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ABSTRACT. This paper concerns the KK-theory of the class C of Elliott
–Thomsen algebras, with special emphasis on the problem of when a KK-
element can be represented by a homomorphism between two such C∗-alge-
bras (allowing the tensor product with a matrix algebra for the codomain al-
gebra), and gives an existence theorem for a certain subclass of C which we
denote by CO .
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INTRODUCTION

It has been shown that a large number of simple C∗-algebras can be clas-
sified by the standard Elliott invariant. Gong [12] first presented an example to
show that the ordered graded K-group is not sufficient any more for non-simple
AH algebras of real rank zero (and no dimension growth). Elliott, Gong, and
Su [9] constructed such examples for AD algebras by using AH algebras (indi-
rectly). Then Dădârlat and Loring [4] also gave such an example for AD algebras
directly. In 1997, Dădârlat and Gong [1] classified approximately homogeneous
C∗-algebras of real rank zero (and no dimension growth) by means of ordered
total K-theory together with a certain order structure (see also [4] and also [5]).

It is natural to try to relate the order on the total K-theory to the possibility of
lifting a KK-element to a homomorphism (let us call this the KK-lifting problem),
in particular, in the setting of dimension drop interval algebras (see [3]). Jiang
and Su studied a larger class in [14], which we shall call generalized dimension
drop interval algebras, and gave a criterion for KK-lifting. In [10], Elliott and
Li reported that a KK-element preserving the Dădârlat–Loring order may not
always have a lifting to a homomorphism.

In this paper, we consider the algebras introduced by Elliott and Thomsen
in [11] (see also [8] and [18]). Such an algebra is now sometimes called a one
dimensional non-commutative finite CW complex (see [6]). In this paper, we
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shall give a description of the KK-group of two Elliott–Thomsen algebras. This
description will help us to understand the structure of the KK-group and enable
us to give a criterion for KK-lifting.

The paper is organized as follows. In Section 2, we list some preliminar-
ies concerning the class C of Elliott–Thomsen algebras and mod-p K-theory with
the Dădârlat–Loring order. In Section 3, we formulate a description (as a quo-
tient group) of the KK-group of two Elliott–Thomsen algebras. In Section 4,
we give a useful sufficient condition for KK-lifting for Elliott–Thomsen algebras
which gives a complete criterion for a certain subclass, denoted by CO . (The suffi-
ciency will be useful, when we check the Dădârlat–Loring order.) In Section 5, we
prove that for the subclass CO of Elliott–Thomsen algebras, which in fact includes
the generalized dimension drop interval algebras, a KK-element preserving the
Dădârlat–Loring order can be lifted to a homomorphism — contrary to what was
stated in Theorem 1.1 of [10]. We show that, as was suggested by the work [10],
there is a genuine difficulty present, and the lifting theorem does not hold for all
of C. (Possibly, lifting holds for a KK-class suitably compatible, in an approximate
sense, with traces and algebraic K1.)

1. PREMIMINARIES

1.1. ([4], [7]) Consider the algebra

Ip = { f ∈ Mp(C0(0, 1]) : f (1) = λ · 1p, 1p is the identity of Mp},

and the algebra Ĩp obtained by adjoining a unit to Ip.

1.2. ([1]) For a C∗-algebra A, the total K-theory of A is defined by

K(A) =
∞⊕

p=0
K∗(A;Zp),

with K∗(A;Zp) = K∗(A) for p = 0, K∗(A;Zp) = 0 for p = 1, and K∗(A;Zp) =

KK(Ip, A⊗ C(S1)) for p > 2.

1.3. ([1]) We will consider the group

K∗(A;Z⊕Zp) = K∗(A)⊕K∗(A;Zp).

By Section 4 of [1],

K∗(A;Z⊕Zp) ∼= KK( Ĩp, A⊗ C(S1)).

1.4. (Dădârlat–Loring order [4]) Define K∗(A;Z⊕Zp)+ as the image of the abelian
semigroup [ Ĩp, A⊗C(S1)⊗K ] in KK( Ĩp, A⊗C(S1))∼=K∗(A;Z⊕Zp).
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1.5. Let F1 and F2 be two finite dimensional C∗-algebras, and let ϕ0, ϕ1 : F1 → F2
be two unital homomorphisms. Set

A = A(F1, F2, ϕ0, ϕ1)

= {( f , a) ∈ C([0, 1], F2)⊕ F1 : f (0) = ϕ0(a) and f (1) = ϕ1(a)}.

The C∗-algebras constructed in this way have been studied by Elliott and Thom-
sen (they are sometimes called Elliott–Thomsen algebras). Let us use C to denote
the class of all unital such C∗-algebras A = A(F1, F2, ϕ0, ϕ1) (up to isomorphism).
Following [13], let us say that a unital C∗-algebra A ∈ C is minimal, or a minimal
block, if it is indecomposable, i.e., not the direct sum of two or more C∗-algebras
in C.

Throughout this paper, when talking about KK(A, B) with A, B ∈ C, we
shall assume the notational convention that

A = A(F1, F2, ϕ0, ϕ1), B = B(F′1, F′2, ϕ′0, ϕ′1),

with

F1=
p⊕

i=1

Mki
(C), F2=

l⊕
j=1

Mhj
(C), and F′1=

p′⊕
i′=1

Mk′ i′
(C), F′2=

l′⊕
j′=1

Mh′ j′
(C).

1.6. ([7], [14]) A dimension drop interval algebra, denoted by I[m0, m, m1], is the
C∗-algebra (in the class C)

I[m0, m, m1] = { f ∈ Mm(C([0, 1])) : f (0) = a0 ⊗ 1m/m0 , f (1) = a1 ⊗ 1m/m1},

where m0, m1 divide m, a0, a1 (for a given f ) belong to Mm0 , Mm1 , respectively,
and 1m/m0 , 1m/m1 are the identity elements of Mm/m0 , Mm/m1 , respectively. (The
algebras Ĩp are already dimension drop interval algebras; the more general alge-
bras just constructed are sometimes called generalized dimension drop interval
algebras.)

1.7. As pointed out in [13], for a minimal block A = A(F1, F2, ϕ0, ϕ1), we have
ker ϕ0 ∩ ker ϕ1 = {0}. Let us use CO to denote the class of all unital minimal
block C∗-algebras A = A(F1, F2, ϕ0, ϕ1), where F2 = Mr(C), for some integer r,
and ker ϕ0 ⊕ ker ϕ1 = F1 (there is no block of F1 mapping into both 0 and 1). This
subclass was studied by Li in [15]. Note that I[m0, m, m1] ∈ CO .

The following notions come from [13].

1.8. For A = A(F1, F2, ϕ0, ϕ1) ∈ C, consider the short exact sequence

0→ SF2
ι−→ A π−→ F1 → 0,

where SF2 = C0(0, 1)⊗ F2 is the suspension of F2, ι is the embedding map, and
π( f , a) = a, ( f , a) ∈ A . Then one has the six-term exact sequence

0→ K0(A)
π∗−→ K0(F1)

∂−→ K0(F2)
ι∗−→ K1(A)→ 0,
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where ∂ = α− β, with α, β the maps K0(ϕ0), K0(ϕ1), respectively. Hence,

K0(A)=ker(α−β)⊂Zp, K1(A)=Zl/Im(α−β), K+
0 (A)=ker(α−β)∩K+

0 (F1).

1.9. Denote by θ1, θ2, . . . , θp the spectrum of F1. Numbering the blocks of F2 from
1 to j, we have

Sp(C([0, 1], F2)) =
l

ä
j=1
{(t, j), 0 6 t 6 1}.

With the identifications ϕ0(a) = f (0) and ϕ1(a) = f (1) for ( f , a) ∈ A, as in Sec-
tion 13 of [13], (0, j) ∈ Sp(C([0, 1], F2)) is identified with the set with multiplicities

(θ1
∼αj1 , θ2

∼αj2 , . . . , θp
∼αjp) ⊂ Sp(F1),

and (1, j) ∈ Sp(C([0, 1], F2)) is identified with the set with multiplicities

(θ1
∼β j1 , θ2

∼β j2 , . . . , θp
∼β jp) ⊂ Sp(F1).

Also, Sp(A) = Sp(F1) ∪
l

ä
j=1

(0, 1)j.

1.10. Let A ∈ C be a minimal block, and let φ : A → Mn(C) be a homomor-
phism. Then there exists a unitary u such that

φ( f , a) = u · diag(a(θ1), . . . , a(θ1)︸ ︷︷ ︸
t1

, . . . , a(θp), . . . , a(θp)︸ ︷︷ ︸
tp

, f (y1), . . . , f (yr)) · u∗

with y1, y2, . . . , yr ∈
l

ä
j=1

(0, 1)j, for some integer r. We write

Spφ = {θ1
∼t1 , θ2

∼t2 , . . . , θp
∼tp , y1, . . . , yr}(1.1)

with yk ∈
l

ä
j=1

(0, 1)j; in other words (as usual), Spφ is the set of irreducible com-

ponents of φ, with multiplicity.

1.11. Consider the suspension of A, SA = C0(0, 1)⊗A. Since we have C0(0, 1) ∼=
C0(S1\{1}), the spectrum of SA is given by

Sp(SA)=Sp(A)×{e2πiω, 0<ω<1}=
{

Sp(F1)∪
l

ä
j=1

(0, 1)j

}
×{e2πiω, 0<ω<1}.

