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ABSTRACT. We prove analogues of Ambarzumian’s theorem for the cases of:
(1) the boundary value problem with dissipative conditions dependent on the
spectral parameter at both ends, (2) the boundary value problem generated
by the Sturm–Liouville equation with the potential linearly dependent of the
spectral parameter.
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1. INTRODUCTION

The history of the Sturm–Liouville inverse problem began with Ambarzu-
mian’s theorem [1]. This theorem is as follows:

THEOREM 1.1 (Ambarzumian’s theorem). Let the eigenvalues of the spectral
problem

− y′′ + q(x)y = zy,(1.1)

y′(0) = y′(a) = 0,(1.2)

with real q ∈ C[0, a] be zk = π2k2/a2 where k = 0, 1, 2, . . ..
Then q(x) ≡ 0.

It appeared later that the case of von Neumann conditions (1.2) at both ends
of the interval and of the unperturbed spectrum is exceptional and in most cases
one needs to know two spectra of boundary value problems to find the potential
q (see, e.g. [17], [18]). However, there exist generalizations of Ambarzumian’s
theorem (see [6]–[8], [12]–[14], [23], [25], [26]).

A correct proof of Ambarzumian’s theorem was given in [3], [4] while a
simple proof was proposed in [16]. The idea of this simple proof lies in proving
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that
a∫

0
q(x)dx = 0 and then to use the minimax principle according to which the

lowest eigenvalue

0 = min
y∈D(A),‖y‖=1

(
−

a∫
0

y′′y +

a∫
0

q(x)|y|2dx
)

where D(A) is the domain of the corresponding operator A acting in L2(0, a):

Ay = −y′′ + q(x)y,(1.3)

D(A) = {y ∈W2
2 (0, a), y′(0) = y′(a) = 0}.(1.4)

This minimum is attained at y = C = const. Substituting z = 0 and y =
C 6= 0 into (1.1) one obtains q(x) ≡ 0.

In this paper the same idea is used to treat certain boundary value prob-
lems describing damped vibrations of strings. In Section 2 we consider a spectral
problem generated by the equation of small transverse vibrations of a smooth
string damped at both ends and in Section 3 we consider a spectral problem gen-
erated by the Sturm–Liouville equation with the potential linear in the spectral
parameter. In both cases we prove analogues of Ambarzumian’s theorem.

2. BOUNDARY VALUE PROBLEM WITH POINTWISE DAMPING

There exists a vast literature on direct and inverse spectral problems de-
scribing vibrations of mechanical systems with point-wise damping (viscous fric-
tion) at an endpoint (see [15], [20], [21] for the corresponding inverse problems).

There are also some results on spectral problems for string vibrations with
point-wise damping at the midpoint (see [2], [22] and for finite dimensional case
[5]). We know only one publication [24] which deals with a spectral problem
related to a mechanical problem with point-wise damping at both ends of the
interval:

∂2u
∂s2 − ρ(s)

∂2u
∂t2 = 0,(2.1)

∂u
∂s

∣∣∣
s=0
− β

∂u
∂t

∣∣∣
s=0

= 0,(2.2)

∂u
∂s

∣∣∣
s=l

+ α
∂u
∂t

∣∣∣
s=l

= 0,(2.3)

where the density of the string ρ(s) ∈ C[0, l], ρ(s) > 0 for x ∈ [0, l], the coefficient
of damping α > 0 at the right end and the coefficient of damping at the left end
β > 0.
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Substituting u(s, t) = v(λ, s)eiλt into (2.1)–(2.3) we obtain

∂2v
∂s2 + ρ(s)λ2v = 0,(2.4)

∂v
∂s

∣∣∣
s=0
− iβλv(0) = 0,(2.5)

∂v
∂s

∣∣∣
s=l

+ iαλv(l) = 0.(2.6)

We consider the operators acting in the Hilbert space L2(0, l)⊕C⊕C

A1

 v(s)
c1
c2

 =

 −v′′(s)
−v′(0)

v′(l)

 ,

D(A1) =


 v(x)

c1
c2

 : v(s) ∈W2
2 (0, l)), c1 = v(0), c2 = v(l)

 ,

K1=diag{0, β, α}, M1=diag{ρ(s), 0, 0}, D(K1)=D(M1)=L2(0, l)⊕C⊕C.

