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ABSTRACT. We develop methods for computing graded K-theory of C∗-algeb-
ras as defined in terms of Kasparov theory. We establish graded versions
of Pimsner’s six-term exact sequences for graded Hilbert bimodules whose
left action is injective and by compacts, and a graded Pimsner–Voiculescu se-
quence. We introduce the notion of a twisted P-graph C∗-algebra and estab-
lish connections with graded C∗-algebras. Specifically, we show how a functor
from a P-graph into the group of order two determines a grading of the associ-
ated C∗-algebra. We apply our graded version of Pimsner’s exact sequence to
compute the graded K-theory of a graph C∗-algebra carrying such a grading.
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1. INTRODUCTION

This paper has two objectives. The first is to develop techniques for com-
puting graded K-theory of C∗-algebras as defined in terms of Kasparov theory,
with a view to expanding on Haag’s computation of graded K-theory of Cuntz
algebras [15], [14]. The second is to introduce twisted P-graph C∗-algebras, gen-
eralising [3], [4], [36], and use them to study connections between Z2-gradings
of C∗-algebras, and the twisted k-graph C∗-algebras studied in [24], [26]. The
idea is that Z2-valued functors on P-graphs determine gradings of the associated
C∗-algebras. The twisted C∗-algebras associated to {−1, 1}-valued 2-cocycles on
cartesian products of P-graphs can then be used to model graded tensor products
of graded C∗-algebras.

We begin by discussing graded K-theory for C∗-algebras. Though K-theory
for graded Banach algebras has been extensively studied by Karoubi (see, for ex-
ample, [19]), the modern literature on complex graded C∗-algebras essentially
begins with the work of Kasparov [20], [21] on KK-theory. Various definitions
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of graded K-theory for graded C∗-algebras have been used in the literature (see
[5], [6], [13], [14], [15], [38], [42] to name but a few). We take as our definition of
Kgr

0 (A) the Kasparov group KK(C, A) for the graded C∗-algebra A, and likewise
define Kgr

1 (A) := KK(C, A ⊗̂Cliff1) where Cliff1 is the first complex Clifford al-
gebra (this reduces to the usual K-theory for C∗-algebras if A is trivially graded).
We establish that perturbing the grading of a C∗-algebra A by conjugation by an
odd self-adjoint unitary inM(A) does not alter the graded K-theory of A. In par-
ticular, we show that the graded K-theory of the crossed product of a C∗-algebra
A by its grading automorphism is identical to the graded K-theory of A ⊗̂Cliff1.

To help compute graded K-theory in examples, we revisit the work of Pim-
sner in [32] to show that his six-term exact sequences in KK-theory for Cuntz–
Pimsner algebras are also valid, with appropriate modifications, for graded C∗-
algebras. Unlike Pimsner, we restrict to Hilbert bimodules in which the left action
is both compact and injective. We obtain a six-term exact sequence in graded K-
theory, which in turn gives a Pimsner–Voiculescu sequence for graded crossed
products by Z.

We next develop substantial classes of graded C∗-algebras to which we can
apply our theorems. We introduce twisted P-graph C∗-algebras by straightfor-
ward generalisation of the notion of a twisted k-graph algebra. We establish a
number of fundamental structure results for these C∗-algebras, including a ver-
sion of the gauge-invariant uniqueness theorem, to help us make identifications
between these C∗-algebras and key examples later in the paper. We prove that if
P has the form Nk × F where F is a countable abelian group, then every P-graph
is a crossed product of a k-graph by an action of the group F, in a sense analogous
to that studied in [9].

We next discuss how a functor from a P-graph to Z2 induces gradings of the
associated twisted C∗-algebras. We show that if Z2 denotes a copy of the order-
two group Z2, regarded as a Z2-graph with one vertex, then C∗(Z2), under the
grading induced by the degree functor, is isomorphic to Cliff1. More generally,
we consider the situation where P = Nk × Zl

2. Any P-graph Λ carries both a
natural functor δΛ taking values in Z2, and a natural {−1, 1}-valued 2-cocycle cΛ.
We establish a universal description of the graded twisted C∗-algebra determined
by this functor and cocycle.

These threads come together when we study graded tensor products in
terms of cartesian products of P-graphs. We prove that if Λ is a P-graph, Γ is
a Q-graph, and we consider the associated graded, twisted C∗-algebras for the
functors and cocycles described in the preceding paragraph, then the graded ten-
sor product (the C∗-algebras are nuclear, so there is only one possible C∗-algebraic
tensor product) is isomorphic to the graded twisted C∗-algebra of the (P × Q)-
graph Λ× Γ under its own natural cocycle and functor. Combining this with the
results of previous sections, we show that the higher complex Clifford algebras
can be realised as graded twisted P-graph C∗-algebras for appropriate P, and also
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that graded tensor products of graded twisted P-graph C∗-algebras with Cliff1
can be realised as graded twisted (P×Z2)-graph algebras.

We apply our graded Pimsner sequence to the C∗-algebras of row-finite 1-
graphs E with no sources under gradings of the sort discussed above. The result
is an elegant generalisation of the well-known formula for the K-theory of the
C∗-algebra of a row-finite directed graph with no sources: if Aδ denotes the E0 ×
E0 matrix with Aδ(v, w) = ∑

e∈vE1w
(−1)δ(e), then the graded K-groups of C∗(E)

are the cokernel and kernel of 1 − At
δ. This recovers Haag’s formulas for the

graded K-theory of Cuntz algebras [14]. If δ(e) = 1 for all e (this corresponds to
the grading of C∗(E) coming from the order-two element of the gauge action),
then Aδ is the negative of the usual adjacency matrix AE, and so Kgr

∗ (C∗(E)) is
given by the cokernel and kernel of 1+ At

E. We also apply our results to compute
the graded K-theory of certain crossed-products of graph algebras by Z2. Our
examples and results lead us to conjecture that the graded K0-group of a C∗-
algebra can be described along the lines of the standard picture of ungraded K0,
as a group generated by equivalence classes of graded projective modules.

We begin by collecting relevant background in Section 2. In Section 3 we
introduce graded K-theory in terms of Kasparov theory, and establish some fun-
damental results about it. In Section 4 we establish graded versions of Pimsner’s
six-term exact sequences for Hilbert bimodules with injective left actions by com-
pacts (see Theorem 4.4) and apply them to obtain a graded Pimsner–Voiculescu
sequence for crossed products by Z (Corollary 4.7). In Section 5 we introduce
twisted P-graph C∗-algebras and establish the basic structure theory for them
that we will need later in the paper. In Section 6, we discuss gradings of P-graph
C∗-algebras induced by functors on the underlying P-graphs. In Section 7, we
establish our main results about graded tensor products of graded P-graph C∗-
algebras: Theorem 7.1 shows that for appropriate gradings and twisting cocy-
cles, we have C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ) ∼= C∗(Λ× Γ, cΛ×Γ). In Section 8, we ap-
ply our results from Section 4 to calculate graded K-theory for graph C∗-algebras
(Lemma 8.2). We apply this lemma and our graded Pimsner–Voiculescu sequence
to some illustrative examples. We conclude in Section 9 by formulating our con-
jecture about the structure of the graded K0 group.

2. BACKGROUND

NOTATION. We will denote the cyclic group of order n by Zn. We frequently
regard Z2 = {0, 1} as a ring, so we always use additive notation for the group
operation, and make any identification of Z2 with {−1, 1} ⊆ T explicit. We typi-
cally denote the multiplication operation in the ring Z2 by ·.
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GRADED C∗-ALGEBRAS. Let A be a C∗-algebra. A grading of A is an automor-
phism α of A such that α2 = 1 (α is sometimes referred to as the grading auto-
morphism). We define

A0 := {a ∈ A : α(a) = a} and A1 := {a ∈ A : α(a) = −a}.

So A0, A1 are closed, linear, self-adjoint subspaces of A and satisfy Ai Aj ⊂ Ai+j
for i, j ∈ Z2. We have A = A0 ⊕ A1 as a Banach space. Note that A0 is a C∗-
subalgebra of A. Elements of A0 are called even and elements of A1 are called odd.
To calculate A0 and A1, it is helpful to note that

(2.1) A0 =
{

a+α(a)
2 : a ∈ A

}
and A1 =

{
a−α(a)

2 : a ∈ A
}

.

If a ∈ Ai then we say that a is homogeneous of degree i and write ∂a = i; in
particular ∂a is an element of the group Z2. If α is the identity map on A then
A0 = A and A1 = {0}. The resulting grading is called the trivial grading. Since
a C∗-algebra may admit several different gradings (we discuss explicit examples
of this in Examples 8.5 below), we shall frequently write a C∗-algebra A with
grading α as the pair (A, α).

A graded C∗-algebra is inner-graded if there is a self-adjoint unitary (called
a grading operator) U ∈ M(A) such that α(a) = UaU for all a ∈ A. In Sec-
tion 14.1 of [2] Blackadar calls an inner-grading even. A graded homomorphism
π : (A, α)→ (B, β) between graded C∗-algebras is a homomorphism from A to B
which intertwines the gradings (i.e. π ◦ α = β ◦ π).

Given a graded C∗-algebra (A, αA) and homogeneous elements a, b ∈ A, the
graded commutator [a, b]gr is defined as [a, b]gr = ab − (−1)∂a·∂bba. This formula
extends to arbitrary a and b by bilinearity. In particular, if a ∈ A1, then

(2.2) [a, b]gr = ab− αA(b)a and [b, a]gr = ba− aαA(b).

If A is trivially graded, then [a, b]gr reduces to the usual commutator [a, b] =
ab− ba.

There is a graded tensor product operation for graded C∗-algebras, defined
as follows. Let (A, α), (B, β) be graded C∗-algebras, and A� B be their algebraic
tensor product. This becomes a ∗-algebra when endowed with multiplication and
involution given by

(a ⊗̂ b)(a′ ⊗̂ b′) = (−1)∂b·∂a′ aa′ ⊗̂ bb′ and (a ⊗̂ b)∗ = (−1)∂a·∂ba∗ ⊗̂ b∗

for homogeneous elements a, a′ ∈ A and b, b′ ∈ B. We decorate the � symbol
with a hat, �̂, to indicate that we are using this ∗-algebra structure on the al-
gebraic tensor product. We write A ⊗̂ B for the closure of the image of A�̂B in
B(H ⊗̂ K) under the tensor-product representation πH ⊗ πK of faithful graded
representations πH : A → B(H) and πK : B → B(K). (If either A or B is nuclear
then this agrees with the maximal norm.)

The grading automorphism of A ⊗̂ B is α ⊗̂ β. So a ⊗̂ b is homogeneous of
degree ∂a + ∂b (the addition takes place in Z2) if a and b are both homogeneous.
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Writing Ai ⊗̂ Bj for the closed linear span in A ⊗̂ B of {a ⊗̂ b : a ∈ Ai and b ∈ Bj},
we have

(A ⊗̂ B)0 = A0 ⊗̂ B0 + A1 ⊗̂ B1 and (A ⊗̂ B)1 = A0 ⊗̂ B1 + A1 ⊗̂ B0.

It is straightforward to show that the graded tensor product operation is asso-
ciative (modulo the natural isomorphism (a ⊗̂ b) ⊗̂ c 7→ a ⊗̂ (b ⊗̂ c)). We have
A ⊗̂ B ∼= B ⊗̂ A as graded C∗-algebras. For this and other basic facts about graded
C∗-algebras we refer the reader to Section 14 of [2].

It may aid intuition to observe that for unital graded C∗-algebras A, B, un-
der this grading we have [a ⊗̂ 1B, 1A ⊗̂ b]gr = 0 = [1A ⊗̂ b, a ⊗̂ 1B]

gr for all a ∈ A,
and b ∈ B.

An example of a graded C∗-algebra that we shall use very frequently is
M2n(C) with grading automorphism α(θi,j) = (−1)i−jθi,j. This is an inner grad-
ing, as it is implemented by the grading operator U ∈ M2n(C) given by Ui,j =

(−1)iδij. We often write M̂2n(C) to emphasise that we are using this grading.

CLIFFORD ALGEBRAS OVER C. We refer to Section 14 of [2] (see also Section 2
of [20]). Following Examples 14.1.2(b) of [2] the C∗-algebra A = C ⊕ C has a
grading automorphism α given by α(z, w) = (w, z). So (C ⊕ C)0 = {(z, z) :
z ∈ C} and (C ⊕ C)1 = {(z,−z) : z ∈ C}. This graded C∗-algebra is called
the first (complex) Clifford algebra, and we denote it by Cliff1 with this grading
α implicit. As a graded C∗-algebra Cliff1 is generated by the odd self-adjoint
unitary u = (1,−1), because, for (z, w) ∈ Cliff1, we can write

(z, w) =
1
2
(z + w, z + w) +

1
2
(z− w, w− z) =

1
2
(z + w)1 +

1
2
(z− w)u.

Note that Cliff1 is not inner-graded (because it is abelian), and is isomorphic to
the group C∗-algebra C∗(Z2) with grading given by the dual action of Ẑ2 ∼= Z2.

The higher complex Clifford algebras are defined inductively: Cliffn+1 =

Cliffn ⊗̂Cliff1 for n > 1. It is straightforward to show that Cliff2 ∼= M̂2(C) as
graded C∗-algebras (see also Example 6.3(iii)). Observe that Cliffn is generated
by n mutually anticommuting odd self-adjoint unitaries.

GRADED HILBERT MODULES. Suppose that B is a graded C∗-algebra. A graded
(right) Hilbert B-module is a Hilbert B-module X together with a decomposition
of X as a direct sum of two closed subspaces X0 and X1 compatible with the
grading of B in the sense that Xi · Bj ⊂ Xi+j and 〈Xi, Xj〉 ⊂ Bi+j (the graded
components Xi need not be Hilbert submodules). We define the grading operator
αX on X on homogeneous elements by αX(x) = (−1)jx if x ∈ Xj. This αX is
not necessarily an adjointable operator. Given a graded Hilbert B-module X we
write Xop for the same Hilbert B-module with the grading components switched
(so αXop = −αX). The grading operator on X induces a grading α̃X on L(X) given
by

(2.3) α̃X(T) = αX ◦ T ◦ αX for all T ∈ L(X).
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Under this induced grading, T is homogeneous of degree j if and only if TXk ⊆
Xj+k for j, k ∈ Z2. For ξ, η ∈ X we write θξ,η for the generalised compact oper-
ator θξ,η(ζ) = ξ · 〈η, ζ〉B. The grading α̃ of L(X) restricts to a grading of K(X)
satisfying α̃X(θξ,η) = θαX(ξ),αX(η)

.
Naturally B may be regarded as a graded Hilbert B-module BB with inner

product 〈a, b〉B = a∗b, right action given by multiplication, and grading operator
αB. We write HB for the graded Hilbert B-module obtained as the direct sum
of countably many copies of BB. We define ĤB := HB ⊕H

op
B . If X is a graded

Hilbert B-module, then X ⊕ ĤB ∼= ĤB by Kasparov’s stabilisation theorem (see
Theorem 14.6.1 of [2]).

A graded Hilbert B-module which is a finitely generated projective mod-
ule will be called a graded projective B-module throughout the paper. If X is a
graded projective B-module, then K(X) = L(X) and so in particular 1X ∈ K(X).
Kasparov’s stabilisation theorem implies that every graded projective B-module
X is isomorphic to pĤB for some even projection p ∈ K(ĤB). Moreover pĤB
is a graded projective B-module for any such projection. Given even projections
p, q ∈ K(ĤB), we have pĤB ∼= qĤB if and only if there is an even partial isometry
v ∈ K(ĤB) such that p = v∗v and q = vv∗.

C∗-CORRESPONDENCES AND CUNTZ–PIMSNER ALGEBRAS. Here, we briefly re-
cap the notion of a C∗-correspondence and of the associated Cuntz–Pimsner alge-
bra and its Toeplitz extension. For a detailed introduction to C∗-correspondences,
see [27], [35]. For more background on Cuntz–Pimsner algebras, see [32] and Sec-
tion 8 of [33].

Given C∗-algebras A and B, an A-B-correspondence X is a pair (φ, X) con-
sisting of a right-Hilbert B-module X and a homomorphism φ : A → L(X).
We regard φ as implementing a left action of A on X by adjointable operators,
so we often write φ(a)x = a · x for a ∈ A and x ∈ X. We say that X is full if
span{〈ξ, η〉B : ξ, η ∈ X} = B. Any right-Hilbert B-module X may be regarded as
a C-B correspondence, and we write ` for the canonical left action of C by scalar
multiplication. We say that X is countably generated if there is a sequence (xi)

∞
i=1

in X such that X = span{xi · b : i > 1, b ∈ B}. Note that BB is a countably
generated correspondence if B is σ-unital (so in particular if B is separable).

If B is a C∗-algebra then there is an isomorphism ofM(B) onto L(BB) that
carries a multiplier m to the operator of left-multiplication by m on A. So any
homomorphism φ : A → M(B) determines an A-B-correspondence structure
on BB. We denote this correspondence by φB. The isomorphism of M(B) onto
L(BB) carries B onto K(BB), so the left action of A on φB is by compacts if and
only if φ takes values in B.

If (φ, X) is an A-B-correspondence and (ψ, Y) is a B-C-correspondence, then
the internal tensor product X⊗ψ Y is formed as follows: define [·, ·]C on the alge-
braic tensor product X � Y by sesquilinear extension of the formula [x � y, x′ �
y′]C := 〈y, ψ(〈x, x′〉B)y′〉C. Let N = {ξ ∈ X � Y : [ξ, ξ]C = 0}. Then X ⊗ψ Y is
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defined to be the completion of (X�Y)/N in the norm determined by the inner-
product 〈ξ + N, η + N〉C = [ξ, η]C. For x ∈ X and y ∈ Y, we write x ⊗ y for
(x� y) + N ∈ X ⊗ψ Y. There is then a homomorphism ψ̃ : L(X) → L(X ⊗ψ Y)
given by

(2.4) ψ̃(T)(x⊗ y) = (Tx)⊗ y for all x ∈ X, y ∈ Y and T ∈ L(X).

In particular, ψ̃ ◦ φ is a homomorphism of A into L(X⊗ψ Y), making X⊗ψ Y into
an A-C-correspondence with

a · (x⊗ y) = ψ̃(φ(a))(x⊗ y) = (a · x)⊗ y.

When the actions φ, ψ are clear from context, we frequently write X⊗B Y instead
of X ⊗ψ Y. If φ : A → B and ψ : B → C are homomorphisms and ψ is nondegen-
erate, then φB⊗C ψC ∼= ψ◦φC under an isomorphism taking b⊗ c to ψ(b)c.

If X is an A-A correspondence, then we can form its tensor powers X
⊗

n

given by X
⊗

0 := A, X
⊗

1 := X and X
⊗
(n+1) := X ⊗A X

⊗
n. The Fock space of

X is the completion FX of the algebraic direct sum
∞⊕

n=0
X
⊗

n in the norm com-

ing from the inner product 〈⊕n xn,
⊕

n yn〉A = ∑
n
〈xn, yn〉A. This FX is a C∗-

correspondence over A with respect to the pointwise actions. Observe that FX
is full (and hence is a K(FX)-A imprimitivity bimodule) even if X is not, but that
the left action of A onFX is not by compacts even if the action of A on X is (unless
X is the zero module).

A representation of X in a C∗-algebra B is a pair (ψ, π) where ψ : X → B is
a linear map, π : A → B is a homomorphism, and we have ψ(a · ξ) = π(a)ψ(ξ),
ψ(ξ · a) = ψ(x)π(a) and π(〈ξ, η〉A) = ψ(ξ)∗ψ(η) for all ξ, η ∈ X and a ∈ A.
There is a universal C∗-algebra TX , called the Toeplitz algebra of X, generated by a
representation (iX , iA) of X. There is also a representation (L1, L0) of X in L(FX)
such that L0(a)ρ = a · ρ for a ∈ A and such that, for ξ ∈ FX , we have L1(ξ)ρ = ξ⊗
ρ for ρ ∈ ⋃

n>1
X
⊗

n and L1(ξ)a = ξ · a for a ∈ X
⊗

0 = A. The universal property of

TX gives a homomorphism L1 × L0 : TX → L(FX) satisfying (L1 × L0) ◦ iX = L1
and (L1 × L0) ◦ iA = L0. Pimsner proves Proposition 3.3 of [32] that L1 × L0 is
injective.

