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ABSTRACT. Let H(C) be the set of entire functions endowed with the topol-
ogy Tu of local uniform convergence. Fix a sequence of non-zero complex
numbers (λn) with |λn|→+∞ and |λn+1|/|λn|→1. We prove that there ex-
ists a residual set G⊂H(C) so that for every f∈G and every non-zero complex
number a the set { f (z+λna) : n=1, 2, . . .} is dense in (H(C), Tu). This provides
a very strong extension of a theorem by G. Costakis and M. Sambarino in Adv.
Math. 182(2004), 278–306. Actually, in that article, the above result is proved
only for the case λn=n. Our result is in a sense best possible, since there exist
sequences (λn), with |λn+1|/|λn|→l for certain l>1, for which the above result
fails to hold, cf. F. Bayart, Int. Math. Res. Notices 21(2016), 6512–6552.
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1. INTRODUCTION

Let us first fix some standard notation and terminology. Throughout this pa-
per, we denote N = {1, 2, . . .}, Q, R, C for the sets of natural, rational, real and
complex numbers, respectively. By H(C) we denote the set of entire functions
endowed with the topology Tu of local uniform convergence. For a subset A of
H(C) the symbol A denotes the closure of A with respect to the topology Tu. Let
X be a topological vector space. A subset G of X is called Gδ if it can be written
as a countable intersection of open sets in X and a subset Y of X is called residual
if it contains a Gδ and dense subset of X.

A classical result of Birkhoff [14], which goes back to 1929, says that there
exist entire functions of which the integer translates are dense in the space of all
entire functions endowed with the topology Tu of local uniform convergence (see
also Luh [33] for a more general statement). Birkhoff’s proof was constructive.
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Much later, during the 80’s, Gethner and Shapiro [28] and independently Grosse-
Erdmann [29] showed that Birkhoff’s result can be recovered as a particular case
of a much more general theorem, through the use of Baire’s category theorem.
This approach simplified Birkhoff’s argument substantially and in addition gave
us precise information on the topological size of these functions. In particular,
Grosse-Erdmann proved that for every fixed sequence of complex numbers (wn)
with wn → ∞, the set

{ f ∈ H(C) | { f (z + wn) : n ∈ N} = H(C)}

is Gδ and dense inH(C), and hence “large” in the topological sense.
Let us now rephrase the above results using the modern language of hyper-

cyclicity. Let (Tn : X→X) be a sequence of continuous linear operators on a topo-
logical vector space X. For x ∈ X, the set Orb({Tn}, x) := {Tn(x) : n = 1, 2, . . .}
is called the orbit of x under (Tn). If (Tn(x))n>1 is dense in X for some x ∈ X,
then x is called hypercyclic for (Tn) and we say that (Tn) is hypercyclic [12], [31].
The symbol HC({Tn}) stands for the collection of all hypercyclic vectors for (Tn).
In the case where the sequence (Tn) comes from the iterates of a single operator
T : X → X, i.e. Tn := Tn, then we simply say that T is hypercyclic and x is hyper-
cyclic for T. If T : X → X is hypercyclic, then the symbol HC(T) stands for the
collection of all hypercyclic vectors for T. Following the standard terminology,
for an operator T on X, the set Orb(T, x) := {x, T(x), T2(x), . . .} is called the orbit
of x under T. A simple consequence of Baire’s category theorem is that for every
continuous linear operator T on a separable topological vector space X, if HC(T)
is non-empty, then it is necessarily (Gδ and) dense. For an account of results on
the subject of hypercyclicity, we refer to the recent books [12], [31]; also see the
very influential survey article [30].

For every fixed a ∈ C \ {0} consider the translation operator Ta : H(C) →
H(C) defined by

Ta( f )(z) = f (z + a), f ∈ H(C), z ∈ C.

Thus, for a = 1 Birkhoff’s result says that T1 is hypercyclic. We note that the
choice a = 1 is not significant. The same proof works nicely for every a ∈ C \ {0},
that is, for every a, Ta is hypercyclic and hence HC(Ta) is Gδ and dense inH(C).

Recently, Costakis and Sambarino [24] established a notable strengthening
of Birkhoff’s result. Namely, they showed that, for almost all entire functions f ,
in the sense of the Baire category, the set of the translates of f with respect to na,
n ∈ N, is dense in the space of all entire functions for every non-zero complex
number a. The significant new element here is the uncountable range of a. In
the language of hypercyclicity, their result takes the following form: the family
{Ta : a ∈ C \ {0}} has a residual set of common hypercyclic vectors i.e.,

the set
⋂

a∈C\{0}
HC(Ta) is residual inH(C),
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or equivalently, the set⋂
a∈C\{0}

{ f ∈ H(C) | { f (z + na) : n ∈ N} = H(C)}

is residual inH(C). In particular, it is non-empty.
Subsequently, Costakis [21] asked whether, in this result, n can be replaced

by more general sequences (λn) of non-zero complex numbers.

QUESTION 1.1 ([21]). Fix a sequence (λn) of non-zero complex numbers so
that |λn|→∞. Are there entire functions f so that, for all a ∈ C\{0}, the set
{ f (z + λna) : n ∈ N} is dense in the space of all entire functions?

In this direction Costakis [21] showed that, if the sequence (λn) satisfies
a certain condition, then the desired conclusion holds if we restrict attention to
a ∈ C(0, 1) := {z ∈ C/|z| = 1}. The precise condition is that for every M > 0,
there exists a subsequence (λnk ) of (λn) so that

(i) |λnk+1 | − |λnk | > M for every k = 1, 2, . . . and

(ii)
∞
∑

k=1
(1/|λnk |) = +∞.

Obviously, sequences of the form λn = bn + c, where b, c ∈ C, b 6= 0,
λn = n(log n)p, where 0 < p 6 1 or λn = n log n log log n, etc., satisfy the above
condition. Costakis asked [21] whether the same result holds for the set C\{0}
instead of C(0, 1). We proved in [40] that this question has a positive reply. On
the other hand, the case where the sequence λn is sparse, say n2, is left open, since
in this case condition (ii) is not satisfied. And in reality this is not accidental; it
reflects the limitation of the method developed in [21]. This drawback is due to a
specific “one-dimensional partition” that the author chooses. Here we overcome
this difficulty by constructing a “two dimensional” partition, which turns out
to be the right one in order to handle sequences (λn) where the corresponding
series in condition (ii) converges. The purpose of this paper is to give a positive
answer in general for a ∈ C\{0} that applies to a wide family of sequences (λn).
In particular, our main result, Theorem 1.2, covers the case where (λn) is of the
form (p(n)), and p is any non-constant complex polynomial, as well as the case
where λn = enb

for 0 < b < 1; hence for every 0 < b < 1 we have⋂
a∈C\{0}

{ f ∈ H(C) | { f (z + enb a) : n ∈ N} = H(C)} 6= ∅.

We would like to stress that the allowed growth enb
, 0 < b < 1 in the previously

mentioned example is in a sense optimal, since the answer to the above question
is negative if (λn) grows exponentially, [7], [25], that is,⋂

a∈C(0,1)

{ f ∈ H(C) | { f (z + ena) : n ∈ N} = H(C)} = ∅.

So some restriction on the nature of (λn) is clearly necessary.
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Let (λn) be a sequence of non-zero complex numbers. We attach a non-
negative real number to the sequence Λ := (λn) as the following:

i(Λ) := inf
{

a ∈ R∪ {+∞} : there exists a subsequence (µn) of (λn) so that

a = lim sup
n→+∞

|µn+1/µn|
}

.

Of course i(Λ) ∈ [0,+∞]. If λn→∞ as n→+ ∞ then i(Λ) ∈ [1,+∞]. Our main
result is the following theorem.

THEOREM 1.2. Let Λ := (λn) be a fixed sequence of non-zero complex numbers
such that λn→∞ as n→+ ∞ and i(Λ) = 1. Then, the set⋂

a∈C\{0}
HC({Tλna})

is a Gδ, dense subset of (H(C), Tu). In particular, there exists f ∈ H(C) such that for
every a ∈ C \ {0}

{ f (z + λna) : n = 1, 2, . . .} = H(C).

All the work in this article has been done in order to prove Theorem 1.2.
F. Bayart examined similar problems recently in his important paper [7]. Here
seems to be an appropriate place to comment on the ideas developed in [21],
[24] and to compare them with our approach. Costakis and Sambarino’s result
mentioned above consists of two steps. The first one is to show that the set⋂
a∈C(0,1)

HC(Ta) is residual in H(C). This is accomplished by choosing a suit-

able partition of the unit circle C(0, 1) and then an application of Runge’s theo-
rem on specific compact sets depending on the partition, which concludes the
argument. We stress, however that what we just mentioned is a very rough
idea of their proof. In the second step they show that for any fixed θ ∈ R,
HC(Teiθ ) = HC(Treiθ ), for every r > 0. The proof of the latter is based on
two important results: the minimality of the irrational rotation, see for instance
[26], and Ansari’s theorem [2], which says that if T is hypercyclic, then for every
n ∈ N, Tn is hypercyclic, as is HC(T) = HC(Tn). One key element to prove
Ansari’s theorem, is that the orbit Orb(T, x) has a semigroup structure, that is, if
Tn(x), Tm(x) ∈ Orb(T, x) then Tn ◦ Tm(x) ∈ Orb(T, x). Some nice extensions of
Ansari’s theorem even in a non-linear setting, can be found in [34], [37], where
the semigroup structure property still plays important role in the proofs. Observe
now that in our case, say Λ := (λn), λn → ∞ and assume for simplicity λn ∈ N,
the semigroup structure of the orbit breaks down. The very simple reason for
this “unpleasant" situation is that we now need consider parts of the full orbit
{ f (z + an) : n = 1, 2, . . .}, which may be very sparse. For instance, consider
the sequence λn = n2 (for which Theorem 1.2 holds). Clearly for a ∈ C \ {0},
f ∈ H(C), we have Tm2a ◦ Tl2a( f ) /∈ Orb({Tn2a}, f ) in general. In view of this
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obstacle, we need to follow a different approach and therefore we tried to concen-
trate on the first step in Costakis and Sambarino’s approach. Now the problem is
how to find a suitable partition, not only for the set C(0, 1), which is quite “thin”,
but for any given bounded sector S. So our main task is: for a given sequence
(λn) satisfying the hypothesis of Theorem 1.2, and a given bounded sector S ⊂ C
to find a suitable partition of S in order to show that the set

⋂
a∈S

HC({Tλna}) is Gδ

and dense in H(C). Then, covering the complex plane by many countable such
sectors and applying Baire’s category theorem, we are done. We mention that the
second step of Costakis and Sambarino’s result can be also obtained as a partic-
ular case of a general result due to Conejero, Müller and Peris [20] concerning
hypercyclic C0 semigroups, see also [12].

