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the second author showed how Katsura’s construction of the C∗-algebra of a
topological graph E may be twisted by a Hermitian line bundle L over the
edge space E1. The correspondence defining the algebra is obtained as the
completion of the compactly supported continuous sections of L. We prove
that the resulting C∗-algebra is isomorphic to a twisted groupoid C∗-algebra
where the underlying groupoid is the Renault–Deaconu groupoid of the topo-
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INTRODUCTION

Graph algebras have been the object of much research in operator algebras
over the last twenty years or so. Various generalizations have also been intro-
duced and studied by numerous authors. These include higher-rank graph alge-
bras introduced by Pask and the first author (see [15]); topological graph alge-
bras due to Katsura (see [8]); C∗-algebras arising from topological quivers due to
Muhly and Tomforde (see [22]); and topological higher-rank graph algebras due
to Yeend (see [30], [33], [34]). These generalizations have significantly broadened
the class of C∗-algebras brought into focus. Twisted versions of these C∗-algebras
have also been proposed and studied recently. Twisted higher-rank graph alge-
bras were introduced in [18], [19] where the twisting is determined by a T-valued
2-cocycle. Deaconu et al. studied the cohomology of a groupoid determined by
a singly generated dynamical system and the associated twisted groupoid C∗-
algebras (see [4]). Twisted topological graph algebras which generalize both Kat-
sura’s topological graph algebras and the twisted groupoid C∗-algebras investi-
gated in [4] were introduced by the second author in [21].
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Katsura’s topological graphs may be regarded as an abstract dynamical rep-
resentation of a Pimsner module (see [23]). The class of topological graph alge-
bras have potential application to the classification of C∗-algebras because many
properties of topological graph algebras may be inferred from properties of the
underlying graphs. Moreover, topological graphs provide models for many clas-
sifiable C∗-algebras. Indeed, topological graph algebras include all graph alge-
bras, all crossed products of the form C0(T) oα Z (see [8]), all AF-algebras, all
AT-algebras, many AH-algebras, Renault–Deaconu groupoid C∗-algebras aris-
ing from a singly generated dynamical system, etc. (see [10]). By a celebrated re-
sult all simple, separable, nuclear, purely infinite C∗-algebras satisfying the UCT
are topological graph algebras (see [12]).

Twisted topological graph algebras also have applications to the field of
noncommutative geometry. Recently, Kang et al. proved that all quantum Heisen-
berg manifolds may be realized as twisted topological graph algebras (see [7]).

A partial local homeomorphism on a locally compact Hausdorff space T is de-
fined to be a local homeomorphism σ : dom(σ) → ran(σ) where dom(σ), ran(σ)
are open subsets of T. The pair (T, σ) is called a singly generated dynamical system.
Given a singly generated dynamical system (T, σ), one may define the Renault–
Deaconu groupoid Γ(T, σ) which is both étale and amenable (see [3], [28]).

Recall that graph algebras associated to row-finite directed graphs with no
sources were realized as Renault–Deaconu groupoid C∗-algebras (see [16], [17]).
Note that the C∗-algebra of an arbitrary graph is not defined as a groupoid C∗-
algebra but as the universal C∗-algebra of a family of generators indexed by the
vertices and edges of a graph subject to Cuntz–Krieger type relations (see [2],
[5], [6], [25], etc). Katsura’s definition of topological graph algebras is based
on a modified model of Cuntz–Pimsner algebras (see [9], [23]). He showed in
[13] that when vertex and edge spaces of a topological graph are both compact
and the range map is surjective, then the topological graph algebra is isomor-
phic to a Renault–Deaconu groupoid C∗-algebra, and conjectured that this is true
more generally. Yeend proved that every topological graph algebra is indeed a
groupoid C∗-algebra (see [33]).

Our main result in the present work (see Theorem 6.7) is that every twisted
topological graph algebra is isomorphic to a twisted groupoid C∗-algebra (see
Definition 5.2) and that the underlying groupoid is indeed the canonical Renault–
Deaconu groupoid associated to a shift map with Yeend’s boundary path space as
its unit space (this was implicit in Yeend’s work but requires some work to tease
out). This result implies that every topological graph algebra is isomorphic to a
Renault–Deaconu groupoid C∗-algebra, thereby confirming Katsura’s conjecture.

We start this paper with three equivalent definitions of twisted topological
graph algebras in Section 2. Then in Section 3 we recall from [8], [21] some basic
terminology of topological graphs and some fundamental results about twisted
topological graph algebras. In Section 4, we introduce a notion of boundary path
which is based on Webster’s definition in the case of a directed graph (see [32]),
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and prove that our definition coincides with Yeend’s definition of boundary path
of a topological higher-rank graphs when restricted to topological 1-graph (see
[33]). In Section 5 we use Katsura’s factor map technique from [10] to construct
homomorphisms between twisted topological graph algebras. In Section 6, we
obtain the relationship between principal circle bundles over the domain of a
partial local homeomorphism and topological twists over the Renault–Deaconu
groupoid arising from the given partial local homeomorphism. We conclude in
Section 7 by proving our main result, Theorem 6.7, which says that every twisted
topological graph algebra is isomorphic to a twisted groupoid C∗-algebra where
the underlying groupoid is the Renault–Deaconu groupoid of the topological
graph discussed above.

1. THREE EQUIVALENT DEFINITIONS

In this section, we recall the notion of twisted topological graph algebras
introduced by Li in [21] and also give other equivalent descriptions of these C∗-
algebras.

DEFINITION 1.1 ([8]). A quadruple E = (E0, E1, r, s) is called a topological
graph if E0, E1 are locally compact Hausdorff spaces, r : E1 → E0 is a continuous
map, and s : E1 → E0 is a local homeomorphism.

Now we introduce the construction of twisted topological graph algebras
from different point of views. Our construction involves C∗-correspondences and
Cuntz–Pimsner algebras (see [9], [20], [23], [24], [26], etc).

Let E be a topological graph, let N = {Nα}α∈Λ be an open cover of E1,
and let S = {sαβ ∈ C(Nαβ,T)}α,β∈Λ be a 1-cocycle, which is a collection of circle-
valued continuous functions such that sαβsβγ = sαγ on Nαβγ. Suppose that x, y ∈
∏

α∈Λ
C(Nα) satisfy xα = sαβxβ and yα = sαβyβ on Nαβ. Define [x|y] ∈ C(E1) by

[x|y](e) = xα(e)yα(e), if e ∈ Nα.

By Definition 3.2 of [21], define

Cc(E, N, S) :=
{

x ∈ ∏
α∈Λ

C(Nα) : xα = sαβxβ on Nαβ, [x|x] ∈ Cc(E1)
}

.

For x, y ∈ Cc(E, N, S), α ∈ Λ, f ∈ C0(E0), and for v ∈ E0, define

(x · f )α := xα( f ◦ s|Nα
), ( f · x)α :=( f ◦ r|Nα

)xα, 〈x, y〉C0(E0)(v) := ∑
s(e)=v

[x|y](e).

By Theorem 3.3 of [21], Cc(E, N, S) is a right inner product C0(E0)-module with an
adjointable left C0(E0)-action, and its completion X(E, N, S) under the ‖ · ‖C0(E0)-
norm is a C∗-correspondence over C0(E0). We denote O(E, N, S) the Cuntz–
Pimsner algebra of X(E, N, S) (see Notation 2.1).
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Let E be a topological graph and let p : L → E1 be a Hermitian line bundle.
Then each fibre has a one-dimensional Hilbert space structure conjugate linear in
the first variable, and the map {(l1, l2) ∈ L× L : p(l1) = p(l2)} → C by sending
(l1, l2) to 〈l1, l2〉p(l1) is continuous. For two continuous sections x, y of L, there is a
continuous function [x|y] : E1 → C by [x|y](e) := 〈x(e), y(e)〉e. Define Cc(E, L) to
be the set of all continuous sections x satisfying that [x|x] ∈ Cc(E1). Then Cc(E, L)
has a natural vector space structure. For x, y ∈ Cc(E, L), f ∈ C0(E0), e ∈ E1, and
for v ∈ E0, define

(x · f )(e) := x(e) f ◦ s(e), ( f · x)(e) := f ◦ r(e)x(e), 〈x, y〉C0(E0)(v) := ∑
s(e)=v

[x|y](e).

It is straightforward to check that Cc(E, L) is a right inner product C0(E0)-module
with an adjointable left C0(E0)-action, its completion X(E, L) under the ‖ · ‖C0(E0)-
norm is a C∗-correspondence over C0(E0). Denote byO(E, L) the Cuntz–Pimsner
algebra of X(E, L) (see Notation 2.1).

Let E be a topological graph and let p : B→ E1 be a principal circle bundle.
By Proposition 4.65 of [26], there exists a collection of continuous local sections
{sα : Nα → B}α∈Λ at each point of E1. Denote the set of all equivariant functions
in Cc(B) by Ce

c (B). For x, y ∈ Ce
c (B), and for e ∈ E1, define

[x|y](e) := x ◦ sα(e)y ◦ sα(e) if e ∈ Nα.