To describe the Cuntz–Pimsner algebra of X, we will restrict attention to
the situation where the left action of A on X is injective and by compacts. As
discussed on page 202 of [32], given a representation (ψ, π) of X in B there is
a homomorphism ψ(1) : K(X) → B such that ψ(1)(θξ,η) = ψ(ξ)ψ(η)∗ for all
ξ, η ∈ X. We say that the representation (ψ, π) is Cuntz–Pimsner covariant, or just
covariant, if ψ(1)(φ(a)) = π(a) for all a ∈ A. The Cuntz–Pimsner algebra OX of
X is the universal C∗-algebra generated by a covariant representation (jX , jA) of
X; so it coincides with the quotient of TX by the ideal generated by elements of
the form iA(a)− i(1)X (φ(a)), a ∈ A. Under our hypotheses, K(FX) ⊆ TX and is

generated as an ideal by {L0(a)− L(1)
1 (φ(a)) : a ∈ A}, and so OX ∼= TX/K(FX).
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If A is a C∗-algebra and α is an automorphism of A, then there is an isomor-
phism of the Cuntz–Pimsner algebra of the A-A correspondence X := α A onto
the crossed product A oα Z that intertwines iA : A → OX with the canonical in-
clusion ι : A ↪→ A oα Z, and carries iX(a) ∈ OX to Uι(a), where U ∈ M(A oα Z)
is the unitary generator of the copy of Z. There is a corresponding isomorphism
of TX onto the natural Toeplitz extension of the crossed product (that is, Stacey’s
endomorphism crossed-product of A by α [44]).

ELEMENTS OF KASPAROV THEORY. We introduce the elements of Kasparov the-
ory needed for our work on graded K-theory later. For more background, see [2].

Let A, B be C∗-algebras, and let X be an A-B-correspondence. Given grad-
ings αA of A and αB of B, a grading operator on X is a map αX : X → X such
that α2

X = 1, αX(a · x · b) = αA(a) · αX(x) · αB(b) for all a, x, b, and αB(〈x, y〉B) =
〈αX(x), αX(y)〉B for all x, y. We call the pair (X, αX) (or just X if the grading op-
erator is understood from context) a graded A-B-correspondence (see, for exam-
ple, [16]).

Given graded C∗-algebras A, B, C, a graded A-B-correspondence (X, αX)
and a graded B-C-correspondence (Y, αY), there is a well-defined grading op-
erator αX ⊗̂ αY on X ⊗̂B Y characterised by (αX ⊗̂ αY)(x ⊗̂ y) = αX(x) ⊗̂ αY(y);
note that if φ : A → B is a graded homomorphism of C∗-algebras, then φB is a
graded Hilbert module.

Recall that a C∗-algebra is said to be σ-unital if it has a countable approxi-
mate identity (or, equivalently, if it has a strictly positive element, see 12.3 of [2]).
If (A, αA) and (B, αB) are σ-unital graded C∗-algebras, then a Kasparov A-B-module
is a quadruple (X, φ, F, αX) consisting of a countably generated A-B-correspon-
dence, (φ, X), a grading operator αX on X, and an odd element F ∈ L(X) that is
odd with respect to the grading α̃X described at (2.3) in the sense that F ◦ αX =
−αX ◦ F and satisfies

(F−F∗)φ(a)∈K(X), (F2−1)φ(a)∈K(X), and [F, φ(a)]gr∈K(X) for all a∈A.

Observe that since F is odd graded, we have [φ(a), F]gr = φ(a)F − Fφ(αA(A))
by (2.2). We say that (X, φ, F, αX) is a degenerate Kasparov module if

(F− F∗)φ(a) = 0, (F2 − 1)φ(a) = 0, and [F, φ(a)]gr = 0 for all a ∈ A.

We say that graded Kasparov modules (X, φ, F, αX) and (Y, ψ, G, αY) are
unitarily equivalent if there is a unitary U ∈ L(X, Y) of degree zero (in the sense
that αYU = UαX) such that UF = GU and Uφ(a) = ψ(a)U for all a ∈ A; that is,
U intertwines the left A-actions.

In what follows, C([0, 1]) always has the trivial grading. Fix a C∗-algebra B.
For each t ∈ [0, 1], define εt : C([0, 1]) ⊗̂ B → B by εt( f ⊗̂ b) = f (t)b. A homotopy
of Kasparov (A, αA)-(B, αB)-modules from (X0, φ0, F0, αX0) to (X1, φ1, F1, αX1) is
a Kasparov A-(C([0, 1]) ⊗̂ B)-module (X, φ, F, αX) such that, for t ∈ {0, 1}, and
with ε̃t : L(X)→ L(X ⊗̂ BBB) as described in (2.4), there is a unitary equivalence
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between the module

(X ⊗̂εt BBB, ε̃t ◦ φ, ε̃t(F), αX ⊗̂ αB)

and (Xt, φt, Ft, αXt). We write (X0, φ0, F0, αX0) ∼h (X1, φ1, F1, αX1) and say that
these two Kasparov modules are homotopy equivalent if there exists a homotopy
from (X0, φ0, F0, αX0) to (X1, φ1, F1, αX1). It is implicit in both [20] and [2] that
homotopy equivalence is an equivalence relation on Kasparov modules, and in-
deed Proposition 18.5.3 of [2] combined with the fact that ∼oh is defined in Defi-
nition 17.2.4 of [2] to be an equivalence relation shows indirectly that homotopy
is an equivalence relation amongst Kasparov A-B-modules provided that A is
separable and B is σ-unital. But, as the anonymous referee points out, it is not ex-
plicitly proved in [20], [2] that ∼h is an equivalence relation, so we have included
a proof in Appendix A for completeness.

We write KK(A, B) for the collection of all equivalence classes of Kasparov
A-B-modules under ∼h. This KK(A, B) forms an abelian group with addition
given by direct sum:

[X, φ, F, αX ] + [Y, ψ, G, αY] = [X⊕Y, φ⊕ ψ, F⊕ G, αX ⊕ αY],

and identity element equal to the class of the trivial module [BB, 0, 0, idB]; this
class coincides with the class of any degenerate Kasparov A-B-module. As de-
tailed in the proof of Proposition 17.3.3 in [2], the (additive) inverse of a class in
KK(A, B) is given by

(2.5) − [X, φ, F, αX ] = [X, φ ◦ αA,−F,−αX ].

Let (A, αA) and (B, αB) be graded C∗-algebras, let (φ, X) be an A-B-corres-
pondence, and suppose that αX is a grading operator on X. If G, H ∈ L(X)
are operators for which (X, φ, G, αX) and (X, φ, H, αX) are both Kasparov A-B-
modules, then an operator homotopy between these Kasparov modules is a norm-
continuous map t 7→ Ft from [0, 1] to L(X) such that (X, φ, Ft, αX) is a Kasparov
module for each t, F0 = G and F1 = H. An operator homotopy is a special case
of a homotopy in the following sense: the space X := C([0, 1], X) is a graded
A-C([0, 1], B)-correspondence with left action given by (φ(a)(x))(t) = φ(a)x(t)
and grading operator (αX(x))(t) = αX(x(t)). Moreover, there is an operator F ∈
L(C([0, 1], X)) given by F(x)(t) = Ft(x(t)), and then (X, φ, F, αX) is a Kasparov
A-C([0, 1], B)-module. Identifying C([0, 1], B) with B ⊗̂ C([0, 1]) in the canonical
way, we see that (X, φ, F, αX) is a homotopy from (X, φ, G, αX) to (X, φ, H, αX).

There is a category whose objects are σ-unital graded C∗-algebras while
the morphisms from A to B are homotopy classes of Kasparov A-B-modules.
The composition in this category is called the Kasparov product, denoted ⊗̂B :
KK(A, B)× KK(B, C)→ KK(A, C). The identity morphism for the object (A, αA)
is the class of (AA, id, 0, αA). Given a Kasparov A-B-module (X, φ, F, αX) and a
Kasparov B-C-module (Y, ψ, G, αY), the Kasparov product

[X, φ, F, αX ] ⊗̂B [Y, ψ, G, αY]
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has the form
[X ⊗̂ψ Y, ψ̃ ◦ φ, H, αX ⊗̂ αY]

for an appropriate choice of operator H; the details are formidable in general, but
we will not need them here. For us it will suffice to consider Kasparov products
in which one of the factors has the form [BB, φ, 0, αB] for some graded homomor-
phism φ : (A, αA)→ (B, αB) of C∗-algebras.

In detail, suppose that φ : (A, αA)→ (B, αB) is a graded homomorphism of
graded C∗-algebras. Since B ∼= K(BB) via the map b 7→ (a 7→ ba), the quadru-
ple (BB, φ, 0, αB) is a Kasparov A-B-module. If (X, ψ, F, αX) is a Kasparov B-C-
module, then (X, ψ ◦φ, F, αX) is also a Kasparov module, whose class in KK(A, C)
we denote by φ∗[X, ψ, F, αX ]. Proposition 18.7.2(b) of [2] shows that

[BB, φ, 0, αB] ⊗̂B [X, ψ, F, αX ] = φ∗[X, ψ, F, αX ].

Likewise, if (Y, ψ, G, αY) is a Kasparov C-A-module, then (Y ⊗̂φ BB, ψ ⊗̂ 1, G ⊗̂
1, αY ⊗̂ αB) is a Kasparov C-B-module whose class we denote by φ∗[Y, ψ, G, αY],
and Proposition 18.7.2(b) of [2] shows that

[Y, ψ, G, αY] ⊗̂A [BB, φ, 0, αB] = φ∗[Y, ψ, G, αY].

Observe that if (A, α) is a graded C∗-algebra, then the discussion above
shows that KK(A, A) is a ring under the Kasparov product, with multiplicative
identity

[idA] := [A, idA, 0, αA].

By definition of the additive inverse (see (2.5)), the tuple (A, αA, 0,−αA) is a Kas-
parov module, and

(2.6) [A, αA, 0,−αA] = −[idA].

3. GRADED K-THEORY OF C∗-ALGEBRAS

In this section, we consider graded K-theory for C∗-algebras. There does
not appear to be a universally-accepted definition of graded K-theory for C∗-
algebras in the literature to date. We have chosen to take Kasparov’s KK-theory
[20] as the basis for our definition (see Definition 17.3.1 of [2]). We establish some
basic properties of graded K-theory; in particular, that both taking graded tensor
products with Cliff1, and taking crossed products by Z2 with respect to a suitable
grading, interchange graded K-groups.

The following definition is used implicitly in [14], [15].

DEFINITION 3.1. Let A be a σ-unital C∗-algebra and let α be a grading au-
tomorphism of A. We define the graded K-theory of A as follows: Kgr

0 (A, α) :=
KK(C, A) and Kgr

1 (A, α) := KK(C, A ⊗̂Cliff1). When α is understood from con-
text we often write Kgr

i (A) for Kgr
i (A, α).
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REMARK 3.2. From the above definition and results from Kasparov the-
ory, we see that Kgr

j is covariantly functorial, continuous with respect to direct
limits, and invariant under graded Morita equivalence. For j > 2 we define
Kgr

j (A) = KK(C, A ⊗̂ Cliffj). The functors Kgr
j satisfy Bott periodicity (see Re-

mark 3.3 below). So we write Kgr
∗ (A) = (Kgr

0 (A), Kgr
1 (A)) as we do for ungraded

K-theory.

Up to isomorphism Definition 3.1 coincides with the usual definition of K-
theory for σ-unital, trivially graded C∗-algebras A (see 18.5.4 of [2]). Furthermore,
if A is inner graded, then Kgr

∗ (A) ∼= K∗(A) (see 14.5.1 and 14.5.2 of [2]).

REMARK 3.3. By definition Kgr
0 (A ⊗̂Cliff1) = KK(C, A ⊗̂Cliff1) = Kgr

1 (A).
We also have a natural isomorphism Kgr

1 (A ⊗̂ Cliff1) ∼= Kgr
0 (A). To see this, re-

call that by Corollary 17.8.8 of [2], we have a natural isomorphism KK(C, A ⊗̂
M̂2(C)) ∼= KK(C, A). Using this at the last step, we calculate

Kgr
1 (A ⊗̂Cliff1) = KK(C, A ⊗̂Cliff1 ⊗̂Cliff1) ∼= KK(C, A ⊗̂ M̂2(C)) = Kgr

0 (A)

as claimed.

EXAMPLE 3.4. Since C is trivially graded we have Kgr
∗ (C) = K∗(C) = (Z, 0).

From Remark 3.3 we have Kgr
i (A ⊗̂Cliff1) = Kgr

i+1(A), and it is easy to show that
C ⊗̂Cliff1

∼= Cliff1. Hence putting A = C we have

Kgr
i (Cliff1) = Kgr

i+1(C) = Ki+1(C) =
{

0 if i = 0,
Z if i = 1.

Since Cliff1 ⊗̂Cliff1 = Cliff2, the preceding paragraph applied with A =
Cliff1 gives Kgr

i (Cliff2) ∼= Ki(C). Repeating this procedure gives Kgr
i (Cliffn) ∼=

Ki+n(C). So Kgr
i (Cliffn) ∼= Z if i + n is even and it is trivial otherwise.

Before moving on to some tools for computing graded K-theory, it is helpful
to relate it to our intuition for ordinary K-theory. We think of K0(A) as a group
generated by equivalence classes of projections in A ⊗ K so that, in particular,
[v∗v] = [vv∗] whenever v is a partial isometry. The following example indicates
that in graded K-theory similar relations hold for homogeneous partial isometries
in graded C∗-algebras, but with an additional dependence on the parity of the
partial isometry in question. We discuss this further in Section 9.

EXAMPLE 3.5. Let A be a graded C∗-algebra with grading automorphism
α and suppose that v is an odd partial isometry in K(ĤA). We obtain graded
Kasparov modules as follows: let p = v∗v and q = vv∗. We let α denote the grad-
ing operator on ĤA and observe that if p ∈ K(ĤA) is a homogeneous projection
then α restricts to a grading operator on the graded submodule pĤA ⊆ ĤA de-
noted α|pĤA

. Recall that ` denotes the action of C by scalar multiplication on

any Hilbert module. We can form the Kasparov modules (pĤA, `, 0, α|pĤA
) and
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(qĤA, `, 0, α|qĤA
). We claim that the classes [pĤA]K and [qĤA]K of these Kas-

parov modules satisfy [pĤA]K = −[qĤA]K in KK(C, A). These are Kasparov
modules becauseK(pĤA) is isomorphic to pK(ĤA)p which is unital with unit p,
and so all adjointables are compact. In particular the zero operator F = 0 trivially
has the property that F2 − 1, F∗ − F and [F, `(a)]gr are compact for all a ∈ C.

To see that [pĤA]K = −[qĤA]K, observe that Ad v implements an isomor-
phism pĤA → qĤA. This isomorphism is odd in the sense that α|qĤA

= Ad v ◦
(−α|pĤA

). We claim that

(3.1) (pĤA ⊕ qĤA, `, 0, α|pĤA
⊕ α|qĤA

)

is operator homotopic to a degenerate Kasparov module. To see this, note that
the module

(3.2)
(

pĤA ⊕ qĤA, `,
(

0 v∗
v 0

)
, α|pĤA

⊕ α|qĤA

)
is a degenerate Kasparov module because Fv :=

(
0 v∗
v 0

)
is self-adjoint, commutes

with `(C) and satisfies F2
v = id. Since the straight-line path from 0 to Fv imple-

ments an operator homotopy from (3.1) to (3.2), we conclude that (3.1) represents
0KK(C,A) as required.

We now discuss how crossed products by Z2 relate to graded K-theory. Let
A be a graded C∗-algebra with grading automorphism α. Let v be an odd self-
adjoint unitary inM(A) and define α̃ = α ◦Ad v. Since α commutes with Ad v,
this makes A bi-graded in the sense that it admits two commuting gradings by
Z2, or equivalently a grading by Z2 × Z2. Let Ajk denote the bihomogeneous
elements of degree j with respect to α and of degree k with respect to Ad v; that
is, a ∈ Ajk if and only if α(a) = (−1)ja and Ad v(a) = (−1)ka. So if a ∈ Ajk, then
α̃(a) = (−1)j+ka. Let Ã denote the C∗-algebra A graded by α̃.

In the following statement and proof, indices in Z2 are denoted j, k, l, and i
is reserved for the imaginary number i =

√
−1.

THEOREM 3.6. With notation as above there is an isomorphism of graded C∗-
algebras φ : A ⊗̂Cliff1 → Ã ⊗̂Cliff1 such that

φ(ajk ⊗̂ ul) = ajk(iv)k ⊗̂ ul ,

where ajk ∈ Ajk for j, k, l ∈ Z2, and u is the odd generator of Cliff1.

Proof. First, we check that φ preserves the grading: the element ajk ⊗̂ ul is
(j + l)-graded in A ⊗̂ Cliff1 (with A graded by α). The element ajk(iv)k ⊗̂ ul is
homogeneous of degree (j + k + k) + l = j + l in Ã ⊗̂Cliff1 with Ã graded by α̃.
In A ⊗̂Cliff1 we compute (ajk ⊗̂ ul)(a′j′k′ ⊗̂ ul′) = (−1)l j′ ajka′j′k′ ⊗̂ ul+l′ . Applying
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φ to both sides, and computing in Ã ⊗̂Cliff1 (with Ã graded by α̃) we obtain

φ(ajk ⊗̂ ul)φ(a′j′k′ ⊗̂ ul′) = (ajk(iv)k ⊗̂ ul)(a′j′k′(iv)
k′ ⊗̂ ul′)

= (−1)l(j′+k′+k′)ajk(iv)ka′j′k′(iv)
k′ ⊗̂ ul+l′ .

Since va′j′k′v = (−1)k′ a′j′k′ , we have (iv)ka′j′k′(iv)
k′ = (−1)k·k′ a′j′k′(iv)

k(iv)k′ . Since

k, k′ belong to the ring Z2, we have ikik′ = (−1)k·k′ ik+k′ . So the factors of (−1)k·k′

cancel, and we obtain

φ(ajk ⊗̂ ul)φ(a′j′k′ ⊗̂ ul′) = (−1)l j′ ajka′j′k′(iv)
k+k′ ⊗̂ ul+l′

= φ((−1)l j′ ajka′j′k′ ⊗̂ ul+l′)

= φ((ajk ⊗̂ ul)(a′j′k′ ⊗̂ ul′)).

The result follows because A is spanned by its bihomogeneous elements.

Recall that M̂2(C) denotes the algebra of 2× 2 complex matrices with the
standard inner grading (so diagonal elements are even and off diagonal elements
are odd). Similarly, let K̂ denote the C∗-algebra of compact operators with the
standard inner grading. We define M̂2(A) := A ⊗̂ M̂2(C) ∼= A ⊗̂ Cliff2 ∼= A ⊗̂
Cliff1 ⊗̂Cliff1.

COROLLARY 3.7. Continuing with the notation of Theorem 3.6, the isomorphism
φ : A ⊗̂Cliff1 → Ã ⊗̂Cliff1 induces a natural isomorphism M̂2(A) ∼= M̂2(Ã), which
in turn induces a natural isomorphism A ⊗̂ K̂ ∼= Ã ⊗̂ K̂. In particular, Kgr

∗ (A) is
naturally isomorphic to Kgr

∗ (Ã).

Proof. By Theorem 3.6, we have a natural isomorphism A ⊗̂ Cliff1
∼= Ã ⊗̂

Cliff1. Hence,

M̂2(A) ∼= A ⊗̂Cliff1 ⊗̂Cliff1
∼= Ã ⊗̂Cliff1 ⊗̂Cliff1

∼= M̂2(Ã)

by the associativity of the graded tensor product. The second assertion then fol-
lows from the canonical isomorphism K̂ ∼= K ⊗̂ M̂2(C). The final statement fol-
lows from the stability of Kasparov theory.