LEMMA 2.1. The operator A1 is self-adjoint and nonnegative.

Proof. We apply Theorem 10.3.4 of [19] with

V =

(
0 1 0 0
0 0 0 1

)
, U2 =

(
1 0 0 0
0 0 1 0

)
and conclude that A1 is selfadjoint. It is clear that

(A1Y, Y) =
l∫

0

|v′(s)|2ds > 0.

LEMMA 2.2. The spectrum of problem (2.4)–(2.6) consists of normal (isolated
Fredholm) eigenvalues and lies in C+ ∪ {0} where C+ is the open upper half-plane.

Proof. By Lemma 1.2.1 in [19] the spectrum of problem (2.4)–(2.6), i.e. the
spectrum of the quadratic operator pencil

L(λ) = λ2M1 − iλK1 − A1, D(L) = D(M1) ∩ D(K1) ∩ D(A1) = D(A1),

consists of normal eigenvalues. Since A1 > 0, M1 > 0, K1 > 0 and M1 + K1 �
0 we conclude that the spectrum of L lies in the closed upper half-plane (see
Lemma 1.2.4 in [19]). If λ0 ∈ R\{0} is an eigenvalue of L(λ) and v ∈ D(A1) is
the corresponding eigenvector then

λ2
0(M1v, v)− iλ0(K1v, v)− (A1v, v) = 0

and consequently (K1v, v) = 0. Since K1 is selfadjoint and K1 > 0 we arrive at
K1v = 0. This means that v(0) = v(l) = 0 and

λ2
0M1v− A1v = 0.
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Consequently, v′(0) = v′(l) = 0 what together with v(0) = v(l) = 0 implies
v(s) = 0 identically. A contradiction.

Let the string be smooth enough, namely ρ(s) ∈ W2
2 (0, l), ρ(s) > ε > 0.

Then substituting u(s, t) = v(λ, s)eiλt and applying the Liouville transform (see
e.g. p. 292 of [10], or p. 47 of [19])

x(s) =
s∫

0

ρ1/2(s′)ds′,(2.7)

y(x) = ρ1/4(s(x))v(λ, s(x)),(2.8)

we reduce the above problem to the following Sturm–Liouville problem

y′′ + (λ2 − q(x))y = 0,(2.9)

y′(0)− (iβ̃λ + γ1)y(0) = y′(a) + (iα̃λ + γ2)y(a) = 0,(2.10)

where

a =

l∫
0

ρ1/2(s)ds,

q(x) = ρ−1/4(s(x))
d2

dx2 ρ1/4(s(x)),

α̃ = ρ−1/2(s(a))α, β̃ = ρ−1/2(0)β,

γ1 = ρ−1/2(0)
dρ1/2(s(x))

dx

∣∣∣
x=0

, γ2 = −ρ−1/2(s(a))
dρ1/2(s(x))

dx

∣∣∣
x=a

.

To have von Neumann conditions we consider the case where γ1 = γ2 = 0 what
corresponds to dρ(s)

ds

∣∣∣
s=0

= dρ(s)
ds

∣∣∣
s=l

= 0. Then problem (2.9)–(2.10) attains the

form

y′′ + (λ2 − q(x))y = 0,(2.11)

y′(0)− iβ̃λy(0) = y′(a) + iα̃λy(a) = 0,(2.12)

which can be written as the spectral problem for the operator pencil

L(λ) = λ2M2 − iλK2 − A2, D(L) = D(M2) ∩ D(K2) ∩ D(A2) = D(A2),

acting in L2(0, a)⊕C⊕C where

A2

 y(x)
c1
c2

 =

 −y′′(x) + q(x)y(x)
−y′(0)
y′(a)

 ,
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D(A2) =


 y(x)

c1
c2

 : y(x) ∈W2
2 (0, a)), c1 = y(0), c2 = y(a)

 ,

K2 = diag{0, β̃, α̃}, M2 = diag{I, 0, 0}, D(K2) = D(M2) = L2(0, a)⊕C⊕C.

LEMMA 2.3. M2 > 0, K2 > 0, A2 > 0.