Then [x|y] ∈ Cc(E1). By page 258 of [4], for x, y ∈ Ce
c (B), f ∈ C0(E0), b ∈ B, and

for v ∈ E0, define

(x · f )(b) := x(b) f (s(p(b))), ( f · x)(b) := f (r(p(b)))x(b), and

〈x, y〉C0(E0)(v) := ∑
s(e)=v

[x|y](e).

Then Ce
c (B) is a right inner product C0(E0)-module with an adjointable left C0(E0)

action, its completion X(E, B) under the ‖ · ‖C0(E0)-norm is a C∗-correspondence
over C0(E0). Denote by O(E, B) the Cuntz–Pimsner algebra of X(E, B) (see No-
tation 2.1).

PROPOSITION 1.2. Let E be a topological graph, let N = {Nα}α∈Λ be an open
cover of E1, and let S = {sαβ ∈ C(Nαβ,T)}α,β∈Λ be a collection of circle-valued con-
tinuous functions such that for α, β, γ ∈ Λ, sαβsβγ = sαγ on Nαβγ. Define a Hermitian
line bundle over E1 by (with the projection map p)

L := ä
α∈Λ

(Nα ×C)/(e, z, α) ∼ (e, sβα(e)z, β).

Then X(E, N, S) and X(E, L) are isomorphic as C∗-correspondences over C0(E0).

Proof. We define a map Φ : Cc(E, N, S)→X(E, L) by

Φ(x)(e) :=(e, xα(e), α) for all x ∈ Cc(E, N, S) and for all e ∈ Nα.
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It is straightforward to check that Φ preserves C0(E0)-valued inner products and
module actions. So there exists a unique extension of Φ to X(E, N, S) which pre-
serves C0(E0)-valued inner products and module actions. We still denote the
extension by Φ. Fix α0 ∈ Λ, and fix x ∈ Cc(E, L) such that supp([x|x]) ⊂ Nα0 . By
a partition of unity argument, it is sufficient to show that x is in the image of Φ.
Let f be the composition of x|Nα0

and the projection from Nα0 ×C× {α0} onto C.
Then f ∈ C0(Nα0). As in page 5 of [21], there exists (xα) ∈ Cc(E, N, S), such that

xα(e) :=

{
sαα0(e) f (e) if e ∈ Nαα0 ,
0 if e ∈ Nα \ Nαα0 .

It is straightforward to check that Φ(xα) = x and we are done.

PROPOSITION 1.3. Let E be a topological graph, let N = {Nα}α∈Λ be an open
cover of E1, and let S = {sαβ}α,β∈Λ be a 1-cocycle relative to N. Let B := ä

α∈Λ
(Nα ×

T)/(e, z, α) ∼ (e, zsαβ(e), β) be the corresponding principal circle bundle. Then X(E,
N, S) and X(E, B) are isomorphic as C∗-correspondences over C0(E0).

Proof. We denote the projection by p : B → E1. We define a map Φ :
Cc(E, N, S)→ X(E, B) by

Φ(x)(e, z, α) := zxα(e) for all x ∈ Cc(E, N, S) and for all (e, z, α) ∈ B.

It is straightforward to check that Φ preserves C0(E0)-valued inner products and
module actions. So there exists a unique extension of Φ to X(E, N, S) which pre-
serves C0(E0)-valued inner products and module actions. Let Φ also denote the
extension. Fix α0 ∈ Λ and x ∈ Ce

c (B) with p(supp(x)) ⊂ Nα0 . By a partition
of unity argument, it is sufficient to show that x is in the image of Φ. Let f be
the composition of the continuous local section sα0 : Nα0 → B satisfying that
sα0(e) := (e, 1, α0) and x. Then f ∈ Cc(Nα0). By the construction in page 5 of [21],
there exists (yα) ∈ Cc(E, N, S), such that

yα(e) :=

{
sαα0(e) f (e) if e ∈ Nαα0 ,
0 if e ∈ Nα \ Nαα0 .

It is straightforward to check that Φ(yα) = x and we are done.

REMARK 1.4. In [21], X(E, N, S) is called the twisted graph correspondence
and the Cuntz–Pimsner algebraO(E, N, S) is called the twisted topological graph
algebra. By Propositions 1.2, 1.3, any form of X(E, N, S), X(E, L), X(E, B) can
be used as the definition of the twisted graph correspondence, and any form of
O(E, N, S),O(E, L),O(E, B) can be used as the definition of the twisted topolog-
ical graph algebra.

In this paper, we call X(E, B) the twisted graph correspondence associated to E
and B, and we call O(E, B) the twisted topological graph algebra.
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2. TWISTED TOPOLOGICAL GRAPH ALGEBRAS

In this section, we recap the terminology of topological graphs from [8]
and recall some fundamental results about twisted topological graph algebras
from [21].

Let E be a topological graph. A subset U of E1 is called an s-section if s|U :
U → s(U) is a homeomorphism with respect to the subspace topologies. Define
E0

fin to be the subset of all v ∈ E0 which has an open neighborhood N such that
r−1(N) is compact; define E0

sce := E0 \ r(E1); define E0
rg := E0

fin \ Esce0 ; and define
E0

sg := E0 \ E0
rg. The sets E0

fin, E0
sce, E0

rg are all open, and the set E0
sg is closed.

Denote by r0 := id, s0 := id, and define a topological graph E0 := (E0, E0, r0, s0).
Denote by r1 := r, s1 := s, E1 := (E0, E1, r1, s1) = E.

For n > 2, define

En :=
{

µ = (µ1, . . . , µn) ∈
n

∏
i=1

E1 : s(µi) = r(µi+1), i = 1, . . . , n− 1
}

endowed with the subspace topology of the product space
n
∏
i=1

E1. Define rn :

En → E0 by rn(µ) := r(µ1), which is a continuous map. Define sn : En → E0

by sn(µ) := s(µn), which is a local homeomorphism. Define a topological graph
En := (E0, En, rn, sn).

Define the finite-path space E∗ := ä∞
n=0 En with the disjoint union topology.

Define a continuous map r : E∗ → E0 by r(µ) := rn(µ) if µ ∈ En, define a local
homeomorphism s : En → E0 by s(µ) := sn(µ) if µ ∈ En, and define a topological
graph E∗ := (E0, E∗, r, s).

Define the infinite path space

E∞ :=
{

µ ∈
∞

∏
i=1

E1 : s(µi) = r(µi+1), i = 1, 2, . . .
}

.

Define the range map r : E∞ → E0 by r(µ) := r(µ1).
Denote the length of a path µ ∈ E∗ä E∞ by |µ|. In discussing Cuntz–

Pimsner algebras associated with correspondences we follow the conventions of
[9] and Chapter 8 of [24].

NOTATION 2.1. Let E be a topological graph and let p : B → E1 be a
principal circle bundle. Let φ : C0(E0) → L(X(E, B)) denote the homomor-
phism determined by the left action. Define JX(E,B) := { f ∈ C0(E0) : f ∈
φ−1(K(X(E, B))) ∩ (ker φ)⊥}, which is a closed two-sided ideal of C0(E0). A
pair (ψ, π) consisting of a linear map ψ : X(E, B) → B and a homomorphism
π : C0(E0)→B defines a (Toeplitz) representation of X(E, B) into a C∗-algebra B if

ψ( f · x) = π( f )ψ(x) and ψ(x)∗ψ(y) = π(〈x, y〉C0(E0))
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for all x, y ∈ X(E, B), f ∈ C0(E0). In this case there exists a unique homomor-
phism ψ(1) : K(X(E, B)) → B such that ψ(1)(Θx,y) = ψ(x)ψ(y)∗. We say that
(ψ, π) is covariant if π( f ) = ψ(1)(φ( f )) for all f ∈ JX(E,B). The representation
(ψ, π) is said to be universal covariant if for any covariant representation (ψ′, π′)
of X(E, B) into a C∗-algebra C, there exists a unique homomorphism h : B → C
such that h ◦ ψ = ψ′, h ◦ π = π′. The C∗-algebra generated by the images of a
universal covariant representation of X(E, B) is called the Cuntz–Pimsner algebra
associated to E, B; it is denoted by O(E, B).

PROPOSITION 2.2 ([21], Proposition 3.10). Let E be a topological graph and let
p : B → E1 be a principal circle bundle. Fix a nonnegative f ∈ Cc(E0

rg), a finite cover
{Ni}n

i=1 of r−1(supp( f )) by precompact open s-sections with local sections {ϕi : Ni →
B}n

i=1, and a finite collection {hi}n
i=1 ⊂ Cc(E1, [0, 1]) satisfying supp(hi) ⊂ Ni and

n
∑

i=1
hi = 1 on r−1(supp( f )). For i, for b ∈ p−1(Ni), define xi ∈ Ce

c (p−1(Ni)) by

xi(b) := b/(ϕi ◦ p(b))
√

hi ◦ p(b) f ◦ r ◦ p(b). Then

φ( f ) =
n

∑
i=1

Θxi ,xi .