Let B be a graded C∗-algebra with grading automorphism β. By Proposi-
tion 14.5.4 of [2] we have B ⊗̂ Cliff1

∼= B oβ Z2 as C∗-algebras, and the grad-
ing on B ⊗̂ Cliff1 is determined by the automorphism α := (β × 1) ◦ β̂ where β̂
is the grading determined by the dual action on B oβ Z2 under this identifica-
tion. Now let u be the canonical self-adjoint unitary generator of Cliff1 and let
v := 1 ⊗̂ u ∈ M(B ⊗̂ Cliff1). Then v is also an odd self-adjoint unitary (with
respect to the grading α); moreover, we have Ad v = β× 1.

COROLLARY 3.8. With notation as above, if we endow B oβ Z2 with the grading
associated to the dual action, then Kgr

i (B oβ Z2) is naturally isomorphic to Kgr
i (B ⊗̂

Cliff1) = Kgr
i+1(B) for i = 0, 1.
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The proof follows immediately from the final assertion of Corollary 3.7 with
A := B ⊗̂Cliff1 and α := (β× 1) ◦ β̂.

REMARK 3.9. With notation as in the above corollary, observe that since the
canonical embedding B→ Boβ Z2 may be regarded as a graded homomorphism
when B is given the trivial grading and B oβ Z2 is given the dual grading, there
is a natural homomorphism

Ki(B)→ Kgr
i (B oβ Z2) ∼= Kgr

i+1(B) for i = 0, 1.

EXAMPLE 3.10. Let β be the grading automorphism of C(T) defined by the
formula β( f )(z) = f (z). Then there is a short exact sequence of graded C∗-
algebras:

0→ C0(R) ⊗̂Cliff1
ı−→ C(T) ε−→ C⊕C→ 0

where C0(R) and C ⊕ C are trivially graded and ε( f ) = f (1) ⊕ f (−1) for all
f ∈ C(T). Hence by Theorem 1.1 of [42] we have a six-term exact sequence:

Kgr
1 (C⊕C) Kgr

1 (C(T)) Kgr
1 (C0(R) ⊗̂Cliff1).

Kgr
0 (C⊕C)Kgr

0 (C(T))Kgr
0 (C0(R) ⊗̂Cliff1)

ı∗ ε∗

ı∗ε∗

Since Kgr
0 (C0(R) ⊗̂ Cliff1) ∼= Z, Kgr

0 (C ⊕ C) ∼= Z2 and Kgr
1 (C0(R) ⊗̂ Cliff1) =

Kgr
1 (C ⊕ C) = 0, we obtain Kgr

∗ (C(T)) = (Z3, 0) (cf. p. 105 of [14]). It fol-
lows by Corollary 3.8 and Remark 3.3 that Kgr

∗ (C(T) oβ Z2) = (0,Z3). Note
that C(T) oβ Z2 is isomorphic to the C∗-algebra of the infinite dihedral group
ZoZ2 ∼= Z2 ∗ Z2. Under the isomorphism C(T)oβ Z2 ∼= C∗(Z2 ∗ Z2), the dual
grading β̂ becomes the canonical grading on C∗(Z2 ∗ Z2) determined by requir-
ing that both self-adjoint unitary generators be odd. Note that C∗(Z2 ∗ Z2) is the
universal unital C∗-algebra generated by two projections (see [34]).

REMARK 3.11. Let α be the grading of C0(R) given by α( f )(x) = f (−x) for
f ∈ C0(R). A computation similar to the above shows that Kgr

∗ (C0(R)) ∼= (Z2, 0).

4. PIMSNER’S EXACT SEQUENCES FOR GRADED C∗-ALGEBRAS

The main result of this section, Theorem 4.4, shows how to compute the
graded K-theory of the Cuntz–Pimsner algebra of a graded C∗-correspondence
over a nuclear, σ-unital C∗-algebra. We obtain from this theorem a graded ver-
sion of the Pimsner–Voiculescu six-term exact sequence for crossed products in
Corollary 4.7.
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To prove our main theorem we follow Pimsner’s computation of the KK-
theory of the Cuntz–Pimsner algebra OX in Section 4 of [32], keeping track of the
gradings.

SET UP. For the duration of this section we fix a graded, σ-unital, nuclear C∗-
algebra (A, αA), and a graded A-A-correspondence (X, αX) in the sense of Sec-
tion 2.

We assume that the left action ϕ : A → L(X) is injective, by compacts (i.e.
ϕ(A) ⊆ K(X)) and essential in the sense that ϕ(A)X = X. It is not clear that all
of these hypotheses are required for our arguments (for example, Pimsner does
not require that the left action should be by compacts or injective in [32]), but they
simplify the discussion and cover the examples that interest us most.

Recall that there is an induced grading α̃X of L(X) given by α̃X(T) = αX ◦
T ◦ αX .

Let [X] ∈ KK(A, A) denote the class of the Kasparov module (X, ϕ, 0, αX).

LEMMA 4.1. With notation as above, if αA is trivial, then αX ∈ L(X), and it is
an even self-adjoint unitary with respect to α̃X . Let

X0 := span{x + αX(x) : x ∈ A} and X1 := span{x− αX(x) : x ∈ X}.

Then X∼=X0⊕X1 as A-A-correspondences, and in KK(A, A), we have [X]=[X0]−[X1].

Proof. Since αX is idempotent and αA is trivial, for all ξ, η ∈ X we have

〈αX(ξ), η〉A = 〈αX(ξ), α2
X(η)〉A = αA(〈ξ, αX(η)〉A) = 〈ξ, αX(η)〉A.

Hence αX is a self-adjoint unitary in L(X) and since α̃X(αX) = αX ◦ αX ◦ αX = αX
it follows that αX is even. Since αA is trivial, for a, b ∈ A, we have

a · (x± αX(x)) · b = a · x · b± a · αX(x) · b = a · x · b± αX(a · x · b),

so A · Xi, Xi · A ⊆ Xi for i = 0, 1.
For ξ ∈ X0 and η ∈ X1, we have

〈ξ, η〉A = 〈αX(ξ), η〉A = 〈ξ, αX(η)〉A = 〈ξ,−η〉A = −〈ξ, η〉A.

So X0 ⊥ X1, giving X ∼= X0⊕X1 as right-Hilbert A-modules. Since αA is trivial, if
ϕ : A → K(X) is the homomorphism defining the left action, then ϕ(A)Xj ⊆ Xj
for j = 0, 1. So X ∼= X0 ⊕ X1 as C∗-correspondences. We write ϕj : A → K(Xj)
for the homomorphism a 7→ ϕ(a)|Xj .

We now have

(X, ϕ, 0, αX) ∼=
(

X0 ⊕ X1, ϕ0 ⊕ ϕ1, 0,
( 1 0

0 −1
) )

as graded Kasparov modules. The class of the right-hand side is the Kasparov
sum of [X0, ϕ0, 0, id] and [X1, ϕ1, 0,− id]. Since αA = idA we have ϕ1 = ϕ1 ◦ αA,
and so [X1, ϕ1, 0,− id] is precisely the inverse of [X1] = [X1, ϕ1, 0, id] in KK(A, A)
as described at (2.5), and the result follows.
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Whether or not A is trivially graded, computing in XA ⊗̂A XA, for ξ, η ∈ X,
and a ∈ A, we have

αX(ξ · a) ⊗̂ αX(η) = αX(ξ) ⊗̂ αX(a · η),

and using this we see that there is an isometric idempotent operator αX ⊗̂ αX :
X ⊗̂A X → X ⊗̂A X characterised by ξ ⊗̂ η 7→ αX(ξ) ⊗̂ αX(η). So αX induces
isometric operators α⊗n

X : X⊗n → X⊗n. We regard the X⊗n as graded A-A-
correspondences with respect to these operators. When we want to emphasise
this grading, we write X⊗̂n for the tensor-product module. Under this grading, if
ξ1, . . . , ξn are homogeneous, say ξk ∈ Xjk , then ξ1 ⊗̂A · · · ⊗̂A ξn is homogeneous
with degree ∑

k
jk. When convenient we write X⊗̂0 for A.

If A is trivially graded, then Lemma 4.1 shows that each α⊗̂n
X is a self-adjoint

unitary.

Let FX :=
∞⊕

n=0
X⊗̂n be the Fock space of X [32]. Then FX is a C∗-corres-

pondence over A. We write ϕ∞ for the homomorphism A → L(FX) implement-
ing the diagonal left action.

The operator α∞
X :=

∞⊕
n=0

α⊗̂n
X is a grading of FX and the induced grading

on L(FX) restricts to gradings αK and αT of K(FX) and TX respectively. These
satisfy

αK(θξ,η) = θ
α⊗̂n

X (ξ),α⊗̂m
X (η)

and αT (Tξ) = T
α⊗̂n

X (ξ)

for ξ ∈ X⊗̂n and η ∈ X⊗̂m. Since these gradings are compatible with the inclusion
K(FX) ↪→ TX , they induce a grading αO on OX ∼= TX/K(FX).

If A is trivially graded, then Lemma 4.1 shows that αT and αK are inner
gradings; but αO need not be, as we shall see later.

PIMSNER’S SIX-TERM EXACT SEQUENCE IN KK-THEORY. Let iA : A→ TX denote
the canonical inclusion homomorphism. Then iA determines a Kasparov class

(4.1) [iA] = [TX , iA, 0, αT ] ∈ KK(A, TX).

Pimsner constructs a class in KK(TX , A) as follows: let π0 : TX → L(FX)
denote the canonical representation determined by π0(Tξ)ρ := ξ ⊗̂A ρ for ξ ∈ X
and ρ ∈ X⊗̂n. One checks, using the universal property of TX , that there is a
second representation π1 : TX → L(FX) such that for ρ ∈ X⊗̂n ⊆ FX ,

π1(T)ρ =

{
π0(T)ρ if n > 1,
0 if n = 0.

Arguing as in Lemma 4.2 of [32], we see that π0(T) − π1(T) ∈ K(FX) for all
T ∈ TX . The operator

(
0 1
1 0

)
is odd-graded with respect to the grading operator
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α ∞
X :=

(
α∞

X 0
0 −α∞

X

)
, and so for T ∈ TX , using the formula (2.2), we compute the

graded commutator:[ (
0 1
1 0

)
,
(

π0 0
0 π1◦αT

)
(T)
]gr

=
(

0 π1◦αT (T)
π0(T) 0

)
−
(

0 π0(αT (T))
π1◦αT (αT (T)) 0

)
=
(

0 (π1−π0)◦αT (T)
(π0−π1)(T) 0

)
,

which is compact. Hence we obtain a Kasparov module

M :=
(
FX ⊕FX , π0 ⊕ π1 ◦ αT ,

(
0 1
1 0

)
,
(

α∞
X 0
0 −α∞

X

) )
.

Since the essential subspace of FX ⊕ FX for π0 ⊕ π1 ◦ αT is complemented, re-
placing FX ⊕FX with the essential subspace for π0 ⊕ π1 ◦ αT , and adjusting the
Fredholm operator accordingly yields a module representing the same class (see

Proposition 18.3.6 of [2]). Hence, writing P : FX → FX 	 A =
∞⊕

n=1
X⊗̂n for the

projection onto the orthogonal complement of the 0th summand, we have

(4.2) [M] =
[
FX ⊕ (FX 	 A), π0 ⊕ π1 ◦ αT ,

(
0 1
P 0
)

,
(

α∞
X 0
0 −α∞

X

) ]
∈ KK(TX , A).

In the ungraded case, the classes [M] ∈ KK(TX , A) and [iA] ∈ KK(A, TX)
described at (4.2) and (4.1) are denoted α and β in Section 4 of [32].

THEOREM 4.2 (cf. Theorem 4.4 of [32]). Under the setup described at the begin-
ning of the section (we do not assume that αA is trivial), and with notation as above, the
pair [M] and [iA] are mutually inverse. That is, [iA] ⊗̂TX [M] = [idA] and [M] ⊗̂A
[iA] = [idTX ]. In particular A and TX are KK-equivalent as graded C∗-algebras.

Proof. Since the class [iA] is induced by a homomorphism of C∗-algebras, we
can compute the products [iA] ⊗̂TX [M] and [M] ⊗̂A [iA] using Proposition 18.7.2
of [2].

As discussed in Pimsner’s proof, Proposition 18.7.2(b) of [2] implies that the
product [iA] ⊗̂TX [M] is equal to (iA)

∗[M], and so, using the representative (4.2)
of [M], we obtain

[iA] ⊗̂TX [M] =
[
FX ⊕ (FX 	 A), (π0 ⊕ π1 ◦ αT ) ◦ iA,

(
0 1
P 0
)

,
(

α∞
X 0
0 −α∞

X

) ]
.

We have(
FX ⊕ (FX 	 A),(π0 ⊕ π1 ◦ αT ) ◦ iA,

(
0 1
P 0
)

,
(

α∞
X 0
0 −α∞

X

) )
⊕ (A, αA, 0,−αA)

∼=
(
FX ⊕FX , (π0 ⊕ π0 ◦ αT ) ◦ iA,

(
0 P
P 0
)

,
(

α∞
X 0
0 −α∞

X

) )
.(4.3)
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The operator F =
(

0 P
P 0
)

satisfies F2 = 1, F = F∗. For a ∈ A, we have

F(π0 ⊕ π0 ◦ αT )(iA(a)) =
(

0 P
P 0
) ( π0(iA(a)) 0

0 π0(iA(αA(a)))

)
=
(

π0(iA(αA(a))) 0
0 π0(iA(a))

) (
0 P
P 0
)

= (π0 ⊕ π0 ◦ αT )(iA(αA(a)))F.

So [F, (π0 ⊕ π0 ◦ αT )(iA(a))]gr = 0 by (2.2). Hence (4.3) is a degenerate Kasparov
module, and hence represents the zero class. By (2.6), we have [A, αA, 0,−αA] =
−[idA], so we have [iA] ⊗̂TX [M]− [idA] = 0KK(A,A) giving [iA] ⊗̂TX [M] = [idA].

For the reverse composition, Proposition 18.7.2(a) of [2] shows that [M] ⊗̂A
[iA] is equal to (iA)∗[M], which is represented by(

(FX ⊕FX) ⊗̂A TX , (π0 ⊕ π1 ◦ αT ) ⊗̂ 1TX ,
(

0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) )
.

We write π′0 and π′1 for π0 ⊗̂ 1TX and (π1 ◦ αT ) ⊗̂ 1TX . Since X is essential as
a left A-module, we have A ⊗̂A TX ∼= TX as graded A-TX-correspondences, so
the grading αT implements a left action of TX on A ⊗̂A TX . We regard this as
an action τ of TX on FX ⊗̂A TX that acts nontrivially only on the 0th summand.
Consider the Kasparov module(

(FX ⊕FX) ⊗̂A TX , (0⊕ τ),
(

0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) )
.

The essential subspace of the action 0⊕ τ is equal to the copy of A ⊗̂A TX in the
graded submodule (0⊕FX) ⊗̂A TX of (FX ⊕FX) ⊗̂A TX . Moreover, the restric-
tion of 0⊕ τ to this submodule is just αT . Hence[
(FX⊕FX)⊗̂ATX , (0⊕τ),

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) ]
=[TX , αT , 0,−αT ]=−[idTX ]

by (2.6).
Therefore, using that the essential subspaces of π′0 ⊕ π′1 and 0⊕ τ are one

another’s orthogonal complements, we see that

(iA)∗[M]− [1TX ] =
[
(FX ⊕FX) ⊗̂A TX , π′0 ⊕ π′1,

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) ]
+
[
(FX ⊕FX) ⊗̂A TX , (0⊕ τ),

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) ]
=
[
(FX ⊕FX) ⊗̂A TX , π′0 ⊕ (π′1 + τ),

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) ]
.(4.4)

We claim there is a homotopy of graded homomorphisms π′t : TX → L(FX ⊗̂A
TX) from π′0 ◦ αT to π′1 + τ such that for each t ∈ [0, 1],

(4.5)
(
(FX ⊕FX) ⊗̂A TX , π′0 ⊕ π′t,

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) )
is a Kasparov module. To see this, we invoke the universal property of TX . For
each t, following Pimsner, define a linear map ψt : X → L(FX ⊗̂A TX) by

ψt(ξ) = (cos(πt/2)(π′0(αT (Tξ))− π′1(Tξ)) + sin(πt/2)τ(Tξ)) + π′1(Tξ).
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Recall that ϕ∞ : A → L(FX) denotes the homomorphism given by the diagonal
left action of A. We write ϕ̃∞ for ϕ∞ ⊗̂A 1TX . We aim to prove that (ϕ̃∞ ◦ αA, ψt)
is a Toeplitz representation of X for each t ∈ [0, 1]. Since each ψt is a convex
combination of bimodule maps, we see that

ϕ̃∞(αA(a))ψt(ξ) = ψt(a · ξ) and ψt(ξ)ϕ̃∞(αA(a)) = ψt(ξ · a)

for all a, ξ, t. Next we check that ψt is compatible with the inner product. Note
that for all ξ, η, ζ ∈ X the operators (π′0(αT (Tξ)) − π′1(Tξ)), τ(Tη) and π′1(Tζ)

have mutually orthogonal ranges in FX ⊗̂A TX (the same observation is made in
Pimsner’s argument, and the only difference between his operators and ours is
post-composition with αT ). Given ξ, η ∈ X and t ∈ [0, 1] we have

ψt(ξ)
∗ψt(η)

= ((cos(πt/2)(π′0(αT (Tξ))− π′1(Tξ)) + sin(πt/2)τ(Tξ)) + π′1(Tξ))
∗

(cos(πt/2)(π′0(αT (Tη))− π′1(Tη)) + sin(πt/2)τ(Tη)) + π′1(Tη)

= ((cos(πt/2)(π′0(αT (Tξ))− π′1(Tξ)) + sin(πt/2)τ(Tξ)))
∗

(cos(πt/2)(π′0(αT (Tη))− π′1(Tη)) + sin(πt/2)τ(Tη)) + π′1(Tξ)
∗π′1(Tη).

Write P̃ for the projection onto (FX ⊗̂A TX)	 (A ⊗̂A TX). Since π′1 is a homomor-
phism, we have

π′1(Tξ)
∗π′1(Tη) = π′1(T

∗
ξ Tη) = π′1(〈ξ, η〉A) = P̃ϕ̃∞(αA(〈ξ, η〉A))P̃.

For ζ, ζ ′ ∈ X the range of τ(Tζ) is contained in A ⊗̂A TX ⊆ FX ⊗̂A TX , which is
orthogonal to the range of ((π′0 ◦ αT )− π′1)(Tζ ′). Also, ((π′0 ◦ αT )− π′1)(Tζ) =

π′0(αT (Tζ))(1− P̃). Using these two points, and resuming our computation of
ψt(ξ)∗ψt(η) from above, we have

( cos(πt/2)(π′0(αT (Tξ))− π′1(Tξ)) + sin(πt/2)τ(Tξ))
∗

(cos(πt/2)(π′0(αT (Tη))− π′1(Tη)) + sin(πt/2)τ(Tη))

=cos(πt/2)2(π′0(αT (Tξ))(1−P̃))∗(π′0(αT (Tη))(1−P̃))+sin(πt/2)2τ(Tξ)
∗τ(Tη)

=(1− P̃)(cos(πt/2)2 ϕ̃∞(αA(〈ξ, η〉A)) + sin(πt/2)2 ϕ̃∞(αA(〈ξ, η〉A)))(1− P̃)

=(1− P̃)ϕ̃∞(αA(〈ξ, η〉A))(1− P̃).

Since P̃ commutes with the range of ϕ̃∞, we have ψt(ξ)∗ψt(η) = ϕ̃∞(αA(〈ξ, η〉A))
and so (ϕ̃∞ ◦ αA, ψt) is a Toeplitz representation of X for each t ∈ [0, 1]. Thus the
universal property of TX ensures that there exists a homomorphism π′t : TX →
L(FX ⊗̂A TX) such that π′t(Tξ) = ψt(ξ) for ξ ∈ X and π′t(a) = ϕ̃∞(αA(a)) for
a ∈ A.