Let us write the elements of Sp(F1) × {e2πiω, 0 < ω < 1} as (θi, e2πiω) with
i = 1, 2, . . . , p, 0 < ω < 1, and the elements of [0, 1]j × {e2πiω, 0 < ω < 1} as
(t, j, e2πiω) with t ∈ [0, 1], j = 1, 2, . . . , l, 0 < ω < 1. Then the element (0, j, e2πiω) ∈
[0, 1]j × {e2πiω, 0 < ω < 1} is identified with

{(θ1, e2πiω)∼αj1 , (θ2, e2πiω)∼αj2 , . . . , (θp, e2πiω)∼αjp},
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and (1, j, e2πiω) is identified with

{(θ1, e2πiω)∼β j1 , (θ2, e2πiω)∼β j2 , . . . , (θp, e2πiω)∼β jp},

with (αji) and (β ji) the matrices representing (ϕ0)∗ and (ϕ1)∗ : K0(F1) = Zp →
K0(F2) = Zl . Also, let us write the elements of SA as ( f , a) with f : [0, 1]× S1 →
F2 and a : S1 → F1 such that

f (t, 1) = 0, t ∈ [0, 1], and a(1) = 0,

f (0, e2πiω) = ϕ0(a(e2πiω)) and f (1, e2πiω) = ϕ1(a(e2πiω)).

Since in the pair ( f , a), a is completely determined by f (as A is a minimal block),
we may simplify ( f , a) as f if there is no confusion.

1.12. A homomorphism φ : SA→ Mn(C) is given by

φ( f , a) = u · diag(a(x1), a(x2), . . . , a(xr), f (y1), f (y2), . . . , f (ym), 0, 0, . . . , 0) · u∗

for some unitary u ∈ Mn(C), where xk ∈ Sp(F1)× {e2πiω, 0 < ω < 1} are of the

form (θi, e2πiω) with i = 1, 2, . . . , p, 0 < ω < 1, and yk ∈
l

ä
j=1

(0, 1)j × {e2πiω, 0 <

ω < 1} are of the form (t, j, e2πiω) with t ∈ (0, 1), j = 1, 2, . . . , l, 0 < ω < 1, and
r, m are both some integers.

2. KK-THEORY FOR ELLIOTT–THOMSEN ALGEBRAS

REMARK 2.1. Let φ : A → Mn(C) be as described in Paragraph 1.10, with
Sp(φ) as in (1.1). Even though in general the point yi ∈ [0, 1]j (in Sp(φ) as in
(1.1) of Paragraph 1.10) may not be the endpoint 0j or 1j, the homomorphism
defined by evaluating at this point is homotopic to the homomorphism defined
by evaluating at 0j or 1j. Consequently we can find a new homomorphism φ̃ with

KK(φ) = KK(φ̃), Sp(φ̃) ⊂ Sp(F1).

Now, let us extend this procedure to a homomorphism between two Elliott–
Thomsen algebras, as a prelude to describing concretely the KK-group of these
two C∗-algebras.

REMARK 2.2. Let A(F1, F2, ϕ0, ϕ1), B(F′1, F′2, ϕ′0, ϕ′1) be in C, let ϕ : A → B
be a homomorphism, and consider the maps π′0, π′1 : B → F′2, where π′t( f , a) =
f (t) = ϕ′t(a), t = 0 or 1. Then we can always choose a new homomorphism
ψ : A→ B such that

ψ ∼h φ, KK(ψ) = KK(φ), and Sp(π′0 ◦ ψ), Sp(π′1 ◦ ψ) ⊂ Sp(F1).
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The above condition on Sp(π′0 ◦ ψ), Sp(π′1 ◦ ψ) is equivalent to ψ(SF2) ⊂ SF′2.
Hence, we have a commutative diagram as follows:

0 // K0(A)

ψ0∗
��

π∗ // K0(F1)

ψ0∗∗
��

α−β // K1(SF2)

ψ1∗∗
��

ι∗ // K1(A)

ψ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0.

REMARK 2.3. If φ, ψ : A→ B satisfy

Sp(π′0 ◦ φ), Sp(π′1 ◦ φ) ⊂ Sp(F1), Sp(π′0 ◦ ψ), Sp(π′1 ◦ ψ) ⊂ Sp(F1),

respectively, let us define the sum of the diagrams

0 // K0(A)

φ0∗
��

π∗ // K0(F1)

φ0∗∗
��

α−β // K1(SF2)

φ1∗∗
��

ι∗ // K1(A)

φ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

and

0 // K0(A)

ψ0∗
��

π∗ // K0(F1)

ψ0∗∗
��

α−β // K1(SF2)

ψ1∗∗
��

ι∗ // K1(A)

ψ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

as the diagram

0 // K0(A)

φ0∗+ψ0∗
��

π∗ // K0(F1)

φ0∗∗+ψ0∗∗
��

α−β // K1(SF2)

φ1∗∗+ψ1∗∗
��

ι∗ // K1(A)

φ1∗+ψ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

which is just the commutative diagram induced by φ⊕ ψ.

REMARK 2.4. Let φ ∈ Hom(A, B). By Remark 2.2, we can find a homomor-
phism φ̃ homotopic to φ satisfying φ̃(SF2) ⊂ SF′2. Let us associate the diagram of
such a map φ̃ to the homomorphism φ. Note that the commutative diagram we
get depends on the choice of the map φ̃. Here we would like to describe the differ-
ence between such commutative diagrams corresponding to two different choices
of homomorphisms for φ̃. Since φ̃ is homotopic to φ, two different choices of φ̃
are also homotopic. For convenience, we shall use τ, ψ to denote the two choices



ON THE KK-THEORY OF ELLIOTT–THOMSEN ALGEBRAS 441

of φ̃. Suppose that τ, ψ : A → B are two homomorphisms with a homotopy path
Φt with Φ0 = τ and Φ1 = ψ. We have both

Sp(π′0 ◦ τ), Sp(π′1 ◦ τ) ⊂ Sp(F1) and Sp(π′0 ◦ ψ), Sp(π′1 ◦ ψ) ⊂ Sp(F1).

Then, the difference between the diagrams

0 // K0(A)

τ0∗
��

π∗ // K0(F1)

τ0∗∗
��

α−β // K1(SF2)

τ1∗∗
��

ι∗ // K1(A)

τ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

and

0 // K0(A)

ψ0∗
��

π∗ // K0(F1)

ψ0∗∗
��

α−β // K1(SF2)

ψ1∗∗
��

ι∗ // K1(A)

ψ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

is equal to

0 // K0(A)

0
��

π∗ // K0(F1)

µ0

��

α−β // K1(SF2)

µ1

��

ι∗ // K1(A)

0
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

where there exists µ ∈ Hom(K1(SF2), K0(F′1)) with µ0 = µ ◦ (α− β), µ1 = (α′ −
β′) ◦ µ. Namely, we can choose µ to be induced by π′ ◦ Φt, where π′( f , a) = a,
for all ( f , a) ∈ B.

If a map between K0(F1) and K0(F′1) is induced by a homomorphism from
A to Mr(B), for some integer r, then the map is positive — all entries of the matrix
of the map are positive (or zero). We need a lemma in order to construct such a
homomorphism.

LEMMA 2.5. Let A, B ∈ C be minimal. Let λ be a commutative diagram

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,
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where the map λ0 is positive. If the map

τ =
l′⊕

j′=1

τj′ : A→ C([0, 1], F′2)

is such that Sp(π′0 ◦ τ), Sp(π′1 ◦ τ) ⊂ Sp(F1) and

K0(π
′
0 ◦ τ) = α′ ◦ λ0 and K0(π

′
1 ◦ τ) = β′ ◦ λ0,

then there exists a unitary u ∈ C([0, 1], F2) such that Adu ◦ τ gives a homomorphism
from A to B.

Proof. For any j′ ∈ {1, 2, . . . , l′}, with notation as in Paragraph 1.5, write

ϕ′0j′(a′) = f ′(0, j′) and ϕ′1j′(a′) = f ′(1, j′),

and denote by τ0
j′ , τ1

j′ the evaluation maps of τj′ at 0 and 1. Let γ : F1 → F′1 be a
homomorphism with K0(γ) = λ0. Since

K0(τ
0
j′) = K0(ϕ′0j′ ◦ γ) and K0(τ

1
j′) = K0(ϕ′1j′ ◦ γ),

we can find unitaries Uj′ , Vj′ ∈ Mh′ j′
(C) such that

AdUj′ ◦ τ0
j′ = ϕ′0j′ ◦ γ and AdVj′ ◦ τ1

j′ = ϕ′1j′ ◦ γ.

Connect Uj′ and Vj′ by a unitary path Wj′(t) ∈ Mh′ j′
(C[0, 1]). With

u =
l′⊕

j′=1

Wj′(t),

at the endpoints 0 and 1, we have

Adu(0) ◦
l′⊕

j′=1

τ0
j′ = ϕ′0 ◦ γ and Adu(1) ◦

l′⊕
j′=1

τ1
j′ = ϕ′1 ◦ γ.

Then Adu ◦ τ gives a homomorphism from A to B.

REMARK 2.6. Let λ be a commutative diagram,

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,
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with the map λ0 not necessarily positive. Transform it into the diagram

0 // K1(SA)

λ0∗
��

π∗ // K1(SF1)

λ0
��

α−β // K0(S2F2)

λ1
��

ι∗ // K0(SA)

λ1∗
��

// 0

0 // K1(SB)
π′∗

// K1(SF′1) α′−β′
// K0(S2F′2) ι′∗

// K0(SB) // 0.