Finally, we recall some operations on a principal circle bundle from [4]. Let
T, T1, T2 be locally compact Hausdorff spaces and let p : B → T, pi : Bi → Ti, i =
1, 2 be principal circle bundles. For b, b′ in the same fibre of B, there exists a
unique b/b′ ∈ T such that b = (b/b′) · b′. There exists a conjugate principal circle
bundle B over T together with a homeomorphism B→ B by sending b to b, such
that z · b = z · b for all z∈T, b∈B. Define a principal circle bundle over T1×T2 by

B1 ? B2 := (B1 × B2)/{(z · b, b′) ∼ (b, z · b′) : b ∈ B1, b′ ∈ B2, z ∈ T}.

Inductively, for n > 1, we obtain a principal circle bundle B?n over
n
∏
i=1

T. Notice

that the restriction bundle of B ?B to T is isomorphic to the product bundle T× T
by sending (b, b′) to (b/b′, p(b)).

3. BOUNDARY PATHS

Yeend in [33], [34] gave a notion of boundary paths for topological k-graphs
which include topological graphs. Webster in [32] provided an alternative ap-
proach to define boundary paths of a directed graph. In this section we give a
definition of boundary paths of a topological graph which is a generalization of
Webster’s definition, and we will prove that our definition of boundary paths of
a topological graph coincides with Yeend’s.
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DEFINITION 3.1. Let E be a topological graph. Define the set of boundary
paths to be

∂E := E∞ ä{µ ∈ E∗ : s(µ) ∈ E0
sg}.

DEFINITION 3.2 ([34], Definitions 4.1, 4.2; [33], page 236). Let E be a topo-
logical graph and let V ⊂ E0. A set U ⊂ r−1(V)(⊂ E∗) is said to be exhaustive for
V if for any λ ∈ r−1(V) there exists α ∈ U such that λ = αβ or α = λβ.

An infinite path µ ∈ E∞ is called a boundary path in the sense of Yeend if
for any m > 0, for any compact set K ⊂ E∗ such that r(K) is a neighborhood
of r(µm+1) and K is exhaustive for r(K), there exists at least one path in the set
{r(µm+1), µm+1, µm+1µm+2, . . . } lying in K.

A finite path µ ∈ E∗ is called a boundary path in the sense of Yeend if for any
0 6 m 6 |µ|, for any compact set K ⊂ E∗ such that r(K) is a neighborhood of
r(µm+1) and K is exhaustive for r(K) if m < |µ|, or that r(K) is a neighborhood
of s(µ) and K is exhaustive for r(K) if m = |µ|, there exists at least one path in
the set {r(µm+1), µm+1, . . . , µm+1 · · · µ|µ|} lying in K if 0 6 m < |µ| or s(µ) ∈ K if
m = |µ|. Denote by ∂YE the set of all boundary paths in the sense of Yeend.

REMARK 3.3. We explain Definition 3.2 in a more elementary way. Let E be
a topological graph and let µ ∈ E∗ä E∞.

Let µ ∈ E∞. Then µ ∈ ∂YE if and only if for m > 0, and for a compact subset
K ⊂ E∗ satisfying both the following conditions:

(i) r(K) is a neighborhood of r(µm+1),
(ii) for λ ∈ E∗ with r(λ) ∈ r(K) there exists α ∈ K such that λ = αβ or α = λβ,

there exists at least one path in the set {r(µm+1), µm+1, µm+1µm+2, . . . } lying in K.
Let µ ∈ E∗. Then µ ∈ ∂YE if and only if for 0 6 m 6 |µ|, for a compact

subset K ⊂ E∗ satisfying both the following conditions:
(iii) r(K) is a neighborhood of r(µm+1) if m < |µ|, or is a neighborhood of s(µ)

if m = |µ|,
(iv) for λ ∈ E∗ with r(λ) ∈ r(K) there exists α ∈ K such that λ = αβ or α = λβ,

there exists at least one path in the set {r(µm+1), µm+1, . . . , µm+1 · · · µ|µ|} lying in
K if 0 6 m < |µ|, and s(µ) ∈ K if m = |µ|.

LEMMA 3.4. Let E be a topological graph. Fix µ ∈ E∞. Then µ ∈ ∂YE.

Proof. Fix m > 0, and fix a compact subset K ⊂ E∗ satisfying conditions (i),
(ii) of Remark 3.3. Suppose that r(µm+1), µm+1, µm+1µm+2,. . . /∈ K, for a contra-
diction. By condition (ii) of Remark 3.3, r(µm+1) ∈ r(K). For n > 1, we have
r(µm+1· · ·µm+n) = r(µm+1) ∈ r(K). By condition (ii) of Remark 3.3 and by the
assumption, there exists βn∈E∗ \ E0 such that r(βn)= s(µm+n) and αn :=µm+1· · ·
µm+nβn ∈ K. Thus we obtain a sequence of finite paths (αn)∞

n=1 contained in K
whose lengths are not bounded. However, the length of paths in K is bounded
since K is compact in E∗. So we get a contradiction. Hence there exists at least one
path in the set {r(µm+1), µm+1, µm+1µm+2,. . . } lying in K. Therefore µ∈∂YE.
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LEMMA 3.5. Let E be a topological graph. Fix µ ∈ E∗. Then µ ∈ ∂E if and only
if µ ∈ ∂YE.

Proof. First of all, suppose that µ∈∂E, then s(µ)∈E0
sg. We split into two cases.

Fix 0 6 m < |µ|, and fix a compact subset K ⊂ E∗ satisfying conditions (iii),
(iv) of Remark 3.3. Suppose that r(µm+1), µm+1, . . . , µm+1 · · · µ|µ| /∈ K, for a con-
tradiction. There exist an open s|µ|−m-section N of µm+1 · · · µ|µ| and an open
neighborhood U of s(µ) such that

• r|µ|−m(N) ⊂ r(K);
• for λ ∈ N, we have r(λ), λm+1, . . . , λm+1 · · · λ|µ| /∈ K; and
• U ⊂ s(N).
Case 1. s(µ) /∈ E0

fin. By condition (iv) of Remark 3.3 for any net (ea)a∈A ⊂
r−1(U), there exist a net (λa)a∈A ⊂ N and a net (βa)a∈A ⊂ E∗, such that λaeaβa

is a path for a ∈ A, and (λaeaβa)a∈A ∈ K. So there exists a convergent subnet
of the net (ea)a∈A because K is compact. Since (ea)a∈A is arbitrary, r−1(U) is
compact. On the other hand, since s(µ) /∈ E0

fin, r−1(U) is then not compact. Hence
we deduce a contradiction. Therefore there exists at least one path in the set
{r(µm+1), µm+1, . . . , µm+1 · · · µ|µ|} lying in K.

Case 2. s(µ) ∈ E0 \ r(E1). Since s(N) is an open neighborhood of s(µ),
there exists v ∈ s(N) \ r(E1). Then there exists λ ∈ N such that s(λ) = v. So
r(λ), λm+1, . . . , and λm+1 · · · λ|µ| /∈ K. However, since v /∈ r(E1), there exists at
least one path in the set {r(µm+1), µm+1, . . . , µm+1 · · · µ|µ|} lying in K, which is a
contradiction. Hence there exists at least one path in the set {r(µm+1), µm+1, . . . ,
µm+1 · · · µ|µ|} lying in K.

Now fix m = |µ|, and fix a compact subset K ⊂ E∗ satisfying conditions (iii),
(iv) of Remark 3.3. Similar arguments as above yield that s(µ) ∈ K. So µ ∈ ∂YE.

Conversely, suppose that µ ∈ ∂YE. Suppose that s(µ) ∈ E0
rg, for a contra-

diction. By Proposition 2.8 of [8], there exists a neighborhood N of s(µ) such that
r−1(N) is compact and r(r−1(N)) = N. Let m = |µ| and let K = r−1(N). It is
straightforward to check that K satisfies conditions (iii), (iv) of Remark 3.3. By
the assumption, we get s(µ) ∈ K, but this is impossible because K ⊂ E1. So we
deduce a contradiction. Hence s(µ) ∈ E0

sg and µ ∈ ∂E.

PROPOSITION 3.6. Let E be a topological graph. Then ∂E = ∂YE.

The proof follows immediately from Lemmas 3.4, 3.5.
Let E be a topological graph and let µ ∈ E∗ä E∞. From now on, whenever

we say µ is a boundary path we mean that µ is a boundary path in the sense of
Definition 3.1 unless specified otherwise.

Since the product topology on E∞ may not be locally compact in general it
is not obvious how to endow the boundary path space ∂E with a locally compact
Hausdorff topology. In [33], [34] Yeend defined such a topology on the bound-
ary path space of a topological higher rank graph. So using the identification
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of Proposition 3.6, we can endow the boundary path space ∂E with the locally
compact Hausdorff topology used by Yeend.

The following definition is a slight modification of Proposition 3.6 in [34]
for topological graphs.

DEFINITION 3.7. Let E be a topological graph. For a subset S ⊂ E∗, denote
by Z(S) := {µ ∈ ∂E : either r(µ) ∈ S, or there exists 1 6 i 6 |µ|, such that
µ1 · · · µi ∈ S}. We endow ∂E with the topology generated by the basic open sets
Z(U) ∩ Z(K)c, where U is an open set of E∗ and K is a compact set of E∗.