There is a fast growing literature on the subject of common hypercyclic vec-
tors for certain uncountable families of sequences of operators. For instance,
Bayart and Matheron [11], answering a question from [22], show, among other
things, the existence of entire functions f so that for every non-negative real num-
ber s > 0 and for every a ∈ C \ {0}, {ns f (z + na) : n = 1, 2, . . .} = H(C). Shkarin
in [38], extending Costakis and Sambarino’s result above, proves the following:
the set

⋂
a,b∈C\{0}

HC(bTa) is residual in H(C). There are also several results con-

cerning the existence of common hypercyclic vectors for other type of operators
such as weighted shifts, adjoints of multiplication operators, differentiation and
composition operators; see for instance, [1], [3]–[13], [15]–[27], [31], [32], [34],
[36]–[38], [41], [39]. There are also results going in the opposite direction, namely
the non-existence of common hypercyclic vectors for certain families of opera-
tors, see [6], [7], [9], [25], [38]. A most worthy and very general result, due to
Shkarin [38], is the following: for any given linear and continuous operator T
acting on a complex topological vector space with non-trivial dual, the family
{rT + aI : r > 0, a ∈ C} does not have a common hypercyclic vector.

The paper is organized as follows. Sections 2–7 occupy the proof of The-
orem 1.2. In the last section, Section 8, we give some illustrating examples of
sequences (λn) satisfying the hypothesis of Theorem 1.2, which fall into four dis-
tinct classes.

2. A SPECIAL CASE OF THEOREM 1.2: AN OUTLINE OF THE PROOF AND NOTATION

In this section we provide a general framework for attacking our problem,
by considering a particular case of the sequence (λn). It turns out that handling
this case is actually all that we need in order to establish our main result, namely
Theorem 1.2. This reduction is explained and presented in full detail in Section 7.
Let us now describe the extra properties we impose on the sequence (λn).

Let (λn) be a sequence of non-zero complex numbers satisfying the follow-
ing:



262 NIKOS TSIRIVAS

(1) |λn+1| − |λn|→+ ∞ as n→+ ∞;
(2) λn+1/λn→1 as n→+ ∞;
(3) lim inf

n→+∞
(n(|λn+1/λn| − 1)) > 0.

A sample of sequences satisfying the above three properties is: λn = nc,
c > 1, λn = nβ log n, β > 1, λn = nγ/ log(n + 1), γ > 2, etc. Our main task is to
prove the following special case of Theorem 1.2.

THEOREM 2.1. Fix a sequence (λn) of non-zero complex numbers which satisfies
the above properties (1), (2), (3). Then

⋂
a∈C\{0}

HC({Tλna}) is a Gδ and dense subset of

(H(C), Tu).

Let us now describe the steps for the proof of Theorem 2.1. Consider the
sectors

Sk
n := {a ∈ C : ∃ r ∈ [ 1

n , n] and t ∈ [ k
4 , k+1

4 ] such that a = re2πit}

for k = 0, 1, 2, 3 and n = 2, 3, . . . . Since

⋂
a∈C\{0}

HC({Tλna}) =
3⋂

k=0

∞⋂
n=2

⋂
a∈Sk

n

HC({Tλna}),

an appeal to Baire’s category theorem reduces the proof of Theorem 2.1 to the
following proposition.

PROPOSITION 2.2. Fix a sequence (λn) of non-zero complex numbers which sat-
isfies the above properties (1), (2), (3). Fix four real numbers r0, R0, θ0, θT so that 0 <
r0 < 1 < R0 < +∞, 0 6 θ0 < θT 6 1, θT − θ0 = 1/4 and consider the sector S
defined by

S := {a ∈ C : there exist r ∈ [r0, R0] and t ∈ [θ0, θT ] such that a = re2πit}.

Then
⋂

a∈S
HC({Tλna}) is a Gδ and dense subset of (H(C), Tu).

For the proof of Proposition 2.2 we introduce a notation which will be car-
ried out throughout this paper. Let (pj), j = 1, 2, . . . be a dense sequence of
(H(C), Tu), (for instance, all the polynomials in one complex variable with coef-
ficients in Q+ iQ). For every m, j, s, k ∈ N we consider the set

E(m, j, s, k) :=
{

f ∈ H(C) | ∀a ∈ S ∃ n∈N, n 6 m : sup
|z|6k
| f (z+λna)−pj(z)|<1/s

}
.

By Baire’s category theorem and the three lemmas stated below, Proposition 2.2
readily follows.

LEMMA 2.3. We have:⋂
a∈S

HC({Tλna}) =
∞⋂

j=1

∞⋂
s=1

∞⋂
k=1

∞⋃
m=1

E(m, j, s, k).
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LEMMA 2.4. For every m,j,s,k∈N the set E(m,j,s,k) is open in (H(C), Tu).

LEMMA 2.5. For every j,s,k ∈ N the set
∞⋃

m=1
E(m, j, s, k) is dense in (H(C), Tu).

The proof of Lemma 2.4 is similar to that in Lemma 9 of [24] and it is omit-
ted. Referring now to Lemma 2.3, the inclusion

∞⋂
j=1

∞⋂
s=1

∞⋂
k=1

∞⋃
m=1

E(m, j, s, k) ⊂
⋂
a∈S

HC({Tλna})

is easy to establish, therefore it is left as an exercise to the interested reader. At this
point, we would like to stress that Lemmas 2.4, 2.5, along with the above inclu-
sion, immediately imply that the set

⋂
a∈S

HC(Tλna) is residual, hence non-empty.

However, one can get more precise information concerning the topological struc-
ture of the set

⋂
a∈S

HC(Tλna) which is actually Gδ. The proof of the last fact, which

is not so obvious, is postponed till the last section, i.e. Section 6. We now move
on to Lemma 2.5. This lemma is the heart of our argument and its proof is long
and challenging. In order to present it in a more digestive form, we give a very
rough sketch of the main ideas involved in the proof below. As the reader may
notice, our strategy shares certain similarities with the proof of Lemma 10 from
[24]. Therefore, we will indicate the points at which our argument differentiates
from that in [24].

We start by fixing j1, s1, k1 ∈ N. We also need to prove that
∞⋃

m=1
E(m, j1, s1, k1)

is dense in (H(C), Tu). For simplicity we write pj1 = p. Consider g ∈ H(C), a
compact set C ⊂ C and ε0 > 0. We seek f ∈ H(C) and a positive integer m1 so
that

f ∈ E(m1, j1, s1, k1) and(2.1)

sup
z∈C
| f (z)− g(z)| < ε0.(2.2)

WHAT IS DONE IN LEMMA 10 FROM [24]. The authors in [21], [24] deal with the
unit circle instead of sector S. Then they define a suitable one dimensional par-
tition of the unit circle {a1, a2, . . . , an} and choose appropriate terms λµ1 , . . . , λµn

of the sequence (λn) so that the discs

B, Bi := B + aiλµi , i = 1, . . . , n

are pairwise disjoint, where B is a closed disc centered at zero with sufficiently
large radius R and R only depends on fixed initial conditions of the problem.
Then by setting

L := B ∪
(⋃n

i=1
Bi

)
,
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defining a suitable holomorphic function on L and using Runge’s theorem they
conclude the existence of a polynomial which satisfies a finite number of the de-
sired inequalities. Taking advantage of the fact that the partition {a1, a2, . . . , an}
is very thin, i.e. ai is close enough to ai+1 for i = 1, . . . , n − 1, they are able to
check the validity of the remaining inequalities for all the points of the unit circle.

WHAT WE DO. Our argument boils down to finding a desired two dimensional
partition {a1, . . . , an} of the above sector S. The construction of this partition
consists of five steps and is presented in Section 3. Then we adjust a specific term
λ(aj), j = 1, . . . , n of the sequence (λn) to each one of the above numbers aj of the
partition and we define the discs

B, Bj := B + ajλ(aj), j = 1, . . . , n

so that they are pairwise disjoint. Once this is established, we more or less follow
the procedure mentioned above in order to prove (2.1), (2.2).

2.1. GOOD PROPERTIES OF THE SEQUENCE (λn). Let (λn) be a sequence of non-
zero complex numbers satisfying the following:

(1) |λn+1| − |λn|→+ ∞ as n→+ ∞;
(2) λn+1/λn→1 as n→+ ∞;
(3) lim inf

n→+∞
(n(|λn+1/λn| − 1)) > 0.

Let r0, R0, θ0, θT be positive numbers so that 0 < r0 < 1 < R0 < +∞,
0 6 θ0 < θT 6 1. Let also c0, c1, c2, c3, c4 be positive numbers such that c0 > 2,
c1 > 2, 0 < c2 < 1, c3 > 0, 2c3 < lim infn(n(|λn+1|/|λn| − 1)) and c4 := r0c3/2.
Finally, define

m0 :=
[R0c1

r0

]
+ 1, k0 :=

[2c0

c2

]
+ 1,

where the symbol [x] stands for the integer part of a real number x ∈ R. Using
elementary calculus and the above properties of (λn) it is easy to see that there
exists a fixed natural number n0 so that for every n ∈ N, n > n0 all the following
8 inequalities hold:

|λn| ·
m0−1

∑
k=0

1
|λn+k|

>
R0

r0
c1;(2.3)

|λn+1| − |λn| > 4
c0

r0
;(2.4)

|λn| >
4c0

r0
;(2.5)

|λn| ·
k0

∑
i=1

1
|λn+im0−1|

>
2c0

c2
;(2.6)

n
(∣∣∣λn+1

λn

∣∣∣− 1
)
> 2c3;(2.7)
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n
n + m0k0

>
1
2

;(2.8)

n
|λn|
· 2c0 < c4;(2.9)

n
|λn|

<
c4

2c2k0
.(2.10)

Of course, inequality (2.8) has nothing to do with the sequence (λn); how-
ever, we chose to isolate it here since it will be needed later in the main construc-
tion of the partition and in the construction of the disks. At first glance, it may
look strange why the above properties play an important role. It turns out that
these properties fully characterize the sequences (λn) that appear in Theorem 1.2;
see Lemma 7.3 in Section 7.

3. CONSTRUCTION OF THE PARTITION OF THE SECTOR S

For the rest of this section we fix a sequence (λn) of non-zero complex num-
bers satisfying the following:

(1) |λn+1| − |λn|→+ ∞ as n→+ ∞;
(2) λn+1/λn→1 as n→+ ∞;
(3) lim inf

n→+∞
(n(|λn+1/λn| − 1)) > 0.

We also fix the numbers r0, R0, θ0, θT ,c0, c1, c2, c3, c4, m0, k0, which are de-
fined in Subsection 2.1.

3.1. STEP 1. PARTITIONS OF THE INTERVAL [θ0, θT ]. In this step we achieve the
elementary structure of our construction. All the following steps are based on
this first one. For every positive integer m we shall construct a corresponding
partition ∆m. So, let m ∈ N be fixed. We have (see subsection 2.1)

m0 :=
[R0c1

r0

]
+ 1.

Recall that the symbol [x] stands for the integer part of the real number x. For
every j = 0, 1, . . . , m0 − 1 choose real numbers θ

(m)
j , θ

(m)
j+1 so that

θ
(m)
j , θ

(m)
j+1 ∈ [θ0, θT)

and

(3.1)
c0

2R0c1|λm+j|
< θ

(m)
j+1 − θ

(m)
j <

c0

R0c1|λm+j|

where θ
(m)
0 = θ0. We consider three cases.