Let us construct a homomorphism from SA to Mr(SB) to realise the above dia-
gram. For the above commutative diagram λ, we define

Γ0
j′i = ∑

λ1
j′ j>0

αjiλ
1
j′ j − ∑

λ1
j′ j<0

β jiλ
1
j′ j, Γ1

j′i = − ∑
λ1

j′ j<0

αjiλ
1
j′ j + ∑

λ1
j′ j>0

β jiλ
1
j′ j, and

Γ0 = max
j′ ,i

Γ0
j′i, Γ1 = max

j′ ,i
Γ1

j′i, Γ = max{Γ0, Γ1},

with λ1
j′ j the (j′, j)th entry of λ1. Then we have

λ0
i′i = Γ + (λ0

i′i − Γ),

where λ0
i′i is the (i′, i)th entry of λ0. Define homomorphisms

Dj′ j : SA→ Mr(SMh′ j′
(C[0, 1]))

(for some integer r) as follows: if λ1
j′ j > 0, then

SA 3 ( f , a)
Dj′ j7−→ gj′ j ∈ Mr(SMh′ j′

(C[0, 1])),

where
gj′ j(t, e2πiω) = diag{ f (t, j, e2πiω)⊕ · · · ⊕ f (t, j, e2πiω)︸ ︷︷ ︸

λ1
j′ j

};

if λ1
j′ j < 0, then

SA 3 ( f , a)
Dj′ j7−→ hj′ j ∈ Mr(SMh′ j′

(C[0, 1])),

where

hj′ j(t, e2πiω) = diag{ f (1− t, j, e2πiω)⊕ · · · ⊕ f (1− t, j, e2πiω)︸ ︷︷ ︸
−λ1

j′ j

}.

Define homomorphisms Rj′i : SA → Mr(SMh′ j′
(C[0, 1])) (for some integer r) as

below:

SA 3 ( f , a)
Rj′ i7−→ rj′i ∈ Mr(SMh′ j′

(C[0, 1])),
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where

rj′i(t, e2πiω) = diag
{

a(θi, e2πiω)⊕ · · · ⊕ a(θi, e2πiω)︸ ︷︷ ︸
p′
∑

i′=1
αj′ i′Γ−Γ0

j′ i

⊕
⊕

λ0
i′ i−Γ>0

a(θi, e2πiω)⊕ · · · ⊕ a(θi, e2πiω)︸ ︷︷ ︸
αj′ i′ (λ

0
i′ i−Γ)

⊕
⊕

λ0
i′ i−Γ<0

a(θi, e−2πiω)⊕ · · · ⊕ a(θi, e−2πiω)︸ ︷︷ ︸
−αj′ i′ (λ

0
i′ i−Γ)

}
,

( f , a) ∈ SA. Define

ζλ =
l′⊕

j′=1

( l⊕
j=1

Dj′ j ⊕
p⊕

i=1

Rj′i

)
.

As in Lemma 2.5, there is a unitary u ∈ Mr(F2 ⊗ C[0, 1]) such that Adu ◦ ζλ is a
homomorphism from SA to Mr(SB), which induces a commutative diagram λ:

0 // K1(SA)

λ0∗
��

π∗ // K1(SF1)

λ0
��

α−β // K0(S2F2)

λ1
��

ι∗ // K0(SA)

λ1∗
��

// 0

0 // K1(SB)
π′∗

// K1(SF′1) α′−β′
// K0(S2F′2) ι′∗

// K0(SB) // 0.

For convenience, we shall still use ζλ to denote this homomorphism of exact se-
quences.

2.1. Denote by C(A, B) the set of all the commutative diagrams

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

and by M(A, B) the subset of C(A, B) of all the commutative diagrams

0 // K0(A)

0
��

π∗ // K0(F1)

µ0

��

α−β // K1(SF2)

µ1

��

ι∗ // K1(A)

0
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0
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such that there exists µ ∈ Hom(K1(SF2), K0(F′1)) satisfying µ0 = µ ◦ (α − β),
µ1 = (α′ − β′) ◦ µ. Since such a diagram is completely determined by µ, we may
denote it by λµ.

2.2. For two commutative diagrams λI, λII ∈ C(A, B),

0 // K0(A)

λI0∗
��

π∗ // K0(F1)

λI0
��

α−β // K1(SF2)

λI1
��

ι∗ // K1(A)

λI1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

and

0 // K0(A)

λII0∗
��

π∗ // K0(F1)

λII0
��

α−β // K1(SF2)

λII1
��

ι∗ // K1(A)

λII1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

define the sum of λI and λII as

0 // K0(A)

λI0∗+λII0∗
��

π∗ // K0(F1)

λI0+λII0
��

α−β // K1(SF2)

λI1+λII1
��

ι∗ // K1(A)

λI1∗+λII1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0.

Note that λI + λII ∈ C(A, B). The diagram

0 // K0(A)

0
��

π∗ // K0(F1)

0
��

α−β // K1(SF2)

0
��

ι∗ // K1(A)

0
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

to be denoted by 0, is the (unique) zero element of C(A, B). (Clearly, λ + 0 = λ
for λ ∈ C(A, B).)

Given a commutative diagram λ ∈ C(A, B),

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,
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the inverse of λ, to be denoted by −λ, is

0 // K0(A)

−λ0∗
��

π∗ // K0(F1)

−λ0
��

α−β // K1(SF2)

−λ1
��

ι∗ // K1(A)

−λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0.

Note that −λ ∈ C(A, B), and λ + (−λ) = 0.
Now we get the following proposition.

PROPOSITION 2.7. Assume that A, B ∈ C. Then C(A, B) is an Abelian group,
and M(A, B) is a subgroup of C(A, B).

2.3. Define a map R : C(A, B)→ [SA, SB⊗K ] by

λ
R7−→ [ζλ].

Note that, for λI, λII ∈ C(A, B), we may not have ζλI ⊕ ζλII = ζλI+λII . Neverthe-
less, the homomorphism SA 3 ( f , a) 7→ g ∈ SMm(C[0, 1]) defined by

g(t, e2πiω) = f (t, j, e2πiω)⊕ f (1− t, j, e2πiω)

and the homomorphism SA 3 ( f , a) 7→ h ∈ SMm(C[0, 1]) defined by

h(t, e2πiω) =
p⊕

i=1

a(θi, e2πiω)⊕ · · · ⊕ a(θi, e2πiω)︸ ︷︷ ︸
αji+β ji

are homotopic to each other as homomorphisms from A to SMm(C[0, 1]). Also,
the homomorphism SA 3 ( f , a) 7→ l ∈ SMm(C) defined by

l(t, e2πiω) = a(θi, e2πiω)⊕ a(θi, e−2πiω)

is homotopic to 0 as a homomorphism from A to SMm(C). With the aid of these
two facts, it is easy to check that

[ζλI ]⊕ [ζλII ] = [ζλI+λII ],

which means that R is a homomorphism.
Denote by N the natural map from [SA, SB⊗K ] to KK(A, B); the composed

map N ◦R is then a homomorphism from C(A, B) to KK(A, B).

2.4. Let A, B ∈ C, α ∈ KK(A, B). Then, in view of the short exact sequences

0→ SF2
ι−→ A π−→ F1 → 0 and 0→ SF′2

ι′−→ B π′−→ F′1 → 0,

we have KK-theory six-term exact sequences as follows:

0→ KK1(SF2, B) −→ KK1(SF2, F′1) −→ KK(SF2, SF′2)→ KK(SF2, B)→ 0 and

0←− KK(A, F′1)←− KK(F1, F′1)←− KK1(SF2, F′1)←− KK1(A, F′1)←− 0.
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Then there exist

α1 ∈ KK(SF2, SF′2) = Hom(K0(F2), K0(F′2)), and

α0 ∈ KK(F1, F′1) = Hom(K0(F1), K0(F′1))

such that, with respect to the Kasparov product,

α1×KK(ι′) = KK(ι)× α ∈ KK(SF2, B), α×KK(π′) = KK(π)× α0 ∈ KK(A, F′1),

and α, α0, α1 induce a commutative diagram λ(α,α0,α1)
∈ C(A, B):

0 // K0(A)

α∗0
��

ι∗ // K0(F1)

α0

��

α−β // K1(SF2)

α1

��

π∗ // K1(A)

α∗1
��

// 0

0 // K0(B)
ι′∗

// K0(F′1) α′−β′
// K1(SF′2) π′∗

// K1(B) // 0.

Next, we will show a useful lemma of KK-theory.

LEMMA 2.8. Let A, B ∈ C, α ∈ KK(A, B). If there are α1 ∈ KK(SF2, SF′2) and
α0 ∈ KK(F1, F′1) such that

α1 ×KK(ι′) = KK(ι)× α and α×KK(π′) = KK(π)× α0,

then
N ◦R(λ(α,α0,α1)

) = α,

where the homomorphism N ◦R is as defined in Paragraph 2.3.

Proof. Set
N ◦R(λ(α,α0,α1)

) = α̃.

By Proposition 2.9 of [3], we only need to show that α− α̃ induces the zero map
from K(A) to K(B). Note that

(α− α̃)×KK(π′) = KK(π)× 0 and 0×KK(ι′) = KK(ι)× (α− α̃).

