
J. OPERATOR THEORY
78:2(2017), 347–355

doi: 10.7900/jot.2016aug17.2124

© Copyright by THETA, 2017

UNITARIES IN ULTRAPRODUCT OF MATRICES

LIVIU PĂUNESCU

Communicated by Marius Dădârlat
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1. INTRODUCTION

We know that two unitary matrices u, v ∈ Mn(C) are conjugated by a uni-
tary if and only if they have the same eigenvalues, multiplicities included. Let
Pn ⊂ Mn be the subgroup of permutation matrices, i.e. matrices that have exactly
one entry of one on each row and column. If c ∈ Pn corresponds to a cycle of
length n, then the eigenvalues of c are precisely the n roots of unity, each con-
sidered with multiplicity one. If p ∈ Pn is a general permutation matrix, one
has to consider its cycle decomposition. Then its set of eigenvalues is the disjoint
union of the sets of eigenvalues corresponding to each cycle. All in all, describing
unitary matrices that are conjugated to a permutation is easy and only requires a
look at eigenvalues with multiplicity.

What about a unitary in the ultraproduct u ∈ ∏
k→ω

Mnk ? Assume that u is

of infinite order, i.e. ui 6= Id for any i ∈ N∗. It is easy to see that the spectrum of
an element in ∏

k→ω
Pnk of infinite order is the whole circle S1 = {λ ∈ C : |λ| =

1}. However this condition is not sufficient to deduce that u is conjugated to an
ultraproduct of permutations. The spectrum must also be equally distributed on
the circle, in some sense. This can be formalised by introducing a measure on S1,
using the trace of spectral projections of u, see Section 4. Alternatively, we can
study the moments of this measure, i.e. the sequence (Tr(uk))k∈N∗ . This will be
investigated in Section 3.

We use the same notation as in [3]. As mentioned Pn ⊂ Mn(C) is the sub-
group of permutation matrices inside the algebra of n-dimensional matrices. The
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trace norm on Mn(C) is defined as ‖A‖2 =
√

1
n ∑

i,j
|aij|2, such that ‖Id‖2 = 1

independent of the dimension. This formula can be also expressed as ‖A‖2 =√
Tr(A∗A), where Tr(A) = 1

n ∑
i

aii.

In order to construct the ultraproduct of matrices, fix ω a free ultrafilter
on N, and fix (nk)k ⊂ N∗ a sequence such that lim

k
nk = ∞. Then ∏

k→ω
Mnk =

l∞(N, Mnk )/Nω, where l∞(N, Mnk ) is the algebra of bounded sequences of ma-

trices in the operatorial norm, and Nω =
{
(xk) ∈ l∞(N, Mnk ) : lim

k→ω
‖xk‖2 = 0

}
.

Also ∏
k→ω

Pnk ⊂ ∏
k→ω

Mnk is the subgroup of elements that have a representative

obtained using only permutation matrices. If xk ∈ Mnk , then ∏
k→ω

xk denotes the

corresponding element in ∏
k→ω

Mnk .

Let p ∈ Pn. Being a permutation matrix, p can be viewed as a permutation
on a set with n points. For i ∈ N∗ denote by cyci(p) the number of points that
are part of cycles of length i in p divided by n. One can immediately check the
formulas: ∑

i∈N∗
cyci(p) = 1 and Tr(pn) = ∑

i|n
cyci(p). We shall use these equalities

extensively.
For an element p = ∏

k→ω
pk ∈ ∏

k→ω
Pnk , the numbers cyci(p) = lim

k→ω
cyci(pk)

are well defined for any i ∈ N∗. This time ∑
i∈N∗

cyci(p) 6 1. Define cyc∞(p) = 1−

∑
i∈N∗

cyci(p). These numbers were introduced in [1], where the following theorem

have been proven.

PROPOSITION 1.1 ([1], Proposition 2.3(4)). Two elements p, q ∈ ∏
k→ω

Pnk are

conjugated if and only if cyci(p) = cyci(q) for any i ∈ N∗.

2. A CONSEQUENCE OF UNIQUE EMBEDABILITY OF AMENABLE ALGEBRAS

We write down the first question that we have in mind in this paper. Denote
by U (A) the set of unitaries of a unital ∗-algebra, i.e. U (A) = {u ∈ A : u∗u =
Id = uu∗}. We write U (n) instead of U (Mn(C)).