Case 1. Assume that
c0

2R0c1|λm|
> θT − θ0.
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Then we define

∆m = {θ(m)
0 }.

Case 2. Assume that

c0

2R0c1

j′

∑
j=0

1
|λm+j|

> θT − θ0

for a certain j′ ∈ {1, . . . , m0}. Consider the lowest number j0 ∈ {1, . . . , m0} so
that the previous inequality holds. Then we define our partition to be

∆m = {θ(m)
j : j = 0, . . . , j0 − 1}.

Case 3. Assume that none of the Cases 1, 2 hold. Then by inequality (3.1) we
can assume that

θ0 = θ
(m)
0 < θ

(m)
1 < · · · < θ

(m)
m0 < θT .

By setting σm := θ
(m)
m0 − θ0, we have 0 < σm < θT − θ0. For every positive integer

k with k > m0 + 1 there exist a unique ν ∈ N and a unique j ∈ {0, 1, . . . , m0 − 1}
so that k = νm0 + j. For every k as before, set

θ
(m)
k = θ

(m)
νm0+j := θ

(m)
j + νσm.

It is obvious that the sequence (θ
(m)
k )∞

k=1 is strictly increasing and tends to +∞.
Without loss of generality we may assume that

θ
(m)
k 6= θT for every k > m0 + 1.

Otherwise, if θ
(m)
k′ = θT for some k′ > m0 + 1, and since (θ

(m)
k )∞

k=1 is strictly
increasing, k′ is the only integer having this property. Then we subtract a suffi-
ciently small positive number ε > 0 from θ

(m)
k′ so that replacing θ

(m)
k′ by θ

(m)
k′ − ε

in the sequence (θ
(m)
k )∞

k=1, inequality (3.1) still holds.
Finally we define νm to be the biggest integer ν with the properties ν >

m0 + 1 and θ
(m)
ν < θT . We are ready to describe the desired partition ∆m:

∆m := {θ(m)
0 , θ

(m)
1 , . . . , θ

(m)
νm }.

The partitions ∆1, ∆2, . . . constructed above can be chosen so that the fol-
lowing important property holds:

“almost disjoint property”: if m1 6= m2 then ∆m1 ∩∆m2 = {θ0}.

The “almost disjoint property” turns out to be very important in the rest of
the construction.
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3.2. STEP 2. PARTITIONS OF THE ARC φr([θ0, θT ]). Consider the function φ :
[θ0, θT ]× (0,+∞)→ C given by

φ(t, r) := re2πit, (t, r) ∈ [θ0, θT ]× (0,+∞)

and where for every r > 0 we define the corresponding curve φr : [θ0, θT ]→C by

φr(t) := φ(t, r), t ∈ [θ0, θT ].

For any given positive integer m, φr(∆m) is a partition of the arc φr([θ0, θT ]),
where ∆m is the partition of the interval [θ0, θT ] constructed in Step 1. For ev-
ery r > 0, m ∈ N define

Pr,m
0 := φr(∆m)

which we call partition of the arc φr([θ0, θT ]) with height r, density m and order 0.

3.3. STEP 3. PARTITIONS OF ORDER 1 FOR A SECTOR OF OPENING π/2. In this
step we elaborate on the construction of Step 2 and we aim to define a suitable
partition for a sector of opening π/2. For reasons that will become apparent later
on, this partition is called a partition of order 1. To explain why we deal with
such a sector, notice that θT − θ0 = 1/4. Therefore the set φ([θ0, θT ]× (0,+∞)) is
nothing else but a sector of opening π/2, where φ is defined in Section 2.

We continue with the construction of the desired partition. Recall that

k0 :=
[2c0

c2

]
+ 1.

The fixed positive constant c2 appears in Section 2. For every r > 0, m ∈N and
k∈{0, 1, . . . , k0 − 1} define the positive numbers

µ(r, m, k) := r +
k

∑
j=1

c2

|λm+jm0−1|
, k > 1

µ(r, m, 0) := r.

Roughly speaking, our new partition will be obtained as a suitable finite union
of partitions of order 0 with different heights and densities. More precisely for
every m ∈ N, r > 0, define the set

Pr,m
1 :=

k0−1⋃
k=0

Pµ(r,m,k),m+km0
0 ,

where Pµ(r,m,k),m+km0
0 is the partition of the arc φµ(r,m,k)([θ0, θT ]) with height

µ(r, m, k), density m + km0 and order 0. We call the set Pr,m
1 a partition with basis

r, density m and order 1. Observe that in this way we obtain the first partition in
two dimensions, that is a partition of a sector. We will built our next two dimen-
sional partition by stacking several partitions of order 1.
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3.4. STEP 4. STACKING SEVERAL PARTITIONS OF ORDER 1: PARTITIONS OF OR-
DER 2. The positive number

c4 :=
r0c3

2
is fixed from the beginning of this section. For every positive integer m and every
r > 0 we define the positive number

µ1(m) :=
k0

∑
j=1

c2

|λm+jm0−1|

and observe that by Step 3 we have

µ1(m) = µ(r, m, k0 − 1) +
c2

|λm+k0m0−1|
− r,

for every r > 0. Let r > 0 and m ∈ N. We shall describe the new partition
corresponding to r, m.

Case 1. Assume that
µ1(m) >

c4

m
.

Then we stop the process and define

Pr,m
2 := Pr,m

1 ,

where Pr,m
1 is the partition defined in Step 3.

Case 2. Assume that
µ1(m) <

c4

m
.

It trivially follows that |w| < r + (c4/m) for every w ∈ Pr,m
1 . Consider now the

following partitions of order 1

Pr+νµ1(m),m
1 , for every ν = 0, 1, 2, . . . .

Then for every w ∈ Pr+νµ1(m),m
1 , ν = 0, 1, 2, . . . we get

(3.2) |w| > r + νµ1(m).

Let us consider the following subset of the positive integers

A :=
{

N ∈ N : |w| < r +
c4

m
, ∀w ∈

N⋃
ν=0

Pr+νµ1(m),m
1

}
.

Since r + νµ1(m) → +∞ as ν → +∞, |w| < r + µ1(m) for every w ∈ Pr,m
1 and in

view of (3.2) we conclude that the setA is non-empty and finite. Take the biggest
integer in this set, i.e.,

νr,m
0 := maxA.

This integer describes the stopping time of the process. Then define the set

Pr,m
2 :=

νr,m
0⋃

ν=0
Pr+νµ1(m),m

1 .
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Throughout the rest of the paper we call the set Pr,m
2 a partition with basis r,

density m and order 2.

3.5. STEP 5. THE FINAL PARTITION. In this step, we complete the construction
of the desired partition of S. For every positive integer m with m > n0 and every
r > 0 define the positive numbers

Mr,m := max{|w| : w ∈ Pr,m
2 },

where Pr,m
2 is the partition with basis r, density m and order 2, and is defined in

Step 4. We call the number Mr,m the height of the partition Pr,m
2 and define the

number

l(Pr,m
2 ) := Mr,m − r,

which we call length of partition Pr,m
2 . The proof that the length of partition Pr,m

2
is positive will be postponed till the next subsection. Let us now consider the
sequence (r(m)

ν ) of the positive numbers, defined recursively as follows:

r(m)
0 := r0,

r(m)
1 − r(m)

0 := l(Pr,m
2 ),

r(m)
ν+1 − r(m)

ν := l(Pr(m)
ν ,m+νk0m0

2 ),

for every ν = 1, 2, . . .. In the next subsection, it will be proven that r(m)
ν → +∞

as ν → +∞ for every m > n0. Therefore, for every m > n0 there exists a positive
integer ν(m) so that r(m)

ν(m)
> R0. Let ν

(m)
1 be the smallest positive integer with the

previous property. Now we define

Pm := S ∩
( ν

(m)
1⋃

ν=0
Pr(m)

ν ,m+νk0m0
2

)
,

for every positive integer m with m > n0. For every m, as before the set Pm defines
a partition of the sector S, and throughout the rest of this paper Pm will be called
the partition of S with order m.

3.6. PROPERTIES OF THE PARTITIONS. In the next lemma, we transfer the “almost
disjoint property” of the partitions of interval [θ0, θT) to an arc.

LEMMA 3.1. Consider the partitions Pr,m1
0 , Pr,m2

0 for given r > 0 and m1, m2 ∈ N.
The following property holds:

“almost disjoint property”: i f m1 6= m2 then Pr,m1
0 ∩ Pr,m2

0 = {re2πiθ0}.
Proof. The result is an immediate result of the corresponding property of the

partitions of interval [θ0, θT) and the definition of partition Pr,m
0 ; see Steps 1,2.
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LEMMA 3.2. Consider the partition Pr,m
1 :=

k0−1⋃
k=0

Pµ(r,m,k),m+km0
0 defined in Step 3,

for fixed r > 0 and m ∈ N. Take k1, k2 ∈ {0, . . . , k0 − 1} with k1 < k2. Then we have

µ(r, m, k1) < µ(r, m, k2),

where µ(r, m, k1), µ(r, m, k2) are the heights of the partitions Pµ(r,m,k1),m+k1m0
0 ,

Pµ(r,m,k2),m+k2m0
0 , respectively. In particular

Pµ(r,m,k1),m+k1m0
0 ∩ Pµ(r,m,k2),m+k2m0

0 = ∅.

Proof. By the definition of µ(r, m, k) (see Step 3) it follows that µ(r, m, k1) <
µ(r, m, k2).

LEMMA 3.3. Consider the partition Pr,m
2 :=

νr,m
0⋃

ν=0
Pr+νµ1(m),m

1 defined in Step 4,

for fixed r > 0 and m ∈ N. Take ν1, ν2 ∈ {0, . . . , νr,m
0 } with ν1 < ν2. Then we have

max{|w| : w ∈ Pr+ν1µ1(m),m
1 } < min{|w| : w ∈ Pr+ν2µ1(m),m

1 }.

In particular

Pr+ν1µ1(m),m
1 ∩ Pr+ν2µ1(m),m

1 = ∅.

Proof. Take any k1, k2 ∈ {0, . . . , k0 − 1}. We have

µ(r + ν1µ1(m), m, k1) = r + ν1µ1(m) +
k1

∑
j=1

c2

|λm+jm0−1|
< r + (ν1 + 1)µ1(m)

6 r + ν2µ1(m) 6 r + ν2µ1(m) +
k2

∑
j=1

c2

|λm+jm0−1|

= µ(r + ν2µ1(m), m, k2),

where in the case k1 = 0 or k2 = 0 the corresponding sum above disappears. The
last implies that the height of any partition of order 0 used to build the partition
Pr+ν1µ1(m),m

1 is strictly lower than the height of every partition of order 0 used to

build the partition Pr+ν2µ1(m),m
1 . The conclusion follows.

LEMMA 3.4. Fix any positive integer m with m > n0. Then for every positive
number r, the length of the partition Pr,m

2 , i.e. the number l(Pr,m
2 ) defined in Step 5, is

positive and hence the sequence (r(m)
ν )∞

ν=0, defined in Step 5, is strictly increasing.

