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ABSTRACT. This paper is devoted to the computations of some relevant quan-
tities associated with the free unitary Brownian motion. Using the Lagrange
inversion formula, we first derive an explicit expression for its alternating
star cumulants which have even lengths and relate them to those having odd
lengths by means of a summation formula for the free cumulants with product
as entries. Next, we use again Lagrange formula together with a generating
series for Laguerre polynomials in order to compute the Taylor coefficients of
the reciprocal of the R-transform of the free Jacobi process associated with a
single projection of rank 1/2, and those of its S-transform as well. This gen-
erating series lead also to the Taylor expansions of the Schur function of the
spectral distribution of the free unitary Brownian motion and of its first iterate.
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1. INTRODUCTION

Free probability theory has its origin in harmonic analysis on free groups
and the formulation of its basic concepts is due to D.V. Voiculescu in the eighties.
In this framework, a ?-noncommutative probability space is a unital noncommu-
tative von Neumann algebra A equipped with a faithful normal finite trace φ and
an involution ?, and the freeness in Voiculescu’s sense replaces the classical inde-
pendence of commutative random variables. By the spectral theorem, freeness in
Voiculescu’s sense leads to highly noncommutative convolutions of probability
distributions by adding or multiplying self-adjoint or unitary random variables.
Moreover, analytic transforms analogous to the Fourier transform and lineariz-
ing these free convolutions exist and allow to compute the resulting probability
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distributions. Other probabilistic concepts such as infinite-divisibility, Lévy pro-
cesses, Lévy–Khintchine representations and cumulants have also their free coun-
terparts. For instance, the latter can be defined either analytically as the Taylor
coefficients of the so-called R-transform which linearizes the free additive convo-
lution or in a combinatorial fashion through the lattice of noncrossing partitions
and its Möbius function. We refer the reader to the monographs [11], [14], [19]
and references therein for a good and large account on free probability theory and
on its operator-algebraic and combinatorial aspects.

In this paper, we are interested in solving three problems related to the so-
called free unitary Brownian motion. Introduced in [3], this is a family of unitary
operators (ut)t>0 starting at the unit 1 of A whose spectral distributions (νt)t>0
form a semigroup with respect to the free multiplicative convolution of proba-
bility distributions on the unit circle T. Moreover, νt is invariant under complex
conjugation and its positive moments are given at any time t > 0 by ([3]):

(1.1) φ(uk
t ) =

∫
T

zkνt(dz) =
e−kt/2

k
L(1)

k−1(kt), k > 1,

where L(1)
k−1 is the (k − 1)-th Laguerre polynomial of index 1 ([2]). In particular,

νt converges weakly as t → ∞ to the spectral distribution ν∞ of a Haar unitary
operator u∞ ([11], [14]). Besides, the R-transform of νt is expressed through the
Lambert function so that the sequence of its free cumulants is given by ([9], [12]):

e−nt/2 (−nt)n−1

n!
, n > 1.

More generally, the star cumulants (see below) of the free unitary Brownian mo-
tion were studied in [9] and their explicit expressions are only available in some
particular cases. Of special interest are those corresponding to alternating words
(ut, u?

t , ut, u?
t , . . . ) and having even lengths since they converge as t → ∞ to the

only non zero star cumulants of u∞ ([14]). The star cumulants of odd lengths are
relevant as well since they encode the infinitesimal structure of ut near t = ∞
defined and completely determined in [9]. In that paper, it was shown that the
generating function of the alternating star cumulants having even lengths sat-
isfies a non linear partial differential equation (hereafter pde) which was then
solved using the method of characteristics. The first problem we deal with here is
concerned with the derivation of an explicit formula for these free cumulants and
amounts to the computation of the Taylor coefficients of the local inverse around
z = 1 of the map encoding the characteristics of the pde.

Another family of positive bounded operators (the free Jacobi process
(Jt)t>0) is closely related to the free unitary Brownian motion. Actually, let {P, Q}
∈ A be two orthogonal projections which are free with {ut, u?

t }t>0 (we assume
without loss of generality that A is large enough to contain both free families of
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operators). Then, the free Jacobi process associated with {P, Q} is defined by ([6])

Jt := PutQu?
t P, t > 0,

and is considered as an element of the compressed algebra (PA P, φ/φ(P)). When
P = Q and φ(P) = 1/2, it was proved in [8] that the spectral distribution of Jt,
say µt, coincides with that of the self-adjoint random variable

(1.2)
u2t + u?

2t + 21
4

in (A , φ). In particular, the multi-linearity of the free cumulant functional ([14])
and the freeness of 1 with {u2t, u?

2t} show that any free cumulant of Jt is the sum
of star cumulants of u2t of different types. Since the latter are only known in
few cases, it is most likely better to derive the free cumulants of Jt by inverting
its moment generating function already obtained in [8]. In the same vein, it is
natural to seek an explicit expression for the S-transform of µt.

Another problem related to the free unitary Brownian motion which we
tackle here is the determination of the Verblunsky coefficients of νt, known also
as the Schur parameters. The knowledge of these complex numbers would im-
ply important properties enjoyed by νt as illustrated for instance by the strong
Szegö theorem ([16]). They are defined as the coefficients of the continued frac-
tion expansion of its Schur function or equivalently, by Geroniums theorem ([16]),
as those of the recurrence relation satisfied by the orthogonal polynomials with
respect to νt. Equivalently, the Schur algorithm shows that the Verblunsky co-
efficients may be realized as the constant terms of the Schur iterates. Moreover,
they can be connected via the inverse Geronimus relations with the Jacobi–Szegö
parameters of the image of νt under the Szegö map ([17]): up to affine transfor-
mations, they coincide with the Jacobi–Szegö parameters of µt/2.