QUESTION 2.1. When is a unitary u ∈ U
(

∏
k→ω

Mnk

)
conjugated to an element

of ∏
k→ω

Pnk ?

The theory of von Neumann algebras immediately provides a partial an-
swer.
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PROPOSITION 2.2 ([2], Lemma 2.9). A tracial von Neumann algebra N is hyper-
finite if and only if for any Θ1, Θ2 : N → ∏

k→ω
Mnk trace preserving embeddings, there

exists u ∈ U
(

∏
k→ω

Mnk

)
such that Θ2 = Adu ◦Θ1.

We shall only use the direct implication. This is the easy part of the theorem
and it was known before the work of Jung. It is difficult to trace back this result.
Jung himself does not credit anyone in [2], only notes that it appears in the work
of Voiculescu, in the language of tracial microstates. McDuff and Connes were
the first to use embeddings of tracial von Neumann algebras into ultraproducts.
Anyway, in order to prove it, one has to do it first for finite dimensional alge-
bras, and then use the hyperfine property of N in conjunction with a diagonal
argument made available by the presence of the ultraproduct.

COROLLARY 2.3. Let u, v ∈ U
(

∏
k→ω

Mnk

)
. Then u and v are conjugated in

∏
k→ω

Mnk if and only if Tr(uk) = Tr(vk) for any k ∈ Z.

Proof. Let Au and Av be the von Neumann algebras generated by u and v
respectively in ∏

k→ω
Mnk . Then the map ϕ : {u} → {v} extends to an isomorphism

from Au to Av, as ϕ is trace preserving on a dense subset. These algebras are
hyperfinite, because they are abelian. So Au and Av are two embeddings of the
same hyperfinite algebra. By Proposition 2.2, these embeddings are conjugated.
It follows that u and v are conjugated.

Coming back to Question 2.1, we get the following characterisation.

COROLLARY 2.4. An element u ∈ U
(

∏
k→ω

Mnk

)
is conjugated to an ultraprod-

uct of permutations if and only if there exists p ∈ ∏
k→ω

Pnk such that Tr(uk) = Tr(pk).

So fix p ∈ ∏
k→ω

Pnk , and consider the sequence (Tr(pk))k. What properties

does this sequence have, properties that (Tr(uk))k, for u ∈ U
(

∏
k→ω

Mnk

)
does

not have in general? Trivially, Tr(uk) should be a positive real for any k. A first
non-trivial property is that Tr(p2) > Tr(p). This is because

Tr(p2) = cyc2(p) + cyc1(p) = cyc2(p) + Tr(p).

One can easily construct u ∈ U
(

∏
k→ω

Mnk

)
with Tr(uk) ∈ R+ and Tr(u2) < Tr(u).

The equality Tr(p3) = cyc3(p) + Tr(p) yields a similar condition, or replace 3 by
any prime number. The next one, Tr(p4) = cyc4(p) + cyc2(p) + cyc1(p), only
gives Tr(p4) > Tr(p2), which is just the first condition for p2 instead of p. And so
we arrive to the equality Tr(p6) = cyc6(p)+ cyc3(p)+ cyc2(p)+ cyc1(p). This can
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be rewritten as Tr(p6) > Tr(p3) + Tr(p2)− Tr(p), but as we can see the situation
gets messier. This we investigate in the next section.

3. DESCRIBING TRACES OF POWERS OF PERMUTATIONS

Fix an element p ∈ ∏
k→ω

Pnk . Remember that Tr(pk) = ∑
i|k

cyci(p). We want to

reverse this system of equations.

PROPOSITION 3.1. Let i ∈ N∗. If i = ar1
1 · · · a

rt
t is the prime decomposition of i

then

cyci(p) = ∑
(ε1,...,εt)∈(0,1)t

(−1)ε1+···+εt Tr(pa
r1−ε1
1 ···art−εt

t ).

Proof. This is an inclusion-exclusion principle. We just verify the equality.
On the righthand side we only have terms of the type cycj(p) with j|i. The term
cyci(p) only appears once, when ε1 = ε2 = · · · = εt = 0. We have to verify that
everything else cancels out.