Proof. First two statements are obvious because α̃ > 0 and β̃ > 0. By the
same reasons as A1 the operator A2 is self-adjoint. The spectrum of the linear op-
erator pencil zM2 − A2 coincides with the spectrum of the linear operator pencil
zM1 − A1 which is nonnegative due to M1 > 0 and A1 > 0.

To prove that all the eigenvalues of A2 are nonnegative we consider the
auxiliary pencil T(z, η) = zM2 + zη(I −M2)− A2. By Theorem 9.2.4 in [19] the
eigenvalues of T(z, η) are continuous and piecewise analytic functions of η. They
may loose analyticity only when colliding. Thus we find for an eigenvalue z(η)
and a corresponding eigenvector y(η):

dz
dη

((1− η)M2 + η I)y + z(I −M2)y + (zM2 + zη(I −M2)− A)
dy
dη

= 0

which implies

dz
dη

(((1−η)M2+η I)y, y)+z((I−M2)y, y)+
(
(zM2+zη(I−M2)−A)

dy
dη

, y
)
=0.

Since M2 and A2 are selfadjoint we obtain(
(zM2 + zη(I −M2)− A)

dy
dη

, y
)
=
(
(zM2 + zη(I −M2)− A)y,

dy
dη

)
= 0

and consequently
dz
dη

=
−z((I −M2)y, y)

(((1− η)M2 + η I)y, y)
.

Since (((1− η)M2 + η I)y, y) > 0 and ((I −M2)y, y) > 0 for η ∈ (0, 1) we obtain

(2.13)
dz
dη

> 0 for z < 0.

As we have seen the eigenvalues of the pencil T(z, 0) = zM2 − A2 are non-
negative. The eigenvalues of T(z, η) cannot cross the origin because they cannot
move to the left on the negative semi-axis due to (2.13). Thus, all the eigenvalues
of T(z, 1), i.e. all the eigenvalues of the operator A2 are nonnegative. We conclude
that A2 is a selfadjoint operator with nonnegative spectrum, and consequently
A2 > 0.

Denote by {λk}∞
k=−∞ the spectrum of problem (2.11), (2.12). We enumerate

the eigenvalues in the following way: Re λ−k = −Re λk, Re λk+1 > Re λk,
k ∈ N ∪ {0}. We call unperturbed the spectrum of the problem corresponding to
q(x) a.e.

= 0.
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Introduce the solution s(λ, x) to equation (2.11) which satisfies the condi-
tions s(λ, 0) = s′(λ, 0)− 1 = 0 and the solution c(λ, x) which satisfies c(λ, 0)−
1 = c′(λ, 0) = 0. It is known (see e.g. Corollary 12.2.10 in [19]) that

s(λ, a) =
sin λa

λ
− B

cos λa
λ2 +

ψ1(λ)

λ2 ,(2.14)

c(λ, a) = cos λa + B
sin λa

λ
+

ψ2(λ)

λ
,(2.15)

s′(λ, a) = cos λa + B
sin λa

λ
+

ψ3(λ)

λ
,(2.16)

c′(λ, a) = −λ sin λa + B cos λa + ψ4(λ),(2.17)

where B = (1/2)
a∫

0
q(x)dx, ψj ∈ La and La is the Paley–Wiener class, i.e. the class

of entire functions of exponential type 6 a which belongs to L2(−∞, ∞) for λ ∈ R
(see, e.g. Definition 12.2.2 in [19]).

LEMMA 2.4. (i) If (1− α̃)(1− β̃) > 0 and q ≡ 0 then the spectrum of problem
(2.11), (2.12) is

(2.18)
{

0,
πk
a

+
i

2a
log

(1 + α̃)(1 + β̃)

(1− α̃)(1− β̃)
, k ∈ Z

}
.

(i) If (1− α̃)(1− β̃) < 0 and q ≡ 0 then the spectrum of problem (2.11), (2.12) is

(2.19)
{

0,
π

a

(
|k| − 1

2

)
sgn k +

i
2a

log
(1 + α̃)(1 + β̃)

|(1− α̃)(1− β̃)|
, k ∈ Z\{0}

}
.

Proof. Substituting y = C1((sin λx)/λ) + C2 cos λx into (2.12) we obtain

φ0(λ) = −λ(1 + α̃β̃) sin λa + iλ(α̃ + β̃) cos λa = 0.