It follows now using the identification of ∂YE with ∂E above that ∂E is a
locally compact Hausdorff space. One verifies that E0

sg is a closed subset of ∂E;
that Z(U) is open for every open subset U ⊂ E∗; and that Z(K) is compact for
every compact subset K ⊂ E∗.

LEMMA 3.8. Let E be a topological graph. Fix a sequence (µ(n))∞
n=1 ⊂ ∂E, and

fix µ ∈ ∂E. Then µ(n) → µ if and only if
(i) r(µ(n))→ r(µ);

(ii) for 1 6 i 6 |µ| with i 6= ∞, there exists N > 1 such that |µ(n)| > i whenever
n > N and (µ

(n)
1 · · · µ

(n)
i )n>N → µ1 · · · µi;

(iii) if |µ| < ∞, then for any compact set K ⊂ E1, the set {n : |µ(n)| > |µ| and
µ
(n)
|µ|+1 ∈ K} is finite.

Proof. Suppose that µ(n) → µ. Conditions (i)–(ii) are straightforward to
verify. Suppose that |µ| < ∞. We may assume that |µ| > 1. Fix a compact set
K⊂E1. Take a precompact neighborhood U of µ in E|µ|. Then µ∈Z(U)∩Z((U ×
K)∩E|µ|+1)c. Since µ(n)→ µ, there exists N > 1 such that µ(n) ∈ Z(U)∩Z((U ×
K)∩E|µ|+1)c whenever n>N. So the set {n : |µ(n)|> |µ| and µ

(n)
|µ|+1∈K} is finite.

Conversely, suppose that conditions (i)–(iii) hold. Fix an open neighbor-
hood Z(U) ∩ Z(K)c of µ.

Case 1. |µ| = ∞. It is straightforward to check that there exists N > 1 such
that µ(n) ∈ Z(U) whenever n > N. Since µ ∈ Z(K)c, we have r(µ), µ1, µ1µ2, . . . /∈
K. Conditions (i), (ii) imply that there exists N′ > N such that µ(n) ∈ Z(K)c. So
µ(n) → µ.

Case 2. |µ| < ∞. We may assume that |µ| > 1. It is straightforward to
check that there exists N > 1 such that |µ(n)| > |µ|, µ(n) ∈ Z(U) whenever n >
N. Suppose that K ∩ (ä∞

i=|µ|+1 Ei) = ∅. Then conditions (i) to (ii) imply that

there exists N′ > N such that µ(n) ∈ Z(K)c whenever n > N′. Suppose that
K ∩ (ä∞

i=|µ|+1 Ei) 6= ∅. Then the set K′ := {ν|µ|+1 : ν ∈ K ∩ (ä∞
i=|µ|+1 Ei)} is

a compact set of E1. Since the set {n : |µ(n)| > |µ| and µ
(n)
|µ|+1 ∈ K′} is finite

by condition (iii) we deduce that there exists N′′ > N such that µ(n) ∈ Z(K)c

whenever n > N′′.
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It follows from Lemma 3.8 and Proposition 3.12 of [34] that the topology on
the boundary path space given in Definition 3.7 agrees with the topology on the
boundary path space given in Proposition 3.6 of [34].

4. FACTOR MAPS

In this section, we recall the notion of factor maps between topological
graphs introduced by Katsura in Section 2 of [10]. Our definition of factor maps
is a special case of Katsura’s (see Remark 4.2).

DEFINITION 4.1. Let E = (E0, E1, rE, sE), F = (F0, F1, rF, sF) be topological
graphs and let m0 : F0 → E0, m1 : F1 → E1 be proper continuous maps. Then the
pair m := (m0, m1) is called a factor map from F to E if

(i) rE ◦m1 = m0 ◦ rF, sE ◦m1 = m0 ◦ sF; and
(ii) for e ∈ E1, u ∈ F0, if sE(e) = m0(u), then there exists a unique f ∈ F1, such

that m1( f ) = e, sF( f ) = u.
Moreover, the factor map is called regular if m0(F0

sg) ⊂ E0
sg.

REMARK 4.2. By Lemma 2.7 of [10], we are able to give some equivalent
conditions under which factor maps are regular. The factor map is regular if and
only if (m0)−1(E0

rg) ⊂ F0
rg if and only if for any u ∈ F0 with m0(u) ∈ E0

rg, we have
r−1

F (u) 6= ∅.

REMARK 4.3. Our definition of factor maps is indeed a special case of the
one defined by Katsura in [10]. In our case, we can extend m0 continuously to the
one-point compactification of F0 by sending ∞ to ∞, and extend m1 in the same
way. Then we get a factor map in the sense of Definitions 2.1, 2.6 in [10].

The proofs of the following two propositions are similar to Propositions 2.9,
2.10 of [10]. Consequently we just state these results without proofs.

PROPOSITION 4.4. Let E = (E0, E1, rE, sE), F = (F0, F1, rF, sF) be topological
graphs, let m := (m0, m1) be a regular factor map from F to E, and let pE : BE → E1

be a principal circle bundle over E1. Denote by pF : BF → F1 the principal circle bundle
which is the pullback of BE by m1. Denote by m1

∗ : X(E, BE) → X(F, BF) the induced
linear map from m1, and denote by m0

∗ : C0(E0) → C0(F0) the induced homomorphism
from m0. Let (jX,E, jA,E) be the universal covariant representation of X(E, BE) into
O(E, BE), and let (jX,F, jA,F) be the universal covariant representation of X(F, BF) into
O(F, BF). Then (jX,F ◦ m1

∗, jA,F ◦ m0
∗) is a covariant representation of X(E, BE) into

O(F, BF). Hence there exists a unique homomorphism h : O(E, BE) → O(F, BF) such
that h ◦ jX,E = jX,F ◦m1

∗, h ◦ jA,E = jA,F ◦m0
∗. Moreover, h is injective if and only if m0

is surjective.

PROPOSITION 4.5. Let E = (E0, E1, rE, sE), F = (F0, F1, rF, sF), G = (G0, G1,
rG, sG) be topological graphs, let m = (m0, m1) be a regular factor map from F to E, let
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n = (n0, n1) be a regular factor map from G to F, and let pE : BE → E1 be a principal
circle bundle. Denote by pF : BF → F1 the principal circle bundle which is the pullback
of BE by m1, and denote by pG : BG → G1 the principal circle bundle which is the
pullback of BE by m1 ◦ n1. We have the following:

(i) m ◦ n := (m0 ◦ n0, m1 ◦ n1) is a regular factor map from G to E.
(ii) Let h1 : O(E, BE) → O(F, BF) be the homomorphism induced from the regular

factor map m, let h2 : O(F, BF) → O(G, BG) be the homomorphism induced from n,
and let h3 : O(E, BE) → O(G, BG) be the homomorphism induced from m ◦ n. Then
h3 = h2 ◦ h1.

5. TWISTED GROUPOID C∗-ALGEBRAS

In this section, we deal with groupoids and groupoid C∗-algebras (see [27]).
From now on we assume that all the topological spaces are second count-

able; and that all the locally compact groupoids are second-countable locally com-
pact Hausdorff groupoids. A locally compact groupoid is said to be étale if its
range map is a local homeomorphism.

DEFINITION 5.1 ([14], Remark 2.9). Let Γ be an étale groupoid, and let Λ be
a locally compact groupoid. Suppose that Γ and Λ have a common unit space Γ0.
We call Λ a topological twist over Γ if there is a sequence of groupoid homomor-
phisms

T× Γ0 i−→ Λ
p−→ Γ

such that:
(i) i is a homeomorphism onto p−1(Γ0);

(ii) p is a continuous open surjection and admits continuous local sections; and
(iii) λi(z, s(λ))λ−1 = i(z, r(λ)), for all z ∈ T, and all λ ∈ Λ.

By Remark 2.9 of [14], we are able to define a free and proper circle action
on Λ by z · λ := i(z, r(λ))λ. The quotient space Λ/T is homeomorphic to Γ via
the identification map [λ] 7→ p(λ). Since p admits continuous local sections,
p : Λ → Γ can be regarded as a principal circle bundle. For u ∈ Γ0, we have
r−1(u) is a discrete subset of Γ because r : Γ → Γ0 is a local homeomorphism.
Since p : Λ → Γ is a principal circle bundle and since r−1(u) = p−1(r−1(u)), we
get r−1(u) is a disjoint union of circles. So there is a natural measure on r−1(u)
and Λ has a left Haar system {µu}u∈Γ0 (see page 252 of [14]).

DEFINITION 5.2 ([14], page 252). Let Γ be an étale groupoid and fix a topo-
logical twist over Γ

T× Γ0 i−→ Λ
p−→ Γ.
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The closure of { f ∈ Cc(Λ) : f (z · λ) = z f (λ) for all z ∈ T} under the C∗-norm
of the groupoid C∗-algebra C∗(Λ) is called the twisted groupoid C∗-algebra and is
denoted by C∗(Γ, Λ).