For t ∈ [0, 1] and ξ ∈ X, we have

π′t(Tξ)− π′1(Tξ) = (cos(πt/2)(π′0(αT (Tξ))− π′1(Tξ)) + sin(πt/2)τ(Tξ)).
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The kernel of this operator contains P̃(FX ⊗̂A TX), and since A acts compactly
on (1 − P̃)(FX ⊗̂A TX), the Cohen factorisation theorem ensures that π′t(Tξ) −
π′1(Tξ) ∈ K(FX ⊗̂A TX). So for each t, the homomorphism π′t is a compact per-
turbation of the homomorphism π′1, which determines a Kasparov module, and
therefore (4.5) is a Kasparov module for each t as claimed.

The claim shows that the class (4.4) is equal to the class of(
(FX ⊕FX) ⊗̂A TX , π′0 ⊕ π′0 ◦ αT ,

(
0 1
1 0

)
,
(

α∞
X ⊗̂αT 0

0 −α∞
X ⊗̂αT

) )
.

This is a degenerate Kasparov module (just calculate directly that F2 = 1, F∗ = F
and [F, (π′0 ⊕ π′0 ◦ αT )(T)]gr = 0 for all T ∈ TX), so it represents the zero class.
Hence (iA)∗[M] = [idTX ].

Let ι : K(FX) → L(FX) denote the canonical inclusion. Then (FX , ι, 0, α∞
X )

is a Kasparov module and we have [FX , ι, 0, α∞
X ] ∈ KK(K(FX), A). As Pimsner

points out, this is the KK-equivalence given by the equivalence bimodule FX . Let
j : K(FX)→ TX be the natural inclusion.

LEMMA 4.3 (cf. Lemma 4.7 of [32]). With notation as above we have

[j] ⊗̂TX [M] = [FX , ι, 0, α∞
X ] ⊗̂A ([idA]− [X])

in KK(K(FX), A).

Proof. By Proposition 18.7.2(b) of [2] we have [j] ⊗̂TX [M] = j∗[M]. Using
the representation (4.2) of [M] we therefore obtain

[j] ⊗̂TX [M] =
[
FX ⊕ (FX 	 A), (π0 ⊕ π1 ◦ αT ) ◦ j,

(
0 1
P 0
)

,
(

α∞
X 0
0 −α∞

X

) ]
.

Since π0 ◦ j(K(FX)) ⊆ K(FX) and similarly for π1, the straight-line path from(
0 1
P 0
)

to 0 gives an operator homotopy, so

[j] ⊗̂TX [M] =
[
FX ⊕ (FX 	 A), (π0 ⊕ π1 ◦ αT ) ◦ j, 0,

(
α∞

X 0
0 −α∞

X

) ]
= [FX , π0 ◦ j, 0, α∞

X ] + [FX 	 A, π1 ◦ j ◦ αK, 0,−α∞
X ]

= [FX , ι, 0, α∞
X ] + [FX 	 A, π1 ◦ j ◦ αK, 0,−α∞

X ].

We have FX ⊗̂A X ∼= FX 	 A as right-Hilbert modules, and this isomorphism
carries π0 ⊗̂ 1X to π1, and hence (π0 ◦ j) ⊗̂ 1X to π1 ◦ j. So

(FX 	 A, π1 ◦ j ◦ αK, 0,−α∞
X ) ∼= (FX ⊗̂A X, (π0 ◦ j ◦ αK) ⊗̂ 1X , 0,−α∞

X ⊗̂ αX).

The right-hand side represents [FX , ι ◦ αK, 0,−α∞
X ] ⊗̂A [X]. Equation (2.5) implies

that [FX , ι ◦ αK, 0,−α∞
X ] = −[FX , ι, 0, α∞

X ]. Thus

[j]⊗̂TX [M]= [FX , ι, 0, α∞
X ]−([FX , ι, 0, α∞

X ]⊗̂A [X])= [FX , ι, 0, α∞
X ]⊗̂A([idA]−[X])

as claimed.
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Finally, we obtain two six-term exact sequences as in Theorem 4.9 of [32].
For the purposes of computing graded K-theory, we are most interested in the
first of the two sequences, and in the situation where B = C; but both could be
useful in general. We write i : A→ OX for the canonical inclusion.

THEOREM 4.4 (cf. Theorem 4.9 of [32]). Let A and B be graded σ-unital C∗-
algebras and let X be a graded correspondence over A such that the left action is injective
and by compacts. Continue with notation as above. If either A or B is nuclear, then we
have a six-term exact sequence as follows:

(4.6)

KK1(B,OX) KK1(B, A) KK1(B, A).

KK0(B,OX)KK0(B, A)KK0(B, A)
⊗̂A([idA ]−[X]) i∗

⊗̂A([idA ]−[X])i∗

If A is nuclear, then we also have a six-term sequence as follows:

(4.7)

KK1(OX , B) KK1(A, B) KK1(A, B).

KK0(OX , B)KK0(A, B)KK0(A, B)
([idA ]−[X])⊗̂A i∗

([idA ]−[X])⊗̂Ai∗

These sequences are, respectively, contravariantly and covariantly natural in B. They are
also natural in the other variable in the following sense: if C is a graded C∗-algebra, and
YC is a graded correspondence over C whose left action is injective and by compacts, and
if θA : A → C and θX : X → Y constitute a graded morphism of C∗-correspondences,
then θA and the induced homomorphism (θA × θX) : OX → OY induce morphisms of
exact sequences from (4.6) for (A, X) to (4.6) for (C, Y) and from (4.7) for (C, Y) to (4.7)
for (A, X).

Proof. We just prove exactness of the first diagram: the second follows from
a similar argument to the one given for the first when A is nuclear.

Suppose that A is nuclear. Then so is TX (see, for example, Theorem 6.3
of [37]) and so the quotient map q : TX → OX has a completely positive split-
ting. Hence Theorem 1.1 of [42] applied to the graded short exact sequence

0 → K(FX)
j−→ TX

q−→ OX → 0 yields homomorphisms δ : KKi(B,OX) →
KKi+1(B,K(FX)) for which the following six-term sequence is exact:

(4.8)

KK1(B,OX) KK1(B, TX) KK1(B,K(FX)).

KK0(B,OX)KK0(B, TX)KK0(B,K(FX))
j∗ q∗

δ

j∗q∗

δ
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If instead B is nuclear, we must argue differently to obtain the sequence (4.8).
If B is nuclear, then KKnuc(·, B) coincides with KK(·, B) as discussed immediately
following Definition 2.1 of [43]. Hence Proposition 2.7 of [43] once again shows
that the six-term sequence (4.8) is exact.

With the sequence (4.8) in hand, the remainder of the argument is the same
regardless of which of A or B is nuclear. Define maps

δ′ : KK∗(B,OX)→ KK∗+1(B, A)

by δ′ = (· ⊗̂ [FX , ι, 0, α∞
X ]) ◦ δ, and consider the following diagram:

KK1(B,OX) KK1(B, TX) KK1(B,K(FX))

KK0(B,OX)KK0(B, TX)KK0(B,K(FX))
j∗ q∗

δ

j∗q∗

δ

KK1(B,OX) KK1(B, A) KK1(B, A).

KK0(B, A) KK0(B, A) KK0(B,OX)
⊗̂([idA ]−[X]) i∗

δ′

⊗̂([idA ]−[X])i∗

δ′

⊗̂[FX ,ι,0,α∞
X ] [M](iA)∗

id

⊗̂[FX ,ι,0,α∞
X ][M] (iA)∗id

The left-hand and right-hand squares commute by definition of the maps δ′.
Lemma 4.3 implies that the top left and bottom right squares commute. Since
q ◦ iA = i as homomorphisms, we have q∗ ◦ (iA)∗ = i∗, and so the top right and
bottom left squares commute as well. Since all the maps linking the inner rectan-
gle to the outer rectangle are isomorphisms, it follows that the outer rectangle is
exact as required.

Naturality follows from naturality of Pimsner’s exact sequences, which in
turn follows from naturality of the KK-functor for graded C∗-algebras ([2], Sec-
tion 17.8).

COROLLARY 4.5. Let (A, α) be a σ-unital, graded C∗-algebra and let (X, αX) be
a countably generated, graded correspondence over A such that the left action is injective
and by compacts. Then there is a six-term exact sequence for graded K-theory as follows:

(4.9)

Kgr
1 (OX , αO) Kgr

1 (A, α) Kgr
1 (A, α).

Kgr
0 (OX , αO)Kgr

0 (A, α)Kgr
0 (A, α)

⊗̂A([idA ]−[X]) i∗

⊗̂A([idA ]−[X])i∗
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This follows from the first part of Theorem 4.4 applied with B equal to the
(nuclear) C∗-algebra C.

REMARK 4.6. With notation as above, if A is nuclear, the second part of
Theorem 4.4 can be applied with B equal to the C∗-algebra C to obtain a six-term
exact sequence for the graded K-homology of OX , by which we mean the groups
K0

gr(OX) := KK(OX ,C) and K1
gr(OX) := KK(OX ⊗̂Cliff1,C).

THE GRADED PIMSNER–VOICULESCU EXACT SEQUENCE. If (A, α) is a σ-unital
graded C∗-algebra, and γ is an automorphism of A that is graded in the sense
that it commutes with α, then functoriality of KK shows that γ induces a map γ0
on Kgr

0 (A, α) = KK(C, A) and γ1 on Kgr
1 (A, α) = KK(C, A ⊗̂Cliff1).

The crossed product Aoγ Z has two natural grading automorphisms, which
we will denote by β0 and β1. To describe them, write iA : A → A oγ Z and
iZ : Z → UM(A oγ Z) for the canonical inclusions. Then for k ∈ Z2, the auto-
morphism βk is characterised by

(4.10) βk(iA(a)iZ(n)) = (−1)kniA(α(a))iZ(n).

So β1 = β0 ◦ γ̂−1 where γ̂ is the action of T on the crossed product dual to γ. The
inclusion iA : A → A oγ Z is a graded homomorphism with respect to α and βk

for each of k = 0, 1.

COROLLARY 4.7 (Graded Pimsner–Voiculescu sequence). Let (A, α) be a σ-
unital, graded C∗-algebra and γ an automorphism of A that commutes with α. Fix
k ∈ {0, 1} and let βk be the grading automorphism of A oγ Z described above. Then
we obtain a six-term exact sequence in graded K-theory as follows:

(4.11)

Kgr
1 (A oγ Z, βk) Kgr

1 (A, α) Kgr
1 (A, α).

Kgr
0 (A oγ Z, βk)Kgr

0 (A, α)Kgr
0 (A, α)

id−(−α∗)kγ∗ i∗

id−(−α∗)kγ∗i∗

The sequence is natural in the sense that if (B, κ) is another σ-unital, graded C∗-algebra,
θ is an automorphism of B that commutes with κ, and φ : A → B is a graded homo-
morphism that intertwines γ and θ, then φ and φ × 1 : A oγ Z → B oδ Z induce a
morphism of exact sequences from (4.11) for (A, α) to (4.11) for (B, κ).

Proof. Let X := γ A as a Hilbert module, endowed with the grading (−1)kα.
Write (iA, iX) for the inclusions of A and X in OX , write jA : A → A oγ Z for the
canonical inclusion, and write U for the unitary element of M(A oγ Z) imple-
menting γ. Then, as pointed out in Example 3, p. 193 of [32], there is an isomor-
phism ρ : OX → A oγ Z such that ρ(iA(a)) = jA(a) and ρ(iX(a)) = UjA(a) for
all a ∈ A. It is routine to check that this isomorphism is graded with respect to
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the grading βk of A oγ Z and the grading αO of OX induced by the grading α of
A and the grading (−1)kα of X.

Hence Corollary 4.5 gives an exact sequence

(4.12)

Kgr
1 (A oγ Z, βk) Kgr

1 (A, α) Kgr
1 (A, α).

Kgr
0 (A oγ Z, βk)Kgr

0 (A, α)Kgr
0 (A, α)

⊗̂A([idA ]−[X]) i∗

⊗̂A([idA ]−[X])i∗

By definition, we have αk
∗[X] = [AA, γ ◦ αk, 0, (−1)kα]. So (2.6) shows that

αk
∗[X] = (−1)kγ∗. Since α, and hence α∗, has order 2, we deduce that [X] =

(−α∗)kγ∗, giving the desired six-term exact sequence.
Naturality follows immediately from naturality in Theorem 4.4.

5. TWISTED P-GRAPH C∗-ALGEBRAS AND ACTIONS BY COUNTABLE GROUPS

We now begin our investigation of how to use P-graphs to construct ex-
amples of graded C∗-algebras. Throughout we write N for the additive monoid
{0, 1, 2, . . . }. Let F be a countable (discrete) abelian group, fix k > 0 and let
P := Nk × F regarded as a cancellative abelian monoid and let GP denote the
Grothendieck group of P. We frequently regard P as a small category with a
single object and composition given by addition. Given a small category Λ, we
typically write λ ∈ Λ to mean that λ is a morphism of Λ. Following Definition 2.1
of [4], a P-graph consists of a countable small category Λ equipped with a functor
d : Λ → P satisfying the factorisation property: if d(λ) = p + q then there exist
unique µ, ν ∈ Λ with d(µ) = p, d(ν) = q and λ = µν. We write

Λp := d−1(p) for p ∈ P.

The factorisation property ensures that Λ0 is precisely the collection of identity
morphisms of Λ; we write r, s : Λ → Λ0 for the maps induced by the codomain
and domain maps — that is, r(λ) is the identity morphism at the codomain of
λ ∈ Λ, and s(λ) is the identity morphism at the domain of λ ∈ Λ. For X ⊆ Λ and
µ ∈ Λ, we define

Xµ :={λµ : λ∈X and s(λ)= r(µ)} and µX :={µλ : λ∈X and r(λ)= s(µ)}.

In particular, for v ∈ Λ0, we have Xv = X ∩ s−1(v) and vX = X ∩ r−1(v). We say
that Λ is row-finite if vΛp is finite for every v ∈ Λ0 and p ∈ P, and that it has no
sources if vΛp is nonempty for every v ∈ Λ0 and p ∈ P.

There is a natural pre-order on P given by p 6 q if q = p + u for some
u ∈ P. Note that 6 need not be a partial order: if F is nontrivial, then 6 is not
antisymmetric.
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EXAMPLES 5.1. (i) Let ΩP = {(p, q) ∈ P × P : p 6 q}. Regarding P as a
subsemigroup of Zk × F, we can define d : ΩP → P by the expression d(p, q) =
q− p. Identify Ω0

P := d−1(0) with P via (p, p) 7→ p, and define r, s : ΩP → Ω0
P

by r(p, q) = p and s(p, q) = q. Finally define composition by (p, q)(q, n) = (p, n).
Then ΩP is a P-graph.

(ii) When P is regarded as a category with one object it becomes a P-graph with
degree map the identity functor, composition the group operation, and range and
source both given by the trivial map p 7→ 0.

(iii) Every k-graph is an Nk-graph.
(iv) In particular, when P = Nk in example (ii), we obtain the k-graph with one

vertex and one path of each degree in Nk. As is standard [24], [26], we denote this
k-graph by Tk; its C∗-algebra is isomorphic to C(Tk).

(v) Another example we shall use frequently is the 1-graph Bn with one vertex
and n distinct edges, whose C∗-algebra is the Cuntz algebra On. The “B” here
stands for “bouquet” and we sometimes refer to Bn as the “bouquet of n loops”.

The definition of the categorical cohomology of a k-graph given in Section 3
of [26] applies to P-graphs and we use the formalism and notation from there. In
detail, let A be an abelian group and Λ∗r the collection of composable r-tuples of
elements of Λ; that is,

Λ∗r :=
{
(λ1, . . . , λr) ∈

r

∏
i=1

Λ : s(λi) = r(λi+1) for all 1 6 i < r
}

.

Then Z2(Λ, A), the group of normalised 2-cocycles on Λ, consists of all functions
f : Λ∗2 → A such that

f (λ, µ) + f (λµ, ν) = f (µ, ν) + f (λ, µν)

for all (λ, µ, ν) ∈ Λ∗3 and f (r(λ), λ) = 0 = f (λ, s(λ)) for all λ ∈ Λ (cf. Lemma 3.8
of [26]). Furthermore f1, f2∈Z2(Λ, A) are cohomologous if they differ by a cobound-
ary: that is there is a map b : Λ → A such that ( f1 − f2)(λ, µ) = (δ1b)(λ, µ) :=
b(λ)− b(λµ) + b(µ) for all (λ, µ) ∈ Λ∗2. As usual, when A = T the group opera-
tion is written multiplicatively.

The following example of a 2-cocycle on Zl
2 will prove important later.

EXAMPLE 5.2. Consider the finite group Zl
2. Let Z2(Zl

2,Z2) be the group
of Z2-valued group 2-cocycles on Zl

2. (Of course, we can also regard Zl
2 as a

Zl
2-graph Zl

2 with respect to the identity functor, and then this group of group 2-
cocycles on Zl

2 is the same as the group of categorical 2-cocycles on Zl
2.) Given a P-

graph Λ and a homomorphism π : A→ B of abelian groups, there is an induced
homomorphism π∗ : Z2(Λ, A) → Z2(Λ, B) given by π∗(c)(λ, µ) = π(c(λ, µ)),
and this π∗ carries cohomologous elements to cohomologous elements. In par-
ticular, the canonical embedding Z2 ↪→ T given by m 7→ (−1)m induces a map
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κ 7→ cκ from Z2(Zl
2,Z2) to Z2(Zl

2,T) by

cκ(m, n) = (−1)κ(m,n) for (m, n) ∈ Zl
2 ×Zl

2.

For example, consider κ : Zl
2 ×Zl

2 → Z2 given by

(5.1) κ(m, n) = ∑
16j<i6l

mi · nj, where mi, nj ∈ Z2.

Then κ ∈ Z2(Zl
2,Z2). Indeed, κ is biadditive and on pairs (ei, ej) of genera-

tors of Zl
2, it satisfies κ(ei, ej) = 1 ∈ Z2 if j < i and κ(ei, ej) = 0 ∈ Z2 if i 6 j.

Let σ be a permutation of {1, . . . , l}. Define (mσ)i = mσ(i) for m ∈ Zl
2. Then

m→ mσ is an automorphism of Zl
2, and then for κ ∈ Z2(Zl

2,Z2) we may form the
2-cocycle κσ ∈ Z2(Zl

2,Z2), by κσ(m, n) = κ(mσ, nσ) for (m, n) ∈ Zl
2×Zl

2. We then
have

cκσ (m, n) = ∏
j<i

(−1)mσ(i)nσ(j) .

If b : Zl
2 → T is a function, then δ1b is the associated 2-coboundary given by

δ1b(m, n) = b(m)b(m + n)−1b(n).

LEMMA 5.3. With notation as above cκ is cohomologous to cκσ in Z2(Zl
2,T).

Hence there is a map b : Zl
2 → T such that cκσ = cκδ1b.

Proof. Let χcκσ : Zl
2 ×Zl

2 → {1,−1} ⊆ T be the bicharacter of Zl
2 defined by

χcκσ (m, n) = cκσ (m, n)cκσ (n, m)−1 = cκσ (m, n)cκσ (n, m)

for all m, n ∈ Zl
2. For generators ei, ej ∈ A we have

χcκσ (ei, ej) =

{
1 if i = j,
−1 otherwise.

So χcκσ does not depend on σ, and in particular χcκσ = χc
κid = χcκ . Thus Propo-

sition 3.2 of [29] implies that cκ and cκσ are cohomologous (see also Lemmata 7.1
and 7.2 of [22]). The final statement follows by the definition of a coboundary
(see Definition 3.2 of [26]).

For P := Nk ×Zl
2, there is a natural surjection ρ : P→ Zk+l

2 given by taking
the residue of each coordinate modulo 2.

PROPOSITION 5.4. Let Λ be a P-graph where P = Nk × Zl
2. With κ defined as

in (5.1), the formula cΛ(λ, µ) = cκ((ρ(d(λ))), ρ(d(µ))) for (λ, µ) ∈ Λ∗2 defines a
2-cocycle cΛ ∈ Z2(Λ,T) with values in {±1}.

Proof. Since κ is biadditive on Zk+l
2 ×Zk+l

2 and since ρ is a homomorphism,
the map (m, n) 7→ (−1)κ(ρ(m),ρ(n)) is a bicharacter of Nk × Zl

2. It follows imme-
diately from the definition of κ that cΛ(r(λ), λ) = 1 = cΛ(λ, s(λ)). Since d is a
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functor, for a composable triple λ, µ, ν, we have

cΛ(λµ, ν) = cκ((ρ(d(λ))), ρ(d(ν)))cκ((ρ(d(µ))), ρ(d(ν))) and

cΛ(λ, µν) = cκ((ρ(d(λ))), ρ(d(µ)))cκ((ρ(d(λ))), ρ(d(ν))).