Proof. Recall that r(m)
0 := r0 > 0 and r(m)

ν+1 − r(m)
ν := l(Pr(m)

ν ,m+νk0m0
2 ); see

Step 5. Hence, it suffices to show that l(Pr(m)
ν ,m+νk0m0

2 ) > 0. On the other hand, by
the definition of the length of partition Pr,m

2 , we have

l(Pr,m
2 ) := Mr,m − r,
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where
Mr,m := max{|w| : w ∈ Pr,m

2 }.

Partition Pr,m
2 is defined as a union of partitions Pr′ ,m′

1 for certain r′, m′. Pick such

a Pr′ ,m′
1 which in turn is defined as a union of partitions Pr′′ ,m′′

0 for certain r′′, m′′.
By the choice of k0 we conclude that Pr′ ,m′

1 contains at least five partitions Pr′′ ,m′′
0

with pairwise different heights, hence by Lemma 3.2 we get

min{|w| : w ∈ Pr′ ,m′
1 } < max{|w| : w ∈ Pr′ ,m′

1 }.
Observe now that

r 6 min{|w| : w ∈ Pr′ ,m′
1 } and max{|w| : w ∈ Pr′ ,m′

1 } 6 Mr,m.

The above inequalities imply that l(Pr,m
2 ) > 0, and this completes the proof of the

lemma.

LEMMA 3.5. Consider the partition Pm := S ∩
(⋃ν

(m)
1

ν=0 Pr(m)
ν ,m+νk0m0

2

)
defined in

Step 5, for fixed m ∈ N with m > n0. Take ν1, ν2 ∈ {0, . . . , ν
(m)
1 }, with ν1 < ν2 and

ν2 − ν1 > 2. Then we have

max{|w| : w ∈ P
r(m)

ν1 ,m+ν1k0m0
2 } < min{|w| : w ∈ P

r(m)
ν2 ,m+ν2k0m0

2 }.
In particular,

P
r(m)

ν1 ,m+ν1k0m0
2 ∩ P

r(m)
ν2 ,m+ν2k0m0

2 = ∅.

Proof. We proceed by induction on ν ∈ {0, . . . , ν
(m)
1 }. Recall the following

quantities from Step 5:

Mr,m := max{|w| : w ∈ Pr,m
2 },(3.3)

l(Pr,m
2 ) := Mr,m − r,(3.4)

r(m)
0 := r0, r(m)

ν+1 − r(m)
ν := l(Pr(m)

ν ,m+νk0m0
2 ).(3.5)

Applying (3.3), (3.4), (3.5) we get

(3.6) Mr(m)
ν ,m+νk0m0 =max{|w| : w ∈ Pr(m)

ν ,m+νk0m0
2 }= r(m)

ν +l(Pr(m)
ν ,m+νk0m0

2 )= r(m)
ν+1

for ν ∈ {0, . . . , ν
(m)
1 }. Using (3.6) and the fact that the sequence (r(m)

ν )∞
ν=0 is strictly

increasing, see Lemma 3.4, we have

(3.7) max{|z| : z ∈ P
r(m)

ν1 ,m+ν1k0m0
2 } = Mr(m)

ν1 ,m+ν1k0m0 = r(m)
ν1+1 < r(m)

ν2 .

Combining the last with the (trivial) equality

(3.8) r(m)
ν2 = min{|w| : w ∈ P

r(m)
ν2 ,m+ν2k0m0

2 }
the result follows.
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LEMMA 3.6. Consider the partition Pm := S
⋂ (⋃ν

(m)
1

ν=0 Pr(m)
ν ,m+νk0m0

2

)
defined in

Step 5, for fixed m ∈ N with m > n0 and ν
(m)
1 > 1. Take ν ∈ {0, . . . , ν

(m)
1 − 1}. Then

we have

max{|w| : w ∈ Pr(m)
ν ,m+νk0m0

2 } = min{|w| : w ∈ P
r(m)

ν+1,m+(ν+1)k0m0
2 } and

Pr(m)
ν ,m+νk0m0

2 ∩ P
r(m)

ν+1,m+(ν+1)k0m0
2 = {r(m)

ν+1e2πiθ0}.
Proof. By (3.7), (3.8) we get

max{|z| : z ∈ Pr(m)
ν ,m+νk0m0

2 } = r(m)
ν+1 = min{|w| : w ∈ P

r(m)
ν+1,m+(ν+1)k0m0

2 }.

Observe that Pr(m)
ν ,m+νk0m0

2 =
⋃

r′ ,m′
Pr′ ,m′

0 and P
r(m)

ν+1,m+(ν+1)k0m0
2 =

⋃
r′′ ,m′′

Pr′′ ,m′′
0 . There-

fore, the partitions Pr(m)
ν ,m+νk0m0

2 , P
r(m)

ν+1,m+(ν+1)k0m0
2 have a non-empty intersection

if and only if

Pr′ ,m′
0 ∩ Pr′′ ,m′′

0 6= ∅ for some r′, r′′, m′, m′′.

Clearly, two partitions Pr′ ,m′
0 Pr′′ ,m′′

0 of zero order have a non-empty intersection if
and only if the heights r′, r′′ are the same. In our case the last happens if and only
if r′ = r′′ = r(m)

ν+1. On the other hand, it is not difficult to see that in every partition

Pr,m
2 =

⋃
PR,M

0 there do not exist PR,M1
0 , PR,M2

0 “members” of Pr,m
2 with M1 6= M2.

Hence, by the definition of the partition of order 2, we have that the partition

of order 0 and height r(m)
ν+1, which is a member of Pr(m)

ν ,m+νk0m0
2 , is the one with

density m + (ν + 1)k0m0 − m0. In a similar manner, we have that the partition

of order 0 and height r(m)
ν+1 which is a member of P

r(m)
ν+1,m+(ν+1)k0m0

2 is the one with
density m + (ν + 1)k0m0. Since m + (ν + 1)k0m0 − m0 < m + (ν + 1)k0m0, by
Lemma 3.1, it follows that

P
r(m)

ν+1,m+(ν+1)k0m0−m0
0 ∩ P

r(m)
ν+1,m+(ν+1)k0m0

0 = {r(m)
ν+1e2πiθ0}

and this finishes the proof of the lemma.

LEMMA 3.7. Fix a positive integer m with m > n0. Then the sequence (r(m)
ν )∞

ν=1,
defined in Step 4, is strictly increasing and

lim
ν→+∞

r(m)
ν = +∞.

Proof. We shall prove that

(3.9) r(m)
ν+1 − r(m)

ν >
c4

2(m + νk0m0)
, for every ν = 0, 1, . . . .
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Fix ν ∈ {0, 1, . . .} and in order to simplify notation set

r := r(m)
ν , r′ := r(m)

ν+1, m1 := m + νk0m0.

By definition (see Step 4) we have

r′ − r := l(Pr,m1
2 )

and again by definition (see Step 4) and since (|λn|) is strictly increasing we get

(3.10) µ1(m1) :=
k0

∑
j=1

c2

|λm1+jm0−1|
<

k0c2

|λm1 |
.

By the definition of the partition Pr,m1
2 we obtain the inequality

r + l(Pr,m1
2 ) + µ1(m1) > r +

c4

m1
,

which, in view of (3.10), gives the following lower bound on the length of Pr,m1
2 :

(3.11) l(Pr,m1
2 ) >

c4

m1
− k0c2

|λm1 |
.

By (2.8) we have
m1

|λm1 |
<

c4

2c2k0
.

Combining the last inequality with (3.11) we get

r′ − r := l(Pr,m1
2 ) >

c4

2m1
,

which proves (3.9). Clearly (3.9) implies that lim
ν→+∞

r(m)
ν = +∞.

4. CONSTRUCTION AND PROPERTIES OF THE DISKS

For the rest of this section, we fix a sequence (λn) of non-zero complex num-
bers satisfying the following:

(1) |λn+1| − |λn|→+ ∞ as n→+ ∞;
(2) λn+1/λn→1 as n→+ ∞;
(3) lim inf

n→+∞
(n(|λn+1/λn| − 1)) > 0.

We also fix the numbers r0, R0, θ0, θT ,c0, c1, c2, c3, c4, m0, k0, which are de-
fined in Subsection 2.1. Finally, on the basis of the above, for every positive inte-
ger m we consider the partition Pm constructed in the previous section.
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4.1. CONSTRUCTION OF THE DISKS. The strategy in this subsection is to con-
struct a certain family of pairwise disjoint disks, which will allow us later to apply
Runge’s theorem in order to prove Proposition 2.1 successfully. What we will do
is assign to each point w of partition Pm a suitable closed disk with center wλ(w)
and radius c0 (the radius will be the same for every member of the family of the
disks), where λ(w) will be chosen from the sequence (λn). We shall see that the
construction of the partition Pm ensures on the one hand that the points of the par-
tition are close enough to each other on the sector S, and on the other hand that
the disks centered at these points with fixed radius c0 are pairwise disjoint. This
is the hard part of our argument, and also shows that the required construction is
very delicate. So, let us begin with the construction of the disks.

We set
B := {z ∈ C : |z| 6 c0}.

Fix a positive integer m > n0 and let w be any point of the partition Pm of the
sector S. We distinguish two cases.

Case 1. Assume that

w ∈ {r(m)
ν e2πiθ0 : ν = 1, . . . , ν

(m)
1 }.

Then w = r(m)
ν e2πiθ0 for some ν ∈ {1, . . . , ν

(m)
1 }. We define

λ(w) := λm+νk0m0−m0 and Bw := B + wλ(w).

Case 2. Assume that

w ∈ Pm \ {r(m)
ν e2πiθ0 : ν = 1, . . . , ν

(m)
1 }.

By Lemmas 3.5, 3.6, there exists a unique ν ∈ {0, 1, . . . , ν
(m)
1 } so that

w ∈ Pr(m)
ν ,m+νk0m0

2 =
⋃

r′ ,m′
Pr′ ,m′

0 .

Applying Lemmas 3.2, 3.3, 3.5, 3.6, we conclude that there is a unique pair (r′, m′)
so that

w = r′e2πiθ(m
′)

k for some k ∈ {0, 1, . . . , νm′}.
Observe that k can be uniquely written in the form

k = ρm0 + j, for some ρ ∈ N, j ∈ {0, . . . , m0 − 1}.

From the above and the definition of the partition ∆m′ , see Step 1, we have

θ
(m′)
k = θ

(m′)
ρm0+j = θ

(m′)
j + ρσm′ .

Finally we define

λ(w) := λm′+j and Bw := B + wλ(w).

Therefore for every w ∈ Pm we assigned a disk Bw according to the above rules.
This completes the desired construction of the disks assigned to the partition Pm.
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4.2. PROPERTIES OF THE DISKS. Our aim in this subsection is to prove that for a
fixed positive integer m, the disks Bw for w ∈ Pm (corresponding to the partition
Pm), that have been constructed in the previous subsection, are pairwise disjoint.

LEMMA 4.1. Fix a positive integer m with m > n0. Then we have

B ∩ Bw = ∅ for every w ∈ Pm.