Then we have a commutative diagram, or a homomorphism, of exact sequences,

0 // K0(A)

α∗0−α̃∗0
��

ι∗ // K0(F1)

0
��

α−β // K1(SF2)

0
��

π∗ // K1(A)

α∗1−α̃∗1
��

// 0

0 // K0(B)
ι′∗

// K0(F′1) α′−β′
// K1(SF′2) π′∗

// K1(B) // 0,

where α∗0 − α̃∗0, α∗1 − α̃∗1 are induced by α− α̃. As α∗0 − α̃∗0 is the restriction of
0, and α∗1 − α̃∗1 is the quotient map of 0, we have

α∗0 − α̃∗0 = 0 and α∗1 − α̃∗1 = 0.

Since
KK(Ip, SF2) = 0, and KK1(Ip, F1) = 0,
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we also have the homomorphism of exact sequences

0 // KK(Ip, A)

α
p
∗0−α̃

p
∗0
��

// KK(Ip, F1)

0
��

// KK1(Ip, SF2)

0
��

// KK1(Ip, A)

α
p
∗1−α̃

p
∗1
��

// 0

0 // KK(Ip, B) // KK(Ip, F′1) // KK1(Ip, SF′2) // KK1(Ip, B) // 0,

where α
p
∗0 − α̃

p
∗0, α∗1 − α̃

p
∗1 are induced by α− α̃. Since α

p
∗0 − α̃

p
∗0 is the restriction

of 0 and α
p
∗1 − α̃

p
∗1 is the quotient map of 0, we have

α
p
∗0 − α̃

p
∗0 = 0 and α

p
∗1 − α̃

p
∗1 = 0.

In summary, we have α = α̃.

THEOREM 2.9. Let A, B ∈ C. Then we have a natural isomorphism of groups

KK(A, B) ∼= C(A, B)/M(A, B).

Proof. Recall that in Paragraph 2.3, we obtained a homomorphism N ◦ R
from C(A, B) to KK(A, B). From Paragraph 2.4 and Lemma 2.8, we know that
N ◦R is surjective. We only need to show that

kerN ◦R = M(A, B).

Recall that if µ ∈ Hom(K1(SF2), K0(F′1)), then any element λµ ∈ M(A, B) is de-
fined as the diagram

0 // K1(SA)

0
��

π∗ // K1(SF1)

µ0

��

α−β // K0(S2F2)

µ1

��

ι∗ // K0(SA)

0
��

// 0

0 // K1(SB)
π′∗

// K1(SF′1) α′−β′
// K0(S2F′2) ι′∗

// K0(SB) // 0,

where µ0 = µ ◦ (α− β), µ1 = (α′ − β′) ◦ µ. From the well-known (six-term) exact
sequences of KK-theory,

0→ KK1(SF2, B)
KK(π′)−−−−→ KK1(SF2, F′1)

KK(∂′)−−−−→ KK(F2, F′2)
KK(ι′)−−−→ KK(SF2, B)→ 0

and

0←− KK(A, F′1)
KK(π)←−−− KK(F1, F′1)

KK(∂)←−−− KK1(SF2, F′1)
KK(ι)←−−− KK1(A, F′1)←− 0,

we have KK(π)× µ0 = KK(π)×KK(∂)× µ = 0 and µ1×KK(ι′) = µ×KK(∂′)×
KK(ι′) = 0.
Then we have N ◦R(λµ) = 0 by Lemma 2.8.

The proof of the converse inclusion,

kerN ◦R ⊂ M(A, B),

divides naturally into two cases.
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Case 1. λ ∈ C(A, B) is the following commutative diagram such that N ◦
R(λ) = 0:

0 // K0(A)

0
��

π∗ // K0(F1)

0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0.

Note that here the map λ0 : K0(F1) → K0(F′1) is assumed to be the zero map. As
λ is commutative, we have

KK(∂)× λ1 = 0×KK(∂′) = 0 ∈ KK1(F1, SF′2).

Consider the diagram

0

��

0

��

KK(F1, B)

KK(π)

��

KK(π′) // KK(F1, F′1)

KK(π)

��
KK1(A, F′1)

KK(ι)

��

KK(∂′) // KK(A, SF′2)

KK(ι)

��

KK(ι′) // KK(A, B)

KK(ι)

��

KK(π′) // KK(A, F′1)

��
KK1(SF2, F′1)

KK(∂)

��

KK(∂′) // KK(SF2, SF′2)

KK(∂)

��

KK(ι′) // KK(SF2, B) // 0

KK(F1, F′1)
KK(∂′) //

KK(π)

��

KK1(F1, SF′2)

KK(A, F′1)

��
0

(2.1)

where KK(∂) ∈ KK1(F1, SF2) and KK(∂′) ∈ KK1(F′1, SF′2). By the exactness of the
second column of (2.1), there exists a unique δ ∈ KK(A, SF′2) such that

KK(ι)× δ = λ1 ∈ KK(SF2, SF′2).

Note that δ×KK(ι′) ∈ KK(A, B) satisfies

δ×KK(ι′)×KK(π′) = 0 = KK(π)× 0 and KK(ι)× δ×KK(ι′) = λ1×KK(ι′).

From N ◦R(λ) = 0, by Lemma 2.8, it follows that

δ×KK(ι′) = 0.
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By the exactness of the second line, there exists γ ∈ KK1(A, F′1) such that

γ×KK(∂′) = δ ∈ KK(A, SF′2).

Then the exactness of the first column of (2.1) implies

KK(∂)×KK(ι)× γ = 0 ∈ KK(A, B),

and we also have

KK(ι)× γ×KK(∂′) = λ1 ∈ KK(SF2, SF′2),

which leads to the conclusion that the KK-element KK(ι) × γ ∈ KK1(SF2, F′1)
induces λ ∈ M(A, B).

Case 2. Let us consider the general case. Let λ ∈ C(A, B) be given,

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

such that N ◦R(λ) = 0. Then

KK(π)× λ0 = 0×KK(π′) = 0 ∈ KK(SF2, F′1).

By the exactness of the first column of (2.1), there exists µ ∈ KK1(SF2, F′1) such
that

λ0 = KK(∂)× µ ∈ KK(F1, F′1).

Note that µ ∈ KK1(SF2, F′1) induces the following diagram λµ ∈ M(A, B):

0 // K0(A)

0
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

(α′−β′)◦µ
��

ι∗ // K1(A)

0
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

where (α′ − β′) ◦ λ0 = (α′ − β′) ◦ µ ◦ (α− β). Then

N ◦R(λµ) = 0.

As N ◦R is a homomorphism, we have N ◦R(λ− λµ) = 0. Then from what we
have shown in Case 1, it follows that

λ− λµ ∈ M(A, B).

In particular, λ ∈ M(A, B).
In summary, we have C(A, B)/M(A, B) ∼= KK(A, B).
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From now on, let us use χ to denote the isomorphism (the inverse of N◦R in-
duced by the map obtained in Paragraph 2.4) from KK(A, B) to C(A, B)/M(A, B);
that is,

χ(α) = λ(α,α0,α1)
+ M(A, B).

In fact, for an element of C(A, B),

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

all the information is contained in the smaller commutative diagram

K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

K0(F′1) α′−β′
// K1(SF′2).

So if it makes no confusion, we will use the smaller one for short.

REMARK 2.10. In our case, every KK-element can be realized by a homo-
morphism between the suspensions of the algebras (by Paragraph 2.3 and Lem-
ma 2.8). One can also realize the KK-element by a difference of two homomor-
phisms from A to Mr(B). But we should point out that if two homomorphisms
from A to Mr(B) determine the same KK-element, sometimes they are not homo-
topic to each other, but are such that on adding the same homomorphism to each,
they become homotopic to each other. We present an example here.

With F1 = C⊕C, F2 = M2(C),

ϕ0(a⊕ b) =
(

a
a

)
, ϕ1(a⊕ b) =

(
a

b

)
,

B = C, and A = A(F1, F2, ϕ0, ϕ1), define two homomorphisms δ1, δ2 : A→ B:

δ1( f , a⊕ b) = a, ( f , a⊕ b) ∈ A, and δ2( f , a⊕ b) = b, ( f , a⊕ b) ∈ A.

Then δ1, δ2 induce the two diagrams

Z⊕Z

(1,0)
��

(1,−1) // Z

0
��

Z
0

// 0

and Z⊕Z

(0,1)
��

(1,−1) // Z

0
��

Z
0

// 0.

At the same time, we have

δ1 �h δ2 but δ1 ⊕ δ1 ∼h δ2 ⊕ δ1.
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Denoting Sδ1, Sδ2 by the homomorphisms from SA to SB induced by δ1, δ2, we
also have Sδ1 ∼h Sδ2.

EXAMPLE 2.11. Let us consider the group C(A,C), A ∈ C. The elements of
C(A,C) are the diagrams

K0(F1)

λ0
��

α−β // K1(SF2)

0
��

Z
0

// 0.

The subgroup M(A,C) consists of the diagrams

K0(F1)

µ◦(α−β)
��

α−β // K1(SF2)

0
��

Z
0

// 0.

Then we have

K0(A) ∼= KK(A,C) ∼= C(A,C)/M(A,C) ∼= coker(α− β)T.

EXAMPLE 2.12. Let us consider the group C(C(S1), A), A ∈ C. The elements
of C(C(S1), A) are the diagrams

Z

λ0
��

0 // Z

λ1
��

K0(F1)
α−β

// K1(SF2)

with (α− β) ◦ λ0 = 0. The subgroup M(C(S1), A) consists of the diagrams

Z

0
��

0 // Z

(α−β)◦µ
��

K0(F1)
α−β

// K1(SF2).