Hence

cΛ(λ, µ)cΛ(λµ, ν)

= cκ((ρ(d(λ))), ρ(d(µ)))cκ((ρ(d(λ))), ρ(d(ν)))cκ((ρ(d(µ))), ρ(d(ν)))

= cΛ(λ, µν)cΛ(µ, ν).

DEFINITION 5.5. Let Λ be a row-finite P-graph with no sources, and c ∈
Z2(Λ,T). A Cuntz–Krieger (Λ, c)-family in a C∗-algebra B is a function t : λ 7→ tλ

from Λ to B such that:

(CK1) {tv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(CK2) tµtν = c(µ, ν)tµν whenever s(µ) = r(ν);
(CK3) t∗λtλ = ts(λ) for all λ ∈ Λ; and
(CK4) tv = ∑

λ∈vΛp
tλt∗λ for all v ∈ Λ0 and p ∈ P.

The following lemma is more or less standard.

LEMMA 5.6. Let Λ be a row-finite P-graph with no sources. Take c ∈ Z2(Λ,T).
There exists a universal C∗-algebra C∗(Λ, c) generated by a Cuntz–Krieger (Λ, c)-family
{sλ : λ ∈ Λ}.

This follows from a standard argument (see, for example Theorem 2.10 of
[28]) using that the relations force the tλ to be partial isometries.

In what follows, a morphism of P-graphs is a functor f : Λ→ Γ between P-
graphs that intertwines the degree functors: that is, dΓ( f (λ)) = dΛ(λ) for λ ∈ Λ.
Let Λ be a row-finite P-graph with no sources. The path space ΛΩ is defined to be
the collection of all morphisms x : Ω → Λ where Ω = ΩP is as in Examples 5.1
above. The collection of sets Z(λ) := {x ∈ ΛΩ : λ = x(0, d(λ))}, indexed by
λ ∈ Λ, is a basis of compact open sets for a locally compact Hausdorff topology
on ΛΩ. For each r ∈ P we define the shift map σr : ΛΩ → ΛΩ by (σrx)(p, q) :=
x(p + r, q + r). We will need to use the path groupoid GΛ of Λ introduced by
Carlsen et al. in Section 2 of [4]. Recalling that GP denotes the Grothendieck
group of P so that for p, q ∈ P the expression p− q defines an element of GP, we
define

GΛ :=
⋃

p,q∈P
{(x, p− q, y) : σp(x) = σq(y)} ⊆ ΛΩ × GP ×ΛΩ.

We identify the path space ΛΩ with the unit space G(0)Λ via the map x 7→ (x, 0, x).
For µ, ν ∈ Λ with s(µ) = s(ν), let

Z(µ, ν) := {(x, d(µ)− d(ν), y) : x ∈ Z(µ), y ∈ Z(ν), σd(µ)(x) = σd(ν)(y)}.
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The topology on GΛ is the one with basis UΛ = {Z(µ, ν) : µ, ν ∈ Λ, s(µ) =
s(ν)}. (To see that this is a basis, one checks that if (x, m, y) ∈ Z(µ, ν) ∩ Z(η, ζ),
then d(µ) − d(ν) = d(η) − d(ζ) = m, and α := x(0, d(µ) + d(η)) and β =
y(0, d(ν) + d(η)) satisfy (x, m, y) ∈ Z(α, β) ⊆ Z(µ, ν) ∩ Z(η, ζ).) This is a lo-
cally compact Hausdorff topology on GΛ and GΛ is étale in this topology because
s : Z(µ, ν) → Z(µ) is a homeomorphism for each µ. The elements of UΛ are
all compact open sets. Given µ, ν ∈ Λ with s(µ) = s(ν) and p ∈ P we have
Z(µ, ν) =

⊔
α∈s(µ)Λp

Z(µα, να).

PROPOSITION 5.7. Let Λ be a row-finite P-graph with no sources and take c ∈
Z2(Λ,T). There is a continuous normalised T-valued groupoid 2-cocycle ςc on GΛ and a
surjective homomorphism π : C∗(Λ, c) → C∗(GΛ, ςc) such that π(sλ) = 1Z(λ,s(λ)) 6=
0 for all λ ∈ Λ.

Proof. We follow the argument of Section 6 in [26], which proves the anal-
ogous result in the case that Λ is a k-graph (see Theorem 6.7 of [26]). The only
additional difficulty in our current setting is that the notion of minimal common
extension for a pair of elements in Λ does not in general make sense in a P-graph.
So we must check that we can still construct a partition of GΛ as in Lemma 6.6 of
[26] without using minimal common extensions.

We must show that there is a partitionQ of GΛ consisting of elements of UΛ

such that Z(λ, s(λ)) ∈ Q for all λ ∈ Λ.
For each p ∈ P, let Mp := {(x, p, σp(x)) : x ∈ ΛΩ} ⊆ GΛ. For µ, ν ∈ Λ

we have Z(µ, ν) ⊆ Mp if and only if µ = µ′ν for some µ′ ∈ Λp, and otherwise
Z(µ, ν) ∩ Mp = ∅. Then Mp =

⊔
d(λ)=p

Z(λ, s(λ)), and Gλ \ Mp =
⋃{Z(µ, ν) :

ν ∈ Λ, µ ∈ Λs(ν) \Λpν}, so Mp is clopen in GΛ. Moreover, the Mp are pairwise
disjoint, and M :=

⊔
p∈P

Mp satisfies

(5.2) GΛ \M =
⋃
{Z(µ, ν) : ν ∈ Λ and µ ∈ Λs(ν) \Λν}.

So M is clopen. It remains to show that GΛ \ M is a disjoint union of elements
of UΛ. Since UΛ is a countable basis, we can write the complement of M as a
countable union of elements of UΛ.

Claim. Let Z(κ, λ), Z(µ, ν) ∈ UΛ. Then both Z(κ, λ) ∩ Z(µ, ν) and Z(κ, λ) \
Z(µ, ν) can be expressed as a disjoint union of elements of UΛ.

To prove the claim, first note that Z(κ, λ) and Z(µ, ν) are disjoint unless
d(κ)− d(λ) = d(µ)− d(ν). So we may assume that d(κ)− d(λ) = d(µ)− d(ν).
There exist p, q ∈ P (for example p = d(ν) and q = d(λ)) such that d(κ) + p =
d(µ) + q and d(λ) + p = d(ν) + q. Let

A := {α ∈ s(λ)Λp : (κα, λα) = (µβ, νβ) for some β ∈ s(ν)Λq}
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and let B := s(λ)Λp \ A. We have

(5.3) Z(κ, λ) =
⊔

α∈s(κ)Λp

Z(κα, λα) and Z(µ, ν) =
⊔

β∈s(µ)Λq

Z(µβ, νβ).

For a given α, β, since d(κα) = d(µβ) the sets Z(κα) and Z(µβ) are either equal or
disjoint, and similarly Z(λα) and Z(νβ) are either equal or disjoint. Indeed, they
are equal if and only if α ∈ A, and then β is the unique element of s(ν)Λq such
that (κα, λα) = (µβ, νβ). From this we obtain

Z(κ, λ) ∩ Z(µ, ν) =
⊔

α∈A
Z(κα, λα),

and then (5.3) yields

Z(κ, λ) \ Z(µ, ν) =
⊔

α∈B
Z(κα, λα).

This proves the claim.
Now let ((µi, νi))i∈N be an enumeration of the set {(µ, ν) ∈ Λ×Λ : µ ∈

Λs(ν) \Λν}. The claim shows that for each i, the set Z(µi, νi) \
⋃

j<i Z(µj, νj) can
be expressed as a disjoint union of elements of UΛ; say Z(µi, νi) \

⋃
j<i Z(µj, νj) =

ni⊔
k=1

Z(αi,k, βi,k). So

Q := {Z(λ, s(λ)) : λ ∈ Λ} ∪ {Z(αi,k, βi,k) : i ∈ N and k 6 Ni}
is the desired partition.

The groupoid 2-cocycle ςc is constructed as in Lemma 6.3 of [26] (there the
cocycle is denoted σc and the partition is denoted P). By construction of ςc the
map λ 7→ 1Z(λ,s(λ)) constitutes a Cuntz–Krieger (Λ, c)-family. Hence, there is a
homomorphism π : C∗(Λ, c) → C∗(GΛ, ςc) such that π(sλ) = 1Z(λ,s(λ)). More-
over, for every Z(µ, ν) ∈ UΛ, we have

1Z(µ,ν) = 1Z(µ,s(µ))1
∗
Z(ν,s(ν)) = π(sµs∗ν);

and since the span of elements of the form 1Z(µ,ν) is dense, π is surjective.

If c ∈ Z2(Λ,T) is the trivial cocycle, then our definition of the twisted C∗-
algebra C∗(Λ, c) reduces to the definition of the C∗-algebra C∗(Λ) (see Defini-
tion 2.4 of [4]). If P = Nk and c is an arbitrary cocycle, then our definition of
C∗(Λ, c) agrees with the existing definition of the twisted k-graph algebra (see
Definition 5.2 of [26]). We also need to know that cohomologous cocycles yield
isomorphic C∗-algebras. The proof follows that of Proposition 5.6 in [26] almost
verbatim, so we just sketch it here.

LEMMA 5.8. Let Λ be a row-finite P-graph with no sources. Suppose that c1, c2 ∈
Z2(Λ,T) are cohomologous. Then there is a map b : Λ → T satisfying b(v) = 1
for all v ∈ Λ0 such that there is an isomorphism C∗(Λ, c1) ∼= C∗(Λ, c2) satisfying
sλ 7→ b(λ)sλ for all λ ∈ Λ.
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Proof sketch. Since c1 and c2 are cohomologous, there exists b : Λ→ T such
that c1 = δ1bc2. For v ∈ Λ0 we then have 1 = c1(v, v) = δ1b(v, v)c2(v, v) =
b(v)b(v)b(v2)c2(v, v) = b(v). For λ ∈ Λ, define tλ := b(λ)sλ ∈ C∗(Λ, c2).
Then for (λ, µ) ∈ Λ∗2 we have tλtµ = b(λ)b(µ)sλsµ = b(λ)b(µ)c2(λ, µ)sλµ =

δ1(b)c2(λ, µ)tλµ = c1(λ, µ)tλ,µ. Using that b(v) = 1 for v ∈ Λ0 to verify (CK1),
one checks that {tλ : λ ∈ Λ} is a Cuntz–Krieger (Λ, c1)-family in C∗(Λ, c2), so
the universal property gives a homomorphism C∗(Λ, c1) → C∗(Λ, c2) satisfying
sλ 7→ b(λ)sλ for all λ ∈ Λ. The same argument using that c2 = δ1(b)c1 yields an
inverse for this homomorphism, showing that it is an isomorphism.

EXAMPLES 5.9. (i) Let ΩP be the P-graph described in Examples 5.1(i). Then
C∗(ΩP) ∼= K(`2(P)).

(ii) Let P be the P-graph from Examples 5.1(ii). Then C∗(P) is isomorphic to
the group C∗-algebra C∗(GP) of the Grothendieck group of P.

Let (Λ, d) be a P-graph and c ∈ Z2(Λ,T). Following Lemma 2.5 of [4] we
describe the gauge action of ĜP on C∗(Λ, c). For χ ∈ ĜP and λ ∈ Λ set

(5.4) γΛ
χ (sλ) = χ(d(λ))sλ.

The following standard argument — which is also outlined in the discus-
sion following Lemma 2.5 of [4], and goes back at least to Remark 2.2 of [17]
— shows that the above formula defines a strongly continuous action of ĜP on
C∗(Λ, c) (we thank the anonymous referee for suggesting that we include the de-
tails). The elements tλ := χ(d(λ))sλ determine a Cuntz–Krieger (Λ, c)-family in
C∗(Λ, c), and so the universal property gives an endomorphism γΛ

χ of C∗(Λ, c)
satisfying (5.4). For any χ, χ′ ∈ ĜP, the endomorphisms γΛ

χ ◦ γΛ
χ′ and γΛ

χχ′ agree

on generators, so are equal. Since γΛ
1 agrees with the identity map on genera-

tors, it is the identity map. We deduce that each γΛ
χ is an automorphism and

that χ 7→ γΛ
χ is a group homomorphism from ĜP to Aut(C∗(Λ, c)). Certainly

χ 7→ γΛ
χ (sµs∗ν) is continuous for all µ, ν ∈ Λ. It follows that χ 7→ γΛ

χ (a) is contin-
uous for a ∈ span{sµs∗ν : µ, ν ∈ Λ} and then an ε/3-argument shows that γΛ is
strongly continuous.

PROPOSITION 5.10 (Gauge invariant uniqueness theorem). Let Λ be a row-
finite P-graph with no sources, and fix c ∈ Z2(Λ,T). Let t : Λ→ B be a Cuntz–Krieger
(Λ, c)-family in a C∗-algebra B. Suppose that there is a strongly continuous action β of
ĜP on B satisfying βχ(tλ) = χ(d(λ))tλ for all λ ∈ Λ and χ ∈ ĜP. Then the induced
homomorphism πt : C∗(Λ, c)→ B is injective if and only if tv 6= 0 for all v ∈ Λ0.

The result follows from the same argument as in Proposition 2.7 of [4] and
the observation that the fixed point algebra for the gauge action on C∗(Λ, c) is
identical to the fixed point algebra for the gauge action on C∗(Λ) (cf. Theorem 4.2
of [25]).
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COROLLARY 5.11. With notation as in Proposition 5.7 the map π : C∗(Λ, c) →
C∗(GΛ, ςc) is an isomorphism.

Proof. We argue as in Corollary 7.8 of [26]. The cocycle d̃ : GΛ → GP given
by d̃(x, m, y) = m induces an action β of ĜP on C∗(GΛ, ςc) satisfying βχ( f )(x, p−
q, y) = χ(p− q) f (x, p− q, y) for f ∈ Cc(GΛ). By construction, π intertwines this
action with the gauge action. Proposition 5.7 shows that each π(sv) is nonzero.
So the result follows from Proposition 5.10.

LEMMA 5.12 (cf. Proposition 3.2 of [9]). Let F be a countable abelian group and
let Λ be a row-finite k-graph with no sources. Suppose that F acts on Λ by k-graph
automorphisms g 7→ ρg. Let P = Nk × F. There is a unique P-graph Λ×ρ F such that:

(i) as a set, Λ×ρ F = Λ× F with degree map d(λ, g) = (d(λ), g);
(ii) r(λ, g) = (r(λ), 0), and s(λ, g) = (s(ρ−g(λ)), 0);

(iii) (µ, g)(ν, h) = (µρg(ν), g + h) whenever s(µ) = r(ρg(ν)).

Proof. For associativity we compute

((λ, g)(µ, h))(ν, k) = (λρg(µ), g + h)(ν, k) = (λρg(µ)ρg+h(ν), g + h + k)

= (λ, g)(µρh(ν), h + k) = (λ, g)((µ, h)(ν, k)).

For the factorisation property, we use the standard notation for k-graphs that if
λ ∈ Λ and m 6 n 6 d(λ), then λ(m, n) is defined to be the unique element of
Λn−m such that λ = λ′λ(m, n)λ′′ for some λ ∈ Λm and λ′′ ∈ Λd(λ)−n. Suppose
that d(λ, g) = (m + n, h + k). Then µ = λ(0, m) and ν = ρ−h(λ(m, m + n)) satisfy
(λ, g) = (µ, h)(ν, k) with d(µ, h) = (m, h) and d(ν, k) = (n, k). To see that this
factorisation is unique, suppose that

(λ, g) = (µ, h′)(ν, k′) = (µρh′(ν), h′ + k′)

with d(µ, h′) = (m, h) and d(ν, k′) = (n, k). Then h′ = h and k′ = k by definition
of d. Furthermore, λ = µρh(ν) where d(µ) = m and d(ρh(ν)) = d(ν) = n. So the
factorisation property in Λ forces µ = λ(0, m) and ρh(ν) = λ(m, m + n), forcing
ν = ρ−h(λ(m, m + n)).

EXAMPLE 5.13. Let F be a countable abelian group. We can regard F as
a 0-graph and then there is an action τ of F on this 0-graph by translation. So
Lemma 5.12 yields an F-graph F×τ F. It is straightforward to check that F×τ F ∼=
ΩF via the map (g, h) 7→ (g, g + h).

PROPOSITION 5.14. Continue the notation of Lemma 5.12. Then there is an action
ρ̃ : F → Aut(C∗(Λ)) such that ρ̃g(sλ) = sρg(λ).

This follows from the universal property of C∗(Λ) (cf. Proposition 3.1 of [9]).

THEOREM 5.15. Continue the notation of Lemma 5.12 and Proposition 5.14. Then
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(i) there is a unitary representation of u : F → UM(C∗(Λ×ρ F)) given by u(g) =
∑

v∈Λ0
s(v,g);

(ii) there is a homomorphism φ : C∗(Λ)→ C∗(Λ×ρ F) given by sλ 7→ s(λ,0);
(iii) we have u(g)φ(a)u(g)∗ = ρ̃g(a) for all a ∈ C∗(Λ) and g ∈ F;
(iv) there is an isomorphism φ × u : C∗(Λ)oρ̃ F → C∗(Λ×ρ F) such that (φ ×

u)(sλ, g) = s(λ,g).

This follows from the proof of Theorem 3.4 in [9] mutatis mutandis.

EXAMPLES 5.16. (i) Let Bn be the 1-graph with a single vertex v and edges
f1, . . . , fn (see Example 5.1(v)). Let Zn act on Bn by cyclicly permuting the edges.
Then C∗(Bn)×Zn ∼= C∗(Bn ×Zn).

(ii) Let Λ be a k-graph, let F be a countable abelian group, and b : Λ → F be
a functor. Then the skew product graph Λ×b F carries a natural F-action τ (see
Remark 5.6 of [23]) given by τg(λ, h) = (λ, g + h). We have

C∗((Λ×b F)×τ F) ∼= C∗(Λ×b F)oτ̃ F ∼= C∗(Λ)⊗K(`2(F)).

THEOREM 5.17 (cf. Proposition 3.5 of [9]). Let P = Nk × F where F is a count-
able abelian group. Suppose that Λ is a P-graph, and let Γ denote the sub-k-graph
d−1(Nk × {0}) of Λ. For each g ∈ F and v ∈ Λ0 the sets vΛ(0,g) and Λ(0,g)v are
singletons. Moreover, there is an action ρ of F on Γ such that for all λ ∈ Γ and g ∈ F,
the unique elements µ ∈ r(λ)Λ(0,g) and ν ∈ s(λ)Λ(0,g) satisfy µρg(λ) = λν. Further-
more, Λ is isomorphic to the P-graph Γ×ρ F of Lemma 5.12.

Proof. The factorisation property ensures that each vertex v ∈ Λ0 has unique
factorisations v = µν with µ ∈ Λ(0,g) and ν ∈ Λ(0,−g). Hence vΛ(0,g) = {µ}, and
similarly Λ(0,g)v = {ν}.

The map ρ preserves degree by definition. It remains to show that ρg is a
functor for each g and ρg ◦ ρh = ρg+h. Fix λ1, λ2 ∈ Γ such that λ2λ1 ∈ Γ and
g ∈ F. Let v0 = s(λ1), v1 = r(λ1) = s(λ2) and v2 = r(λ2). Let µi be the unique
element of viΛ

(0,g) for i = 0, 1, 2. Then

µiρg(λi) = λiµi−1 for i = 1, 2.

Combining the two equations we get

µ2ρg(λ2)ρg(λ1) = λ2µ1ρg(λ1) = λ2λ1µ0,

and hence ρg(λ2λ1) = ρg(λ2)ρg(λ1) by uniqueness of factorisations. A similar
argument shows that ρg ◦ ρh = ρg+h for all g, h ∈ F.