Fix j = as1
1 · · · a

st
t , a strict divisor of i. We can assume, without loss of gen-

erality, that sk < rk for k = 1, . . . , v and sk = rk for k = v + 1, . . . , t. In order

for cycj(p) to show up in Tr(pa
r1−ε1
1 ···art−εt

t ), we must have εv+1 = · · · = εt = 0.
Then cycj(p) appears exactly once for each choice (ε1, . . . , εv) ∈ (0, 1)v. Hence,
the coefficient of cycj(p) in the righthand side of the equality is:

∑
(ε1,...,εv)∈(0,1)v

(−1)ε1+···+εv = 0.

For this last equality, it is important that v > 0, which is true since j < i.

The equation from this last proposition can be used to define numbers

cyci(u) for any u ∈ U
(

∏
k→ω

Mnk

)
. We now show that u is conjugated to an ultra-

product of permutations if and only if these numbers are positive.

PROPOSITION 3.2. Let (ci)i∈N∗ be a sequence of real numbers. Then there exists
p ∈ ∏

k→ω
Pnk such that cyci(p) = ci for any i ∈ N∗ if and only if the following conditions

hold:
(i) ci > 0, for any i ∈ N∗;

(ii) ∑
i>0

ci 6 1.

Proof. Once you understand how numbers cyci(p) work, this is an easy
statement. If such an element p ∈ ∏

k→ω
Pnk exists then, by definition, cyci(p) > 0

and ∑
i>0

cyci(p) 6 1.
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For the reverse implication, define n(i, k) = i · b(ci · nk)/ic. Then ∑
i

n(i, k) 6(
∑
i

ci

)
· nk 6 nk. We construct a permutation pk ∈ Pnk , having exactly n(i, k)/i

cycles of length i. Then cyci(pk) = n(i, k)/nk.
Let p = ∏

k→ω
pk. Then:

cyci(p) = lim
k→ω

i · b(ci · nk)/ic
nk

= ci.

The last equality follows from the fact that lim
k→ω

nk = ∞.

Now we can put everything together to prove the following result.

THEOREM 3.3. Let u ∈ U
(

∏
k→ω

Mnk

)
. Construct

ci = ∑
(ε1,...,εt)∈(0,1)t

(−1)ε1+···+εt Tr(ua
r1−ε1
1 ···art−εt

t ).

Then u is conjugated to an element of ∏
k→ω

Pnk if and only if ci > 0 for any i ∈ N∗.

Proof. Our first goal is to prove that ∑
i>0

ci 6 1, in order to apply Proposi-

tion 3.2. One has to reverse Proposition 3.1 to deduce that Tr(ui) = ∑
j|i

cj (define

tr(i) = ∑
j|i

cj, apply Proposition 3.1 to these numbers, and use induction to deduce

that Tr(ui) = tr(i)).
Then ∑

j6i
cj 6 Tr(ui!) 6 1. As ∑

i
ci = lim

i

(
∑
j6i

cj

)
, it follows that ∑

i>0
ci 6 1.

Now, we can apply Proposition 3.2, to deduce that there is p ∈ ∏
k→ω

Pnk such that

cyci(p) = ci. Then Tr(ui) = Tr(pi) for any i > 0. Use Corollary 2.3 to deduce that
u and p are conjugated by a unitary in ∏

k→ω
Mnk .

4. A MEASURE ON THE SPECTRUM

As we said, the sequence (Tr(uk))k hides the existence of a measure on the
spectrum of u. This object is the equivalent of multiplicity of eigenvalues in the
finite dimensional case. As the spectrum of any unitary is a subset of S1, we
consider these measures as being defined on S1. It is well known that a Borel
measure on the circle is completely determined by its moments. For the sake of
completeness, we present a short proof.
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THEOREM 4.1. If µ and λ are two real Borel measures on the unit circle such that∫
S1

zndµ =
∫
S1

zndλ for every n ∈ N, then µ = λ.