In this paper, we solve the first problem related to the star cumulants of
ut and make major steps toward the solutions to the two remaining ones. More
precisely, we use Lagrange inversion formula in order to write down the expres-
sion of the alternating star cumulants having even lengths of ut. Appealing to a
summation formula due to Krawczyk and Speicher for the free cumulants with
product as entries, we relate the star cumulants having odd lengths to those hav-
ing even lengths opening therefore the way to compute inductively the former
from the latter. Afterwards, we use again Lagrange formula together with a cer-
tain generating series for Laguerre polynomials in order to derive the Taylor ex-
pansion of the reciprocal of the R-transform of µt. Using Watson’s summation
formula for the 3F2 hypergeometric function, we obtain a relatively simple for-
mula for the Taylor coefficients. Similar computations lead also to the Taylor
expansions of the S-transform of µt, of the Schur function of νt and of its first
iterate.

For sake of completeness, we recall in the following section some needed
facts from free probability theory as well as the definitions of various special func-
tions occuring in the remainder of the paper.
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2. REMINDER: FREE PROBABILITY THEORY AND SPECIAL FUNCTIONS

2.1. FREE PROBABILITY THEORY. Let (A , φ) be a ?-noncommutative probabil-
ity space and let a ∈ A . Then, the n-th moment of a is the complex number
φ(an), n > 1, and if a is a (bounded) self-adjoint or a unitary operator, then φ(an)
is the n-th moment of the spectral distribution of a which is supported in a com-
pact set of the real line R or in T respectively ([14], pp. 43–44). Now, denote
NC(n) the set of noncrossing partitions and consider the reverse refinement or-
der 6: for π, ρ ∈ NC(n), π 6 ρ if and only if that every block of ρ is a union of
blocks of π. This is a partial order and the set (NC(n),6) turns out to be a lattice,
that is, every π, ρ ∈ NC(n) have a smallest common upper bound π ∨ ρ and a
greatest common lower bound π ∧ ρ ([14], p. 144). Moreover, the minimal and
maximal elements of (NC(n),6) are 0n (the partition of {1, . . . , n} into n blocks)
and 1n (the partition of {1, . . . , n} into one block), and its Möbius function defined
on {(π, ρ) ∈ NC(n), π 6 ρ} is denoted “Mob” ([14], Lecture X).

Given an n-tuple {a1, . . . , an} ∈ A , their joint n-th cumulant is defined by
([14], pp. 175–176):

κn(a1, . . . , an) = ∑
π∈NC(n)

Mob(π, 1n) ∏
V∈π

φ(a1, . . . , an|V)

where, for a block V of π,

φ(a1, . . . , an|V) := φ(ai1 · · · ai|V|), V = {i1 < i2 · · · < i|V|} ∈ π.

In particular, κn is a multilinear functional and if a1, . . . , an ∈ {ut, u?
t }, then we get

the star cumulant of ut of length n. Besides, the free cumulants of a are the sequence
κn(a), n > 1 defined by

κn(a) := κn(a, . . . , a) = ∑
π∈NC(n)

Mob(π, 1n) ∏
V∈π

φ(a|V|),

where for a block V ∈ π, |V| is its cardinality.
We will also make use of the following result due to Krawczyk and Speicher

([14], pp. 178–181) which gives a structured summation formula for free cumu-
lants with products as entries ([14], p. 180). More precisely, let σ = {J1, . . . , Jk} ∈
NC(n) be a partition where every block is an interval: J1 = {1, . . . , j1}, J2 =
{j1 + 1, . . . , j2}, . . . , Jk = {jk−1 + 1, . . . , jk} for some 1 6 j1 < j2 < · · · < jk = n.
Then for every a1, . . . , an ∈ A , one has

(2.1) κk(a1 · · · aj1 , aj1+1 · · · aj2 , . . . , ajk−1+1 · · · ajk )= ∑
π∈NC(n)
π∨σ=1n

∏
V∈π

κ|V|((a1, . . . , an)|V)

where

κ|V|(a1, . . . , an|V) := κ|V|(ai1 , . . . , ai|V|), V = {i1 < i2 · · · < i|V|} ∈ π.
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On the analytic side, recall that the R-transform of a is the following free cumulant
generating function:

R(z) := ∑
n>1

κn(a)zn.

Since a is a bounded operator, this series converges absolutely in a neighborhood
of the origin. Moreover, it is related to the moment generating function

M(z) := 1 + ∑
n>1

φ(an)zn

by the following functional equation ([14], p. 269)

(2.2) w(z) = z[1 + R(w(z))]

where w(z) := zM(z). In other words, the map

F : z 7→ z
1 + R(z)

is the compositional inverse of w near z = 0. Finally, assume further that φ(a) 6=
0. Then the S-transform of a is defined by ([18])

(2.3) zS(z) = (1 + z)(M− 1)−1(z),

and satisfies the inverse relation R−1(z) = zS(z).

2.2. SPECIAL FUNCTIONS. Apart from the last two facts recalled at the end of
this paragraph, the remaning ones are standard and may be found in the books
[1] and [2]. We start with the Gamma function

Γ(x) =
∞∫

0

e−uux−1du, x > 0,

and the Pochhammer symbol

(a)k = (a + k− 1) · · · (a + 1)a, a ∈ R, k ∈ N,

with the convention (0)k = δk0. The latter may be written as

(a)k =
Γ(a + k)

Γ(a)
when a > 0, while

(2.4)
(−n)k

k!
= (−1)k

(
n
k

)
if k 6 n and vanishes otherwise. Next comes the generalized hypergeometric
function defined by the series

pFq((ai, 1 6 i 6 p), (bj, 1 6 j 6 q); z) = ∑
m>0

∏
p
i=1(ai)m

∏
q
j=1(bj)m

zm

m!

where an empty product equals one and the parameters (ai, 1 6 i 6 p) are real
while (bj, 1 6 j 6 q) ∈ R \ −N. With regard to (2.4), this series terminates when
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ai = −n ∈ −N for some 1 6 i 6 p, therefore reduces in this case to a polynomial
of degree n. In particular, the Charlier polynomials are defined by

Cn(x, a) := 2F0(−n,−x;− 1
a ), a ∈ R \ {0}, x ∈ R.

