= 0 and

π(zk)x 6= x for every nonzero integer k and nonzero x ∈ HZ2 .
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