The convolution product (see page 48 of [27]) of C∗(Γ, Λ) is given as follows.
For f , g ∈ { f ∈ Cc(Λ) : f (z · λ) = z f (λ) for all z ∈ T}, we have

f ∗ g(λ)=
∫

λ′∈r−1(s(λ))

f (λλ′)g(λ′−1)dµs(λ)(λ′)= ∑
γ∈r−1(s(λ))

∫
λ′∈p−1(γ)

f (λλ′)g(λ′−1)

note that f (λλ′)g(λ′−1) is constant on each fibre p−1(γ) and so

= ∑
γ∈r−1(s(λ))

f (λλγ)g(λ−1
γ ).

where γ 7→ λγ is any section of p.

REMARK 5.3. It follows from [4], [29] that there is an injective homomor-
phism π : C0(Γ0)→ C∗(Γ, Λ) such that for h ∈ Cc(Γ0), π(h) = h̃, where

h̃(λ) :=

{
zh(t) if (z, t) ∈ T× Γ0, λ = i(z, t),
0 if λ /∈ p−1(Γ0).

Now we start to look at the groupoid induced from a singly generated dy-
namical system (see page 202) and investigate its topological twists.

DEFINITION 5.4 ([28], Definition 2.4). Let T be a locally compact Hausdorff
space and let σ : dom(σ) → ran(σ) be a partial local homeomorphism (see
page 202). Define the Renault–Deaconu groupoid Γ(T, σ) as follows:

Γ(T, σ) := {(t1, k1 − k2, t2) ∈ T ×Z× T : k1, k2 > 0, t1 ∈ dom(σk1),

t2 ∈ dom(σk2), σk1(t1) = σk2(t2)}.

Define the unit space Γ0 := {(t, 0, t) : t ∈ T}. For (t1, n, t2), (t2, m, t3) ∈ Γ(T, σ),
define the multiplication, the inverse, the source and the range map by

(t1, n, t2)(t2, m, t3) := (t1, n + m, t3), (t1, n, t2)
−1 := (t2,−n, t1),

r(t1, n, t2) := (t1, 0, t1), s(t1, n, t2) := (t2, 0, t2).

Define the topology on Γ(T, σ) to be generated by the basic open set

U (U, V, k1, k2) := {(t1, k1 − k2, t2) : t1 ∈ U, t2 ∈ V, σk1(t1) = σk2(t2)},

where U ⊂ dom(σk1), V ⊂ dom(σk2) are open in T, σk1 is injective on U, and σk2

is injective on V. For k1, k2 > 0, define an open subset of Γ(T, σ) by

Γk1,k2 := {(t1, k1 − k2, t2) : t1 ∈ dom(σk1), t2 ∈ dom(σk2), σk1(t1) = σk2(t2)}.
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The Renault–Deaconu groupoid Γ(T, σ) is an étale groupoid. We give the
characterization of convergent nets in Γ(T, σ). Fix ((t1,α, nα, t2,α))α∈A in Γ(T, σ),
and fix (t1, n, t2) ∈ Γ(T, σ). Find k1, k2 > 0 such that

(i) n = k1 − k2, t1 ∈ dom(σk1), t2 ∈ dom(σk2), σk1(t1) = σk2(t2); and that
(ii) if there exist k′1, k′2 > 0 satisfying that k′1 6 k1, k′2 6 k2, n = k′1 − k′2,

σk′1(t1) = σk′2(t2), then we have k′1 = k1, k′2 = k2;

then we have (t1,α, nα, t2,α)→ (t1, n, t2) if and only if t1,α → t1, t2,α → t2, and there
exists α0 ∈ A such that whenever α > α0, we have nα = n, t1,α ∈ dom(σk1), t2,α ∈
dom(σk2), σk1(t1,α) = σk2(t2,α).

LEMMA 5.5. Let Z be a locally compact Hausdorff space, let {Zn}n>1 be a count-
able open cover of Z, and let {pn : Bn → Zn} be a family of principal circle bundles.
Suppose that for n, m > 1, there exists a homeomorphism hn,m : p−1

n (Zn ∩ Zm) →
p−1

m (Zn ∩ Zm) such that pm ◦ hn,m = pn, hn,m(z · b) = z · hn,m(b) for all z ∈ T, b ∈
p−1

n (Zn ∩ Zm), and hm,l ◦ hn,m = hn,l on p−1
n (Zn ∩ Zm ∩ Zl). Define

B := ä
n>1

Bn/{(b, n) ∼ (hn,m(b), m) : b ∈ p−1
n (Zn ∩ Zm)}

endowed with the quotient topology. For N > 1, for a sequence (bi, N)∞
i=1 ⊂ B, and for

(b, N) ∈ B, we have (bi, N)→ (b, N) in B if and only if bi → b in BN . Moreover, B is
a (second-countable) principal circle bundle over Z.

The proof is straightforward to verify.
Next we generalize Theorem 3.1 of [4] so that it applies to partial local home-

omorphisms and not just local homeomorphisms. The proof is similar.

THEOREM 5.6. Let T be a locally compact Hausdorff space, let σ : dom(σ) →
ran(σ) be a partial local homeomorphism, and let p : B → dom(σ) be a principal circle
bundle. Denote by j : dom(σ) → Γ(T, σ) the embedding such that j(t) = (t, 1, σ(t)).

Then there exists a topological twist T× Γ0 i−→ Λ
p′−→ Γ(T, σ), such that the pullback

bundle j∗(Λ) of Λ by j is isomorphic to B.

Proof. For k1, k2 > 1, we have a principal circle bundle B?k1 ? B?k2 over
(∏k1

i=1 dom(σ)) × (∏k2
j=1 dom(σ)). Denote by ιk1,k2 : Γk1,k2 → (∏k1

i=1 dom(σ)) ×
(∏k2

j=1 dom(σ)) the embedding

ι(t1, k1 − k2, t2) := (t1, σ(t1), . . . , σk1−1(t1), t2, σ(t2), . . . , σk2−1(t2)).

Denote by pk1,k2 : Λk1,k2 → Γk1,k2 the pullback bundle of B?k1 ? B?k2 by ιk1,k2 .

For k > 1, there are embeddings ιk,0 : Γk,0 →
k

∏
i=1

dom(σ), ι0,k : Γ0,k →
k

∏
i=1

dom(σ), and similarly we get principal circle bundles Λk,0 over Γk,0 and Λ0,k
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over Γ0,k. Moreover, we may identify Γ0,0 with T via the homeomorphism ι0,0 :
Γ0,0 → T. Denote by Λ0,0 the trivial principal circle bundle T× T over T.

For k1, k2 > 1, define h(k1,k2),(k1,k2)
:= id. For 1 6 k1 < l1, 1 6 k2 < l2 with

k1 − k2 = l1 − l2, define

h(l1,l2),(k1,k2)
: p−1

l1,l2
(Γk1,k2 ∩ Γl1,l2)→ p−1

k1,k2
(Γk1,k2 ∩ Γl1,l2)

as follows. For (b1, . . . , bl1 , b
′
1, . . . , b

′
l2) ∈ p−1

l1,l2
(Γk1,k2 ∩ Γl1,l2), define

h(l1,l2),(k1,k2)
(b1, . . . , bl1 , b

′
1, . . . , b

′
l2) :=(bk1+1/b′k2+1) · · · (bl1 /b′l2)

· (b1, . . . , bk1 , b
′
1, . . . , b

′
k2
).

It is routine to show that h(l1,l2),(k1,k2)
is a homeomorphism; its inverse is given by

h(k1,k2),(l1,l2)(b1, . . . , bk1 , b
′
1, . . . , b

′
k2
) = (b1, . . . , bk1 , c1, . . . , cj, b

′
1, . . . , b

′
l1 , c1, . . . , cj)

where j := l1 − k1 = l2 − k2; note that the formula does not depend on the choice
of the ci. The formulas above give homeomorphisms for all k1, k2, l1, l2 > 0 with
k1 − k2 = l1 − l2.

It is straightforward to check that for k1, k2, l1, l2, m1, m2>0 with k1−k2= l1−
l2=m1−m2, we have pl1,l2 ◦ h(k1,k2),(l1,l2)= pk1,k2 , and h(l1,l2),(m1,m2)

◦ h(k1,k2),(l1,l2)=

h(k1,k2),(m1,m2)
on p−1

k1,k2
(Γk1,k2∩Γl1,l2∩Γm1,m2). By Lemma 5.5, we may construct a

locally compact Hausdorff space Λn for n ∈ Z by

Λn := ä
k1,k2>0, k1−k2=n

Λk1,k2 / ∼

where λ ∼ h(k1,k2),(l1,l2)(λ) for all λ ∈ p−1
k1,k2

(Γk1,k2 ∩ Γl1,l2). For k1, k2, l1, l2 > 0, if
k1 − k2 6= l1 − l2, then Γk1,k2 ∩ Γl1,l2 = ∅. Observe that Λ := ä

n∈Z
Λn is a locally

compact Hausdorff space which we may view as a circle bundle over Γ(T, σ) with
bundle map p′ : Λ → Γ(T, σ) defined in the obvious way (p′([λ]) = pk1,k2(λ)
where λ ∈ Λk1,k2 ).