Now using Propositions 7.1.2 in [19] we arrive at (2.18) and (2.19).

LEMMA 2.5. (i) If (1− α̃)(1− β̃) > 0 then the spectrum {λk}∞
k=−∞,k 6=0 of prob-

lem (2.11), (2.12) behaves asymptotically as follows:

λk =
π(k−1)

a
+

i
2a

log
(1+α̃)(1+β̃)

(1−α̃)(1−β̃)
+

B
πk

+
βk
k

(2.20)

for k>2, λ−k =−λk, λ−1 = 0, λ1 = ic,

where {βk}∞
−∞,k 6=0,±1 ∈ l2, c ∈ R.

(ii) If (1− α̃)(1− β̃) < 0 then the spectrum {λk}∞
k=−∞ of problem (2.11), (2.12)

behaves asymptotically as follows:

λk =
π

a

(
k− 1

2

)
+

i
2a

log
(1+α̃)(1+β̃)

|(1−α̃)(1−β̃)|
+

B
πk

+
βk
k

(2.21)

for k>1, λ−k =−λk, λ0=0,
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where {βk}∞
−∞,k 6=0 ∈ l2.

Proof. Substituting y = C1s(λ, x) + C2c(λ, x) into (2.12) we obtain

(2.22) φ(λ) = c′(λ, a)− λ2α̃β̃s(λ, a) + iλ(α̃s′(λ, a) + β̃c(λ, a)) = 0.

Substituting (2.14)–(2.17) into (2.22) we obtain

λ(1+α̃β̃) sin λa−iλ(α̃+β̃) cos λa−(1+α̃β̃)B cos λa−i(α̃+β̃)B sin λa+ψ5(λ)=0

where ψ5 ∈ La. Now using Propositions 7.1.3 in [19] we arrive at (2.20) and
(2.21).

THEOREM 2.6. (i) Let the sequence {λk}∞
−∞,k 6=0 be given such that λ−1 = 0 and

λ1 = ic:

(2.23) λk =
π(|k| − 1)

a
sgn k + ic

where c > 0 is a constant. Then there exist {α̃, β̃} such that α̃ > 0, β̃ > 0, (1− α̃)(1−
β̃) > 0:

(2.24) c =
1
2a

log
(1 + α̃)(1 + β̃)

(1− α̃)(1− β̃)
,

{λk}∞
−∞,k 6=0 is the spectrum of problem (2.11)–(2.12) with q(x) a.e.

= 0 and this q is uniquely
determined by this spectrum.

(ii) Let the sequence {λk}∞
−∞ be given such that λ0 = 0:

λk =
π(|k| − 1/2)

a
sgn k + ic

where c > 0 is a constant. Then there exist {α̃, β̃} such that α̃ > 0, β̃ > 0, (1− α̃)(1−
β̃) < 0, α̃, β̃ and c satisfy (2.24), {λk}∞

−∞ is the spectrum of problem (2.11)–(2.12) with
q(x) a.e.

= 0 and this q is uniquely determined by this spectrum.

Proof. Let us prove statement (i). It is clear that one can find α̃ > 0 and
β̃ > 0 such that (2.24) is true. The spectrum of problem (2.11)–(2.12) with any real
q ∈ L2(0, a) satisfies (2.20). Comparing (2.20) with (2.23) we obtain

(2.25) B = 0.

Now let us consider problem (1.1), (1.2) with the same q. This is the spectral
problem for the operator A defined by (1.3), (1.4).

Since λ0 = 0 is an eigenvalue of problem (2.11)–(2.12) it is also an eigenvalue
of problem (1.1)–(1.2), i.e. an eigenvalue of the operator A. Let us show that 0 is
the lowest eigenvalue of A. To this end we use Theorem 1.3.3 in [19] according
to which the number of eigenvalues of L in the open lower half-plane which is
zero in our case equals the number of negative eigenvalues of A2. Since λ−1 = 0
is an eigenvalue of L(λ), there exists a nonzero vector y−1 such that L(0)y−1 =
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−A2y−1 = 0. Thus, 0 is the lowest eigenvalue of A2. If A2y−1 = 0 then also
(zM2 − A2)|z=0y−1 = 0 and 0 is an eigenvalue of the pencil zM2 − A2.