Proof. Take w ∈ Pm. The closed disks B, Bw are centered at 0, wλ(w), re-
spectively, and they have the same radius c0. Hence, we have to show that
|wλ(w)| > 2c0. Since |w| > r0, it suffices to prove that

|λ(w)| > 2c0

r0
.

Observe now that, by the definition of λ(w) in the previous subsection, λ(w) =
λn for some positive integer n with n > m > n0. By property (2.3), we conclude
that |λn| > 2c0/r0, and this finishes the proof of the lemma.

LEMMA 4.2. Fix a positive integer m with m > n0. If w1, w2 ∈ Pm with w1 6=
w2, |w1| 6 |w2|, |λ(w1)| < |λ(w2)| then Bw1 ∩ Bw2 = ∅.

Proof. Take w1, w2 satisfying the hypothesis of the lemma. We need to show
that |w1λ(w1) − w2λ(w2)| > 2c0. Observe that λ(wj) = λnj for some positive
integer nj > m > n0, j = 1, 2. Since |λ(w1)| < |λ(w2)| and the sequence (|λn|) is
strictly increasing we conclude that n1 < n2. We have

|w1λ(w1)− w2λ(w2)| > | |w1λ(w1)| − |w2λ(w2)| | = |w2λ(w2)| − |w1λ(w1)|
> r0(|λ(w2)| − |λ(w1)|) = r0(|λn2 | − |λn1 |)
> r0(|λn1+1| − |λn1 |) > 2c0,

where the last inequality above follows by property (2.2).

LEMMA 4.3. Fix a positive integer m with m > n0. If w1, w2 ∈ Pm with w1 6= w2
and |w1| = |w2| then Bw1 ∩ Bw2 = ∅.

Proof. Fix w1, w2 satisfying the hypothesis of the lemma. Then we have
w1 = re2πiθ1 , w2 = re2πiθ2 , for some r ∈ [r0, R0] and some θ1, θ2 ∈ [θ0, θT). Since
w1, w2 ∈ Pm =

⋃
(r′ ,m′)∈J

Pr′ ,m′
0 , where J is a suitable set of indices, then

either w1 ∈ Pr,m1
0 and w2 ∈ Pr,m2

0 for (r, m1), (r, m2) ∈ J, m1 6= m2

or w1, w2 ∈ Pr,m′
0 for some (r, m′) ∈ J.

Let us first consider the case where w1, w2 belong to different partitions of
zero order. Then necessarily we have |λ(w1)| 6= |λ(w2)| and since |w1| = |w2|,
Lemma 4.2 implies that the disks Bw1 , Bw2 are disjoint.

We turn now to the case where both w1, w2 belong to the same partition
of zero order Pr,m′

0 . By the definition of the partition Pr,m′
0 there exist k1, k2 ∈
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{0, . . . , νm′} such that

θ1 = θ
(m′)
k1

and θ2 = θ
(m′)
k2

.

We also have that

k1 = ρ1m0 + j1, k2 = ρ2m0 + j2

for ρ1, ρ2 ∈ N and j1, j2 ∈ {0, . . . , m0 − 1} and by the definition of the partition
∆m′ , see Step 1, it follows that

θ
(m′)
k1

= θ
(m′)
j1

+ ρ1σm′ , θ
(m′)
k2

= θ
(m′)
j2

+ ρ2σm′ ,

where (recall from Step 1),

σm′ := θ
(m′)
m0 − θ0.

We shall consider two cases.
Case 1. Assume that j1 6= j2. Since λ(w1) = λm′+j1 , λ(w2) = λm′+j2 it readily

follows that |λ(w1)| 6= |λ(w2)|. In view of Lemma 4.2 we conclude that the disks
Bw1 , Bw2 are disjoint.

Case 2. It remains to handle the case j1 = j2. Observe that in this situation
we have

(4.1) θ2 − θ1 = (ρ2 − ρ1)σm′ .

Since w1 6= w2 and |w1| = |w2| we may assume with no loss of generality that
θ1 < θ2. We establish below a “sufficiently large” lower bound on σm′ . Inequality
(3.1) in Step 1 implies the following:

θ
(m′)
1 − θ

(m′)
0 >

c0

2R0c1

1
|λm′ |

θ
(m′)
2 − θ

(m′)
1 >

c0

2R0c1
· 1
|λm′+1|

...

θ
(m′)
m0 − θ

(m′)
m0−1 >

c0

2R0c1
· 1
|λm′+m0−1|

.

Adding the previous inequalities by pairs we get

(4.2) σm′ := θ
(m′)
m0 − θ0 >

c0

2R0c1
·

m0−1

∑
j=0

1
|λm′+j|

.

We also need the following inequality, so called Jordan’s inequality:

(4.3) sin x >
2
π

x, x ∈ (0, π
2 ).
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Since r > r0, (|λn|)n is strictly increasing, θ1 < θ2 and with (4.1), (4.2), (4.3) and
property (2.1) we get

|w2λ(w2)− w1λ(w1)| = r|λm′+j0 ||e
2πiθ2 − e2πiθ1 | > r0|λm′ ||e2πiθ2 − e2πiθ1 |

= r0|λm′ |2 sin(π(θ2 − θ1)) > 2r0|λm′ |
2
π
(π(θ2 − θ1))

= 4r0|λm′ |(ρ2 − ρ1)σm′ > 4r0|λm′ |σm′

>
2r0c0

R0c1
|λm′ |

m0−1

∑
j=0

1
|λm′+j|

> 2c0,

where the last inequality is a result of property (2.1). This finishes the proof for
the Case 2, and hence that of the lemma.

LEMMA 4.4. Fix a positive integer m with m > n0. If w1, w2 ∈ Pm with w1 6= w2
and λ(w1) = λ(w2) then Bw1 ∩ Bw2 = ∅.

Proof. Fix w1, w2, satisfying the hypothesis of the lemma. If |w1| = |w2|,
then by Lemma 4.3 the conclusion follows. So assume that |w1| 6= |w2|. By the
definition of the partition Pm, there exist ν1, ν2 ∈ {0, . . . , ν

(m)
1 } so that

w1 ∈ P
r(m)

ν1 ,m+ν1k0m0
2 , w2 ∈ P

r(m)
ν2 ,m+ν2k0m0

2 .

Claim 1. ν1 = ν2.

Proof of Claim 1. We argue by contradiction, so assume that ν1 6= ν2. With-
out loss of generality, suppose that ν1 < ν2. By definition of the partition of order
2 we have

P
r(m)

ν1 ,m+ν1k0m0
2 =

ν
r(m)
ν1

,m+ν1k0m0
0 ⋃

ν=0
P

r(m)
ν1 +νµ1(m+ν1k0m0),m+ν1k0m0

1 and

P
r(m)

ν2 ,m+ν2k0m0
2 =

ν
r(m)
ν2

,m+ν2k0m0
0 ⋃

ν=0
P

r(m)
ν2 +νµ1(m+ν2k0m0),m+ν2k0m0

1 .

Hence there exist ν′∈{0, . . . , ν
r(m)

ν1 ,m+ν1k0m0
0 }, ν′′∈{0, . . . , ν

r(m)
ν2 ,m+ν2k0m0

0 } such that

w1 ∈ P
r(m)

ν1 +ν′µ1(m+ν1k0m0),m+ν1k0m0
1 and(4.4)

w2 ∈ P
r(m)

ν2 +ν′′µ1(m+ν2k0m0),m+ν2k0m0
1 .(4.5)

Recall that, see Step 1, for every r > 0 and every positive integer m the partition
Pr,m

1 is defined as a union of partitions of order 0 as follows:

Pr,m
1 =

k0−1⋃
k=0

Pµ(r,m,k),m+km0
0 .
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Thus, by (4.4), (4.5), there exist k1, k2 ∈ {0, . . . , k0− 1} and r1, r2 positive numbers
so that

w1 ∈ Pr1,m+ν1k0m0+k1m0
0 , w2 ∈ Pr2,m+ν2k0m0+k2m0

0 .

From the previous and the definition of λ(w) for w ∈ Pm we have

λ(w1) = λn′+j′ , λ(w2) = λn′′+j′′ ,

where n′ = m+ ν1k0m0 + k1m0, n′′ = m+ ν2k0m0 + k2m0 and j′, j′′ ∈ {0, . . . , m0−
1}. Observe now that

(4.6) n′ + l′ < n′′ + l′′ for every l′, l′′ ∈ {0, . . . , m0 − 1}.

By (4.6) and the fact that (|λn|) is strictly increasing we arrive at

|λ(w1)| = |λn′+j′ | < |λn′′+j′′ | = |λ(w2)|,

which is a contradiction. This finishes the proof of the Claim 1.

For simplicity reasons let us define

ν := ν1 = ν2.

By the proof of Claim 1, we have that

w1 ∈ Pr1,m′+k1m0
0 , w2 ∈ Pr2,m′+k2m0

0

and

(4.7) λm′+k1m0+j′ = λ(w1) = λ(w2) = λm′+k2m0+j′′ ,

where m′ := m + νk0m0, r1, r2 > 0 and j′, j′′ ∈ {0, . . . , m0 − 1}.
Claim 2. k1 = k2.

Proof of Claim 2. We argue by contradiction, so assume that k1 6= k2. With-
out loss of generality assume that k1 < k2. Then we have

m′ + k1m0 + j′ 6 m′ + (k1 + 1)m0 − 1 < m′ + k2m0 + j′′.

The last implies that |λm′+k1m0+j′ | < |λm′+k2m0+j′′ |, which contradicts (4.7).

Observe now that we also have j′ = j′′. Set r′ := r(m)
ν , j := j′ = j′′ and

k := k1 = k2. Recall that
w1, w2 ∈ Pr′ ,m′

2 .

By the proof of Claim 1 and the previous notations, we immediately get the fol-
lowing

w1 ∈ Pµ(r′+ν′µ1(m′),m′ ,k),m′+km0
0 , w2 ∈ Pµ(r′+ν′′µ1(m′),m′ ,k),m′+km0

0 ,

for a certain ν′, ν′′ ∈ {0, . . . , νr′ ,m′
0 }. It is now clear that

|w1| = µ(r′ + ν′µ1(m′), m′, k) = r′ + ν′µ1(m′) +
k

∑
N=1

c2

|λm′+Nm0−1|
,
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|w2| = µ(r′ + ν′′µ1(m′), |m′|, k) = r′ + ν′′µ1(m′) +
k

∑
N=1

c2

|λm′+Nm0−1|
,

where we used the definition of µ(r, m, k) from Step 3. It is immediate that

|ν′ − ν′′| > 1,

since |w1| 6= |w2|. We are ready for the final estimate. From the above, we arrive
at the following inequality

|w1λ(w1)− w2λ(w2)| > |λm′+km0+j| | |w1| − |w2| | = |λm′+km0+j|µ1(m′)|ν′ − ν′′|

> |λm′ |µ1(m′)| | = |λm′ |
k0

∑
N=1

c2

|λm′+Nm0−1|
> 2c0,

where the last inequality is a result of property (2.4). This completes the proof of
the lemma.