Now we endow Λ with a groupoid structure. We define the range and
source maps r, s : Λ→ Γ0 r(λ) = rΛ(λ) = r(p′(λ)) and s(λ) = sΛ(λ) = s(p′(λ))
for λ ∈ Λ. Now let λ1, λ2 ∈ Λ such that s(λ1) = r(λ2). Then there exist ki > 1, for
i = 1, 2, 3, (b1, . . . , bk1 , b

′
1, . . . , b

′
k2
) ∈ Λk1,k2 and (b′′1 , . . . , b′′k2

, b
′′′
1 , . . . , b

′′′
k2
) ∈ Λk2,k3

such that λ1 = [(b1, . . . , bk1 , b
′
1, . . . , b

′
k2
)] and λ2 = [(b′′1 , . . . , b′′k2

, b
′′′
1 , . . . , b

′′′
k2
)] and

p(b′1) = p(b′′1 ). Define

λ1λ2 = [(b1, . . . , bk1 , b
′
1, . . . , b

′
k2
)] · [(b′′1 , . . . , b′′k2

, b
′′′
1 , . . . , b

′′′
k3
)]

:= [(b′′1 /b′1) · · · (b′′k2
/b′k2

)(b1, . . . , bk1 , b
′′′
1 , . . . , b

′′′
k3
)]; and

(b1, . . . , bk1 , b
′
1, . . . , b

′
k2
)−1 := (b′1, . . . , b′k2

, b1, . . . , bk1).

It is straightforward to check that Λ is a locally compact groupoid under these
two operations with the unit space Λ0 which is homeomorphic to Γ0.
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Define i : Γ0 × T → Λ to be the embedding such that its image is Λ0,0. De-
fine p′ : Λ→ Γ(T, σ) in the obvious way. Then conditions (i)–(iii) of Definition 5.1
follow. The rest of the proof is straightforward.

By arguing along the lines of Theorem 3.1 in [4] it can be shown that the
topological twist Λ in the above theorem is unique.

The following theorem is a generalization of Theorem 3.3 in [4]. In par-
ticular, we consider partial local homeomorphisms instead of local homeomor-
phisms.

THEOREM 5.7. Let T be a locally compact Hausdorff space and let σ : dom(σ)→
ran(σ) be a partial local homeomorphism. Define a topological graph E := (T, dom(σ),
id, σ). Fix a topological twist

T× Γ0 i−→ Λ
p−→ Γ(T, σ).

Denote B := j∗(Λ). Then the twisted topological graph algebra O(E, B) is isomorphic
to the twisted groupoid C∗-algebra C∗(Γ(T, σ), Λ).

Proof. Denote Q : T× Γ0 → T the natural projection. We may identify B =
j∗(Λ) with (p′)−1(j(domσ)) which is a clopen subset of Λ. Let x be an equivariant
complex-valued continuous function with compact support on B; then using the
above identification and extending by zero yields an equivariant complex-valued
continuous function with compact support on Λ which we denote by ψ(x). It
is straightforward to check that this yields a linear map ψ. Let π : C0(T) →
C∗(Γ(T, σ), Λ) be the injective homomorphism as described in Remark 5.3.

Fix two equivariant complex-valued continuous function with compact sup-
port x, y on B, fix h ∈ Cc(T), and fix λ ∈ Λ. Let λ ∈ B and write p(λ) =
(t, 1, σ(t)). Then

π(h) ∗ ψ(x)(λ) = π(h)(λλ−1)ψ(x)(λ) = Q ◦ i−1(λλ−1)h(p(λλ−1))x(λ)

= ψ(h · x)(λ).

So ψ(h · x) = π(h) ∗ ψ(x). Now let λ ∈ p−1(T0,0) and write p(λ) = (t, 0, t). By
condition (i) of Definition 5.1, λ = i(z, t). As in the convolution formula following
Definition 5.1 where (e, 1, σ(e)) 7→ λe is a section of p over the image of j we
compute

ψ(x)∗ ∗ ψ(y)(λ) = ∑
σ(e)=t

x(λeλ−1)y(λe) = ∑
σ(e)=t

x(z · λe)y(λe)

= z〈x, y〉C0(T)(t) = π(〈x, y〉C0(T))(λ).

So ψ(x)∗ ∗ ψ(y) = π(〈x, y〉C0(T)). Hence ψ is bounded with the unique exten-
sion ψ to X(E, BE), the twisted graph correspondence over C0(T) obtained as the
completion of the equivariant complex-valued continuous functions with com-
pact support on B; moreover, (ψ, π) is an injective representation of X(E, BE) in
C∗(Γ(T, σ), Λ).
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Now we prove that (ψ, π) is covariant. By Definition 1.1, we have E0
rg =

E0
fin ∩ dom(σ)

◦
. By Lemma 1.22 of [8], E0

rg = dom(σ). By Proposition 3.10 of [21],

φ−1(K(X(E, B))) ∩ (ker φ)⊥ = C0(E0
rg) = C0(dom(σ)).

Fix a nonnegative function f ∈ Cc(dom(σ)) such that σ|supp( f ) is injective and
there is a continuous local section ϕ : supp( f )→ B. In order to prove that (ψ, π)

is covariant, it is enough to show that ψ(1)(φ( f )) = π( f ). By Lemma 4.63(c) of
[26], there exists a unique continuous map

τ : {(λ, λ′) ∈ Λ×Λ : p(λ) = p(λ′)} → T
such that τ(λ, λ′) · λ = λ′. Define a map x : B→ C by

x(λ) :=

{
τ(ϕ(p(λ)), λ)

√
f (p(λ)) if λ ∈ p−1(supp( f )),

0 otherwise.

It is straightforward to check that x is an equivariant continuous function with
compact support on B, and φ( f ) = Θx,x. Fix λ ∈ p−1(T0,0) and write p(λ) =
(t, 0, t) ∈ supp( f ). Then

ψ(x) ∗ ψ(x)∗(λ) = ψ(x)(λλ′)ψ(x)(λ′) (where p(λ′) = (t, 1, σ(t)))

= Q ◦ i−1(λ) f (p(λ)) = π( f )(λ).

So (ψ, π) is covariant.
The existence of a T-action β on C∗(Γ(T, σ), Λ) such that βz(π( f )) = π( f )

and βz(ψ(x)) = zψ(x) for all z ∈ T, f ∈ C0(T) and x ∈ LB follows by arguing
as in Proposition II.5.1 of [27]. It is straightforward to show that the C∗-algebra
generated by the images of ψ and π exhausts C∗(Γ(T, σ), Λ). Therefore by the
gauge-invariant uniqueness theorem (see Theorem 6.4 of [9]), the twisted topo-
logical graph algebra O(E, B) is isomorphic to the twisted groupoid C∗-algebra
C∗(Γ(T, σ), Λ).

6. TWISTED GROUPOID MODELS FOR TWISTED TOPOLOGICAL GRAPH ALGEBRAS

In this section, we prove our main theorem.

LEMMA 6.1. Let E be a topological graph. Denote by σ : ∂E \ E0
sg → ∂E the

one-sided shift map. Then σ is a partial local homeomorphism on ∂E with dom(σ) =
∂E \ E0

sg.

Proof. For µ ∈ ∂E \ E0
sg, take an open s-section U (see page 206) contain-

ing µ1. Then we have σ(Z(U)) = Z(s(U)). It is straightforward to check that
the restriction of σ to Z(U) is a homeomorphism onto Z(s(U)) in the subspace
topologies.

By Lemma 6.1, we can define a new topological graph.
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DEFINITION 6.2. Let E be a topological graph. Define a topological graph
as follows:

Ê = (Ê0, Ê1, r̂, ŝ) := (∂E, ∂E \ E0
sg, ι, σ).

LEMMA 6.3. Let E be a topological graph. Then the range map r : ∂E → E0

is a proper continuous surjection. Define a projection map Q : ∂E \ E0
sg → E1 by

Q(µ) := µ1. Then Q is also a proper continuous surjection.

Proof. First, we prove that r is a proper continuous surjection. By condi-
tion (i) of Lemma 3.8, r is continuous. By Lemma 1.4 of [11], r is surjective. For
any compact subset K ⊂ E0, we have r−1(K) is compact because r−1(K) = Z(K)
(note Z(K) is compact by Proposition 3.15 of [34]). So r is proper.

Now we prove that Q is a proper continuous surjection. By condition (ii)
of Lemma 3.8, Q is continuous. By Lemma 1.4 of [11], Q is surjective. For any
compact subset K ⊂ E1, we have Q−1(K) is compact because Q−1(K) = Z(K). So
Q is proper.

Let E be a topological graph and let p : B→ E1 be a principal circle bundle.
We get a principal circle bundle Q∗(p) : Q∗(B) → ∂E \ E0

sg which is the pullback
bundle of B by Q. Then there is a linear map Q∗ : X(E, B) → X(Ê, Q∗(B))
obtained as the extension of the natural map Q∗ : Ce

c (B) → Ce
c (Q∗(B)) induced

by Q and a homomorphism r0
∗ : C0(E0)→ C0(∂E) induced from r. Let (jX , jA) be

the universal covariant representation of X(E, B) in O(E, B), and let (jX,Ê, jA,Ê)

be the universal covariant representation of X(Ê, Q∗(B)) in O(Ê, Q∗(B)).
We next apply Proposition 4.4 to obtain a homomorphism h : O(E, B) →

O(Ê, Q∗(B)).