Then we have

C(C(S1), A)/M(C(S1), A) ∼= ker(α− β)⊕ coker(α− β).

EXAMPLE 2.13. Let us consider the quotient group

C( Ĩp, Ĩp)/M( Ĩp, Ĩp).
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C( Ĩp, Ĩp) consists of the diagrams

Z⊕Z( a b
c d

)
��

(p,−p) // Z
ρ

��
Z⊕Z

(p,−p)
// Z

where ρ = a− c = d− b, and the subgroup M(A, B) consists of the diagrams

Z⊕Z(
µ1 p −µ1 p
µ2 p −µ2 p

)
��

(p,−p) // Z
µ1 p−µ2 p
��

Z⊕Z
(p,−p)

// Z

where µ1, µ2 ∈ Z.
Considering the homomorphism γ from C( Ĩp, Ĩp) to Z

⊕
Zp
⊕
Zp such that

γ(λ) = (a + b, b, d),

where the diagram of λ is

Z⊕Z( a b
c d

)
��

(p,−p) // Z
ρ

��
Z⊕Z

(p,−p)
// Z,

we get C( Ĩp, Ĩp)/M( Ĩp, Ĩp) ∼= Z
⊕
Zp
⊕
Zp.

EXAMPLE 2.14. Let us consider the quotient group

C(C(S1), C(S1))/M(C(S1), C(S1)).

The group C(C(S1), C(S1)) consists of the diagrams

0 // K0(C(S1))

m
��

1 // Z

m

��

1−1=0// Z

n

��

1 // K1(C(S1))

n
��

// 0

0 // K0(C(S1))
1
// Z

1−1=0
// Z

1
// K1(C(S1)) // 0,

and M(C(S1), C(S1)) = {0}.
Considering the homomorphism γ from C(C(S1), C(S1)) toZ

⊕
Z such that

γ(λ(m,n)) = (m, n),
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where the diagram of λ(m,n) is

0 // K0(C(S1))

m
��

1 // Z

m

��

1−1=0// Z

n

��

1 // K1(C(S1))

n
��

// 0

0 // K0(C(S1))
1
// Z

1−1=0
// Z

1
// K1(C(S1)) // 0,

we get KK(A, B) ∼= Z
⊕
Z.

3. THE KK-LIFTING PROBLEM FOR ELLIOTT–THOMSEN ALGEBRAS

DEFINITION 3.1. Let A, B ∈ C. Define KK+(A, B) as the image of the abelian
semigroup (of homotopy classes of homomorphisms) [A, B⊗K ] in the group of
KK(A, B). We shall say that α ∈ KK(A, B) is positive, if α ∈ KK+(A, B).

In [14], Jiang and Su investigated the generalized dimension drop inter-
val algebras, and obtained a characterization of positive KK-elements in terms
of ordered K-homology. Recall that they defined an order structure on the K-
homology group of their building blocks:

K0
+(A) := {[φ] ∈ K0(A) : ϕ is a finite dimensional representation of A}.

Then they proved the following criterion for KK-lifting.

THEOREM 3.2 ([14], Theorem 3.7). Let A, B be generalized dimension drop in-
terval algebras, and α ∈ KK(A, B). The KK-element α can be lifted to a homomorphism
if and only if α∗ is positive from K0(B) to K0(A), where α∗ is the operation of Kasparov
product of α with K-homology elements.

Recall that in the previous section, we gave a description of the KK-group
for two Elliott–Thomsen algebras as the quotient group C(A, B)/M(A, B), which
(as we shall see) makes the calculation easier. Before we give a different criterion
with this new description (in which we will require that A ∈ CO , B ∈ C), we shall
define an order on this quotient group (as the image of of the natural order on
C(A, B)).

DEFINITION 3.3. Let A, B ∈ C be minimal and λ ∈ C(A, B):

K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

K0(F′1) α′−β′
// K1(SF′2).

Let us say that λ is positive if λ0 has no negative entry and λ0 6= 0 or λ is the zero
element. And let us say that λ is positive modulo M(A, B), and that λ + M(A, B)
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is positive, if there exists λµ ∈ M(A, B),

K0(F1)

µ0

��

α−β // K1(SF2)

µ1

��
K0(F′1) α′−β′

// K1(SF′2),

such that λ + λµ is a positive.

REMARK 3.4. By Definition 3.3, in the case of Example 2.14, the diagram
λ(0,n), n 6= 0, is not positive modulo M(C(S1), C(S1)) = {λ(0,0)}.

If A =
⊕

Ai, B =
⊕

Bj with each Ai and Bj a minimal Elliott–Thomsen
algebra, then we shall say that λ + M(A, B) is positive, where λ ∈ C(A, B) is
determined by λij ∈ C(Ai, Bj), if λij + M(Ai, Bj) is positive for each i, j. Let us
write

(C(A, B)/M(A, B))+ = {λ + M(A, B) : λ + M(A, B) is positive}

for the positive cone of C(A, B)/M(A, B).
For any A, B in C, recall that by Theorem 2.9, as groups, KK(A, B) and

C(A, B)/M(A, B) are isomorphic. By the universal multi-coefficient theorem of
[1] (see Theorem 4.4 below), KK(A, B) is also naturally isomorphic as a group
to HomΛ(K(A), K(B)). This is without considering the order structures of these
groups. It is important for our purpose to study the relations between these order
structures.

By Remark 2.1 and Definition 3.3, we get directly the following proposition.

PROPOSITION 3.5. Let A ∈ C. The commutative diagram

K0(F1)

λ0
��

α−β // K1(SF2)

0
��

Z
0

// 0.

can be lifted to a representation if and only if λ is positive module M(A,C).

The following lemma gives a sufficient condition for KK-lifting.

LEMMA 3.6. Let A, B ∈ C be minimal. Let the diagram λ ∈ C(A, B),

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,
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be given, such that λ is positive, then λ0 is positive. If for any i ∈ {1, 2, . . . , p}, j′ ∈
{1, 2, . . . , l′},

(α′ ◦ λ0)j′i > ∑
αji ·λ1

j′ j>0

αji · λ1
j′ j − ∑

β ji ·λ1
j′ j60

β ji · λ1
j′ j and

(β′ ◦ λ0)j′i > − ∑
αji ·λ1

j′ j60

αji · λ1
j′ j + ∑

β ji ·λ1
j′ j>0

β ji · λ1
j′ j,

then there is a homomorphism from A to Mr(B) for some integer r inducing the dia-
gram λ.

Proof. For any j′ ∈ {1, 2, . . . , l′}, define a homomorphism from A to the
algebra Mr(Mh′ j′

(C[0, 1])) (for some integer r):

A 3 ( f , a)
φj′7−→ gj′ ∈ Mr(Mh′ j′

(C[0, 1]))

with

gj′(t) =
⊕

λj′ j>0

diag{ f (t, j), f (t, j), . . . , f (t, j)︸ ︷︷ ︸
λj′ j

}

⊕
⊕

λj′ j60

diag{ f (1− t, j), f (1− t, j), . . . , f (1− t, j)︸ ︷︷ ︸
−λj′ j

}

⊕
p⊕

i=1

diag{a(θi), a(θi), . . . , a(θi)︸ ︷︷ ︸
ηj′ i

},

where

ηj′i = (α′ ◦ λ0)j′i −
(

∑
αji ·λ1

j′ j>0

αji · λ1
j′ j − ∑

β ji ·λ1
j′ j60

β ji · λ1
j′ j

)
.

Then, with

φ =
l′⊕

j′=1

φj′ ,

by Lemma 2.5 we have a unitary u such that Adu ◦ φ is a homomorphism from A
to Mr(B) inducing the commutative diagram λ.

We have shown that the condition in Lemma 3.6 is sufficient, but it is also
necessary in the following special case. (This will be used in Remark 3.11 and
Example 4.7.)
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COROLLARY 3.7. Let A, B ∈ C be minimal, with F2 = Mn(C). Let λ be a
positive element of C(A, B), that is, a commutative diagram

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0

with λ0 positive, and assume that λ1 = (1, 1, . . . , 1)T. Then, there is a homomorphism
from A to Mr(B), for some integer r, inducing the diagram λ, if and only if for any
i ∈ {1, 2, . . . , p}, j′ ∈ {1, 2, . . . , l′},

(α′ ◦ λ0)j′i > α1i and (β′ ◦ λ0)j′i > β1i.

Proof. If there is a homomorphism φ from A to Mr(B), for some integer r,
inducing the diagram λ, then φ must be homotopic to a homomorphism φ̃, where
φ̃( f , a) = g ∈ Mr(B), with

g(t, j′) = uj′ · diag( f (t), a(θ1), . . . , a(θ1)︸ ︷︷ ︸
ηj′1

, . . . , a(θp), · · · , a(θp)︸ ︷︷ ︸
ηj′ p

) · uj′ .

Immediately, we have

(α′ ◦ λ0)j′i > α1i and (β′ ◦ λ0)j′i > β1i.

Using Lemma 3.6, we shall now give a criterion for KK-lifting for A ∈ CO .

THEOREM 3.8. Let A, B ∈ C be minimal, with A ∈ CO . A KK-element α ∈
KK(A, B) can be lifted to a homomorphism if and only if χ(α) ∈ C(A, B)/M(A, B) is
positive, where χ is the isomorphism defined following Theorem 2.9.