Proof. Let θ = µ − λ. Then θ is a bounded variation real Borel measure.
Moreover, its Fourier coefficients are:

∫
S1

zndθ = 0 for any n ∈ N. By the theorem

of brothers Frigyes Riesz and Marcel Riesz, it follows that θ is absolutely continu-
ous with respect to the Lebesgue measure, denoted by dz in this proof. It follows
that θ = f · dz for some real valued function f ∈ L1(S1, dz). The integral equality
is now

∫
S1

f zndz = 0 for n ∈ N. By conjugation, using the fact that f is real val-

ued, the above equality holds for any n ∈ Z. As f ∈ L1(S1, dz), by the unicity of
Fourier coefficients for functions in L1, it follows that f = 0.

We construct our measure using Borel calculus. Let (M, Tr) be a tracial von
Neumann algebra and fix u ∈ M a normal element, i.e. uu∗ = u∗u. Let A(u) be
the von Neumann subalgebra generated by u inside M. As u is normal, A(u) is
abelian. It follows that (A(u), Tr) ' L∞(σ(u), µu), such that u corresponds to the
function z→ z in L∞(σ(u)).

It is this measure µu that we are interested in. First of all, let us compute its
moments. By definition,

∫
S1

zndµu = Tr(un), so indeed this is the measure that we

are looking for. Combining Corollary 2.3 and Theorem 4.1, we get the following
statement.

PROPOSITION 4.2. Two unitaries u, v ∈ ∏
k→ω

Mnk are conjugated if and only if

their associated measures are equal.

4.1. THE ASSOCIATED MEASURE OF AN ULTRAPRODUCT OF PERMUTATIONS. In
this section we characterise µp for p ∈ ∏

k→ω
Pnk .

For z ∈ S1, denote by δz, the Dirac measure, i.e. δz(A) = χA(z). For i ∈ N∗,
define

λi =
1
i ∑

zi=1

δz.

Then
∫
S1

zndλi = 1 if and only if i|n, otherwise the integral is equal to 0. Denote by

λ∞ the probability Lebegue measure on S1. In this case
∫
S1

zndλ∞ = 0 for n > 0.

Let p ∈ ∏
k→ω

Pnk . Construct

µ = ∑
i∈N∗∪{∞}

cyci(p) · λi.



UNITARIES IN ULTRAPRODUCT OF MATRICES 353

Then
∫
S1

zndµ = ∑
i∈N∗∪{∞}

(
cyci(p) ·

∫
S1

zndλi

)
= ∑

i|n
cyci(p) = Tr(pn). By Theo-

rem 4.1, it follows that µ = µp. We proved the following theorem.

THEOREM 4.3. A unitary u ∈ ∏
k→ω

Mnk is conjugated to an element in ∏
k→ω

Pnk

if and only if its associated measure µu is in the closed convex hull of the set {λi : i ∈
N∗ ∪ {∞}}.

Proof. We need a proof just for the “closed convex hull” part. The role of
this closure is to construct infinite convex combinations, i.e. measures ∑

i
ciλi with

an infinite number of non-zero scalars ci. The strong topology does this job. So
µj →j µ if µj(A)→j µ(A) for any Borel set A.

Let M be the convex hull of the set {λi : i ∈ N∗ ∪ {∞}}, that is finite convex
combinations. The only non trivial part is to prove that a measure µ in the closure
of this set is still a measure of the type ∑

i
ciλi with ∑

i
ci = 1.

Let µj ∈ M be such that µj →j µ in the strong topology. Let µj = ∑
i

cj
iλi. As

we are working only with probabilistic positive measures, it follows that
∫

f dµj
→j

∫
f dµ for any bounded Borel function f . This implies, in particular, conver-

gence of moments. So
∫

zndµ = lim
j

∫
zndµj = lim

j

(
∑
i|n

cj
i

)
. Using Propostion 3.1

we can deduce that lim
j

cj
i is a finite sum of terms of the type

∫
zsdµ, so it has to

exists. Let ci = lim
j

cj
i . Let c∞ = 1− ∑

i∈N∗
ci. Construct µ1 = ∑

i∈N∗∪{∞}
ciλi. It can

be verified that µ and µ1 have the same moments, so by Theorem 4.1 they have
to be equal.

In the introduction we said that deciding whenever a unitary matrix is con-
jugated to a permutation one, only requires a look at its eigenvalues with multi-
plicity. The last theorem is an analogue of this statement for ultraproducts, with
spectrum instead of eigenvalues and the associated measure instead of multiplic-
ities.