LEMMA 6.4. With notation as above the pair (r, Q) defines a regular factor map
from Ê to E. And the pair (jX,Ê ◦Q∗, jA,Ê ◦ r∗) is a covariant representation of X(E, B)
in O(Ê, Q∗(B)). Hence there is a unique homomorphism h : O(E, B)→ O(Ê, Q∗(B))
such that h ◦ jX = jX,Ê ◦Q∗ and h ◦ jA = jA,Ê ◦ r∗. Moreover, h is injective.

Proof. By Lemma 6.3 (r, Q) defines a factor map from Ê to E. Note that

Ê0
rg = dom σ = Ê1 = ∂E \ E0

sg

and so Ê0
sg = E0

sg. Hence, r(Ê0
sg) = E0

sg and so (r, Q) is regular. Therefore
by Proposition 4.4 the pair (jX,Ê ◦ Q∗, jA,Ê ◦ r∗) is a covariant representation of

X(E, B) inO(Ê, Q∗(B)) and there exists a unique map h : O(E, B)→ O(Ê, Q∗(B))
with the prescribed properties. Since r and Q are both surjective, the injectivity
of h follows by the same result.

The following theorem is inspired by Proposition 5.5 of [33].

THEOREM 6.5. The map h : O(E, B)→ O(Ê, Q∗(B)) above is an isomorphism.
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Proof. Since h is injective by Lemma 6.4 we need only show that h is surjec-
tive. It is sufficient to prove that the image of h contains the images of jX,Ê and
jA,Ê.

Firstly we show that the image of h contains the image of jA,Ê. By the Stone–
Weierstrass theorem, we only need to prove that for each µ ∈ ∂E there exists
f ∈ C0(∂E) satisfying f (µ) 6= 0 and jA,Ê( f ) ∈ h(O(E, B)), and that the image of
h separates points of ∂E.

Fix µ ∈ ∂E. By the Urysohn’s lemma, there exists f ∈ C0(E0) such that
f (r(µ)) = 1. Then jA,Ê ◦ r∗( f ) = h ◦ jA( f ) ∈ h(O(E, B)), and r∗( f )(µ) =

f (r(µ)) = 1.
Now we prove that h separates points of ∂E. Fix distinct µ, ν ∈ ∂E.
Case 1. r(µ) 6= r(ν). Take an arbitrary f ∈ C0(E0) such that f (r(µ)) 6=

f (r(ν)). Then jA,Ê ◦ r∗( f ) = h ◦ jA( f ) ∈ h(O(E, B)), and r∗( f )(µ) 6= r∗( f )(ν).
Case 2. µ ∈ E0

sg, ν /∈ E0
sg, and r(ν) = µ. Take a precompact open s-section U

of ν1 which admits a local section ϕ : U → B. Take an arbitrary x ∈ Ce
c (p−1(U))

such that x does not vanish on the fibre p−1(ν1). Define f : Q−1(U) → C by
f (α) := |x ◦ ϕ(α1)|2. Then f ∈ Cc(Q−1(U)). So

h◦ jX(x)(h◦ jX(x))∗= jX,Ê◦Q∗(x)(jX,Ê◦Q∗(x))∗= j(1)
X,Ê

(ΘQ∗(x),Q∗(x))= j(1)
X,Ê

(φ( f ))

= jA,Ê( f ) (by the covariance of (jX,Ê, jA,Ê)).

Notice that f (µ) = 0 and f (ν) 6= 0.
Case 3. r(µ) = r(ν), µ, ν /∈ E0

sg, µ1 6= ν1. Take a precompact open s-section
U of ν1 which does not contains µ1 and admits a local section ϕ : U → B. Take
an arbitrary x ∈ Ce

c (p−1(U)) such that x does not vanish on the fibre p−1(ν1).
Define f : Q−1(U) → C by f (α) := |x ◦ ϕ(α1)|2. Then f ∈ Cc(Q−1(U)). Similar
arguments from Case 2 gives jA,Ê( f ) ∈ h(O(E, B)). Notice that f (µ) = 0 and
f (ν) 6= 0.

Case 4. |µ| = n > 1, |ν| > n + 1, and µ = ν1 · · · νn. For 1 6 i 6 n + 1. Take a
precompact open s-section Ui of νi which admits a local section ϕi : Ui → B. Take
an arbitrary xi ∈ Ce

c (p−1(Ui)) such that xi does not vanish on the fibre p−1(νi).
Define fi : Q−1(Ui)→ C by fi(α) := |xi ◦ ϕi(α1)|2. Then fi ∈ Cc(Q−1(Ui)). So( n+1

∏
i=1

h ◦ jX(xi)
)( n+1

∏
i=1

h ◦ jX(xi)
)∗

=
( n+1

∏
i=1

jX,Ê ◦Q∗(xi)
)( n+1

∏
i=1

jX,Ê ◦Q∗(xi)
)∗

= jA,Ê( f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)).

Notice that f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)(µ) = 0 and f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)
(ν) 6= 0.

Case 5. |µ|, |ν| > n + 1(n > 1), µ1 · · · µn = ν1 · · · νn, and µn+1 6= νn+1. For
1 6 i 6 n. Take a precompact open s-section Ui of νi which admits a local section
ϕi : Ui → B. Take an arbitrary xi ∈ Ce

c (p−1(Ui)) such that xi does not vanish
on the fibre p−1(νi). Define fi : Q−1(Ui) → C by fi(α) := |xi ◦ ϕi(α1)|2. Then
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fi ∈ Cc(Q−1(Ui)). Take a precompact open s-section Un+1 of νn+1 which does
not contain µn+1 and admits a local section ϕn+1 : Un+1 → B. Take an arbitrary
xn+1 ∈ Ce

c (p−1(Un+1)) such that xn+1 does not vanish on the fibre p−1(νn+1).
Define fn+1 : Q−1(Un+1) → C by fn+1(α) := |xn+1 ◦ ϕn+1(α1)|2. Then fn+1 ∈
Cc(Q−1(Un+1)). Similar arguments from Case 4 implies that( n+1

∏
i=1

h ◦ jX(xi)
)( n+1

∏
i=1

h ◦ jX(xi)
)∗

= jA,Ê( f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)).

Notice that f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)(µ) = 0 and f1 · · · ( fn ◦ σn−1)( fn+1 ◦ σn)
(ν) 6= 0.

Therefore we deduce that the image of h separates points of ∂E, and that the
image of h contains the image of jA,Ê.

Now we show that the image of h contains the images of jX,Ê. Fix x ∈
Ce

c (Q∗(B)). Take a finite cover {Ui}n
i=1 of (Q ◦ Q∗(P))(supp(x)) by precompact

open s-sections such that for each i there exists a local section ϕi : Ui → B. Take

a finite collection {hi}n
i=1 ⊂ Cc(E1) such that supp(hi) ⊂ Ui,

n
∑

i=1
hi = 1 on (Q ◦

Q∗(P))(supp(x)). Since each ((Q ◦ Q∗(P))∗(hi))x ∈ Ce
c (Q∗(B)) and

n
∑

i=1
((Q ◦

Q∗(P))∗(hi))x = x, we may assume that (Q ◦ Q∗(P))(supp(x)) is contained in a
precompact open s-section U which admits a local section ϕ : U → B.

Take an arbitrary y ∈ Ce
c (p−1(U)) such that y(b) = b/ϕ(p(b)) for all b ∈

p−1((Q ◦ Q∗(P))(supp(x))). Define f : r−1(s(U)) → C by f (µ) := x(ϕ ◦ s|−1
U ◦

r(µ), (s|−1
U ◦ r(µ))µ). Then f ∈ Cc(r−1(s(U))). We claim that Q∗(y) · f = x. Fix

(b, eν) ∈ Q∗(B).
Case 1. (b, eν) /∈ supp(x). Then x(b, eν) = 0. If b /∈ p−1(U), then Q∗(y)

(b, eν) = 0, so (Q∗(y) · f )(b, eν) = 0. If b ∈ p−1(U), then ν ∈ r−1(s(U)), so

f (ν) = x(ϕ ◦ s|−1
U ◦ r(ν), (s|−1

U ◦ r(ν))ν) = x(ϕ(e), eν) = (ϕ(e)/b)x(b, eν) = 0.

Case 2. (b, eν) ∈ supp(x). We compute that

(Q∗(y) · f )(b, eν) = y(b) f (ν) = (b/ϕ(e))(ϕ(e)/b)x(b, eν) = x(b, eν).

So Q∗(y) · f = x and we finish proving the claim. Hence

h(jX(y))jA,Ê( f ) = jX,Ê(Q∗(y))jA,Ê( f ) = jX,Ê(x).

Therefore the image of h contains the image of jX,Ê because we just showed that
the image of h contains the image of jA,Ê. We are done.

Recall that by Lemma 6.1, the shift map σ is a partial local homeomorphism
on ∂E.