For λ ∈ Λ(n,g) define ψ(λ) = (λ((0, 0), (n, 0)), g) ∈ Γ ×ρ F. Then ψ is an
isomorphism of P-graphs. Its inverse is given as follows: let (λ, g) ∈ Γ×ρ F and
µ be the unique element in s(λ)Λ(0,g); then ψ−1(λ, g) = λµ.

COROLLARY 5.18. Suppose that F is a countable abelian group. Then the only
possible F-graphs are disjoint unions of quotients of ΩF by subgroups of F.
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Proof. Let Λ be a F-graph. Then Theorem 5.17 applied in the case k = 0
shows that Λ ∼= Γ ×ρ F where Γ is a 0-graph, which is just a countable set. The
group F then acts on Γ, and each orbit is of the form F/H for some subgroup H
of F. Since the orbits of ρ correspond to the connected components of Γ×ρ F each
component of Λ is isomorphic to F/H ×τH F where τH is the action of F on F/H
induced by translation. The result then follows from the identification of ΩF with
F×τ F given in Example 5.13

6. GRADINGS OF P-GRAPH C∗-ALGEBRAS INDUCED BY FUNCTORS

Let P be a finitely-generated, cancellative abelian monoid of the form P ∼=
Nk × Zl

2. We will be particularly interested in gradings of twisted P-graph C∗-
algebras that arise from functors from the underlying P-graphs into Z2.

LEMMA 6.1. Let Λ be a P-graph, let δ : Λ → Z2 be a functor and let c be a
T-valued 2-cocycle on Λ. Then there is a grading automorphism αδ of C∗(Λ, c) such that

(6.1) αδ(sλ) = (−1)δ(λ)sλ for all λ ∈ Λ.

For i ∈ Z2, we have C∗(Λ, c)i = span{sµs∗ν : δ(µ)− δ(ν) = i}.
Proof. The universal property of C∗(Λ, c) yields an automorphism αδ satis-

fying (6.1). For µ, ν ∈ Λ and j ∈ Z2, we have

sµs∗ν + (−1)jαδ(sµs∗ν)
2

=

{
sµs∗ν if δ(µ)− δ(ν) = j,
0 if δ(µ)− δ(ν) = j + 1.

By (2.1), we have C∗(Λ, c)j =
{
(a + (−1)jαδ(a))/2 : a ∈ C∗(Λ, c)

}
. We deduce

immediately that C∗(Λ, c)j ⊆ span{sµs∗ν : δ(µ)− δ(ν) = i}, and the reverse impli-
cation follows as well because a 7→ (a + (−1)jαδ(a))/2 is linear and continuous,
and C∗(Λ, c) = span{sµs∗ν : µ, ν ∈ Λ}.

NOTATION 6.2. Consider nonnegative integers k, l, and let P := Nk × Zl
2,

regarded as a finitely generated abelian monoid. We denote by EP := {ei : 1 6
i 6 k + l} the canonical set of generators of P. We call elements of Λ with degree
in EP edges. Let π : P → Z2 be the unique homomorphism such that π(ei) = 1
for all 1 6 i 6 k + l. Given a P-graph Λ, there is a functor δΛ : Λ→ Z2 such that

(6.2) δΛ(λ) = π(d(λ)) for all λ ∈ Λ.

The following examples illustrate the connection between gradings of P-
graph C∗-algebras and twisted P-graph C∗-algebras. Specifically, the graded ten-
sor product of graded P-graph C∗-algebras can frequently be realised as a twisted
C∗-algebra of the cartesian-product graph. We return to this in Theorem 7.1.
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EXAMPLES 6.3. (i) For k > 1 recall from Examples 5.1(iv) that Tk denotes the
k-graph Nk with degree functor given by the identity functor, and C∗-algebra iso-
morphic to C(Tk). Endow C∗(T1) with the grading automorphism αδT1

induced
by δT1 (see Notation 6.2); so the unitary generator is homogeneous of odd de-
gree. (Under the canonical isomorphism C∗(T1) ∼= C(T) such that s1 7→ z, the
grading automorphism αδT1

corresponds to the automorphism induced by the
homeomorphism z 7→ −z of T.) Then the graded tensor product C∗(T1) ⊗̂C∗(T1)
is not abelian. To see this, let s1 denote the unitary generator of C∗(T1). Then

(s1 ⊗̂ 1)(1 ⊗̂ s1) = (s1 ⊗̂ s1) 6= −(s1 ⊗̂ s1) = (1 ⊗̂ s1)(s1 ⊗̂ 1).

In particular, the graded tensor product C∗(T1) ⊗̂ C∗(T1) is not isomorphic to
C∗(T2).

Instead, we claim that C∗(T1) ⊗̂ C∗(T1) ∼= C∗(T2, c) with grading automor-
phism αδT2

and twisting 2-cocycle c : (T2)
∗2 → T with values in {±1} given by

c(m, n) = (−1)m2n1 for (m, n) ∈ N2 ×N2 = (T2)
∗2.

To see this, for n ∈ N let sn ∈ C∗(T1) denote the corresponding generator.
Define elements {t(m,n) : (m, n) ∈ N2} ⊆ C∗(T1) ⊗̂ C∗(T1) by t(m,n) := sm ⊗̂ sn.
Routine calculations using the definition of multiplication and involution in the
graded tensor product show that the t(m,n) are a Cuntz–Krieger (T2, c)-family; for
example, we can check (CK2) as follows:

t(m,n)t(p,q)=(sm ⊗̂ sn)(sp ⊗̂ sq)=(−1)np(smsp ⊗̂ snsq)= c((m, n), (p, q))tm+p,n+q.

The universal property of C∗(T2, c) gives a homomorphism ψ : C∗(T2, c) →
C∗(T1) ⊗̂C∗(T1). An application of the gauge-invariant uniqueness theorem (The-
orem 5.10) shows that ψ is an isomorphism. Finally, one checks on generators that
ψ intertwines the grading automorphisms.

(ii) Recall that Z2 denotes Z2 considered as a Z2-graph as in Examples 5.1(ii).
Let δ := δZ2 be the identity map Z2 → Z2; so the associated grading automor-
phism αδ of C∗(Z2) makes the generator u homogeneous of degree one. Then
there is an isomorphism (C∗(Z2), αδ) ∼= Cliff1 that takes s1 to (1,−1) and s0
to (1, 1).

(iii) Consider the graded tensor product (C∗(Z2), αδ) ⊗̂ (C∗(Z2), αδ). As above,
this is, in general, a nonabelian C∗-algebra. Indeed, let c ∈ Z2(Z2 × Z2,T) be
the cocycle given by c(m, n) = (−1)m2n1 . Write δ := δZ2 and recall that δZ2×Z2 :
Z2 × Z2 → Z2 satisfies δ(i, j) = i + j. Then

(C∗(Z2), αδ) ⊗̂ (C∗(Z2), αδ) ∼= (C∗(Z2 × Z2, c), αδZ2×Z2
).

Since (C∗(Z2), αδ) ∼= Cliff1 as graded algebras, it follows that there is a graded
isomorphism C∗(Z2 × Z2, c) ∼= Cliff2. Indeed, we will see in Corollary 7.5 that
for any l > 1, if c is the 2-cocycle on the Zl

2-graph Zl
2 described at (5.1), then

Cliffn ∼= C∗(Zn
2 , c) as graded C∗-algebras, where C∗(Zn

2 , c) carries the grading
induced by δZn

2
as above.
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(iv) Expanding on (i), let A be a C∗-algebra with grading automorphism α.
Then, as at (4.10), there is a grading β1 of A oα Z given by β1(iA(a)iZ(n)) =
(−1)niA(α(a))iZ(n); that is, the copy of A retains its given grading, and the
generating unitary in the copy of C∗(Z) is odd. Let T1 denote N regarded as a
1-graph. The universal property of A oα Z and straightforward computations
show that the map iA(a)iZ(n) 7→ a ⊗̂ sn defines a graded isomorphism A oα Z ∼=
A ⊗̂ C∗(T1). We return to this in the context of graph C∗-algebras in Exam-
ples 8.9(i).

In Section 7, motivated by Examples 6.3(i) and (iii), we will investigate
graded tensor products of graded P-graph C∗-algebras, and show that these of-
ten coincide with twisted C∗-algebras of cartesian-product graphs. To do this,
we first need an alternative description of the graded C∗-algebras of appropriate
P-graphs as universal graded C∗-algebras.

Let Λ be a P-graph with P = Nk ×Zl
2, and let EP be the standard generators

{ei : 1 6 i 6 k + l} of P as in Notation 6.2.

THEOREM 6.4. Let P = Nk × Zl
2 and let Λ be a P-graph. Let cΛ be the 2-cocycle

of Proposition 5.4. Then for each e ∈ EP such that 2e = 0 and each λ ∈ Λe, there is a
unique λ∗ ∈ s(λ)Λe. This λ∗ satisfies s(λ∗) = r(λ), λλ∗ = r(λ), and λ∗λ = s(λ).
Moreover there exists a C∗-algebra D such that:

(i) D is generated by partial isometries {tλ : d(λ) ∈ EP} and mutually orthogonal
projections {pv : v ∈ Λ0} such that:

(a) tλtµ = −tµ′ tλ′ for all λ, λ′ ∈ Λe, µ, µ′ ∈ Λe′ with λµ = µ′λ′, e, e′ ∈ EP

and e 6= e′;
(b) if d(λ) = e ∈ EP and 2e = 0 then t∗λ = tλ∗ ;
(c) t∗λtλ = ps(λ) for all λ ∈ Λe, e ∈ EP;
(d) for all v ∈ Λ0 and e ∈ EP we have

pv = ∑
λ∈vΛe

tλt∗λ.

(ii) D is universal in the sense that for any other C∗-algebra D′ generated by elements
t′λ satisfying (a)–(d), there is a homomorphism D → D′ satisfying tλ 7→ t′λ.

The C∗-algebra D carries a grading automorphism α satisfying α(tλ) = −tλ

whenever d(λ) ∈ EP, and α(pv) = pv for all v ∈ Λ0. Moreover, if αδΛ
is the grad-

ing of C∗(Λ, cΛ) obtained from Lemma 6.1 applied to the functor (6.2), then there is a
graded isomorphism π : C∗(Λ, cΛ)→ D such that

π(sv) = pv for all v ∈ Λ0, and π(sλ) = tλ whenever d(λ) ∈ EP.

Proof. For the first statement, suppose that d(λ) = e with 2e = 0. We have
d(s(λ)) = 0 = e + e and so the factorisation property shows that there exist
λ∗, ν ∈ Λe such that s(λ) = λ∗ν. Since r(λ∗) = s(λ), the pair (λ, λ∗) is compos-
able and since λλ∗ ∈ Λ2e = Λ0 we have s(λ∗) = λλ∗ = r(λ). Hence, the pair
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(λ∗, λ) is composable and λ∗λ = r(λ). The factorisation property ensures that
this λ∗ is unique.

Let {sλ : λ ∈ Λ} be the generating partial isometries in C∗(Λ, cΛ). Let D be
the universal C∗-algebra generated by a family of tλ’s and pv’s satisfying (a)–(d).
The universal property guarantees that D carries a grading automorphism α as
described.

Define Tλ = sλ and Pv = sv. Then the family {P, T} satisfies conditions
(c) and (d) above. Suppose that e ∈ EP satisfies 2e = 0 and that λ ∈ Λe. Using
(CK2)–(CK4) and the first paragraph, we have

sλ∗ = (s∗λsλ)sλ∗ = s∗λcΛ(λ, λ∗)sλλ∗ = s∗λsr(λ) = s∗λ(sλs∗λ) = s∗λ

and hence Tλ∗ = T∗λ .
It remains to check property (a): if i 6= j then cΛ(ei, ej) = −1 if j < i and

cΛ(ei, ej) = 1 otherwise. Let λ, λ′ ∈ Λei , µ, µ′ ∈ Λej with λµ = µ′λ′. Suppose that
j < i. Then

TλTµ = sλsµ = cΛ(λ, µ)sλµ = (−1)1sλµ = −sλµ, and

Tµ′Tλ′ = sµ′ sλ′ = cΛ(µ
′, λ′)sµ′λ′ = (−1)0sλµ = sλµ.

Hence TλTµ = −Tµ′Tλ′ . If i < j, the same argument applies (switching
the λ’s and µ’s). Hence by the universal property of D there is a map φ : D →
C∗(Λ, cΛ) such that φ(pv) = sv for all v ∈ Λ0 and φ(tλ) = sλ for all edges λ.

To show that φ has an inverse, for each v ∈ Λ0 set sv = pv. For λ ∈ Λ with

d(λ) =
k+l
∑

i=1
miei, use the factorisation property to write

(6.3) λ = λ1
1 · · · λ

m1
1 λ1

2 · · · λ
m2
2 · · · λ

1
k+l · · · λ

mk+l
k+l

where d(λj
i) = ei for j = 1, . . . , mi and i = 1, . . . , k + l, and define

Sλ := tλ1
1
· · · t

λ
m1
1

tλ1
2
· · · t

λ
m2
2
· · · tλ1

k+l
· · · t

λ
mk+l
k+l

.

Direct calculation shows that {Sλ : λ ∈ Λ} is a Cuntz–Krieger (Λ, cΛ)-
family in D. For example, to verify (CK2), observe that an induction will prove
the general case if we can establish (CK2) whenever d(µ) ∈ EP. So fix ν = ν1 · · · νh
with each d(νi) ∈ EP, and fix µ ∈ Λr(ν) with d(µ) = ej ∈ EP. Factorise ν =
ν1 · · · νh such that for a < b if d(νa) = ep and d(νb) = eq, then p 6 q (so ν is
factorised as in (6.3)). Define c ∈ {0, . . . , h} to be the unique value such that for
a 6 c we have d(νa) = ei for some i < j and for a > c we have d(νa) = ei
for some i > j. Let µ0 := µ and for l 6 c, define µl ∈ Λej and ν′l ∈ Λd(νl)

to be the unique elements such that µa−1νa = ν′aµa. Then a applications of (a)
show that SµSν = (−1)atν′1

· · · tν′a tµa tνa+1 · · · tνh . By definition of cΛ (in particular,
see the definition of κ in (5.1)), the right-hand side of this expression is precisely
cΛ(µ, ν)Sµν.
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By the universal property of C∗(Λ, cΛ) there is a map ψ : C∗(Λ, cΛ) → D
such that ψ(sλ) = Sλ. By construction the maps ψ and φ are mutually inverse
and so D ∼= C∗(Λ, cΛ).

The final assertion follows by the universality of D.

7. GRADED TENSOR PRODUCTS OF TWISTED P-GRAPH C∗-ALGEBRAS

Let P = Nk × Za
2 and let Q = Nl × Zb

2. Let Λ be a P-graph and Γ a Q-
graph. Then Λ× Γ is a P× Q graph. The functor δΛ×Γ and the 2-cocycle cΛ×Γ

defined in Proposition 5.4 via (5.1), still make sense as we are using the map
π : P×Q→ Z(k+a)+(l+b)

2 to define cΛ×Γ.

THEOREM 7.1. Let P = Nk × Za
2 and let Q = Nl × Zb

2. Let Λ be a P-graph and
Γ a Q-graph. Then there is an isomorphism of graded C∗-algebras

C∗(Λ× Γ, cΛ×Γ) ∼= C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ)

with respect to the gradings αδΛ×Γ
and αδΛ

⊗̂ αδΓ
.

Proof. By Theorem 6.4, the graded C∗-algebra C∗(Λ× Γ, cΛ×Γ) is universal
for families {p(v,w) : v, w ∈ Λ0 × Γ0}, {t(λ,w) : λ ∈ Λ, d(λ) ∈ EP and w ∈ Γ0} and
{t(v,µ) : v ∈ Λ0, µ ∈ Γ and d(µ) ∈ EQ} satisfying (a)–(d) of Theorem 6.4. Define
elements of C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ) as follows:

T(λ,w) = sλ ⊗̂ sw for λ ∈ Λei , w ∈ Γ0,

T(v,µ) = sv ⊗̂ sµ for µ ∈ Γej , v ∈ Λ0, and

P(v,w) = sv ⊗̂ sw for v ∈ Λ0, w ∈ Γ0.

Then (since sv is zero graded in C∗(Λ, cΛ) for each v ∈ Λ0 and sw is zero graded
in C∗(Γ, cΓ)0 for each w ∈ Γ0), the set {P(v,w) : (v, w) ∈ Λ0 × Γ0} is a family of
mutually orthogonal projections. We must check that the P(v,w) and the T(λ,w) and
T(v,µ) satisfy relations (a)–(d) for the (P× Q)-graph Λ× Γ and the cocycle cΛ×Γ.
Condition (a) is the most difficult, and we present it here; (b)–(d) are routine.

Let λ, λ
′
, µ, µ′ be edges in Λ × Γ such that d(λ) = d(λ′), d(µ) = d(µ′),

d(λ) 6= d(µ), s(λ) = r(µ), s(µ′) = r(λ′), and λµ = µ′λ
′
. There are four combina-

tions to check according to whether

d(λ) = (ei, 0) 1 6 i 6 k, or d(λ) = (0, ei) 1 6 i 6 l; and

d(µ) = (ej, 0) 1 6 j 6 k, or d(µ) = (0, ej) 1 6 j 6 l.

First suppose that d(λ) = (ei, 0) and d(µ) = (ej, 0) where i 6= j. Then

λ = (λ, v), µ = (µ, v), λ
′
= (λ′, v) and µ′ = (µ′, v) for some v ∈ Γ0 and some

λ, µ′ ∈ Λei , µ, λ′ ∈ Λej with λµ = µ′λ′. We then have

TλTµ = T(λ,v)T(µ,v) = (sλ ⊗̂ sv)(sµ ⊗̂ sv) = (−1)∂sv ·∂sµ(sλsµ ⊗̂ sv) = (sλµ ⊗̂ sv)
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since ∂sv = 0. On the other hand,

Tµ′Tλ
′ = T(µ′ ,v)T(λ′ ,v) = (sµ′ ⊗̂ sv)(sλ′ ⊗̂ sv)

= (−1)∂sv ·∂sλ′ (sµ′ sλ′ ⊗̂ sv) = sµ′ sλ′ ⊗̂ sv = −(sλµ ⊗̂ sv).

Now suppose that d(λ) = (ei, 0) and d(µ) = (0, ej). Then λ = (λ, r(µ)),

µ = (s(λ), µ), µ′ = (r(λ), µ) and λ
′
= (λ, s(µ)) for some λ ∈ Λei and µ ∈ Γej . So

TλTµ = T(λ,r(µ))T(s(λ),µ) = (sλ ⊗̂ sr(µ))(ss(λ) ⊗̂ sµ)

= (−1)∂sr(µ) ·∂sr(λ)(ss(λ)sλ ⊗̂ sµss(µ)) = (sλ ⊗̂ sµ),

whereas, using that ∂sλ′ = ∂sµ′ = 1,

Tµ′Tλ
′ = T(r(λ′),µ′)T(λ′ ,s(µ′)) = (sr(λ′) ⊗̂ sµ′)(sλ′ ⊗̂ ss(µ′))

= (−1)∂sµ′ ·∂sλ′ (sr(λ′)sλ′ ⊗̂ sµ′ ss(µ′)) = −(sλ ⊗̂ sµ).

The remaining two cases are similar.
By the universal property of C∗(Λ× Γ, cΛ×Γ) there is a map π : C∗(Λ×

Γ, cΛ×Γ) → C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ) such that π(t(λ,w)) = T(λ,w), π(t(v,µ)) = T(v,µ)

and π(p(v,w)) = P(v,w). This π is surjective because C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ) is gen-
erated by the elements sλ ⊗̂ sµ = T(λ,r(µ))T(s(λ),µ). We aim to apply the gauge
invariant uniqueness theorem for twisted P-graph C∗-algebras given in Proposi-
tion 5.10 to show that π is injective. For this, observe that the projections P(v,w) =

sv ⊗̂ sw are nonzero, so it suffices to show that, identifying ĜP×Q with ĜP × ĜQ in
the canonical way, π is equivariant for the gauge-action γΛ×Γ on C∗(Λ× Γ, cΛ×Γ)
and the action γΛ ⊗̂ γΓ on C∗(Λ, cΛ) ⊗̂ C∗(Γ, cΓ) such that

(γΛ
χ ⊗̂ γΓ

χ′)(sλ ⊗̂ sµ) = χ(d(λ))χ′(d(µ))(sλ ⊗̂ sµ)

for all (χ, χ′) ∈ ĜP × ĜQ, λ ∈ Λ and µ ∈ Γ.
Since γΛ×Γ

(χ,χ′)s(λ,µ) = χ(d(λ))χ′(d(µ))s(λ,µ) we see that π is equivariant on
the generators p(v,w), t(λ,w), t(v,µ), and therefore on C∗(Λ× Γ, cΛ×Γ).