5. APPLICATION TO HYPERFINITE REPRESENTATIONS

Let us recall the notions of hyperfinite and sofic groups.

DEFINITION 5.1. A group G is called hyperfinite if there exists an injective

morphism from G to U
(

∏
k→ω

Mnk

)
. A group G is called sofic if there exists an

injective morphism from G to ∏
k→ω

Pnk .
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Clearly every sofic group is hyperfinite, while the converse is a major open
problem of the theory. For hyperlinear groups we have the following theorem.

THEOREM 5.2 ([4], Proposition 2.5). For a hyperlinear group G, there exists a
morphism

φ : G → U
(

∏
k→ω

Mnk

)
such that Tr(φ(g)) = 0 for any g 6= e.

It follows that Tr(φ(g)n) ∈ {0, 1}. By Corollary 2.4, φ(g) is conjugated to
an element in ∏

k→ω
Pnk for any g ∈ G. Unfortunately, this does not mean that

all φ(g) are conjugated at the same time to elements of ∏
k→ω

Pnk , so this corollary

does not imply that every hyperlinear group is sofic. All that we have here is a
hyperlinear representation of a group such that, individually, each element in the
image is conjugated to a permutation.

However, there are some questions to be asked here. Define:

PPn = {u ∈ U (n) : u = vpv∗, where v ∈ U (n) and p ∈ Pn}.

What are the subgroups of this set PPn? Of course, Pn and its conjugates are
subgroups here, but are there some others? As we saw, any hyperlinear group is
a subgroup in ∏

k→ω
PPnk . Does this observation imply that any hyperlinear group

is a subgroup in ∏
k→ω

Hk, where each Hk is a subgroup in PPnk ? We present an

example to illustrate some aspects of this problem.

EXAMPLE 5.3. Let n be an odd number. Denote by c ∈ Pn the matrix c(i, j) =
δ

j+1
i , and d ∈ Dn the matrix d(i, j) = δ

j
i λ

i, where λ is the first root of unity of order
n, λ 6= 1. Then c is a permutation matrix, and d is conjugated to a permutation
matrix, so c, d ∈ PPn. We now prove that also cd ∈ PPn. By matrix multiplication
cd(i, j) = δ

j+1
i λi. The characteristic polynomial of cd is:

det(X · Id− cd) = Xn + (−1) · (−λ) · · · (−λn−1) = Xn − 1.

A matrix is in PPn if and only if its characteristic polynomial is Xn − 1, so
indeed cd ∈ PPn. On the other side [c, d] = cdc−1d−1 = λ−1 · Id, so this group
is not included in PPn. This fact also implies that there is no v ∈ U (n), such that
c, d ∈ vPnv∗, i.e. c and d are not simultaneously permutation matrices.

From now on, we denote by cn and dn the matrices that we constructed,
as the dimension will play a role. Fix (nk)k an increasing sequence of natural
numbers. Define a morphism φ : Z2 → ∏

k→ω
Mnk by φ(c) = ∏

k→ω
cnk and φ(d) =

∏
k→ω

dnk . The strange thing about this morphism is that it is well-defined, i.e. φ(c)

and φ(d) commute. This is because λn →n 1, where λn is the first root of unity
different then 1.
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It is easy to see that Tr(φ(z)) = 0 for any z ∈ Z2, z 6= (0, 0), so φ is a
hyperlinear representation of Z2. By Propostion 2.2, φ is conjugated to a sofic
representation of Z2. It follows that we can find some representatives φ(c) =

∏
k→ω

c1
nk

and φ(d) = ∏
k→ω

d1
nk

, such that the group generated by c1
nk

and d1
nk

is

included in PPnk for any k.

OBSERVATION 5.4. In the above example, if λn is taken to be a primitive
root of unity closer to −1, and if this root of unity is used in the definition of dn,
then c and d no longer commute. One obtains a hyperlinear representation of the
group G = Zn H, where Z is generated by φ(c) and H, a subgroup of ∏

k→ω
Dnk ,

isomorphic to Z2. This group is still amenable, in fact it is metabelian, so the
conclusion of the example still holds.
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