LEMMA 4.5. Let m > n0, m ∈ N, r ∈ [r0, R0], θ′, θ′′ ∈ [θ0, θT ] and v1 < v2,
where v1 ∈ {m, m + 1, . . ., m + m0k0 − 1}, v2 ∈ N. Also, let ε1, ε2 be two non-negative
real numbers so that 0 6 ε2 < ε1 < c4/m. We consider the numbers r1 := r + ε1 and
r2 := r + ε2 and define the discs B(1) := B + r1e2πiθ′λv1 , B(2) := B + r2e2πiθ′′λv2 .
Then B(1) ∩ B(2) = ∅.

Proof. By property (2.6) we have

m
m + k0m0

>
1
2

or equivalently

(4.8) m + k0m0 < 2m.

We also have

(4.9) m 6 v1 6 m + m0k0 − 1,

by our hypothesis. Hence, by (4.8), (4.9) it follows that

(4.10) v1 < 2m.

Combining (4.10) with the definition of c4 we get

(4.11)
c4

m
<

r0c3

v1
.

By (4.11) and our hypothesis we arrive at the following inequality

ε1 − ε2 <
r0c3

v1

or equivalently

(4.12) 2r0c3 − v1(ε1 − ε2) > r0c3.
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Since v1 < v2 and (|λn|) is strictly increasing we have

v1

(∣∣∣λv2

λv1

∣∣∣− 1
)
> v1

(∣∣∣λv1+1

λv1

∣∣∣− 1
)

and in view of property (2.5) (recall that v1 > m > n0)

(4.13) rv1

(∣∣∣λv2

λv1

∣∣∣− 1
)
> 2rc3 > 2r0c3.

By (4.12), (4.13) we get

(4.14) rv1

(∣∣∣λv2

λv1

∣∣∣− 1
)
− v1(ε1 − ε2) > 2r0c3 − v1(ε1 − ε2) > r0c3.

Since c4 := r0c3/2, inequality (4.14) combined with property (2.7) gives

rv1

(∣∣∣λv2

λv1

∣∣∣− 1
)
− v1(ε1 − ε2) >

v1

|λv1 |
2c0,

or equivalently

r
(∣∣∣λv2

λv1

∣∣∣− 1
)
− (ε1 − ε2) >

1
|λv1 |

2c0.

Adding on the left hand side of the previous inequality the positive term

ε2

( |λv2 |
|λv1 |

− 1
)

,

we get that

(r + ε2)
(∣∣∣λv2

λv1

∣∣∣− 1
)
− (ε1 − ε2) >

1
|λv1 |

2c0.

Multiplying both sides of the above inequality by |λv1 | we arrive at

(r + ε2)|λv2 | − (r + ε1)|λv1 | > 2c0,

which implies that the disks B(1), B(2) are disjoint.

LEMMA 4.6. Fix a positive integer m with m>n0. Then the family Bm, defined by

Bm := {Bw : w ∈ Pm} ∪ {B},
consists of pairwise disjoint disks.

Proof. According to Lemma 4.1, we have that B∩ Bw = ∅ for every w ∈ Pm.
So let us fix w1, w2 ∈ Pm with w1 6= w2. We have to show that Bw1 ∩ Bw2 = ∅.
If |w1| = |w2| according to Lemma 4.3, the conclusion follows. So, let us assume
that |w1| 6= |w2|. Now we look at λ(w1), λ(w2). If |λ(w1)| = |λ(w2)|, and keeping
in mind that |λn| = |λn′ | if and only if λn = λn′ , then according to Lemma 4.4,
the corresponding disks Bw1 , Bw2 are disjoint. What remains to be dealt with is
case |λ(w1)| 6= |λ(w2)|. Without loss of generality, assume that |w1| < |w2|. We
shall consider the following two cases.

Case 1. |λ(w1)| < |λ(w2)|. Then according to Lemma 4.2 we conclude that
Bw1 ∩ Bw2 = ∅.
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Case 2. |λ(w1)| > |λ(w2)|. According the definition of partition Pm we have
that Pm is a union of partitions of order 2, so there exist pairs (r1, m1), (r2, m2) for
certain r1, r2 > 0 and m1, m2 positive integers so that w1 ∈ Pr1,m1

2 and w2 ∈ Pr2,m2
2 .

If (r1, m1) 6= (r2, m2), as the proof of Claim 1 in Lemma 4.4 and Lemma 3.5 shows,
it follows that |λ(w1)| < |λ(w2)|, which is a contradiction. Therefore, w1, w2

belong to the same partition of order 2, say Pr′ ,m′
2 . In order to apply Lemma 4.5,

we introduce the following “strange” notation:

r1 := |w2|, r2 := |w1|.

Since w1 ∈ Pr′ ,m′
2 , we have that r1 = |w2| = r′ + ε1 for some 0 6 ε1 < +∞. By a

similar reasoning, we have that r2 = |w1| = r′ + ε2 for a certain positive number
ε2. Observe that ε1 > 0 because |w1| < |w2|. Recall that |w| < r′ + c4/m′ for
every w ∈ Pr′ ,m′

2 ; see Step 4. On the other hand,

Mr′ ,m′ := max{|w| : w ∈ Pr′ ,m′
2 },

by Step 5. Hence, we get

|w1|= r2= r′+ε26Mr′ ,m′< r′+
c4

m′
and |w2|= r1= r′+ε16Mr′ ,m′< r′+

c4

m′
,

from which it follows that

(4.15) ε1 <
c4

m′
.

The inequality |w1| < |w2| implies that ε2 < ε1. From the last and (4.15) we
conclude that

0 < ε1 − ε2 6 ε1 <
c4

m′
.

We also have
λ(w1) = λv2 , λ(w1) = λv1 ,

for some positive integers v1, v2 with v1, v2 > m′, v1 6 m′ + k0m0 − 1 and v1 <

v2. Since w2 = r1e2πiθ′ , w1 = r2e2πiθ′′ for a certain θ′, θ′′ ∈ [θ0, θT), we ap-
ply Lemma 4.5 and the desired result follows. This completes the proof of the
lemma.

5. PROOF OF LEMMA 2.5

Let us fix some j1, s1, k1 ∈ N. We will prove that the set
∞⋃

m=1
E(m, j1, s1, k1) is

dense in (H(C), Tu).
For simplicity we write pj1 = p. Consider a fixed g ∈ H(C), a compact set

C ⊆ C and ε0 > 0. We seek f ∈ H(C) and a positive integer m1 so that

f ∈ E(m1, j1, s1, k1) and(5.1)

sup
z∈C
| f (z)− g(z)| < ε0.(5.2)
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Fix R1 > 0 sufficiently large so that C ∪ {z ∈ C : |z| 6 k1} ⊂ {z ∈ C : |z| 6
R1}. Choose 0 < δ0 < 1 so that

(5.3) if |z| 6 R1 and |z− w| < δ0 then |p(z)− p(w)| < 1
2s1

.

We set

B := {z ∈ C : |z| 6 R1 + δ0}, c0 := R1 + δ0, c1 :=
4π(R1 + δ0)

δ0
,

c2 :=
δ0

2R0
, m0 :=

[R0

r0
c1

]
+ 1, k0 :=

[2(R1 + δ0)

c2

]
+ 1,

c3 any, fixed, positive number and c4 :=
r0c3

2
.

Fix a natural number n0 so that all properties (2.1)–(2.8) hold for every n >
n0 with respect to the above fixed quantities. Let us also fix a positive integer m >
n0. After that, on the basis of the fixed numbers r0, R0, θ0, θT , c0, c1, c2, c3, k0, m0
and the natural number m we define the set Lm as follows:

Lm := B ∪
(⋃

w∈Pm
Bw

)
,

where the discs Bw, w ∈ Pm are constructed in Subsection 4.1. By Lemma 4.6, the
disks in the family Bm are pairwise disjoint. Therefore the compact set Lm has
connected complement. This property is needed in order to apply Mergelyan’s
theorem later. We now define the function h on the compact set Lm by

h(z) =

{
g(z) z ∈ B,
p(z− wλ(w)) z ∈ Bw, w ∈ Pm.

By Mergelyan’s theorem [35] there exists an entire function f (in fact a polyno-
mial) so that

(5.4) sup
z∈Lm

| f (z)− h(z)| < min
{ 1

2s1
, ε0

}
.

By the definition of h and (5.4), it follows that

sup
z∈C
| f (z)− g(z)| 6 sup

z∈B
| f (z)− g(z)| = sup

z∈B
| f (z)− h(z)|

6 sup
z∈Lm

| f (z)− h(z)| < ε0(5.5)

which implies the desired inequality (5.2).
It remains to show (5.1).
Let a ∈ S. We can write a = re2πiθ for a certain r ∈ [r0, R0] and t ∈ [θ0, θT ].

Since Pm =
⋃

Pr′ ,m′
0 , consider all the r′ that appear in the previous union and

order them as follows: r0 < r1 < · · · < rN 6 R0 for a certain N ∈ N. Then either
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there exists a unique ν ∈ {0, 1, . . . , N − 1} so that rν 6 r < rν+1 or rN 6 r 6 R0.
Define

r1 := rν, r2 := rν+1, if rν 6 r < rν+1, and

r1 := rN , r2 := R0, if rN 6 r 6 R0.

Observe that in either case we have r1 6 r 6 r2.
Consider now all the partitions with height r1 and order 0, Pr1,m′

0 that ap-
pear in Pm. By the construction of Pm, either there exists a unique m′ so that the
partition Pr1,m′

0 appears in Pm, in other words there exists a unique partition of
order 0 with height r1, or there exist exactly two different partitions of order 0
and height r1, say Pr1,m′

0 , Pr1,m′′
0 . In the latter case, we consider the partition with

the biggest density, for which we use again the symbol Pr1,m′
0 .

In the above paragraph, we fixed a partition of order 0 and height r1, Pr1,m′
0 .

The positive integer m′ reflects the density of the partition and remember that, in
Step 1,

∆m′ := {θ(m
′)

0 , θ
(m′)
1 , . . . , θ

(m′)
νm′
}.

It now follows that either there exists a unique j ∈ {1, 2, . . . , νm′ − 1} so that

θ
(m′)
j 6 θ < θ

(m′)
j+1 or θ

(m′)
νm′

6 θ 6 θT .

Then we define

θ1 := θ
(m′)
j , θ2 := θ

(m′)
j+1 , if θ

(m′)
j 6 θ < θ

(m′)
j+1 and

θ1 := θ
(m′)
νm′

, θ2 := θT , if θ
(m′)
νm′

6 θ 6 θT .

Let us also define
w0 := r1e2πiθ1 ∈ Pm.

We will now prove that for every z ∈ C with |z| 6 R1 we have z + aλ(w0) ∈ Bw0 .
Remember that Bw0 := B + w0λ(w0). We have Bw0 = D(w0λ(w0), R1 + δ0). Thus,
it suffices to prove that

(5.6) |(z + aλ(w0))− w0λ(w0)| < R1 + δ0, for |z| 6 R1.

For |z| 6 R1 we have

(5.7) |z + aλ(w0)− w0λ(w0)| 6 R1 + |λ(w0)| |re2πiθ − r1e2πiθ1 |.
By (5.7), in order to prove (5.6) it suffices to prove that

(5.8) |λ(w0)| |re2πiθ − r1e2πiθ1 | < δ0.