Proof. The necessity comes from Remark 2.2. Here we only need to show
that if χ(α) is positive, then there exists a homomorphism realising it. By Defini-
tion 3.3, there is a positive commutative diagram λ ∈ χ(α),

K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

K0(F′1) α′−β′
// K1(SF′2),

with λ0 a positive map. We have K1(SF2) = Z (A ∈ CO — see Paragraph 1.7),

λ1 = (λ1
11, · · · , λ1

l′1)
T, and α− β = (α11 − β11, α12 − β12, . . . , α1p − β1p).

(We shall show later that it is necessary to have Z itself here, not a sum of copies
of Z.) From λ1 ◦ (α− β) = (α′ − β′) ◦ λ0, we have

(α′ ◦ λ0)j′i − (β′ ◦ λ0)j′i = λ1
j′1 · α1i − λ1

j′1 · β1i.



458 QINGNAN AN AND GEORGE A. ELLIOTT

Note that for any i ∈ {1, 2, . . . , p}, from the definition of CO , at least one of α1i
and β1i is 0. For this case we automatically have

(α′ ◦ λ0)j′i > ∑
αji ·λ1

j′ j>0

αji · λ1
j′ j − ∑

β ji ·λ1
j′ j60

β ji · λ1
j′ j and

(β′ ◦ λ0)j′i > − ∑
αji ·λ1

j′ j60

αji · λ1
j′ j + ∑

β ji ·λ1
j′ j>0

β ji · λ1
j′ j.

(At most one of the four numbers

∑
αji ·λ1

j′ j>0

αji · λ1
j′ j, ∑

β ji ·λ1
j′ j60

β ji · λ1
j′ j, ∑

αji ·λ1
j′ j60

αji · λ1
j′ j and ∑

β ji ·λ1
j′ j>0

β ji · λ1
j′ j

is non-zero.) By Lemma 3.6, there exists a homomorphism ϕ from A to Mr(B) for
some integer r inducing the diagram λ, which also realizes the KK-element α.

We should note that the condition of Lemma 3.6 is just a sufficient condition.
(But it is interesting as it shows that a given KK-element, if it induces a large
enough map between the K0-groups compared with the K1 map, in a suitable
sense, can be lifted.) Even if we required that A should be just C(S1), some liftable
KK-elements do not satisfy this sufficient condition.

THEOREM 3.9. Consider the case A = C(S1) (not in CO), B ∈ C is minimal,
F′2 = Mn(C), for some integer n. Then α ∈ KK(C(S1), B) can be lifted to a homomor-
phism if and only if χ(α) ∈ C(A, B)/M(A, B) is positive.

Proof. As we did in Theorem 3.8, choose a positive commutative diagram
λ ∈ χ(α),

Z

λ0
��

1−1=0 // Z

λ1

��
K0(F1)

α′−β′
// Z,

with λ0 a positive map. Note that λ1 ∈ Z, α′ ◦ λ0 = β′ ◦ λ0 ∈ Z.
If φ is a homomorphism from C(S1) to Mr(Mn(C[0, 1])), for some integer r,

z
φ7−→ Z,

where
z(e2πiθ) = e2πiθ and Z(t) = e2λ1πit ⊕ diag{1, 1, . . . , 1︸ ︷︷ ︸

α′◦λ0−1

},

then by Lemma 2.5, Adu ◦ φ is a homomorphism from C(S1) to Mn(B), for some
unitary u. Evidently, Adu ◦ φ induces the commutative diagram λ.

Let us look at some examples.
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REMARK 3.10. Consider the case of Example 2.14. From Theorem 3.9, we get

KK+(C(S1), C(S1)) ∼= {(m, n) ∈ Z⊕Z : (m, n) = (0, 0), or m > 0}.

REMARK 3.11. Note that in Theorem 3.9, we required that F′2 = Mn(C), for
some integer n, besides that B is minimal. Let us consider the following example:
A = C(S1), F′1 = C⊕C⊕C, F′2 = M2(C)⊕M2(C) (at this time, F′2 has two blocks
rather than one, which we required in Theorem 3.9),

ϕ′0(a⊕ b⊕ c)=
(

a
b

)
⊕
(

a
c

)
, and ϕ′1(a⊕ b⊕ c)=

(
a

b

)
⊕
(

a
c

)
,

and B = B(F′1, F′2, ϕ′0, ϕ′1) ∈ C. Then

α′ = β′ =

(
1 1 0
1 0 1

)
.

Consider the commutative diagram λ ∈ C(A, B),

Z(
0
1
0

)
��

1−1=0 // Z(
1
1
)

��
Z⊕Z⊕Z

α′−β′=0
// Z⊕Z.

Note that M(A, B) = {0}, B is minimal, the diagram λ is positive. But the KK-
element KK(λ) cannot be lifted. (From Remark 2.2, if the KK-element KK(λ) can
be lifted, there will be a homomorphism inducing λ, which is contradictory to
Corollary 3.7.)

We should also mention that KK(λ(1,1)) ∈ KK+(C(S1), C(S1)) (see Re-
mark 3.10), but KK(λ(1,1))× KK(λ) /∈ KK+(C(S1), B). (KK(λ(1,1))× KK(λ) still
corresponds the class of the diagram λ ∈ C(C(S1), B)

Z(
0
1
0

)
��

1−1=0 // Z(
1
1
)

��
Z⊕Z⊕Z

α′−β′=0
// Z⊕Z,

which cannot be lifted as we have just shown.) Then we have

KK(λ)(K+
∗ (A)) * K+

∗ (B),

which says that KK(λ) does not respect the Dădârlat–Loring order.

It is not hard to see that Theorem 2.9 and Theorem 3.8 also hold in the non-
unital case. In particular, the following result of Dădârlat and Loring (see [2]) can
be proved (in a new way).
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THEOREM 3.12. Let A ∈ C. There is a natural isomorphism of groups

KK(Ip, A) ∼= [Ip, A⊗K ]

Proof. For a commutative diagram λ ∈ C(Ip, A),

Z

λ0
��

p // Z

λ1
��

K0(F1)
α−β
// K1(SF2),

denote by λµ ∈ M(Ip, A) the diagram

Z

p(|λ0|+I)
��

p // Z

(α−β)(|λ0|+I)
��

K0(F1)
α−β
// K1(SF2),

where |λ0| = (|λ0
11|, |λ0

12|, . . . , |λ0
1p|)T, I = (1, 1, . . . , 1)T. Then λ0 + p(|λ0|+ I) is

a positive map, which means that λ is positive modulo M(Ip, A) . From Theo-
rem 3.8, we have a homomorphism inducing λ.

We shall now give a (new) proof of the criterion for KK-lifting of Jiang and
Su. (In fact, a generalization of Theorem 3.2 above.)

THEOREM 3.13. Let A, B ∈ C, and suppose that both K1(A) and K1(B) are
torsion groups. Then there are natural group isomorphisms

KK(A, B) ∼= Hom(K0(B), K0(A)) ∼= C(A, B)/M(A, B).

Furthermore, if A ∈ CO , then the isomorphisms respect the order structures.

Proof. For A, B ∈ C, a commutative diagram λ ∈ C(A, B),

0 // K0(A)

λ0∗
��

π∗ // K0(F1)

λ0
��

α−β // K1(SF2)

λ1
��

ι∗ // K1(A)

λ1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

is dual to

0 K0(A)oo K0(F1)
π∗oo K1(SF2)

αT−βT
oo K1(A)(= 0)ι∗oo

0 K0(B)

λ0∗

OO

oo K0(F′1)

λT
0

OO

π′∗
oo K1(SF′2)

λT
1

OO

α′T−β′T
oo K1(B)(= 0).

λ1∗

OO

ι′∗
oo
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If K1(A) and K1(B) are both torsion groups, we have rank(α − β) = p and
rank(α′ − β′) = p′. Then αT − βT, α′T − β′T are injections. So we may regard
K1(SF2), K1(SF′2) as subgroups of K0(F1), K0(F′1), respectively, and λT

1 as the re-
striction of λT

0 .
Let µ ∈ Hom(K1(SF2), K0(F′1)); then the element λµ ∈ M(A, B),

0 // K0(A)

0
��

π∗ // K0(F1)

µ0

��

α−β // K1(SF2)

µ1

��

ι∗ // K1(A)

0
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

is dual to

0 K0(A)oo K0(F1)
π∗oo K1(SF2)

αT−βT
oo 0ι∗oo

0 K0(B)

0

OO

oo K0(F′1)

µT
0

OO

π′∗
oo K1(SF′2)

µT
1

OO

α′T−β′T
oo 0,

0

OO

ι′∗
oo

where µT
1 = µT ◦ (α′T − β′T) and µT

0 = (αT − βT) ◦ µT.
Define a map H : C(A, B)→ Hom(K0(B), K0(A)) by

λ
H7−→ λ0∗.

Obviously, H is a homomorphism. Firstly note that K0(F1), K1(SF2), K0(F′1) and
K1(SF′2) are free abelian groups, which have the projective property, so that for
any θ : K0(B)→ K0(A), we can construct a commutative diagram

0 K0(A)oo K0(F1)
π∗oo K1(SF2)

αT−βT
oo 0ι∗oo

0 K0(B)

θ

OO

oo K0(F′1)

θ0∗

OO

π′∗
oo K1(SF′2)

θ1∗

OO

α′T−β′T
oo 0.