Let us prove that this eigenvalue is the lowest for zM2 − A2. For any eigen-
value z and its eigenvector y we have (M2y, y) > 0, (A2y, y) > 0 and (zM2y−
A2y, y) = z(M2y, y)− (A2y, y) = 0. If z < 0 we arrive at (My, y) = (Ay, y) = 0
what is impossible.

The spectra of zM2 − A2 and of the operator A defined by (1.3), (1.4) co-
incide and we see that the lowest eigenvalue of A is also 0. Since the lowest
eigenvalue is 0, using the minimax principle we obtain

(2.26) 0 = min
‖y‖=1

(Ay, y) = min
‖y‖2=1

(
−

a∫
0

y′′ydx +

a∫
0

q(x)|y|2dx
)

,

where ‖y‖ =
( a∫

0
|y|2dx

)1/2
. Substituting y = C = const 6= 0 into (2.26) and

using (2.25) we obtain that the vector y = C satisfies the equation Ay = 0. Con-
sequently, q a.e.

= 0. The proof of statement (ii) is analogous.

3. BOUNDARY VALUE PROBLEM WITH DISTRIBUTED DAMPING

In this section we consider the following boundary value problem

∂2u
∂s2 − µ(s)

∂u
∂t
− ρ(s)

∂2u
∂t2 = 0,

∂u
∂s

∣∣∣
s=0

= 0,
∂u
∂s

∣∣∣
s=l

= 0,

which describes small transverse vibrations of a non-homogeneous string of den-
sity ρ(x) subject to distributed damping of the coefficient µ ∈ C[0, l], µ(x) > 0.
Substituting u(s, t) = v(λ, s)eiλt we obtain

∂2v
∂s2 − iµ(s)λv− ρ(s)λ2v = 0,

∂v
∂s

∣∣∣
s=0

= 0,
∂v
∂s

∣∣∣
s=l

= 0.

Applying the Liouville transform (2.7), (2.8) we obtain

− y′′ + 2iλp(x)y + q(x)y = λ2y,(3.1)

y′(0)− γ1y(0) = y′(a) + γ2y(a) = 0,

where p(x) = µ(s(x))/ρ(s(x)). We are interested in the case of von Neumann
conditions, i.e. in the case of γ1 = γ2 = 0:

(3.2) y′(0) = y′(a) = 0.

We assume that p(x) ∈ C[0, a] and q(x) ∈ L2(0, a). The spectrum of problem
(3.1), (3.2) is the spectrum of the operator pencil

L̂(λ) = λ2 I − iλK̂− A,
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acting in L2(0, a) where K̂y = 2p(x)y(x), D(K̂) = L2(0, a), D(L̂) = D(K̂) ∩
D(A) = D(A).

THEOREM 3.1. Let the following conditions be satisfied:
(i) p(x) > 0;

(ii) the spectrum σ(L̂) = {λk}∞
k=−∞ of problem (3.1), (3.2) lies in the closed upper

half-plane;
(iii) 0 ∈ σ(L̂);
(iv) we have

(3.3) λk =
πk
a

+
βk
k

where {βk}∞
k=−∞ ∈ l2.

Then p(x) ≡ 0 and q(x) a.e.
= 0.

Proof. The eigenvalues of problem (3.1), (3.2) behave asymptotically as fol-
lows (see [11]):

(3.4) λk =
πk
a

+ i
a∫

0

p(x)dx +

∫ a
0 (q(x)− p2(x))dx

k
+

βk
k

where {βk}∞
k=−∞ ∈ l2. Comparing (3.4) with (3.3) we obtain

a∫
0

p(x)dx = 0 and(3.5)

a∫
0

q(x)dx =

a∫
0

p2(x)dx.(3.6)

Condition (i) and (3.5) imply p ≡ 0 and then (3.6) implies

(3.7)
a∫

0

q(x)dx = 0.

Condition (iii) implies that 0 is an eigenvalue of problem (1.1), (1.2). Let us prove
that 0 is the lowest eigenvalue of the operator A. To this end we use Theorem 1.3.3
in [19] according to which the number of negative eigenvalues of the operator A
is equal to the number of eigenvalues of L̂ in the open lower half-plane which is
zero. Thus, A > 0 which together with (3.7) implies q(x) a.e.

= 0 as we have already
seen.
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