When x ∈ Z is an integer, a generating function of these polynomials is given by

(2.5) ∑
n>0

Cn(x, a)
(−au)n

n!
= e−au(1 + u)x, |u| < 1.

Moreover, the n-th Laguerre polynomial with index α ∈ R is defined by

(2.6) L(α)
n (z) :=

1
n!

n

∑
j=0

(−n)j

j!
(α + j + 1)n−jzj,

and is related to the n-th Charlier polynomial via:

(2.7)
(−a)n

n!
Cn(x, a) = L(x−n)

n (a).

It also obeys the following differentiation rule:

(2.8)
dm

dxm L(α)
k (x) = (−1)mL(m+α)

k−m (x).

We close this paragraph with the statement of Lagrange inversion formula which
plays a key role in our subsequent computations as well as an instance of Brown’s
theorem (see e.g. pp. 356–357 of [13]).

(i) Let z0 ∈ C and let g be a holomorphic function in a neighborhood of z0
with g′(z0) 6= 0. Then, g is locally invertible and its inverse function g−1 admits
the following expansion near w0 := g(z0):

g−1(w) = g−1(w0) + ∑
n>1

(w− w0)
n

n!

{
∂n−1

z

[ z− z0

g(z)− g(z0)

]n}
|z=z0

.

(ii) Given a sequence (rn)n>0, define a new one (pn)n>0 by

pn :=
n

∑
k=0

(
2n

n− k

)
rn.

Then

∑
n>0

pnwn =
1 + z
1− z ∑

n>0
rnzn

whenever both series converge, where w = z/(1 + z)2. Equivalently, set

(2.9) α(w) :=
1−
√

1− w
1 +
√

1− w
, w ∈ C \ [1, ∞[,

where the principal determination of the square root is considered, then α is in-
vertible with inverse given by

w = α−1(z) =
4z

(1 + z)2 , |z| < 1.
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Consequently,

∑
n>0

pn
wn

4n =
1 + α(w)

1− α(w) ∑
n>0

rn[α(w)]n =
1√

1− w ∑
n>0

rn[α(w)]n.

3. ALTERNATING STAR CUMULANTS

For n > 1, let

gn(t) := κ2n(ut, u?
t , . . . , ut, u?

t︸ ︷︷ ︸
2n

),

be the alternating star cumulant of u2t of even length 2n and recall from Theo-
rem 5.1 of [9], that

(3.1) − 1
n

d
dt

gn(t) = gn(t) +
n−1

∑
m=1

gm(t)gn−m(t), n > 2,

with the initial value g1(t) = 1− e−t. Equivalently, the generating series

g(t, z) =
1
2
+ ∑

n>1
gn(t)zn

converging in a neighborhood of z = 0 satisfies the following non linear pde:

∂tg + 2zg∂zg = z, g(0, z) =
1
2

.

Using the method of characteristics, the following non linear equation was ob-
tained in Theorem 5.4 of [9]:

[g(t, χt(z))]2 = χt(z) +
z2

4

in a neighborhood of z = 1, where

χt(z) :=
z2(1− z2)etz

[(1 + z)− (1− z)etz]2
.

Since χ′t(1) 6= 0, χt is locally invertible, therefore

(3.2) [g(t, z)]2 = z +
[χ−1

t (z)]2

4

in a neighborhood of z = 0. As a matter of fact, it suffices and remains to compute
the Taylor coefficients of the local inverse χ−1

t of χt (for fixed t > 0) in order to
get the explicit expression of gn(t). To proceed, we use the Lagrange inversion
formula and prove the following proposition.
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PROPOSITION 3.1. For any n > 1, there exist polynomials (P(n)
k )k>0 such that

the n-th Taylor coefficient an(t) of χ−1
t reads

an(t) = 2
(−1)n

n

n

∑
k=1

(
2n

n− k

)
e−ktP(n)

k−1(t).

Moreover,

e−kt

n
P(n)

k−1(t) = 2
kt2n

(2n)!

∞∫
0

x2n−1φ(uk
2(t+x))dx.

Proof. According to Lagrange inversion formula, the n-th Taylor coefficient
of χ−1

t is given by

an(t) =
1
n!

∂n−1
z

[ z− 1
χt(z)

]n

z=1
, n > 1.

Set

(3.3) ξt(z) :=
z− 1
z + 1

etz/2,

then

χt(z) = −
z2

4
α−1(ξ2t(z))

so that we are led to the expansion of

z 7→ (−1)n (z− 1)n

z2n
(1 + ξ2t(z))2n

[ξ2t(z)]n

around z = 1. To this end, we first use the generalized binomial theorem:

(3.4)
1

z2n = ∑
k>0

(−1)k (2n)k
k!

(z− 1)k.

Next comes the expansion of

(z− 1)n 4n

[α−1(z)]n
,

which can be read off from the proof of Proposition 3.1. in [7]:

(3.5) ∑
m>0

{ m∧2n

∑
k=0

(
2n
k

)
e(k−n)tL(n−m)

m−k (2(n− k)t)
} (z− 1)m

2m−n .