0

OO

ι′∗
oo

This shows that H is surjective. Secondly, we see that, for any commutative dia-
gram

0 K0(A)oo K0(F1)
π∗oo K1(SF2)

αT−βT
oo 0ι∗oo

0 K0(B)

0

OO

oo K0(F′1)

µT
0

OO

π′∗
oo K1(SF′2)

µT
1

OO

α′T−β′T
oo 0,

0

OO

ι′∗
oo
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there exists a map µ from K1(SF2) to K0(F′1) such that

µT
1 = µT ◦ (α′T − β′

T
), µT

0 = (αT − βT) ◦ µT,

which shows that kerH = M(A, B).
Thus, Hom(K0(B), K0(A)) and the quotient C(A, B)/M(A, B) are isomor-

phic as groups — in fact, inspection of the proof shows as ordered groups.
It follows by Theorem 2.9 that, as groups, with respect to the natural map,

KK(A, B) ∼= Hom(K0(B), K0(A)).

If, in addition, A ∈ CO , then by Theorem 3.8, the isomorphism respects the order
structures.

4. THE VARIOUS ORDER STRUCTURES ON THE KK-GROUP
FOR ELLIOTT–THOMSEN ALGEBRAS

Using the criterion for KK-lifting given in the previous section (Theorem 3.8
and Theorem 3.9), we shall now consider in addition the Dădârlat–Loring order
structure on the KK-group for A, B ∈ C. We shall show that there is an existence
theorem for A ∈ CO , B ∈ C. But this theorem does not hold for certain special
cases A, B ∈ C, even if we assume that F2 = Mr(C) (recall that in Paragraph 1.7,
for A to be in CO we required that both F2 = Mr(C) and ker ϕ0 ⊕ ker ϕ1 = F1).
One will see that the tool we gave (in Theorem 3.8) makes the checking of KK-
lifting easier, especially when we need to compose KK-elements. First, let us
consider the class of Paragraph 1.6.

THEOREM 4.1. Let A = I[m0, m, m1], B = I[n0, n, n1]. If α is a KK-element in
KK(A, B) satisfying

α(K+(A)) ⊂ K+(B),

then α can be lifted to a homomorphism.

Proof. By Theorem 2.9, there exists a commutative diagram λ ∈ C(A, B),

Z⊕Z( a b
c d

)
��

(m/m0,−m/m1) // Z

s
��

Z⊕Z
(n/n0,−n/n1)

// Z,

such that λ + M(A, B) = χ(α). From

α(K+(A)) ⊂ K+(B),

it follows from Section 3 in [3] that

α(KK+( Ĩm, A)) ⊂ KK+( Ĩm, B).
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Let
ι : Ĩm → A

denote the natural embedding. Then the homomorphism ι induces the following
diagram λι ∈ C( Ĩm, A):

Z⊕Z

( m0 m1 )
��

(m,−m) // Z

1
��

Z⊕Z
(m/m0,−m/m1)

// Z.

Also, we have
α([ι]) ∈ KK+( Ĩm, B).

Note that α([ι]) coincides with the class of the diagram λα([ι]) ∈ C( Ĩm, B):

Z⊕Z( am0 bm1
cm0 dm1

)
��

(m,−m) // Z
s
��

Z⊕Z
(n/n0,−n/n1)

// Z.

From Theorem 3.8, the rest of the proof is divided into two cases.
Case 1. Suppose that α([ι]) is lifted as the zero map from Ĩm to B. In this case

the diagram λα([ι]),

Z⊕Z( am0 bm1
cm0 dm1

)
��

(m,−m) // Z

s
��

Z⊕Z
(n/n0,−n/n1)

// Z,

belongs to M( Ĩm, B). That is, there exist µ1, µ2 ∈ Z such that

am0 = µ1m, bm1 = −µ1m, cm0 = µ2m, dm1 = −µ2m, s =
µ1n
n0
− µ2n

n1
.

Then, we have

a =
µ1m
m0

, b = −µ1m
m1

, c =
µ2m
m0

, d = −µ2m
m1

, s =
µ1n
n0
− µ2n

n1
.

Consequently, the diagram λ, given by

Z⊕Z( a b
c d

)
��

(m/m0,−m/m1) // Z

s
��

Z⊕Z
(n/n0,−n/n1)

// Z,
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belongs to M(A, B). So we have lifted α as the zero map from A to B.
Case 2. Suppose that α([ι]) is lifted as the non-zero homomorphism from Ĩm

to B. In this case, the diagram λα([ι]),

Z⊕Z( am0 bm1
cm0 dm1

)
��

(m,−m) // Z

s
��

Z⊕Z
(n/n0,−n/n1)

// Z,

is positive modulo M( Ĩm, I[n0, n, n1]); that is, there exist µ1, µ2 ∈ Z such that

am0 + µ1m > 0, bm1 − µ1m > 0, cm0 + µ2m > 0, dm1 − µ2m > 0.

Then, we have

a +
µ1m
m0

> 0, b− µ1m
m1

> 0, c +
µ2m
m0

> 0, d− µ2m
m1

> 0.

Note that (
a + µ1m/m0 b− µ1m/m1
c + µ1m/m0 d− µ2m/m1

)
6= 0.

That is, λ is positive modulo M(I[m0, m, m1], I[n0, n, n1]). So from Theorem 3.8,
we have α lifted as a homomorphism from A to Mr(B) for some integer r.

Now we can generalize Theorem 4.1 as follows.

THEOREM 4.2. Let A ∈ CO and B ∈ C. Then a KK-element γ ∈ KK(A, B) can
be lifted to a homomorphism if and only if

γ(K+(A)) ⊂ K+(B).

Proof. Here we only need to prove the sufficiency. Suppose that

F1 = M01 ⊕M02 ⊕ · · · ⊕M0s ⊕M11 ⊕M12 ⊕ · · · ⊕M1t ,

where 0i, 1j are positive integers and

ker ϕ1 = M01 ⊕M02 ⊕ · · · ⊕M0s , ker ϕ0 = M11 ⊕M12 ⊕ · · · ⊕M1t s + t = p.

Write

α = (α11, . . . , α1s, 0, . . . , 0) and β = (0, . . . , 0, β1(s+1), . . . , β1(s+t)).

Then for any x ∈ {1, 2, . . . , s} and y ∈ {1, 2, . . . , t}, let mxy = α1x · β1(s+y) · 0x ·
1y ∈ N. By Theorem 3.8, there exists a homomorphism ηxy from Ĩmxy to Mr(A)
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inducing the following commutative diagram λxy ∈ C( Ĩmxy , A):

Z⊕Z

λ
xy
0
��

(mxy ,−mxy) // Z

1
��

Zp
α−β

// Z

where

(4.1) λ
xy
0 =


0

...
mxy/α1x 0

0 mxy/β1(s+y)
... 0


(the p× 2 matrix with all entry 0 except for (x, 1)th entry mxy/α1x and (s + y, 2)th

entry mxy/β1(s+y)). By Theorem 2.9 there is a commutative diagram λ ∈ C(A, B):

Zp

(ai′ i)p′×p
��

(mxy ,−mxy) // Z
S
��

Zp′

α′−β′
// Zl′

such that λ + M(A, B) = χ(γ). Since

γ(K+(A)) ⊂ K+(B),

we have
γ(KK+( Ĩmxy , A)) ⊂ KK+( Ĩmxy , B).

It follows that
γ([ηxy]) ∈ KK+( Ĩmxy , B).

γ([ηxy]) coincides with the class of the following diagram λγ([ιxy ]) ∈ C( Ĩmxy , B):

Z⊕Z
(ai′ i)p′×pλ

xy
0
��

(mxy ,−mxy) // Z
S
��

Zp′

α′−β′
// Zl′ .

By Theorem 3.8, there exists µxy = (µ1
xy, µ2

xy, . . . , µ
p′
xy)

T ∈ Hom(K1(SF2), K0(F′1))
such that the map

(ai′i)p′×pλ
xy
0 + µxy(mxy,−mxy)
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is positive, i.e., for any i′ ∈ {1, 2, . . . , p′},
ai′xmxy

α1x
+ µi′

xymxy > 0,
ai′(s+y)mxy

β1(s+y)
− µi′

xymxy > 0.

Then for any i′ ∈ {1, 2, . . . , p′}, we have

ai′x + µi′
xyα1x > 0, ai′s+y − µi′

xyβ1(s+y) > 0.

Let µ = (µ1, µ2, . . . , µp′)
T, where

µi′ = min
y

max
x

µi′
xy, i′ ∈ 1, 2, . . . , p′.

Then for any i′ ∈ {1, 2, . . . , p′}, we have

ai′x + µi′α1x > 0, ai′(s+y) − µi′β1(s+y) > 0,

in other words, the map
(ai′i)p′×p + µ(α− β)

is positive.
Let λ̃ ∈ C(A, B) denote the following commutative diagram:

0 // K0(A)

λ̃0∗
��

π∗ // K0(F1)

λ̃0
��

α−β // K1(SF2)

λ̃1
��

ι∗ // K1(A)

λ̃1∗
��

// 0

0 // K0(B)
π′∗

// K0(F′1) α′−β′
// K1(SF′2) ι′∗

// K1(B) // 0,

where λ̃0 = (0, 0, . . . , 0)T. Note that

K1(SF2) = Z and α− β = (α11, . . . , α1s,−β1(s+1), . . . ,−β1(s+t)).

Immediately we will have λ̃1 = (0, 0, . . . , 0)T.
In summary, χ(γ) is positive. It follows from Theorem 3.8 that χ(γ) can be

lifted as a homomorphism.