An interesting special case of Theorem 7.1 occurs when Γ is the Z2-graph
Z2, so that C∗(Γ) ∼= Cliff1 as graded C∗-algebras.

COROLLARY 7.2. Let P = Nk ×Za
2 and let Λ be a P-graph. Then

C∗(Λ× Z2, cΛ×Z2)
∼= C∗(Λ, cΛ) ⊗̂ C∗(Z2) ∼= C∗(Λ, cΛ) ⊗̂Cliff1,

with respect to the gradings αδΛ×Z2
and αδΛ

⊗̂ αδZ2
.

Proof. The Z2-graph Z2 has trivial second cohomology, so Lemma 5.8 yields
an isomorphism C∗(Z2, cZ2)

∼= C∗(Z2) that clearly preserves gradings. The first
statement therefore follows from Theorem 7.1. The second statement follows
from Examples 6.3(ii).
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REMARK 7.3. Since the graded tensor product with Cliff1 is like a graded
suspension operation, Corollary 7.2 has implications for graded K-theory. Let
P = Nk×Zl

2 for some k, l, and let Λ be a P-graph. Then Kgr
i (C∗(Λ×Z2, cΛ×Z2))

∼=
Kgr

i+1(C
∗(Λ, cΛ)), and then inductively

Kgr
i (C∗(Λ× Zn

2 , cΛ×Z2))
∼= Kgr

i+n(C
∗(Λ, cΛ)).

COROLLARY 7.4. Let Λ be the Zl
2-graph

l
∏
i=1

Z2. Then C∗(Λ, cΛ) ∼= Cliffl , the

l-th complex Clifford algebra. This isomorphism is a graded isomorphism with respect to
the grading δΛ of C∗(Λ, cΛ).

Proof. We have C∗(Z2) ∼= Cliff1 as graded C∗-algebras as discussed in Ex-
ample 6.3(ii). So the result follows from an induction argument using Corol-
lary 7.2 and the definition Cliffl+1 = Cliffl ⊗̂Cliff1.

So far we have discussed gradings arising from functors from k-graphs into
Z2, but there are other possible gradings including those arising from order two
automorphisms of k-graphs. Let θ be an order two automorphism of a row-finite
k-graph Λ with no sources. Then θ induces a grading βθ of C∗(Λ) satisfying
βθ(sλ) = sθ(λ). With respect to this grading,

C∗(Λ)0 = span{sλs∗µ + sθ(λ)s
∗
θ(µ) : s(λ) = s(µ)}, and

C∗(Λ)1 = span{sλs∗µ − sθ(λ)s
∗
θ(µ) : s(λ) = s(µ)}.

PROPOSITION 7.5. With notation as above there is a graded isomorphism

ρ : C∗(Λ×θ Z2)→ C∗(Λ) ⊗̂Cliff1

such that ρ(s(λ,i)) = sλ ⊗̂ ui, where Λ×θ Z2 is the crossed-product (Nk × Z2)-graph,
and C∗(Λ×θ Z2) has grading automorphism β̃θ given by β̃θ(s(λ,i)) = (−1)is(θ(λ),i).

Proof. Direct calculation shows that the elements t(λ,i) := sλ ⊗̂ ui constitute
a Cuntz–Krieger (Λ×θ Z2)-family in C∗(Λ) ⊗̂Cliff1. So the universal property of
C∗(Λ×θ Z2) gives a homomorphism ρ : C∗(Λ×θ Z2) → C∗(Λ) ⊗̂ Cliff1 taking
s(λ,i) to t(λ,i) = sλ ⊗̂ ui. An application of the gauge-invariant uniqueness theo-
rem (Proposition 5.10) shows that ρ is injective; it is surjective because its image
contains the generators of C∗(Λ) ⊗̂Cliff1. Therefore ρ is an isomorphism. Let α
be the grading automorphism of Cliff1. Then

ρ(β̃θ(s(λ,i))) = ρ((−1)is(θ(λ),i)) = (−1)isθ(λ) ⊗̂ ui

= (βθ ⊗̂ α)(sλ ⊗̂ ui) = (βθ ⊗̂ α)ρ(s(λ,i));

hence ρ intertwines the grading automorphisms of the two algebras.
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8. GRADED K-THEORY OF GRAPH C∗-ALGEBRAS

In this section we apply the sequence (4.9) to a graph C∗-algebra C∗(E)
graded by an automorphism αδ determined by a function δ : E1 → Z2; see Corol-
lary 8.3.

REMARK 8.1. Following [11] (see also Section 8 of [33]), given a 1-graph
E, we can realise C∗(E) as the Cuntz–Pimsner algebra of the module X(E) de-
fined as the Hilbert-bimodule completion of Cc(E1), regarded as a C0(E0)-C0(E0)-
bimodule under the left and right actions given by (a · x · b)(e)= a(r(e))x(e)b(s(e)),
under the inner-product 〈x, y〉C0(E0)(v) = ∑

s(e)=v
x(e)y(e). By Proposition 4.4 of

[11] this left action is by compacts if E is row-finite. The left action is injective if E
has no sources. Observe that C0(E0), is separable and nuclear. It carries the trivial
grading αC0(E0) = id.

Fix a function δ : E1 → Z2. This δ extends uniquely to a functor δ : E∗ → Z2.
There is a grading αX(E) on X(E) determined by αX(E)(1e) = (−1)δ(e)1e. It is
straightforward to check that (X, αX) is a graded C0(E0)-C0(E0)-correspondence.
By Proposition 12 of [10] (see also Example 8.13 of [33]) we have C∗(X(E)) ∼=
C∗(E). Hence (4.9) becomes

(8.1) 0→Kgr
1 (C∗(E), α) ↪→Kgr

0 (C0(E0))
1−[X(E)]−→ Kgr

0 (C0(E0))�Kgr
0 (C∗(E), α)→0

since Kgr
1 (A, αA) =

⊕
v∈E0

K1(C) = 0.

To apply (8.1) to compute the graded K-theory of the C∗-algebra associated
to a 1-graph E we need to examine the central terms more closely. We describe
Kgr

0 (C0(E0)) in a way which allows us to compute the map ⊗̂C0(E0)(1− [X(E)]).
Let E be a row-finite 1-graph with no sources. We have Kgr

0 (C0(E0)) =

KK(C,CE0
). Let Cδv be a copy {zδv : z ∈ C} of C as a vector space with inner-

product given by 〈zδv, z′δv〉CE0 (u) = δv,uzz′ and right action zδv · a = a(v)zδv.
It carries a left action ϕv of C by multiplication. The tuple (Cδv, ϕv, 0, id) is a
Kasparov C-CE0

-module. The group KK(C,CE0
) is generated by the Kasparov

C-CE0
modules [Cδv] := [Cδv, ϕv, 0, id] for v ∈ E0, and there is an isomorphism

θ : ZE0 → KK0(C, C0(E0)) such that θ(1v) = [Cδv], where 1v is the generator of
ZE0 corresponding to v.

Now we describe the map ⊗̂C0(E0)[X(E)] on ZE0 induced by the isomor-
phism θ. Let Aδ

E be the E0 × E0 matrix defined by

(8.2) Aδ
E(v, w) = ∑

e∈vE1w

(−1)δ(e)

(the empty sum is 0 by convention). If Ej denotes the subgraph (E0, δ−1(j), r, s)
of E for j = 0, 1, then Aδ

E is just AE0 − AE1 .
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LEMMA 8.2. Let E be a row-finite 1-graph with no sources. Then with notation as
above, the following diagram commutes.

ZE0

ZE0

KK0(C,CE0
).

KK0(C,CE0
)

(Aδ
E)

t ⊗̂C0(E0)[X(E)]

θ

θ

Proof. It suffices to check that the diagram commutes on generators 1v. Fix
v ∈ E0. Using Lemma 4.1 at the second equality we calculate:

θ(1v) ⊗̂C0(E0) [X(E)]= [Cδv] ⊗̂C0(E0) [X(E)] = [Cδv] ⊗̂C0(E0) ([X(E)0]− [X(E)1])

= ∑
e∈vE1w, δ(e)=0

[Cδw]− ∑
f∈vE1w, δ( f )=1

[Cδw]= ∑
g∈vE1w

(−1)δ(g)[Cδw].

This is precisely θ((Aδ
E)

t1v).

We now use Corollary 4.5 and Lemma 8.2 to compute the graded K-theory
of graph C∗-algebras for suitable gradings.

COROLLARY 8.3. Let E be a row-finite 1-graph with no sources, and let δ : E →
Z2 be the functor determined by the function δ : E1 → Z2. Let αδ be the associated
grading αδ(se) = (−1)δ(e)se of C∗(E). Then, with Aδ

E as in (8.2),

Kgr
0 (C∗(E), αδ) ∼= coker(1− (Aδ

E)
t : ZE0 → ZE0) and

Kgr
1 (C∗(E), αδ) ∼= ker(1− (Aδ

E)
t : ZE0 → ZE0).

Note that if E0 is finite, then Kgr
1 (C∗(E), αδ) is a free abelian group with the

same rank as Kgr
0 (C∗(E), αδ).

REMARK 8.4. Corollary 8.3 is a direct parallel to Corollary 4.2.5 of [30] (see
also Example 7.2 of [33]): given δ : E1 → Z2, the graded K0-group Kgr

0 (C∗(E), αδ)
is generated as an abelian group by the classes of the vertex projections {pv : v ∈
E0} subject only to the relations

[pv] =
[

∑
e∈vE1

ses∗e
]
= ∑

e∈vE1

(−1)δ(e)[s∗e se] = ∑
w∈E0

(Aδ
E)

t(v, w)[pw]

coming from Example 3.5. This motivates, in part, our conjecture in Section 9
below.

In particular, taking δ ≡ 0, we recover the well-known formula for the (un-
graded) K-theory of a 1-graph C∗-algebra ([30], Theorem 4.2.4).

EXAMPLES 8.5. (i) As in Examples 5.1, for 1 6 n < ∞ let Bn be the 1-graph
with one vertex and n edges. Fix δ : B1

n → Z2, and let p := |δ−1(1)| and q =
|δ−1(0)|, so that p+ q = n. Then (Aδ

Bn
)t is the 1× 1 matrix (q− p). Since C∗(Bn) ∼=
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On we recover the formula for Kgr
∗ (On) obtained by Haag in Proposition 4.11

of [15]:

Kgr
∗ (On, αδ) ∼=

{
(Z|1+p−q|, 0) if 1 + p− q 6= 0,
(Z,Z) otherwise.

(ii) Let K2 be the 1-graph associated to the complete directed graph on two
vertices. Endow K2 with the map δ′ : K1

2 → Z2 for which Aδ′
K2

=
(
−1 −1
1 −1

)
.

Then Kgr
0 (C∗(K2), αδ′) ∼= Z5. In particular, this and (i) above show that although

C∗(K2) ∼= O2 ∼= C∗(B2), there is no graded isomorphism from (C∗(K2), αδ′) to
(C∗(B2), αδ) for any δ : B1

2 → {0, 1}.
(iii) More generally, let Λ be a row-finite k-graph with no sources and fix p ∈

Nk. Recall that the dual graph pΛ := {λ ∈ Λ : d(λ) > p} is a k-graph as follows:
dp(λ) = d(λ) − p, and if we use the factorisation property in Λ to write each
λ ∈ Λ as λ = λt(λ) = h(λ)λ with d(t(λ)) = d(h(λ)) = p, then the range
and source maps on pΛ are h and t respectively, and composition in pΛ is given
by λ ◦p µ = λµ = λµ whenever t(λ) = h(µ) (cf. Proposition 3.2 of [1]). By

Theorem 3.5 of [1] there is an isomorphism θ : C∗(pΛ)→ C∗(Λ) such that spΛ
λ 7→

sΛ
λ (s

Λ
t(λ))

∗. So any functor δp : pΛ → Z2 induces a grading αp of C∗(pΛ) and
hence a grading α of C∗(Λ). As seen in the preceding example, this grading
typically does not arise from a functor from Λ to Z2, but for k = 1, we can still
apply Corollary 8.3 (to pΛ) to compute Kgr

∗ (C∗(Λ), α).
(iv) Let F be the 1-graph with vertices {vn : n ∈ N} and edges {en, fn : n ∈ N}

where r(en) = r( fn) = vn and s(en) = s( fn) = vn+1. Then C∗(F) is Morita equiv-
alent to the UHF-algebra M2∞ , and so K∗(C∗(F)) = (Z[ 1

2 ], 0). Define δ : F1 → Z2

by δ(en) = 0 and δ( fn) = 1 for all n. Then the matrix Aδ
F is the zero matrix. Hence

1− Aδ
F is the identity map from ZF0 to ZF0, and we obtain Kgr

∗ (C∗(F), αδ) = (0, 0)
by Corollary 8.3. (We can also recover this result by taking a direct-limit decom-
position as in Example 8.7 below.)

REMARK 8.6. Suppose that Λ is a bipartite P-graph. That is, Λ0 = L t R
and for every edge λ ∈ Λ either s(λ) ∈ L and r(λ) ∈ R, or vice versa. Then the
gradings αδΛ

of C∗(Λ) and C∗(Λ, cΛ) induced by the functors δΛ of (6.2) are inner
because the grading automorphism is implemented by the self-adjoint multiplier
unitary U = PL − PR. Hence 14.5.2 of [2] gives Kgr

∗ (C∗(Λ), αΛ) ∼= K∗(C∗(Λ)).
To see why this observation is useful, observe that the skew-product of a

k-graph Λ by the degree functor Λ×d Zk is bipartite with L = Λ0 ×
{

n ∈ Zk :

∑
i

ni is even
}

and R = Λ0 ×
{

n ∈ Zk : ∑
i

ni is odd
}

. If Λ is the 1-graph B2

from (i), then B2 ×d Z ∼= F where F as in (iv) above. Hence, as graded algebras
C∗(B2 ×d Z) ∼= C∗(F).
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Also, let Λ be a k-graph and let δ = δΛ : Λ → Z2 be as in (6.2). Then the
skew product graph Λ×δ Z2 is bipartite (with L = Λ0 × {0} and R = Λ0 × {1}),
and so the grading on C∗(Λ×δ Z2) induced by δΛ×δZ2 is inner.

EXAMPLE 8.7. Consider again the graph and functor of Examples 8.5(iv).
We have C∗(F) =

⋃
C∗(Fn) where Fn is the subgraph of F with

F0
n = {v1, . . . , vn} and F1

n = {e1, f1, . . . , en−1, fn−1}.
Fix n ∈ N. Let {θµ,ν : µ, ν ∈ Fvn} denote the canonical matrix units for MFvn . We

have C∗(Fn) ∼= MFvn via sµs∗ν 7→ θµ,ν. Extend δ to F by setting δ(µ) =
|µ|
∑

i=1
δ(µi),

and define
U = ∑

µ∈Fvn

(−1)δ(µ)sµs∗µ.

Then U is a self-adjoint unitary in C∗(Fn) that implements the grading by conju-
gation. So the grading on each C∗(Fn) is inner, and therefore Kgr

∗ (C∗(Fn), αδ) =
K∗(C∗(Fn)) = K∗(MFvn) = (Z, 0), with generator [svn ].

The inclusion map ιn : C∗(Fn) ↪→ C∗(Fn+1) is given by sµs∗ν 7→ sµen s∗νen +
sµ fn s∗ν fn

. In particular ιn(svn) = sen s∗en + s fn s∗fn
. The partial isometry V := sen s∗fn

is
odd and satisfies VV∗ = sen s∗en and V∗V = s fn s∗fn

. So ιn(svn) = V∗V + VV∗. By

Example 3.5, we have [V∗V] = −[VV∗] in Kgr
0 (C∗(Fn+1), αδ), and it follows that

ι∗ : Kgr
0 (C∗(Fn), αδ) → Kgr

0 (C∗(Fn+1), αδ) sends [svn ] to zero and hence is the zero
map. Hence

Kgr
∗ (C∗(F), αδ) ∼= (lim−→(Kgr

0 (C∗(Fn), αδ), ι∗), 0) ∼= (lim−→(Z, 0), 0) = (0, 0) as before.

We turn next to some applications of Corollary 4.7 to the crossed products
of the C∗-algebra of a 1-graph E. To do this, we first need to describe the map in
graded K-theory induced by an automorphism determined by a function from E1

to Z2.

LEMMA 8.8. Let E be a row-finite 1-graph with no sources and δ : E1 → Z2 a
function. Let δ : E∗ → Z2 be the induced functor. The map α∗ on Kgr

∗ (C∗(E), αδ)
induced by the automorphism αδ is the identity map.

Proof. Let X(E) denote the graph module described in Remark 8.1. For v ∈
E0, and e ∈ E1, the grading operator αδ on X(E) satisfies

αδ(1v · 1e) = δv,r(e)αδ(1e) = δv,r(e)(−1)δ(e)1e = 1v · αδ(1e)

and similarly αδ(1e · 1v) = αδ(1e) · 1v. So, by linearity and continuity, αδ : X(E)→
X(E) is a bimodule map. Moreover for e, f ∈ E1 we have

〈αδ(1e), αδ(1 f )〉C0(E0) = (−1)δ(e)+δ( f )〈1e, 1 f 〉C0(E0) =

{
1s(e) if e = f ,
0 otherwise,

which is precisely 〈1e, 1 f 〉C0(E0). So αδ is a graded automorphism of X(E).
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Thus the final statement of Theorem 4.4 implies that αδ induces an automor-
phism of the exact sequence

0→ Kgr
1 (C∗(E), αδ) ↪→ Kgr

0 (C0(E0))
1−[X(E)]−→ Kgr

0 (C0(E0))� Kgr
0 (C∗(E), αδ)→ 0.

Since this automorphism is the identity map on the two middle terms in the se-
quence, we deduce that it is the identity map on Kgr

∗ (C∗(E), αδ) as claimed.

EXAMPLES 8.9. (i) Recall Example 6.3(iv). Let E be a row-finite 1-graph
with no sources. Give C∗(E) the grading α induced by the functor δ(λ) = |λ|
(mod 2). Consider the crossed product C∗(E)oα Z under the grading α̃ satisfying
α̃(iA(a)iZ(n)) = (−1)niA(α(a))iZ(n). By applying Corollary 4.7 with k = 1 (so
that α̃ = β1), and Lemma 8.8 we obtain the following exact sequence:

(8.3)

Kgr
1 (C∗(E)oαδ

Z, α̃) Kgr
1 (C∗(E), αδ) Kgr

1 (C∗(E), αδ).

Kgr
0 (C∗(E)oαδ

Z, α̃)Kgr
0 (C∗(E), αδ)Kgr

0 (C∗(E), αδ)
×2 i∗

×2i∗

By Example 6.3(iv), we have a graded isomorphism

(C∗(E) ⊗̂ C∗(T1), αδE ⊗̂ αδT1)
∼= (C∗(E)oα Z, α̃).

We use this to compute Kgr
∗ (C∗(E) ⊗̂ C∗(T1)).

Since Kgr
1 (C∗(E), αδ) has no torsion, multiplication by 2 is injective on that

group, so exactness implies that the right-hand boundary map is zero. There-
fore Kgr

0 (C∗(E) ⊗̂ C∗(T1)) is isomorphic to the cokernel of the times-two map on
Kgr

0 (C∗(E), αδ); that is

Kgr
0 (C∗(E) ⊗̂ C∗(T1)) ∼= Kgr

0 (C∗(E), αδ)/2Kgr
0 (C∗(E), αδ).