Gathering (3.4) and (3.5), we get

an(t) =
(−1)n

n

n−1

∑
m=0

(−1)n−1−m

2m−n
(2n)n−1−m
(n− 1−m)!

m∧2n

∑
k=0

(
2n
k

)
e(k−n)tL(n−m)

m−k (2(n− k)t)

= −2n

n

n−1

∑
m=0

(−1)m

2m
(2n)n−1−m
(n− 1−m)!

m

∑
k=0

(
2n
k

)
e(k−n)tL(n−m)

m−k (2(n− k)t)
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= −2n

n

n−1

∑
k=0

(
2n
k

)
e−(n−k)t

n−1

∑
m=k

(−1)m

2m
(2n)n−1−m
(n− 1−m)!

L(n−m)
m−k (2(n− k)t).

Performing the index change k 7→n− k followed by m 7→n−1−m, we end up with

an(t) = 2
(−1)n

n

n

∑
k=1

(
2n

n− k

)
e−kt

k−1

∑
m=0

(−2)m (2n)m

m!
L(m+1)

k−1−m(2kt)

:= 2
(−1)n

n

n

∑
k=1

(
2n

n− k

)
e−ktP(n)

k−1(t)

where

P(n)
k−1(t) :=

k−1

∑
m=0

(−2)m (2n)m

m!
L(m+1)

k−1−m(2kt).

Finally, the Gamma integral

(2n)m =
1

Γ(2n)

∞∫
0

e−xx2n+m−1dx, n > 1,

and the differentiation rule (2.8) lead to

P(n)
k−1(t) =

1
Γ(2n)

∞∫
0

e−xx2n−1
k−1

∑
m=0

(2x)m

m!
(−1)mL(m+1)

k−1−m(2kt)dx

=
1

Γ(2n)

∞∫
0

e−xx2n−1
k−1

∑
m=0

(2x)m

m!
dmL(1)

k−1
dmu

(2kt)dx

=
1

Γ(2n)

∞∫
0

e−xx2n−1L(1)
k−1(2kt + 2x)dx.

As a result, for any k, n > 1,

e−kt

n
P(n)

k−1(t) =
2

(2n)!

∞∫
0

e−(kt+x)x2n+m−1L(1)
k−1(2kt + 2x)dx

= 2
t2n

(2n)!

∞∫
0

x2n−1e−k(t+x)L(1)
k−1(2k(t + x))dx

= 2
kt2n

(2n)!

∞∫
0

x2n−1φ(uk
2(t+x))dx

as desired.

REMARK 3.2. Equating the Taylor coefficients of both sides of (3.2) yields:

(3.6) − 1
n

d
dt

gn(t) =
1
4

[
2an(t) +

n−1

∑
m=1

am(t)an−m(t)
]
, n > 2,
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which holds true for n = 1 if the sum in the right hand side is considered as
empty. Thus, (3.6) provides an explicit, yet complicated, expression of gn(t).

As to the alternating star cumulants of odd length 2n + 1,

hn(t) := κ2n+1(ut, u?
t , . . . , ut, u?

t︸ ︷︷ ︸
2n

, ut), n > 1,

they can be derived inductively from (gn(t))n>1 as follows.

PROPOSITION 3.3. Set h0(t) := κ1(ut) = e−t/2. Then, for any n > 1,

(3.7)
n−1

∑
j=0

hj(t) · hn−j−1(t) =
1
n

d
dt

gn(t).

Proof. The proposition holds true for n = 1 by direct computations since
g1(t) = 1− e−t. Now, let m > 2 and take k = m− 1 and

σ = {1}, . . . , {n− 2}, {m− 1, m}

in (2.1). Then, the proof of Lemma 3.4 in [9] shows that the partitions π ∈ NC(m)
satisfying π ∨ σ = 1m are exactly 1m and those having only two blocks V1, V2
which in addition separate m and m− 1. Consequently,

κm−1(a1, . . . , am−2, am−1 · am)

= κm(a1, . . . , am−2, am−1, am) + ∑
π={V1,V2}∈NC(m)

m∈V1,m−1∈V2

κ|V1|((ai)i∈V1) · κ|V2|((ai)i∈V2).

But if π 6= 1m then either V1 = {m} and V2 = {1, . . . , m− 1} or V2 is nested inside
V1 since π is noncrossing. In the latter case,

V2 = {j, . . . , m− 1}, V1 = {1, . . . , j− 1} ∪ {m}, j > 2.

In particular, if m = 2n, n > 2 and

a2i+1 = ut, 0 6 i 6 n− 1, a2i = u?
t , 0 6 i 6 n,

and since
κ2n−1(ut, u?

t , . . . , u?
t , 1) = 0

by freeness of utu?
t = 1 with {ut, u?

t }, then

−gn(t) = 2κ1(ut)hn−1(t) +
n−1

∑
j=1

gj(t) · gn−j(t) +
n−2

∑
j=1

hj(t) · hn−j−1(t)

= 2e−t/2hn−1(t) +
n−1

∑
j=1

gj(t) · gn−j(t) +
n−2

∑
j=1

hj(t) · hn−j−1(t).

Using (3.1), we are done.
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4. R-TRANSFORM OF THE FREE JACOBI PROCESS

Recall the definition of the free Jacobi process associated with a single pro-
jection P,

Jt = PutPu?
t P, t > 0,

and assume φ(P) = 1/2. Then the description supplied in (1.2) of the spectral
distribution of Jt at a fixed time t > 0 shows that the free cumulants of Jt in the
compressed algebra coincide with

κn

(u2t + u?
2t + 21

4

)
, n > 1.

By multi-linearity of the free cumulant functional and the freeness of 1 with
{u2t, u?