COROLLARY 4.3. Assume that A, B ∈ C are minimal and F2 = Mn(C). If γ is a
KK-element in KK(A, B) satisfying

γ(K+(A)) ⊂ K+(B),

then χ(γ) is positive.

Proof. As F2 = Mn(C), α− β is a 1× p matrix. Transform α− β into

(p1, p2, . . . , pM, n1, n2, . . . , nO, 0, 0, . . . , 0)

where M and O are integers, and

pk > 0, k ∈ {1, 2, . . . ,M} and nm < 0, m ∈ {1, 2, . . . ,O}.
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For pk, nm, we do the same thing as what we did in the proof of Theorem 4.2
and for the 0 in (p1, p2, . . . , pM, n1, n2, . . . , nO, 0, 0, . . . , 0), we construct a map from
C(S1) to A. Then we have that χ(γ) is positive.

The following theorem is a corollary of the universal coefficient theorem
proved in [1].

THEOREM 4.4. Let A, B be C∗-algebras. Suppose that A ∈ N (where N is the
“bootstrap” category defined in [17]), K∗(A) is finitely generated, and B is σ-unital.
Then the natural map

Γ : KK(A, B)→ HomΛ(K(A), K(B))

is a group isomorphism.

As C ⊂ N , Theorem 4.2 can be expressed as the following theorem.

THEOREM 4.5. Assume that A ∈ CO and B ∈ C. Then the natural map

Γ : KK(A, B)→ HomΛ(K(A), K(B))

is an order isomorphism. Here Hom+
Λ(K(A), K(B)) is the cone consisting of the classes

which preserves the Dădârlat–Loring order.

REMARK 4.6. Here we should point out that Theorem 3.13 and Theorem 4.5
still hold if we allow A to be the direct sum of blocks in CO ; Corollary 4.3 still
holds if A is the direct sum of some minimal blocks in the class of blocks
A(F1, F2, ϕ0, ϕ1) ∈ C with F2 = Mn(C).

Note that for any A ∈ C, K0(A) is torsion free. It follows that for any C∗-
algebras A, B ∈ C, the requirement

α(K+(A)) ⊂ K+(B)

is equivalent to

α(K+
0 (A;Z⊕Zp)) ⊂ K+

0 (B;Z⊕Zp), p > 2, and α(K+
∗ (A)) ⊂ K+

∗ (B).

If we further assume that

K1(A) = Torsion(K1(A)), and K1(B) = Torsion(K1(B)),

then the inclusion
α(K+(A)) ⊂ K+(B)

is equivalent to the inclusion

α(K+
0 (A;Z⊕Zp)) ⊂ K+

0 (B;Z⊕Zp).

Note that the C∗-algebras of the example in [10] are in the class of Theo-
rem 4.1 and therefore cannot serve the purpose intended in Theorem 1.1 of [10].
The intuition of the authors is, still, quite correct. We present a new example here,
in the setting of the general class of C, in which the lifting is indeed not possible.
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EXAMPLE 4.7. Let F1 = C⊕C, F2 = M4(C),

ϕ0(a⊕ b) = diag{a, a, a, a}, ϕ1(a⊕ b) = diag{a, a, b, b},

B = Ĩ2, and A = A(F1, F2, ϕ0, ϕ1) ∈ C.
Consider the following commutative diagram λ ∈ C(A, Ĩ2):

Z⊕Z(
1

1
)
��

(2,−2) // Z

1
��

Z⊕Z
(2,−2)

// Z.

With Theorem 3.8, it can be easily checked that the related KK-element preserves
the Dădârlat–Loring order of K-theory with coefficients. Note that λ is the unique
element in λ + M(A, Ĩ2) with a positive map λ0 from K0(F1) to K0(F′1). Then with
Remark 2.2 and Corollary 3.7, we get that the KK-element in question cannot be
lifted. (This means that the existence theorem does not hold directly even for
some special cases of A(F1, F2, ϕ0, ϕ1) ∈ C with F2 = Mn(C).)

In general, Theorem 4.5 and Theorem 3.8 tell us, when A ∈ CO , that the
three ordered groups KK(A, B), C(A, B)/M(A, B) and HomΛ(K(A), K(B)) are
isomorphic. And if we require the weaker condition that A have only one generic
block, i.e., that F2 = Mn(C), then by Theorem 2.9 and Theorem 4.4, we still have
(as groups, with the natural maps)

KK(A, B) ∼= C(A, B)/M(A, B) ∼= HomΛ(K(A), K(B)),

and by Corollary 4.3 we have

KK+(A, B) ⊂ Hom+
Λ(K(A), K(B)) ⊂ (C(A, B)/M(A, B))+.

In the case of Example 4.7, KK+(A, B) $ Hom+
Λ(K(A), K(B)). And in the case of

Remark 3.11, Hom+
Λ(K(A), K(B)) $ (C(A, B)/M(A, B))+.

REMARK 4.8. What needs to be pointed out that both of the order structures
coinciding with Hom+

Λ(K(A), K(B)) and (C(A, B)/M(A, B))+ are much stronger
than the order structure on HomΛ(K(A), K(B)) used in [16], where an element is
positive if and only if its restriction to the K0 part is positive. The order structure
in [16] in general is not sufficient for KK-lifting, even for dimension drop algebras.
We show the following example.

Let A = Ĩ3 and B = C. Consider the diagram λ ∈ C( Ĩ3,C)

Z⊕Z

(2,−1)
��

(3,−3) // Z

��
Z // 0.
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One can easily check that KK(λ)(K+
0 ( Ĩ3)\{0}) ⊂ K+

0 (C)\{0}, while it can not be
lifted.

At last, we should point out that the condition

F2 = Mn(C)

on A(F1, F2, ϕ0, ϕ1) ∈ C in Corollary 4.3 is necessary. Consider the following
example with A minimal and F2 = M2(C)⊕M2(C).

EXAMPLE 4.9. Let F1 = C⊕C⊕C, F2 = M2(C)⊕M2(C),

ϕ0(a⊕ b⊕ c) = diag{a, a}⊕diag{b, b}, ϕ1(a⊕ b⊕ c) = diag{b, b}⊕diag{c, c},

B = C and A = A(F1, F2, ϕ0, ϕ1) ∈ C. Then we have

α =

(
2 0 0
0 2 0

)
and β =

(
0 2 0
0 0 2

)
.

Consider the following commutative diagram in C(A, B):

Z⊕Z⊕Z

(1,−1,1)
��

α−β // Z⊕Z

0
��

Z
0

// 0.

Denote the related KK-element by γ. Now let us check whether γ preserves the
Dădârlat–Loring order.

Case 1. Let λ ∈ C(C(S1), A) be the commutative diagram

Z( x
y
z

)
��

1−1=0 // Z( s
t
)

��
Z⊕Z⊕Z

α−β
// Z⊕Z

where x, y, z > 0. Then from the commutativity of λ, we immediately get x =
y = z. Further more, the commutative diagram

Z
x
��

1−1=0// Z

0
��

Z
0
// 0

corresponds to the class of KK(λ)× γ, which can be lifted.
This implies

γ(K+
∗ (A)) ⊂ K+

∗ (B).



470 QINGNAN AN AND GEORGE A. ELLIOTT

Case 2. Let λ ∈ C( Ĩp, A) be the commutative diagram

Z⊕Z( e x
f y
g z

)
��

(p,−p) // Z( s
t
)

��
Z⊕Z⊕Z

α−β
// Z⊕Z

where e, f , g, x, y, z > 0. Then from the commutativity of λ, we have

e− f = y− x =
sp
2

=: ∆ and f − g = z− y =
tp
2

=: Θ.

Note that the commutative diagram

Z⊕Z
(e− f+g,x−y+z)

��

(p,−p) // Z

0
��

Z
0
// 0

corresponds to the class of KK(λ)× γ.
(i) If t is even, the commutative diagram

Z⊕Z

(Θ,−Θ)
��

(p,−p) // Z

0
��

Z
0
// 0

is contained in M( Ĩp, B). As

e− f + g + Θ = e > 0 and x− y + z−Θ = x > 0,

we get that λ is positive modulo M( Ĩp, B). By Proposition 3.5, KK(λ)× γ can be
lifted to a representation.

(ii) If s is even, the commutative diagram

Z⊕Z

(−∆,∆)
��

(p,−p) // Z

0
��

Z
0
// 0

is contained in M( Ĩp, B). As

e− f + g−∆ = g > 0 and x− y + z + ∆ = z > 0,

we get that λ is positive modulo M( Ĩp, B). By Proposition 3.5, KK(λ)× γ can be
lifted.
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(iii) If both s and t are odd, the commutative diagram

Z⊕Z

(Θ−∆,∆−Θ)
��

(p,−p) // Z

0
��

Z
0
// 0

is contained in M( Ĩp, B). As

e− f + g + Θ−∆ = f > 0 and x− y + z + ∆−Θ = y > 0,

we get that λ is positive modulo M( Ĩp, B). By Proposition 3.5, KK(λ)× γ can be
lifted.

From (i), (ii) and (iii), we have

α(K+
0 (A;Z⊕Zp)) ⊂ K+

0 (B;Z⊕Zp).

In summary, γ preserves the Dădârlat–Loring order, but χ(γ) is not positive
(by definition) and so cannot be lifted (by Proposition 3.5). (γ does not preserve
the order structure of K-homology, either. Note that this is different from the
case in Corollary 4.3. This is the reason we consider the subclass A ∈ C with
F2 = Mn(C), and Example 4.7 and Theorem 4.5 have shown that, in this subclass,
CO is even more special.)
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