We have now:

|re2πiθ − r1e2πiθ1 |6 |r1 − r2|+ R0|e2πiθ1 − e2πiθ2 |

6
δ0

2R0
· 1
|λ(w0)|

+ R02 sin(π(θ2 − θ1))
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<
δ0

2R0
· 1
|λ(w0)|

+ 2R0π(θ2 − θ1)

<
δ0

2R0
· 1
|λ(w0)|

+2πR0 ·
δ0

4πR0
· 1
|λ(w0)|

=
δ0

2|λ(w0)|

( 1
R0

+1
)

.

So

|λ(w0)| |re2πiθ − r1e2πiθ1 | < δ0

2

( 1
R0

+ 1
)
< δ0,

because R0 > 1, which implies (5.8). For z with |z| 6 R1 we have

| f (z + aλ(w0))− p(z)| 6 | f (z + aλ(w0))− p(z + λ(w0)(re2πiθ − r1e2πiθ1))|

+ |p(z + λ(w0)(re2πiθ − r1e2πiθ1))− p(z)|.(5.9)

Previously, we proved that for every |z| 6 R1 we have z + aλ(w0) ∈ Bw0 . Thus,
by the definition of h and (5.4) we have

(5.10) | f (z + aλ(w0))− p(z + λ(w0)(re2πiθ − r1e2πiθ1))| < 1
2s1

.

By (5.8) and (5.3) for |z| 6 R1 we have

(5.11) |p(z + λ(w0)(re2πiθ − r1e2πiθ1))− p(z)| < 1
2s1

.

By (5.9), (5.10) and (5.11) we get

sup
|z|6R1

| f (z + aλ(w0))− p(z)| < 1
s1

.

So

(5.12) sup
|z|6k1

| f (z + aλ(w0))− p(z)| < 1
s1

.

Setting
m1 := max{n ∈ N : λn = λ(w) for some w ∈ Pm},

we have that for every a ∈ S there exists w0 ∈ Pm such that λ(w0) = λn for
a certain n ∈ N with n 6 m1 and (5.12) holds. Clearly the last implies that
f ∈ E(m1, j1, s1, k1), (5.1) holds and the proof of Lemma 2.5 is complete.

6. PROOF OF LEMMA 2.3

By Mergelyan’s theorem it easily follows that

U :=
∞⋂

j=1

∞⋂
s=1

∞⋂
k=1

∞⋃
m=1

E(m, j, s, k) ⊆
⋂
a∈S

HC({Tλna}).
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We have to show the reverse inclusion. For every polynomial p of one complex
variable with coefficients in Q+ iQ define the set

U (p) :=
{

f ∈H(C) | ∀ a ∈ S ∃ (mn)⊂N : ∀r>0 lim
n→+∞

sup
|z|6r
|f (z+λmn a)−p(z)|=0

}
.

Let pj, j = 1, 2, . . . be an enumeration of all polynomials of one complex variable
with coefficients in Q+ iQ. We see easily that

(6.1)
⋂
a∈S

HC({Tλna}) =
∞⋂

j=1

U (pj).

For x > 0 and n, j ∈ N define the set

V(x, n, j) :=
{

f ∈H(C) : ∀a∈S ∃m∈N, m6n with sup
|z|6x
|f (z+λma)−pj(z)|<

1
x

}
.

We shall show that the following holds:

(6.2) U (pj) ⊆
⋂

x>0

∞⋃
n=1

V(x, n, j).

Let f ∈ H(C), x0 > 0, j0, m0 ∈ N and consider the set

Vf (j0, x0, m0) :=
{

a ∈ S : sup
|z|6x0

| f (z + λm0 a)− pj0(z)| <
1
x0

}
.

We first show that Vf (j0, x0, m0) is open in S. Let a0 ∈ Vf (j0, x0, m0) and take (aν)
a sequence in S so that aν→a0. We have

sup
|z|6x0

| f (z + λm0 aν)− pj0(z)| 6 sup
|z|6x0

| f (z + λm0 a0)− pj0(z)|

+ sup
|z|6x0

| f (z + λm0 aν)− f (z + λm0 a0)|(6.3)

for every ν = 1, 2, . . . .
The function ϕ : S× D(0, x0)→C defined by ϕ(a, z) = z + λm0 a is continu-

ous, where the set S× D(0, x0) is endowed with the product topology,

ρ : (S×D(0, x0))×(S×D(0, x0))→R+ ρ((β, z1), (γ, z2))=
√
|β−γ|2+|z1−z2|2,

β, γ ∈ S, z1, z2 ∈ D(0, x0).

Setting

ε0 :=
1
x0
− sup
|z|6x0

| f (z + λm0 a0)− pj0(z)|,

we observe that ε0 > 0 since a0 ∈ Vf (j0, x0, m0). By the uniform continuity of f ◦ ϕ

on S×D(0, x0), there exists δ0 > 0 so that for each x, y ∈ S×D(0, x0), ρ(x, y) < δ0
it holds |( f ◦ ϕ)(x)− ( f ◦ ϕ)(y)| < ε0. Since aν→a0, there exists n0 ∈ N such that
|aν − a0| < δ0 for each ν ∈ N, ν > n0. Now for every z ∈ D(0, x0) and ν > n0,
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ν ∈ N, we have ρ((aν, z), (a0, z)) =
√
|aν − a0|2 + |z− z|2 = |aν − a0| < δ0. So

|( f ◦ ϕ)(aν, z)− ( f ◦ ϕ)(a0, z)| < ε0, ν > n0, which in turn implies

(6.4) sup
|z|6x0

| f (z + λm0 a0)− pj0(z)|+ sup
|z|6x0

| f (z + λm0 aν)− f (z + λm0 a0)| <
1
x0

for ν > n0. In view of (6.3) and (6.4) there exists n0 ∈ N so that for every ν > n0,
aν ∈ Vf (j0, x0, m0). From the last we conclude that the set Vf (j0, x0, m0) is open.

Thus, for every f ∈ H(C), j, m ∈ N and every x > 0 the set Vf (j, x, m) is
open in S.

Take g ∈ U (pj0). Then for each a ∈ S there exists a subsequence (λmn(a)) of
(λn) (that depends on a), so that for every r > 0

sup
|z|6r
|g(z + λmn(a)a)− pj0(z)|→0 as n→+ ∞.

In particular we get sup
|z|6x0

|g(z+λmn(a)a)−pj0(z)|→0, as n→+∞. Thus, for ε=1/x0

we have that for every a ∈ S there exists na ∈ N (that depends on a) so that for
each n>na, n∈N, it holds sup

|z|6x0

|g(z+λmn(a)a)−pj0(z)|<1/x0. Therefore, the set

N (j0, x0, g) :=
{

n ∈ N | ∃ a ∈ S : sup
|z|6x0

|g(z + λna)− pj0(z)| <
1
x0

}
is non-empty. It is obvious by the above definitions that

(6.5) Vg(j0, x0, m) ⊂ S for each m ∈ N.

Let a certain a ∈ S. Then there exists n ∈ N (j0, x0, g) so that a ∈ Vg(j0, x0, n).
Hence we get

(6.6) S ⊆
⋃

n∈N (j0,x0,g)

Vg(j0, x0, n).

Now, (6.5) and (6.6) imply S =
⋃

n∈N (j0,x0,g)
Vg(j0, x0, n), so the family Vg(j0, x0, n),

n ∈ N (j0, x0, g) is an open covering of S. Since S is a compact set, there exists a

finite subset A ⊂ N (j0, x0, g), A = {ν1, ν2, . . ., νm0} so that S =
m0⋃

n=1
Vg(j0, x0, νn).

Let `0 := max A. Then for each a ∈ S, there exists n ∈ N, n 6 `0 so that

sup
|z|6x0

|g(z + λna)− pj0(z)| <
1
x0

.

It follows that U (pj0) ⊂ V(x0, `0, j0) for arbitrary x0 > 0, from which we get

(6.7) U (pj0) ⊂
⋂

x>0

∞⋃
n=1

V(x, n, j0).
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Thus (6.2) holds for every j = 1, 2, . . . . It is obvious that

(6.8)
⋂

x>0

∞⋃
n=1

V(x, n, j0) ⊂
∞⋂

m=1

∞⋃
n=1

V(m, n, j0).

By (6.2) and (6.8) we get

(6.9) U (pj) ⊂
∞⋂

m=1

∞⋃
n=1

V(m, n, j) for every j = 1, 2, . . . .

So

(6.10)
∞⋂

j=1

U (pj) ⊂
∞⋂

j=1

∞⋂
m=1

∞⋃
n=1

V(m, n, j).

By (6.1) and (6.10) we have

(6.11)
⋂
a∈S

HC({Tλna}) ⊂
∞⋂

j=1

∞⋂
m=1

∞⋃
n=1

V(m, n, j),

and now it is plain that

(6.12) U ⊂
∞⋂

j=1

∞⋂
m=1

∞⋃
n=1

V(m, n, j).

We consider the following families of sets

D1 :=
{ ∞⋃

n=1

V(m, n, j), m, j ∈ N
}

and D2 :=
{ ∞⋃

m=1

E(s, j, k, m), s, j, k ∈ N
}

.

Clearly D1 ⊆ D2. Thus

(6.13)
⋂

E∈D2

E ⊂
⋂

V∈D1

V.

Let E = E(s, j, k, m) for some s, j, k, m ∈ N. Then V(`, m, j) ⊂ E for ` = max{s, k}.
Hence, for every E ∈ D2 there exists Γ ∈ D1 such that Γ ⊂ E. If we set D̃ = {Γ ∈
D1 | ∃ E ∈ D2 : Γ ⊂ E}, it follows that

⋂
Γ∈D̃

Γ ⊂ ⋂
E∈D2

E. But then

(6.14)
⋂

V∈D1

V ⊂
⋂

Γ∈D̃

Γ ⊂
⋂

E∈D2

E.

By (6.12), (6.13) and (6.14) we have

(6.15) U =
∞⋂

j=1

∞⋂
m=1

∞⋃
n=1

V(m, n, j).

Now (6.11) and (6.15) yield

(6.16)
⋂
a∈S

HC({Tλna}) ⊂ U

and the proof of Lemma 2.3 is complete.
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The above lemma holds with the same proof for every compact subset K ⊆
C \ {0} instead of S and for every sequence of non-zero complex numbers (λn)
so that λn→∞ as n→+ ∞.

7. FINAL STEP OF THE PROOF OF THEOREM 1.2

To conclude the proof of Theorem 1.2, we need the following three elemen-
tary lemmas.

LEMMA 7.1. Let (λn) be a sequence of non-zero complex numbers such that λn→
∞ as n→ + ∞. Suppose that lim sup

n→+∞
|λn+1/λn| = 1. Then for any fixed positive

numbers M1, M2, there exists a subsequence (µn) of (λn) with the following properties:
(i) |µn+1| − |µn| > M1, for every n = 1, 2, . . .;

(ii) |µn+1/µn|→1 as n→+ ∞;
(iii) lim inf

n→+∞
(n(|µn+1/µn| − 1)) > M2.