2t} ([14]), the latter may be written as a sum of star cumulants

κn

(u2t + u?
2t + 21

4

)
=

1
4n ∑

ε1,...,εn∈{1,?}
κn(u

ε1
t , . . . , uεn

t ),

which, up to our best knowledge, are only known explicitly in the few cases dealt
with in [9]. Nonetheless, we may seek an expression of the R-transform of Jt
relying on the functional equation (2.2). To this end, recall from [8] the moment
generating function of Jt,

(4.1) Mt(z) :=
1

φ(P) ∑
n>0

φ(Jn
t )z

n =
1√

1− z
[1 + 2Uν2t(α(z))], |z| < 1,

where α was already defined in (2.9) and

(4.2) Uνt(z) := ∑
k>1

φ(uk
t )z

k = ∑
k>1

e−kt/2

k
L(1)

k−1(kt)zk.

Set

wt(z) := zMt(z), Rt(z) := ∑
n>1

κn(Jt)zn, and Ft(z) :=
z

1 + Rt(z)
=: ∑

n>1
bn(t)zn.

Then we have the following proposition.

PROPOSITION 4.1. For any n > 1,

bn(t) =
1
n

n−1

∑
j=0

((1− n)/2)n−1−j

4j(n− 1− j)!

j

∑
k=0

Q(n)
k (t)

(
2j

j− k

)
e−kt,

where Q(n)
0 (t) = 1 and

e−kt

n
Q(n)

k (t) = (−2)
tn+1

n!

∞∫
0

xnφ(uk
2(t+x))dx, k > 1.(4.3)
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Proof. From (2.2) and Lagrange inversion formula, it is readily seen that

bn(t) =
1
n!

∂n−1
z

(1− z)n/2

[1 + 2U2t(α(z))]n |z=0
.

Since U2t(0) = 0,

1
[1 + 2Uν2t(z)]n

= 1 + ∑
m>1

(n)m

m!
(−2)m[Uν2t(z)]

m

for small enough |z|. Therefore we need to expand [Uν2t ]
m, m > 1 and this task is

achieved in the following lemma.

LEMMA 4.2. For any m > 1 and any complex number |z| < 1,

[Uν2t ]
m(z) = m ∑

j>m
L(m)

j−m(2jt)
(e−tz)j

j
.

Proof. This expansion is an instance of formula (1.3) in [5] (see also p. 378 of
[13]); substitute there

b = 0, v = m + 1, a =
1

m + 1
, x = 2(m + 1)t,

to get

(4.4) ∑
j>0

1
j + m

L(m)
j (2(j + m)t)(e−tz)j+m =

1
m

(e−tz)m

(1− u)m e2tmu/(u−1).

In the right hand side of the last equality, u = u(t, z) belongs to the open unit disc
D and is implicitly defined by

e−tz = ue2tu/(1−u) ⇔ z = uet(1+u)/(1−u).

Set

Z :=
u + 1
1− u

,

then straightforward computations show that ξ2t(Z) = z,<(Z) > 0, where the
definition of ξt is given in (3.3). But ξ2t is a one-to-one map from the Jordan
domain

Γ2t := {<(Z) > 0, ξ2t(Z) ∈ D}
onto D whose compositional inverse is 1 + 2Uν2t ([4], Lemma 12). Hence, Z =
1 + 2Uν2t(z) so that

u =
Z− 1
Z + 1

is uniquely determined in the open unit disc. Substituting

u = (ze−t)e2ut/(u−1) =
Uν2t(z)

1 + Uν2t(z)
,

1
1− u

= 1 + Uν2t(z),

in the right-hand side of (4.4), the lemma is proved.
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From this lemma, it follows that

1
[1 + 2Uν2t(z)]n

= 1 + ∑
j>1

e−jt

j
zj

j

∑
m=1

(n)m

(m− 1)!
(−2)mL(m)

j−m(2jt)

for small enough |z|. Set Q(n)
0 (t) = 1 and

Q(n)
j (t) :=

1
j

j

∑
m=1

(n)m

(m− 1)!
(−2)mL(m)

j−m(2jt), j > 1.

Then Brown’s theorem yields

1
[1 + 2Uν2t(α(z))]n

=
1√

1− z ∑
m>0

{ m

∑
j=0

(
2m

m− j

)
e−jtQ(n)

j (t)
} zm

4m .

On the other hand, the generalized binomial theorem yields

(1− z)(n−1)/2 = ∑
m>0

((1− n)/2)m

m!
zm, |z| < 1,

therefore

(1− z)n/2

[1 + 2Uν2t(α(z))]n
= ∑

m>0

{ m

∑
j=0

((1− n)/2)j

4m−j j!

m−j

∑
k=0

(
2m− 2j

m− j− k

)
e−ktQ(n)

k (t)
}

zm.

Extracting the (n− 1)-th term of this series, we get

bn(t) =
1
n

n−1

∑
j=0

((1− n)/2)j

4n−1−j j!

n−j−1

∑
k=0

e−ktQ(n)
k (t)

(
2n− 2j− 2

n− j− k− 1

)
.

Performing the index change k 7→ n− k− j− 1 for fixed j followed by j 7→ n−
1− j and k 7→ j− k, we end up with

bn(t) =
1
n

n−1

∑
j=0

((1− n)/2)j

4n−j−1 j!

n−1−j

∑
k=0

Q(n)
n−1−j−k(t)

(
2n− 2j− 2

k

)
e−(n−j−1−k)t

=
1
n

n−1

∑
j=0

((1− n)/2)n−j−1

4j(n− 1− j)!

j

∑
k=0

Q(n)
j−k(t)

(
2j
k

)
e−(j−k)t

=
1
n

n−1

∑
j=0

((1− n)/2)n−1−j

4j(n− 1− j)!

j

∑
k=0

Q(n)
k (t)

(
2j

j− k

)
e−kt.

Finally, the integral representation (4.3) follows from the same lines written at the
end of the proof of Proposition 3.1:

e−kt

n
Q(n)

k (t) = −e−kt 2
kn

k−1

∑
m=0

(n)m+1

m!
(−2)mL(m+1)

k−m−1(2kt)



192 NIZAR DEMNI

= − 2
kn!