DEFINITION 6.6. The boundary path groupoid of a topological graph E is de-
fined to be the Renault–Deaconu groupoid Γ(∂E, σ) (see Definition 5.4).
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THEOREM 6.7. Let E be a topological graph and let p : B → E1 be a principal
circle bundle. Let Q∗(p) : Q∗(B)→ ∂E \ E0

sg be the pullback bundle of B by Q. Denote
by j : ∂E \ E0

sg → Γ(∂E, σ) the embedding such that j(eν) = (eν, 1, ν) for all e ∈
E1, ν ∈ ∂E with s(e) = r(ν). Let Λ be the topological twist Λ over the boundary path
groupoid Γ(∂E, σ)

T× Γ0 i−→ Λ
p′−→ Γ(∂E, σ)

such that j∗(Λ) ∼= Q∗(B) (see Theorem 5.6). Then O(E, B) is isomorphic to the twisted
groupoid C∗-algebra C∗(Γ(∂E, σ), Λ).

The result follows directly from Theorems 5.7, 6.5.

EXAMPLE 6.8. In 1989 Rieffel introduced quantum Heisenberg manifolds
Dc

µ,ν, where µ, ν ∈ R and c ∈ N as key examples of his deformation quantiza-
tion theory (see [31]). Work of Abadie et al. (see [1]) showed that each quan-
tum Heisenberg manifolds Dc

µ,ν is isomorphic to a twisted topological graph C∗-
algebra OX(E,L) (without using the language of topological graphs) with E0 =

E1 = T2, r = id, s is translation by a parameter depending on µ, ν ∈ R and L is
a Hermitian line bundle determined by the integer c. Kang et al. (see [7]) proved
that Dc

µ,ν is a twisted groupoid C∗-algebra.

APPENDIX

In this appendix, we provide an alternative proof of Theorem 5.6 by using
the cocycles approach.

Firstly, we can present the principal circle bundle in the following way.
There exist an open cover {Nα}α∈Θ of dom(σ) and a 1-cocycle {sαβ}α,β∈Θ, such
that

B ∼= ä
α∈Θ

(Nα ×T)/(t, z, α) ∼ (t, zsαβ(t), β).

For k1, k2 > 1, we have a principal circle bundle over (∏k1
i=1 dom(σ)) × (∏k2

j=1
dom(σ))

ä
((

∏k1
i=1Nαi

)
×
(
∏k2

j=1Nα′j

)
×T
)/

(t1, . . . , tk1 , t′1, . . . , t′k2
, z, α1, . . . , αk1 , α′1, . . . , α′k2

)

∼ (t1, . . . , tk1 , t′1, . . . , t′k2
, zsα1β1(t1) · · · sαk1

βk1
(tk1)

· sβ′1α′1
(t′1) · · · sβ′k2

α′k2
(t′k2

), β1, . . . , βk1 , β′1, . . . , β′k2
).

Note that there is an embedding ιk1,k2 : Γk1,k2→(∏k1
i=1 dom(σ))×(∏k2

j=1 dom(σ)) by

sending (t1, k1−k2, t2) to (t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2)) for all t1∈dom(σk1),
t2 ∈ dom(σk2). Define a principal circle bundle pk1,k2 : Λk1,k2 → Γk1,k2 to be the
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restriction of the above bundle to Γk1,k2 , that is

Λk1,k2 := {(t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), z, α1, . . . , αk1 , α′1, . . . , α′k2
)}.

For k > 1, there are embeddings ιk,0 : Γk,0 →
k

∏
i=1

dom(σ); ι0,k : Γ0,k →
k

∏
i=1

dom(σ), and similarly we get principal circle bundles Λk,0 over Γk,0, Λ0,k over

Γ0,k. Moreover, we regard Γ0,0 as a copy of T via the homeomorphism ι0,0 : Γ0,0 →
T. Denote by Λ0,0 the trivial principal circle bundle T ×T over T.

For k1, k2 > 1, define h(k1,k2),(k1,k2)
:= id.

For 1 6 k1 < l1, 1 6 k2 < l2 with k1 − k2 = l1 − l2, define

h(k1,k2),(l1,l2) : p−1
k1,k2

(Γk1,k2 ∩ Γl1,l2)→ p−1
l1,l2

(Γk1,k2 ∩ Γl1,l2)

as follows. For any (t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), z, α1, . . . , αk1 , α′1, . . . , α′k2
) ∈

p−1
k1,k2

(Γk1,k2 ∩ Γl1,l2), choose arbitrary αk1+1, . . . , αl1 , α′k2+1, . . . , α′l2 such that

σk1−1+i(t1) ∈ Nαk1+i ∩ Nα′k2+i
, i = 1, . . . , l1 − k1. Define

h(k1,k2),(l1,l2)(t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), z, α1, . . . , αk1 , α′1, . . . , α′k2
)

:= (t1, . . . , σl1−1(t1), t2, . . . , σl2−1(t2), zsα′k2+1αk1+1
(σk1(t1)) · · · sα′l2

αl1
(σl1−1(t1)),

α1, . . . , αl1 , α′1, . . . , α′l2).

It is straightforward to prove that h(k1,k2),(l1,l2) is a homeomorphism. Denote its
inverse by h(l1,l2),(k1,k2)

with the formula given as follows. For (t1, . . . , σl1−1(t1), t2,
. . . , σl2−1(t2), z, α1, . . . , αl1 , α′1, . . . , α′l2) ∈ p−1

l1,l2
(Γk1,k2 ∩ Γl1,l2),

h(l1,l2),(k1,k2)
(t1, . . . , σl1−1(t1), t2, . . . , σl2−1(t2), z, α1, . . . , αl1 , α′1, . . . , α′l2)

= (t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), zsαk1+1α′k2+1
(σk1(t1)) · · · sαl1

α′l2
(σl1−1(t1)),

α1, . . . , αk1 , α′1, . . . , α′k2
).

Similarly, for any k1, k2, l1, l2>0 with k1−k2= l1−l2, we are able to define a home-
omorphism h(k1,k2),(l1,l2). It is straightforward to check that for k1, k2, l1, l2, m1, m2
> 0 with k1−k2 = l1− l2 = m1−m2, we have pl1,l2 ◦ h(k1,k2),(l1,l2) = pk1,k2 , and
h(l1,l2),(m1,m2)

◦h(k1,k2),(l1,l2) =h(k1,k2),(m1,m2)
on p−1

k1,k2
(Γk1,k2∩Γl1,l2∩Γm1,m2). By Lem-

ma 5.5, we may construct a locally compact Hausdorff space Λz for z∈Z by

Λz := ä
{k1,k2>0:k1−k2=z}

Λk1,k2 /{λ ∼ h(k1,k2),(l1,l2)(λ) : λ ∈ p−1
k1,k2

(Γk1,k2 ∩ Γl1,l2)}.

For k1, k2, l1, l2 > 0, if k1 − k2 6= l1 − l2, then Γk1,k2 ∩ Γl1,l2 = ∅. So we get a locally
compact Hausdorff space Λ := ä

z∈Z
Λz.
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Now we endow Λ with a groupoid structure. For ki > 1, ti ∈ dom(σki ), i =

1, 2, 3, for z1, z2 ∈ T, suppose that (t1, . . . , σk1−1(t1)) ∈
k1
∏
i=1

Nαi , (t2, . . . , σk2−1(t2))∈
k2
∏
i=1

(Nα′i
∩ Nα′′i

), and that (t3, . . . , σk3−1(t3)) ∈
k3
∏
i=1

Nα′′′i
; define

(t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), z1, α1, . . . , αk1 , α′1, . . . , α′k2
)

· (t2, . . . , σk2−1(t2), t3, . . . , σk3−1(t3), z2, α′′1 , . . . , α′′k2
, α′′′1 , . . . , α′′′k3

)

:= (t1, . . . , σk1−1(t1), t3, . . . , σk3−1(t3), z1z2sα′′1 α′1
(t2) · · · sα′′k2

α′k2
(σk2−1(t2)),

α1, . . . , αk1 , α′′′1 , . . . , α′′′k3
);

define

(t1, . . . ,σk1−1(t1), t2, . . . , σk2−1(t2), z1, α1, . . . , αk1 , α′1, . . . , α′k2
)−1

:= (t2, . . . , σk2−1(t2), t1, . . . , σk1−1(t1), z1, α′1, . . . , α′k2
, αk1 , . . . , α1).

More simply,

(t1, . . . , σk1−1(t1), t2, . . . , σk2−1(t2), z1, α1, . . . , αk1 , α′1, . . . , α′k2
)

· (t2, . . . , σk2−1(t2), t3, . . . , σk3−1(t3), z2, α′1, . . . , α′k2
, α′′′1 , . . . , α′′′k3

)

:= (t1, . . . , σk1−1(t1), t3, . . . , σk3−1(t3), z1z2, α1, . . . , αk1 , α′′′1 , . . . , α′′′k3
).

It is straightforward to check that Λ is a locally compact groupoid under these
two operations with the unit space Λ0 which is homeomorphic to Γ0. Define
i : Γ0 × T → Λ to be the embedding such that its image is Λ0,0. Define p′ :
Λ→ Γ(T, σ) in the obvious way. Thus Λ is the desired topological twist in Theo-
rem 5.6.

In [7] Kang et al. constructed Λ by using cocycles for the case when σ is a
homemorphism and T is a compact metric space.
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