Proof. We prove this lemma in three steps.
Step 1. We construct a subsequence (θn) of (λn) so that (|θn|) is strictly

increasing and |θn+1/θn|→1 as n→+ ∞.
Step 2. We construct a subsequence (kn) of (θn) so that |kk+1| − |kn| > M1

∀n = 1, 2, . . . and |kn+1/kn|→1 as n→+ ∞.
Step 3. Finally, we construct a subsequence (µn) of (kn) which has the three

properties (i), (ii) and (iii) of the lemma.

Proof of Step 1. We set θ1 := λ1. Let n1 > 2 be the smallest natural number
so that |λn1 | > |λ1|. Define θ2 := λn1 . Suppose now that we have inductively
constructed the numbers λn1 , λn2 , . . ., λnk for a certain k > 2, where |λni+1 | > |λni |
and ni+1 is the smallest natural number so that ni+1 > ni and |λni+1 | > |λni | for
every i = 1, 2, . . ., k − 1. Set θi+1 = λni for i = 1, . . ., k. Next we consider the
number λnk+1 , where nk+1 is the smallest natural number with nk+1 > nk + 1,
and so that |λnk+1 | > |λnk |, and we set θk+2 = λnk+1 .

So, we have constructed a subsequence (θn) of (λn) so that the sequence
(|θn|) is strictly increasing. For every k ∈ N we have

1 <
∣∣∣λnk+1

λnk

∣∣∣ 6 ∣∣∣ λnk+1

λnk+1−1

∣∣∣
and by our assumptions on (λn) we conclude that |θn+1|/|θn| → 1.

Proof of Step 2. Now we construct a subsequence of (θn) as follows. We set
k1 := θ1. Let v1 be the smallest natural number so that v1 > 2 and |θv1 | >
|k1|+ M1. Set now k2 := θv1 . Suppose that we have inductively constructed the
numbers θ1, θv1 , . . ., θvm for a certain m > 2, where vi+1 is the smallest natural
number so that |θvi+1 | > |θvi |+ M1 and vi+1 > vi for each i = 1, . . ., m− 1. Then
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set ki+1 = θvi for i = 1, . . ., m. Next we consider the smallest natural number
vm+1 > vm + 1 so that |θvm+1 | > |θvm |+ M1 and we set km+2 = θvm+1 .

Therefore we have constructed a subsequence (kn) of (θn) where |kn+1| >
|kn| + M1 for each n = 1, 2, . . .. For every m = 1, 2, . . . it holds that |θvm | 6
|θvm+1−1| 6 |θvm |+ M1, which implies

(7.1) 1 6
∣∣∣ θvm+1−1

θvm

∣∣∣ 6 1 +
M1

|θvm |
.

On the other hand we have

1 <
∣∣∣ θvm+1

θvm+1−1

∣∣∣, m = 1, 2, . . . and(7.2)

lim
n→+∞

∣∣∣ θn+1

θn

∣∣∣ = 1.(7.3)

By (7.1), (7.2) and (7.3) we conclude that |kn+1|/|kn| → 1 as n→+ ∞.

Proof of Step 3. We construct inductively a subsequence (µn) of (kn) as fol-
lows. Set µ1 := k1. Let σ1 be the smallest natural number so that σ1 > 2 and
|kσ1 | > |k1|(1 + M2/1) and then define µ2 := kσ1 . After, let σ2 be the smallest
natural number so that σ2 > σ1 + 1 , kσ2 > µ2 + 1 and |kσ2 | > |kσ1 | · (1 + M2/2)
and define µ3 := kσ2 . In this way, we construct inductively a subsequence (µn) of
(kn) so that for every n = 2, 3, . . . the natural number σn is the smallest with the
following properties: kσn > µn + 1, σn > σn−1 + 1,

(7.4) |µn+1| > |µn|
(

1 +
M2

n

)
,

and µn+1 = kσn .

As a consequence of the above construction we get

1 6
∣∣∣ kσn+1−1

kσn

∣∣∣ < 1 +
M2

n + 1
, n = 1, 2, . . .(7.5)

1 <
∣∣∣ kσn+1

kσn+1−1

∣∣∣, n = 1, 2, . . .(7.6) ∣∣∣ kn+1

kn

∣∣∣→1 as n→+ ∞.(7.7)

By (7.5), (7.6) and (7.7) we conclude that |µn+1|/|µn| → 1 as n→+ ∞ and the se-
quence (µn) has all the desired properties. This completes the proof the lemma.

LEMMA 7.2. Let (λn) be a sequence of non-zero complex numbers so that λn→∞
as n→+ ∞. Suppose that

lim sup
n→+∞

∣∣∣λn+1

λn

∣∣∣ 6 1 + ε

for some ε > 0. Then for every pair (M1, M2) of positive numbers there exists a subse-
quence (µn) of (λn) with the following properties:
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(i) |µ1| > M1;
(ii) |µn+1| − |µn| > M1, n = 1, 2, . . .;

(iii) lim sup
n→+∞

|µn+1/µn| 6 1 + ε;

(iv) lim inf
n→+∞

(n(|µn+1/µn| − 1)) > M2.

Proof. The proof is almost identical to the proof of Lemma 7.1. The only
difference is that, whenever needed, instead of lim sup

n→+∞
|λn+1/λn| = 1 we use

lim sup
n→+∞

|λn+1/λn| 6 1 + ε.

By Lemma 7.2, along with elementary considerations, we obtain the follow-
ing lemma, whose proof is left to the interested reader.

LEMMA 7.3. Let Λ := (λn) be a fixed sequence of non-zero complex numbers
such that λn→∞ as n→+ ∞. Then i(Λ) = 1 if and only if for every positive number
σj, j = 1, 2, 3, 4, 5 and positive integers m0, k0 with m0 > [σ1] + 1, k0 > [σ3] + 1 there
exist a subsequence (µn) of (λn) and a positive integer n0 so that for every n > n0 the
following five properties hold:

(i) |µn| ·
m0−1

∑
k=0

(1/|µn+k|) > σ1;

(ii) |µn+1| − |µn| > σ2;

(iii) |µn| ·
k0
∑

i=1
(1/|µn+im0−1|) > σ3;

(iv) n(|µn+1/µn| − 1) > σ4;
(v) n/|µn| < σ5.

Proof of Theorem 1.2. A careful inspection of the proof of Proposition 2.2
shows that the conclusion of Proposition 2.2 holds whenever the sequence (λn)
has a subsequence µn that satisfies the properties (2.1)–(2.8) in Subsection 2.1. It
readily follows that ⋂

a∈S
HC({Tλna})

is Gδ and dense subset of (H(C), Tu). Then, applying Baire’s category theorem
once more, and referring to the discussion after the statement of Theorem 2.1, we
conclude the proof of Theorem 1.2.

8. EXAMPLES OF SEQUENCES Λ := (λn) WITH i(Λ) = 1

Let Λ = (λn) be a sequence of non-zero complex numbers. Define the set

B(Λ) :=
{

a ∈ [0,+∞] : ∃(µn) ⊂ Λ with a = lim sup
n

∣∣∣µn+1

µn

∣∣∣}.
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Observe now that, by definition, i(Λ) = infB(Λ) and whenever λn → ∞ then
B(Λ) ⊂ [1,+∞]. We shall present four distinct classes of sequences Λ := (λn) sat-
isfying the property i(Λ) = 1 in order to illustrate our main result, Theorem 1.2.

8.1. EXAMPLES WITH λn → ∞ AND |λn+1|/|λn| → 1. A sample of sequences
satisfying the previously mentioned properties is: n, n2, p(n) where p is a non-
constant complex polynomial, log n, nβ log n, β > 0, nγ/ log(n + 1), γ > 2
etc. Of course, one can assign fixed unimodular numbers with arbitrary argu-
ments to each term of the above sequences and still satisfy the desired properties
i.e. eiθn n2, eiθn log n for θn ∈ R, etc.

A more interesting example is the sequence enc
, for 0 < c < 1, which has

super-polynomial growth. Observe that the case c = 1, is borderline for the va-
lidity of Theorem 1.2. Indeed, as we already mentioned in the Introduction,⋂

a∈{z:|z|=1}
HC({Tena}) = ∅,

through the main result in [25].
A last family of sequences, satisfying the above properties, which we would

like to mention is the following: en/log n, en/log log n, etc. Note that such sequences
grow faster than any sequence of the form enc

, 0 < c < 1.

8.2. EXAMPLES WITH λn → ∞, THE LIMIT lim
n→+∞

|λn+1/λn| DOES NOT EXIST, BUT

lim sup
n
|λn+1/λn| = 1. There is a plethora of sequences exhibiting such behav-

ior. For instance, set λ1 = 1. We shall define the sequence (λn) inductively
according to the following rule. If for a certain k ∈ N there exists n ∈ N so that
λk = n2, then define

λk+i := n + i− 1 for every i = 1, 2, . . . , n2 + n + 2.

It is easy to show that the sequence (λn) has the desired properties.

8.3. EXAMPLES WITH λn → ∞, lim sup
n
|λn+1/λn| > 1 AND lim sup

n
|µn+1/µn|

= 1 FOR SOME SUBSEQUENCE (µn) OF (λn). Take λ2n+1 = n, λ2n = 2n for n =
1, 2, . . . or more generally, fix a sequence of positive numbers γn satisfying γn →
∞, γn+1/γn → 1, consider a strictly increasing sequence (mn) of positive integers
with mn > n for every n = 1, 2, . . . and then define λmn = γn so that it is correct
for {ρ1 < ρ2 < · · · } := N \ {mn : n = 1, 2, . . .} define λρn to be any positive
number so that λρn → +∞ and λρn+1 /λρn → c for a certain c ∈ (1,+∞].

8.4. EXAMPLES WITH λn → ∞, infB(Λ) /∈ B(Λ) AND i(Λ) = 1. In all the above
examples, we have that infB(Λ) ∈ B(Λ). This means that the above infimum
becomes minimum. We shall now differentiate from this situation by exhibiting
examples of Λ = (λn) such that λn → ∞, i(Λ) = 1 and for every subsequence
(µn) of (λn) we have lim sup

n
|µn+1/µn| > 1. To produce such an example is not
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an easy task, as it requires a considerable amount of work, though elementary,
concerning a particular representation of positive integers involving powers of
10. Therefore, we omit the details and we just state the following lemma without
proof.

LEMMA 8.1. For every positive integer n > 11 there exists a unique trio (ν, k, j)
with ν ∈ N \ {1}, k ∈ {1, 2, . . . , ν}, j ∈ {1, 2, . . . , 10k} such that

n =
10
9

(10
9
(10ν−1 − 1)− ν + 10k−1

)
+ j.

Define now the sequence (λn) by

λn =
(

1 +
1
k

)(ν−k+1)10k+j
for n > 11,

where for every given positive integer n with n > 11, the numbers ν, k, j are
uniquely determined by Lemma 8.1. It turns out, after a lengthy argument, that
the sequence (λn) has the desired properties.
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