∞∫
0

xne−(kt+x)
k−1

∑
m=0

(−2x)m

m!
L(m+1)

k−m−1(2kt)dx

= −2
tn+1

kn!

∞∫
0

xne−k(t+x)L(1)
k−1(2k(t + x))dx

= −2
tn+1

n!

∞∫
0

xnφ(uk
2(t+x))dx.

As pointed out to the author by C.F. Dunkl (whom we specially thank), bn(t)
can be expressed through the 3F2-hypergeometric function evaluated at x = 1 and
it turns out that the latter may be written as a ratio of Gamma functions.

PROPOSITION 4.3. For any n > 1,

bn(t) =
√

π

4n−1n

n−1

∑
k=0

(
2n− 2

n− 1− k

)
Q(n)

k (t)e−kt

Γ(1− (n/2))Γ((3/2)− n)Γ(n/2)
Γ(1− (k + n)/2)Γ(1 + (k− n)/2)Γ((1 + k)/2)Γ((1− k)/2)

.

Proof. Interchange the summation order in the expression of bn(t):

bn(t) =
1
n

n−1

∑
k=0

Q(n)
k (t)e−kt

n−1

∑
j=k

((1− n)/2)n−1−j

4j(n− 1− j)!

(
2j

j− k

)
;

then use the Legendre duplication formula ([2])

1
4j

(
2j

j− k

)
=

1
4j

(2j)!
(j− k)!(j + k)!

=
j!(1/2)j

(j− k)!(j + k)!
,

to get

n−1

∑
j=k

((1−n)/2)n−1−j

4j(n−1− j)!

(
2j

j− k

)
=

n−1−k

∑
i=0

((1−n)/2)i
i!

(n− 1− i)!(1/2)n−1−i
(n−1−k−i)!(n−1+k−i)!

.

Now, the relations

(a)n−1−i = (−1)i (a)n−1

(2− a− n)i
, (N − i)! = (−1)i N!

(−N)i
,

follow from the definition of the Pochhammer symbol. Consequently,

n−1

∑
j=k

((1− n)/2)n−1−j

4j(n− 1− j)!

(
2j

j− k

)

=
(n− 1)!(1/2)n−1

(n− 1− k)!(n− 1 + k)!

n−1−k

∑
i=0

((1− n)/2)i
i!

(1 + k− n)i(1− k− n)i
(1− n)i((3/2)− n)i
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=
1

4n−1

(
2n− 2

n− 1− k

)
3F2

(
1− k− n, 1 + k− n, (1− n)/2

1− n, (3/2)− n
; 1
)

.

Using Watson summation’s formula ([2], p. 148; [10], Section 4.4, formula (6))

3F2

(
a, b, c

(a + b + 1)/2, 2c
; 1
)

=

√
πΓ(c + (1/2))Γ((a + b + 1)/2)Γ((2c− a− b + 1)/2)

Γ((a + 1)/2)Γ((b + 1)/2)Γ((2c− a + 1)/2)Γ((2c− b + 1)/2)
,

we get

3F2

(
1− k− n, 1 + k− n, (1− n)/2

1− n, (3/2)− n
; 1
)

=

√
πΓ((3/2)− n)Γ(n/2)

Γ((1 + k)/2)Γ((1− k)/2)
Γ(1− (n/2))

Γ(1− (k + n)/2)Γ(1 + (k− n)/2)

whence the proposition follows.

REMARK 4.4. This last expression of bn(t) has the merit to show that if n
is odd, then the terms corresponding to even values of k vanish. Otherwise, if
n is even, then more care should be taken since the ratio of Gamma functions
above is indeterminate. In this case, one should use the Weierstrass product for
the Gamma function in order to give sense to this ratio.

REMARK 4.5. Set

sk(t) := ektφ(uk
t ) =

1
k

L(1)
k−1(kt), k > 1,

then Lemma 4.2 asserts that for any j > m > 1,

(4.5) ∑
j1+···+jm=j

sj1(t) · · · sjm(t) =
1
j

L(m)
j−m(jt).

When m = 2, this identity is equivalent to the known fact (see e.g. [15])

(4.6) − 1
k

∂tsk(t) =
k−1

∑
j=1

sj(t)sj−k(t), k > 2, s1(t) = 1,

since

−1
k

∂tsk(t) =
2
k

L(2)
k−2(2kt).

More generally, (4.5) may be derived inductively from (4.6) after differentiation
with respect to t and multiple index changes.
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5. S-TRANSFORM OF THE FREE JACOBI PROCESS

In the same way that the R-transform linearizes the free additive convolu-
tion, the S-transform does so for the free multiplicative convolution of probability
distributions on the unit circle and on the positive real line. According to (2.3),
we need to compute the compositional inverse of Mt − 1 around z = 0 which
exists since φ(Jt) 6= 0. To this end, we first need a lemma.

LEMMA 5.1. Let z be a complex number with |z| < 1 and <(1 + 2z) > 0. Then,
for any n > 1 and t > 0,

Gn,t(z) :=
1

(1 + z)n(1 + e−t(1+2z))n
= ∑

m>0
H(n)

m (t)zm

where

H(n)
m (t) =

(−1)m

m!

m

∑
k=0

(
m
k

)
(n)m−k(2t)k dk

dtk
1

(1 + e−t)n .

Proof. Since <(1 + 2z) > 0, |e−t(1+2z)| < 1 so that

1
(1 + e−t(1+2z))n

= ∑
j>0

(n)j

j!
(−1)je−tj(1+2z).

But then, (2.5) and (2.7) entail

1
(1 + z)n e−2tjz = ∑

m>0
Cm(−n, 2tj)

(−2tjz)m

m!
= ∑

m>0
L−(n+m)

m (2jt)zm.

Consequently,

H(n)
m (t) = ∑

j>0

(n)j

j!
(−e−t)jL−(n+m)

m (2jt).

In order to get the expression displayed in the lemma, we use (2.6) to write

L−(n+m)
m (2jt) =

1
m!

m

∑
k=0

(−1)k
(

m
k

)
(−n−m + k + 1)m−k(2jt)k

=
(−1)m

m!

m

∑
k=0

(
m
k

)
(n)m−k(2jt)k

whence

H(n)
m (t) =

(−1)m

m!

m

∑
k=0

(
m
k

)
(n)m−k(2t)k ∑

j>0

(n)j

j!
(−e−t)j jk

=
(−1)m

m!

m

∑
k=0

(
m
k

)
(n)m−k(2t)k dk

dtk
1

(1 + e−t)n .

With the help of this lemma, we derive the following proposition.
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PROPOSITION 5.2. Set

V(n)
0 (t) := 2n H(n)

0 (t) =
2n

(1 + e−t)n ,

V(n)
j (t) := 2n (e

−tz)j

j

j

∑
m=1

mH(n)
m (t)L(m)

j−m(2jt), j > 1,

d(n)j :=
j

∑
k=0

(−n− 1)k
k!

(2n + 1)j−k

(j− k)!
, j > 0.

Then the inverse function (Mt − 1)−1 admits the Taylor expansion

(Mt − 1)−1(z) := ∑
n>1

cn(t)zn

near the origin, where

cn(t) =
1

n4n−1

n−1

∑
j=0

(
2n− 2

n− 1− j

) j

∑
k=0

d(n)j−kV(n)
j (t).

Consequently, the S-transform of µt, say St, t > 0, reads

St(z) = c1(t) + ∑
n>1

[cn+1(t) + cn(t)]zn.

Proof. From (4.1) and the identity

1√
1− z

=
1 + α(z)
1− α(z)

, z ∈ D,

we can rewrite Mt(z) as

Mt(z) =
1 + α(z)
1− α(z)

[1 + Uν2t(α(z))].

It follows that

cn(t) =
1
n!

∂n−1
z

{ z(1− α(z))
(1 + α(z))(1 + 2Uν2t(z))− (1− α(z))

}n
|z=0

=
1
n!

∂n−1
z

{ 4α(z)
(1 + α(z))2

(1− α(z))
(1 + α(z))(1 + 2Uν2t(α(z)))− (1− α(z))

}n
|z=0.

Moreover, by the virtue of Brown’s theorem, it suffices to expand

(1− α(z))n+1

(1 + α(z))2n+1

{ 4α(z)
(1 + α(z))(1 + 2Uν2t(α(z)))− (1− α(z))

}n
,

and to this end, we consider
4z

(1 + z)(1 + 2U2t(z))− (1− z)
.

From the inverse relation ξ2t(1 + 2Uν2t(z)) = z, |z| < 1, it follows that

Uν2t(z) = z(1 + Uν2t(z))e
−(1+2tUν2t (z))
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whence
4z

(1 + z)(1 + 2Uν2t(z))− (1− z)
=

2z
z + (1 + z)Uν2t(z)

=
2

1 + (1 + z)(1 + Uν2t(z))e
−t(1+2Uν2t (z))

=
2

[1 + Uν2t(z)][1 + e−t(1+2Uν2t (z))]
.

Now, the previous lemma and the fact that <(1 + 2Uν2t(z)) > 0 for |z| < 1 ([4])
show that for any n > 1 and small |z|,

1

[1 + Uν2t(z)]n[1 + e−t(1+2Uν2t (z))]n
= Gn,t(Uν2t(z)) = ∑

m>0
H(n)

m (t)[Uν2t(z)]
m,

which by Lemma 4.2 is further expanded as

1

[1+Uν2t(z)]n[1+e−t(1+2Uν2t (z))]n
=H(n)

0 (t) + ∑
m>1

mH(n)
m (t) ∑

j>m
L(m)

j−m(2jt)
(e−tz)j

j

=
1

(1+e−t)n +∑
j>1

(e−tz)j

j

j

∑
m=1

mH(n)
m (t)L(m)

j−m(2jt)

=
1
2n ∑

j>0
V(n)

j (t)zj.

Moreover,

(1− z)n+1

(1 + z)2n+1 = ∑
j>0

j

∑
k=0

(−n− 1)k
k!

(2n + 1)j−k

(j− k)
!zj = ∑

j>0
d(n)j zj

so that

(1− z)n+1

(1 + z)2n+1

[ 4z
(1 + z)(1 + 2U2t(z))− (1− z)

]n
= ∑

j>0

j

∑
k=0

d(n)j−kV(n)
j (t)zj.

Composing with the map α, we get from Brown’s theorem

(1− α(z))n+1

(1 + α(z))2n+1

{ 4α(z)
(1 + α(z))(1 + 2Uν2t(α(z)))− (1− α(z))

}n

=
1− α(z)
1 + α(z) ∑

m>0

zm

4m

m

∑
j=0

(
2m

m− j

) j

∑
k=0

d(n)j−kV(n)
j (t),

or equivalently,{ z(1− α(z))
(1 + α(z))(1 + 2Uν2t(z))− (1− α(z))

}n
= ∑

m>0

zm

4m

m

∑
j=0

(
2m

m− j

) j

∑
k=0

d(n)j−kV(n)
j (t).
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The expressions of cn(t) and of St are now obvious and the proposition is
proved.

6. SCHUR FUNCTION OF νt AND ITS FIRST ITERATE

Given a probability distribution µ supported in the unit circle, its Schur
function fµ is defined in the open unit disc by ([16], p. 25):

1 + z fµ(z)
1− z fµ(z)

=
∫
T

w + z
w− z

µ(dw) := Hµ(z).

Equivalently,

z fµ(z) =
Hµ(z)− 1
Hµ(z) + 1

.

Since Hµ(0) = 1 and is analytic in D, then fµ is analytic there and the Verblunsky
coefficients (γj)j>0 of µ are defined by the following continued fraction ([16], p. 3):

fµ(z) = γ0 +
1− |γ0|2

γ0 +
1

zγ1 +
z(1− |γ1|2)

γ1 + · · ·

.

In a practical way, the Schur algorithm allows to compute them recursively from
the Schur iterates ( f j,µ)j>0 as follows ([16]):

f0,µ := fµ, z f j+1,µ(z) =
f j,µ(z)− γj

1− γj f j,µ(z)
, γj = f j,µ(0).

When µ = νt is the spectral distribution of ut, its Herglotz transform Hµ = Hνt

is the inverse function of ξt in the open unit disc ([4]). As a result we have the
following proposition.

PROPOSITION 6.1. For any t > 0, the Schur function f0,νt and its first iterate
f1,νt admit the following expansions:

f0,νt(z) = e−t/2 − te−t/2 ∑
j>1

e−jt/2

j
L(1)

j−1((j + 1)t)zj,

f1,νt(z) = te−t(1− et) ∑
j>0

e−jt/2

j + 1

[
∑
k>1

ke−ktL(1)
j ((j + k + 1)t)

]
zj,

for |z| < 1.

Proof. Note first that both expansions are absolutely convergent in the open
unit disc due to the following estimate ([1], 22.14.13, p. 786):

(6.1) |L(1)
j (x)| 6 (j + 1)ex/2, x > 0.
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Now, recall from (3.3) the expression

ξt(z) =
z− 1
z + 1

etz/2, z ∈ Γ2t,

so that

z f0,νt(z) =
Hνt(z)− 1
Hνt(z) + 1

= ze−tHνt (z)/2.

But νt is invariant under complex conjugation z 7→ z so that Hνt = 1+ 2Uνt where
we recall that Uνt was previously defined in (4.2). Consequently,

f0,νt(z) = e−tHt(z)/2 = e−t/2e−tUνt = e−t/2 ∑
m>0

(−t)m

m!
[Uνt ]

m.

From Lemma 4.2, we readily derive

f0,νt(z) = e−t/2 + e−t/2 ∑
m>1

(−t)m

m!
m ∑

j>m
L(m)

j−m(jt)
(e−t/2z)j

j

= e−t/2 + e−t/2 ∑
m>0

(−t)m+1

m! ∑
j>m+1

L(m+1)
j−m−1(jt)

(e−t/2z)j

j

= e−t/2 − te−t/2 ∑
j>1

e−jt/2

j

{ j−1

∑
m=0

(−t)m

m!
L(m+1)

j−m−1(jt)
}

zj

= e−t/2 − te−t/2 ∑
j>1

e−jt/2

j
L(1)

j−1((j + 1)t)zj,

where the last equality follows from (2.8) together with Taylor’s formula. As a
result, γ0(t) = e−t/2 and as such, the first Schur iterate reads

f1,νt(z)=e−t/2 e−tUνt−1
z ∑

k>0
e−kte−ktUνt (z)=e−t/2 ∑

k>0
e−kt e−(k+1)tUνt (z)−e−ktUνt

z
.

But similar computations as above yield

e−ktUνt (z) = 1− kt ∑
j>1

e−jt/2

j
L(1)

j−1((j + k)t)zj, k > 0,

whence

e−t/2 e−(k+1)tUνt (z) − e−ktUνt

z

= t ∑
j>1

e−jt/2

j
[kL(1)

j−1((j + k)t)− (k + 1)L(1)
j−1((j + k + 1)t)]zj−1

= te−t ∑
j>0

e−jt/2

j + 1
[kL(1)

j ((j + k + 1)t)− (k + 1)L(1)
j ((j + k + 2)t)]zj.
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Finally, the estimate (6.1) shows that for any t > 0, the double series

∑
k,j>0

e−kt e−jt/2

j + 1
(k + m− 1)L(1)

j ((j + k + m)t)zj, m ∈ {1, 2},

converges absolutely for |z| < 1 so that Fubini theorem applies and yields

f1,νt(z)

= e−t/2 ∑
k>0

e−tUνt − 1
z ∑

k>0
e−kte−ktUνt (z)

= te−t ∑
j>0

e−jt/2

j+1

{
∑
k>0

e−ktkL(1)
j ((j+k+1)t)−∑

k>0
e−kt(k+1)L(1)

j ((j+k+2)t)
}

zj

= te−t(1− et) ∑
j>0

e−jt/2

j + 1 ∑
k>1

ke−ktL(1)
j ((j + k + 1)t)zj.

REMARK 6.2. From the two expansions derived above, we can compute the
low-orders Verblunsky coefficients of νt:

γ1(t) = −
te−t

1− e−t , γ2(t) =
te−3t/2[3t− 2 + (2− t)e−t]

2[1− 2e−t + (1− t2)e−2t]
.

However, we do not succeed to get a closed formula for all of them (the compu-
tation of γ3(t) is already tedious). On the other hand, recall that (γj(t))j>0 are
connected to the Jacobi–Szegö parameters (an)n, (bn)n of the spectral distribu-
tion of ut + u?

t through the inverse Geronimus relations ([17], p. 968). Recall also
that both sequences (an)n, (bn)n encode the J-continued fraction expansion of the
Cauchy–Stieltjes transform of the spectral distribution of ut + u?

t ([2], [16]). With
regard to (1.2), they are affine transformations of the Jacobi–Szegö parameters of
the spectral distribution µt/2 of Jt/2.
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