Exactness of the bottom row gives

i∗(K
gr
1 (C∗(E), αδ)) ∼= Kgr

1 (C∗(E), αδ)/2Kgr
1 (C∗(E), αδ),

so Kgr
1 (C∗(E) ⊗̂ C∗(T1)) is an extension of the 2-torsion subgroup

{a ∈ Kgr
0 (C∗(E), αδ) : 2a = 0}

by Kgr
1 (C∗(E), αδ)/2Kgr

1 (C∗(E), αδ).
In particular, if Kgr

0 (C∗(E), αδ) has no 2-torsion, then we obtain

Kgr
1 (C∗(E) ⊗̂ C∗(T1)) ∼= Kgr

1 (C∗(E), αδ)/2Kgr
1 (C∗(E), αδ);

but even if Kgr
0 (C∗(E), αδ) does contain 2-torsion, we can deduce, for example,

that the order of every element of Kgr
1 (C∗(E) ⊗̂ C∗(T1)) divides 4.

(ii) Recall from Examples 6.3(i) that C∗(T1) ⊗̂ C∗(T1) ∼= C∗(T2, c) where c is
the 2-cocycle c(m, n) = (−1)m2n1 for (m, n) ∈ N2. We can compute the graded
K-theory Kgr

∗ (C∗(T2, c), δT2), by taking E = T1 in (i) above. Since T1 = B1 we
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have Kgr
0 (C∗(T1), δT1) = Z2 and Kgr

1 (C∗(T1), δT1) = {0} by Examples 8.5(i). Then
by (8.3), the times-two map on Kgr

0 (C∗(T1), δT1) is the zero map, and so the ex-
act sequence above for Kgr

∗ ((C∗(T2), c), δT2) collapses to give Kgr
∗ (C∗(T2, c), δT2)

∼=
(Z2,Z2). Observe that C∗(T2, c) is the rational rotation algebra A1/2, so its un-
graded K-theory is (Z2,Z2) (see [7]).

REMARK 8.10. More generally, by Theorem 7.1, if E is any row-finite 1-
graph with no sources endowed with the grading induced by the functor δ(e) = 1
for all e ∈ E1, then C∗(E) ⊗̂C∗(T1) ∼= C∗(E× T1, cE×T1) with the grading induced
by δE×T1 . Thus Example 8.9(i) computes the graded K-theory of this twisted 2-
graph C∗-algebra.

We finish with an example describing a 2-graph C∗-algebra C∗(Λ) that is
Morita equivalent to an irrational-rotation algebra, and a grading α on C∗(Λ)
such that Kgr

∗ (C∗(Λ), α) = (Z2 ×Z2, 0).

EXAMPLE 8.11. Consider the following 2-coloured graph (see Example 6.5
of [31]):

v1

w1

v2

w2

v3

w3

v4

w4

. . .

. . .

1

2

2

3

2

3

3

5

3

5

5

8

where the label on a blue (solid) edge indicates the number of parallel blue edges.
The pattern is that the numbers of edges are Fibonacci numbers. The red edges
are drawn dashed. Let E = Eblue be the subgraph consisting of blue edges. For
v, w ∈ E0 such that wE1

bluev 6= ∅, fix a partition vE1
bluew = S0(v, w) t S1(v, w)

of vE1
bluew such that |S0(v, w)| = |S1(v, w)| if |vE1

bluew| is even, and |S0(v, w)| =
|S1(v, w)|+ 1 if |vE1

bluew| is odd.
Choose a permutation ρ of E1

blue that preserves ranges and sources, and
cyclicly permutes the elements of each Sj(v, w), for j = 0, 1. For each v ∈ E0,
let fv be the dashed loop based at v. Let Λ be the 2-graph with the above skele-
ton, and with factorisation rules given by fr(e)e = ρ(e) fs(e) for all e ∈ E1

blue.
Since the numbers of parallel edges grow exponentially fast, Λ has large-

permutation factorisations in the sense of Definition 5.6 in [31]. It is also cofinal,
and so C∗(Λ) is simple with real-rank zero. Elliott’s classification theorem [8]
combined with Theorem 4.3 of [31] implies that C∗(Λ) is Morita equivalent to the
irrational-rotation algebra Aθ where θ = 1+

√
5

2 (see Example 6.5 of [31]). Define
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δ : E1
blue → Z2 by δ(e) = k whenever e ∈ Sk(v, w) for some v, w. This induces a

functor δ : E∗blue → Z2. The matrix Aδ
Eblue

defined in Corollary 8.3 has entries in
{0, 1}, and corresponds to the 1-graph F with skeleton

v1

w1

v2

w2

v3

w3

v4

w4

. . .

. . .

where the pattern of connecting edges repeats every three levels (note: there are
no parallel edges). By telescoping these three levels, and arguing as in Exam-
ple 8.7, we see that Kgr

0 (C∗(E), αδ) ∼= lim−→(Z2,
(

1 2
0 1
)
). This matrix has determinant

1, and so Kgr
∗ (C∗(E), αδ) ∼= (Z2, 0).

As in [9], the permutation ρ of E1 defining the factorisation rules induces
an automorphism ρ̃ of C∗(E), and C∗(Λ) ∼= C∗(E)oρ̃ Z by Theorem 3.4 of [9].
There are two natural extensions of δ to a Z2-valued functor on Λ: namely δ0,
determined by δ0( f ) = 0 for all f ∈ Λe2 , and δ1, determined by δ1( f ) = 1
for all f ∈ Λe2 . The grading automorphisms αδk correspond under the identi-
fication C∗(Λ) ∼= C∗(E) oρ̃ Z with the automorphisms βk of Corollary 4.7, for
k = 0, 1. So we can compute the graded K-theory of C∗(Λ, αδk ) by applying
that result. The automorphism ρ̃ of C∗(E) permutes equivalent projections in
approximating finite-dimensional subalgebras of C∗(E). So the automorphism
ρ̃∗ of Kgr

∗ (C∗(E)) induced by αδ ◦ ρ̃ is the identity. By Lemma 8.8 we therefore
have (−(αδ)∗)

k ρ̃∗ = (−1)k id for k = 0, 1. Thus id−(−α∗)0ρ̃∗ = 0 and Corol-
lary 4.7 gives Kgr

∗ (C∗(Λ), αδ0) ∼= (Z2,Z2) (which is isomorphic to K∗(C∗(Λ)) as
a pair of abelian groups). And id−(−(αδ)∗)

1ρ̃∗ = 2 · id, so Corollary 4.7 gives
Kgr
∗ (C∗(Λ), αδ1) = (Z2 ×Z2, 0).

9. CONJECTURE

In this section we deal exclusively with a unital (and in particular σ-unital)
graded C∗-algebra (A, α). Our results and examples, particularly Example 3.5,
lead us to ask whether Kgr

0 (A) consists of equivalence classes of homogeneous
projections over A subject to the relation

[v∗v] = (−1)∂v[vv∗] for every homogeneous partial isometry v.

To make this concrete, let (A, α) be a unital graded C∗-algebra. Let P0(A)

denote the collection of homogeneous projections inK(ĤA). Let p, q ∈ P0(A); we
write p ∼ q if there is an even partial isometry v such that p = v∗v and q = vv∗. If
p ⊥ q, then p + q is a projection and we write [p] + [q] = [p + q]. Define V0(A) :=
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P0(A)/∼, which is an abelian monoid under the binary operation induced by
orthogonal addition. Given a homotopy t 7→ pt in P0(A), we have [p0] = [p1]
(see 2.2.7 of [39] or Section 4 of [2]).

Note that V0(A) may be identified with the set of isomorphism classes of
graded, projective modules over A. By a projective module over A we mean a
right-Hilbert module of the form pHA where p ∈ K(HA). Since HA = `2(A)
is countably generated, projective modules are countably generated — in fact,
by Corollary 3.10 of [12], finitely generated. For any p ∈ P0(A) we may form
the graded projective module pĤA (with grading inherited from ĤA). Given
p, q ∈ P0(A). We have p ∼ q if and only if pĤA ∼= qĤA. Moreover, if p ⊥ q, then
(p+ q)ĤA ∼= pĤA⊕ qĤA. By the stabilisation theorem (see Theorem 14.6.1 of [2])
every graded projective module is isomorphic to a summand of ĤA and therefore
is isomorphic to pĤA for some p ∈ P0(A). Thus we may and do regard V0(A) as
the semigroup of isomorphism classes of graded projective modules over A with
the binary operation given by direct sum, that is, [X] + [Y] = [X ⊕ Y] where X
and Y are graded projective modules.

A graded projective module Z is said to be degenerate if there is a graded
projective module X such that Z ∼= X⊕Xop. For p ∈ P0(A), the graded projective
module pĤA is degenerate if and only if there is an odd partial isometry v such
that p = v∗v + vv∗. Let D0(A) denote the collection of isomorphism classes of
degenerate graded projective modules in P0(A). Observe that D0(A) forms a
submonoid of V0(A).

Let X, Y be graded projective modules; we write X ≈ Y if there are degener-
ate graded projective modules Z, W such that X ⊕ Z ∼= Y⊕W. Then ≈ forms an
equivalence relation on graded projective modules (coarser than isomorphism)
and we let L(A, α) denote the collection of equivalence classes. We write [X]L for
the equivalence class of the graded projective module X. It is routine to show that
the direct sum of graded projective modules yields a well-defined binary opera-
tion on L(A, α) which makes it an abelian semigroup. Recall that ` : C → L(X)
denotes the left action of C by scalar multiplication on X.

PROPOSITION 9.1. Let (A, α) be a unital graded C∗-algebra. The semigroup
L(A, α) is an abelian group with inverse given by −[X]L = [Xop]L for X a graded
projective module and zero element given by the class of the trivial module (or any degen-
erate module). There is a group homomorphism v : L(A, α)→ Kgr

0 (A, α) such that

v([X]L) = [`, X, 0, αX ] ∈ KK(C, A) = Kgr
0 (A, α)

for every graded projective module X.

Proof. Let X be a graded projective module. Then [X]L + [Xop]L = [X ⊕
Xop]L = [0]L. The map v is well defined since Example 3.5 shows that the Kas-
parov element associated to a degenerate graded projective module maps to zero
and v is clearly additive.
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CONJECTURE 9.2. The homomorphism v of Proposition 9.1 is an isomorphism.

It should not be difficult to show that our conjecture holds when A is triv-
ially graded. In this case L(A, id) ∼= K0(A) since graded projective modules over
A are all of the form X ∼= Y ⊕ Zop where Y and Z are trivially graded projec-
tive modules over A and αX ∼= (id,−id). Moreover, [Y1 ⊕ Zop

1 ]L = [Y2 ⊕ Zop
2 ]L

if and only if ([Y1], [Z1]) ∼ ([Y2], [Z2]) in the Grothendieck group K0(A). This
is closely related to the argument that KK0(C, A) ∼= K0(A) for ungraded A; see
Proposition 17.5.5 of [2].

Appendix A. TRANSITIVITY OF HOMOTOPY EQUIVALENCE IN KASPAROV THEORY

In this appendix, we provide a proof that homotopy equivalence is an equiv-
alence relation among Kasparov A-B-modules. This is implicit in both [20] and
[2], but — as the anonymous referee points out — it is not explicitly proved in
either place. So it seems worthwhile to record a detailed proof here.

PROPOSITION A.1. Let A and B be σ-unital graded C∗-algebras. The relation∼h
is an equivalence relation on Kasparov A-B-modules.

To prove the proposition, we need the following standard fact about the
structure of K(X) if X is a right-Hilbert C([0, 1], B)-module.

LEMMA A.2. Suppose that B is a σ-unital C∗-algebra, that S is a compact Haus-
dorff space, and that X is a countably generated right-Hilbert C(S, B)-module. For s ∈ S
let εs : C(S, B)→ B be given by evaluation at s. Then

K(X) = {T ∈ L(X) : ε̃s(T) ∈ K(X⊗εs B) for all s ∈ S}.
Proof. First suppose that T ∈ K(X). Fix s ∈ S and δ > 0. Fix finitely many

ξi, ηi ∈ X and bi, ci ∈ C(S, B) such that
∥∥∥T − ∑

i
θξi ·bi ,ηi ·ci

∥∥∥ < δ. For each i we

have εs(θξi ·bi ,ηi ·ci
) = θξi⊗εs bi ,ηi⊗εs ci

, and since ε̃s is norm decreasing we deduce

that
∥∥∥ε̃s(T)−∑

i
θξi⊗εs bi ,ηi⊗εs ci

∥∥∥<δ. Therefore ε̃s(T)∈K(X⊗εs B). This proves ⊆.

For ⊇, we need a little preliminary work. It is routine to verify that there is
a unital homomorphism ι : C(S) → ZL(X) such that ι( f )(ξ · b) = ξ · (b f ) for all
ξ ∈ X and b ∈ C(S, B). Therefore L(X) is a C(S)-algebra. For s ∈ S, we write Js
for the ideal of L(X) generated by ι({ f ∈ C(S) : f (s) = 0}). It is straightforward
to check that Is = {T ∈ L(X) : ε̃s(T) = 0}, and therefore that T + Js 7→ ε̃s(T) is an
isomorphism of L(X)/Js onto ε̃(L(X)). In particular, ‖T + Js‖ = ‖ε̃s(T)‖ for all s.
By Proposition C.23 and Theorem C.26 of [46] we then have ‖T‖ = sup

s
‖ε̃s(T)‖

for T ∈ L(X).
Now suppose that T ∈ L(X) and that ε̃s(T) ∈ K(X ⊗εs B) for all s ∈ S. Fix

an approximate identity (Ei)i∈N for K(X). For each s, the sequence (ε̃s(Ei))i∈N
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is an approximate identity for K(X ⊗εs B). If sn → s in S and if T ∈ L(X) and
ξi ∈ X and bi ∈ B for 1 6 i 6 n, then∥∥∥ε̃sn(T)

(
∑

i
ξi ⊗ bi

)∥∥∥2
=
∥∥∥∑

i,j
b∗i εsn(〈Tξi, Tξ j〉C([0,1],B))bj

∥∥∥
→
∥∥∥∑

i,j
b∗i εs(〈Tξi, Tξ j〉C([0,1],B))bj

∥∥∥=∥∥∥ε̃s(T)
(

∑
i

ξi ⊗ bi

)∥∥∥2
.

Since finite linear combinations ∑
i

ξi⊗ bi are dense in the unit ball of each X⊗εs B,

we deduce that

‖ε̃s(T)‖ = sup
‖x‖=1

‖ε̃s(T)(x)‖2 = sup
‖x‖=1

lim
n
‖ε̃sn(T)(x)‖2

6 lim
n

sup
‖x‖=1

‖ε̃sn(T)(x)‖2 = lim
n
‖ε̃sn(T)‖,

and so s 7→ ‖ε̃s(T)‖ is lower semicontinuous. Using this, the compactness of S,
and that εs(EiT)→ εs(T) pointwise with respect to s, we see that εs(EiT)→ εs(T)
uniformly with respect to s. Therefore sup

s
‖εs(EiT) − εs(T)‖ → 0, and by the

preceding paragraph we obtain EiT → T. Hence T ∈ K(X). This proves ⊇.

Proof of Proposition A.1. Reflexivity is clear: if (X0, φ0, F0, αX0) is a Kasparov
A-B module, the external tensor product (X0⊗C([0, 1]), φ0⊗ id, F0⊗ id, αX0 ⊗ id)
is a homotopy from (X0, φ0, F0, αX0) to itself. Symmetry is also clear: given a
homotopy (X, φ, F, αX) from (X0, φ0, F0, αX0) to (X1, φ1, F1, αX1), if we denote by
F : C([0, 1])→ C([0, 1]) the flip map F ( f )(t) = f (1− t), we see that

(X ⊗̂F C([0,1])C([0, 1])C([0,1]), F̃ ◦ φ, F̃ ◦ F, αX ⊗̂ id)

is a homotopy from (X1, φ1, F1, αX1) to (X0, φ0, F0, αX0). So we just have to estab-
lish transitivity.

Let (W, φ, F, α) be a homotopy from (X0, φ0, F0, αX0) to (X1, φ1, F1, αX1), and
let (Y, ψ, G, β) be a homotopy from (X1, φ1, F1, αX1) to (X2, φ2, F2, αX2). By defi-
nition of homotopy, there are zero-graded unitaries Ut ∈ L(W ⊗εt BBB, Xt) for
i = 0, 1 and Vt ∈ L(Y ⊗εt−1 BBB, Xt) for t = 1, 2 that implement unitary equiva-
lences

(W ⊗εt BBB, ε̃t ◦ φ, ε̃t(F), α ⊗̂ αB) ∼Ut (Xt, φt, Ft, αXt) and

(Y⊗εt−1 BBB, ε̃t−1 ◦ ψ, ε̃t−1(G), β ⊗̂ αB) ∼Vt (Xt, φt, Ft, αXt).

Consider the direct-sum module W ⊕Y as an A-(C([0, 1], B)⊕ C([0, 1], B))-
module. Observe that W ⊗εt BBB can be identified with the quotient module
W/{w ∈ W : 〈w, w〉B⊗C([0,1]) ∈ B ⊗ C0([0, 1] \ {t})} via the map that sends
w ⊗εt b to the coset of w · (b ⊗ 1). For w ∈ W, we write wt for the image of w
in W ⊗εt BBB obtained from this isomorphism; and similarly for y ∈ Y we write
yt for the image of y in Y⊗εt BBB.
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Let Z ⊆W ⊕Y be the subspace

Z := {(w, y) ∈ X⊕Y : U1w1 = V1y0}.

If (w, y), (w′, y′) ∈ Z, then, since U1 and V1 are unitary, we have

ε1(〈w, w′〉B⊗C([0,1])) = 〈w1, w′1〉B = 〈U1w1, U1w′1〉B
= 〈V1y0, V1y′0〉B = 〈y0, y′0〉B = ε0(〈y, y′〉B⊗C([0,1])).

So, identifying B⊗ C([0, 1]) with C([0, 1], B) as usual, we have

〈Z, Z〉 ⊆ C := {( f , g) ∈ C([0, 1], B)⊕ C([0, 1], B) : f (1) = g(0)}
= { f ∈ C([0, 1]× {0, 1}, B) : f (1, 0) = f (0, 1)}.

Since adjointable operators on a Hilbert module are linear in the right action on
the module, for ( f , g) ∈ C and (w, y) ∈ Z, we have U1((w · f )1) = U1w1 · f (1) =
U1w1 · g(0) = V1y0 · g(0) = V1((y · g)0) and so Z is invariant for the right action
of C, and it is clearly norm-closed so it is a right-Hilbert C-module under the
inner-product and action inherited from W ⊕Y.

By definition of unitary equivalence, U1 intertwines the left A-actions on
W ⊗ε1 BBB and on X1 and likewise V1 intertwines the A-actions on X1 and Y⊗ε0

BBB. So for a ∈ A and (w, y) ∈ Z, we have

U1(φ(a)w)1 = U1(ε̃1 ◦ φ(a))w1 = φ1(a)U1w1 = φ1(a)V1y0 = V1(ε̃0 ◦ ψ(a))y0

= V1(ψ(a)y)0,

so Z is invariant for the left action of A on W ⊕ Y, so is a Hilbert A-C-bimodule
under this action. We write ρ : A → L(Z) for the homomorphism a 7→ (φ(a)⊕
ψ(a))|Z that implements the left action.

By definition of unitary equivalence, we have U1(α ⊗̂ αB) = αX1U1 and
V1(β ⊗̂ αB) = αX1 V1. So for (w, y) ∈ Z we have

U1α(w)1 = U1(α ⊗̂ αB)(w1) = αX1U1w1 = αX1 V1y0 = V1(β ⊗̂ αB)(y0) = V1(βy)0.

So α⊕ β restricts to an operator γ ∈ L(Z), and we have γ2 = α2 ⊕ β2 = id⊕ id.
Moreover, this γ is a grading operator on Z because α⊕ β is a grading operator
on W ⊕Y.

Similarly, we have U1ε̃1(F) = F1U1 and V1ε̃0(G) = F1V1. So for (w, y) ∈ Z
we have

U1(Fw)1 = U1ε̃1(F)w1 = F1U1w1 = F1V1y0 = V1ε̃0(G)y0 = V1(Gy)0.

So F⊕G restricts to an operator H ∈ L(Z). For a ∈ A, the operators (H2− 1)ρ(a)
and (H − H∗)ρ(a) are the restrictions of the compact operators (F2 − 1)φ(a) ⊕
(G2 − 1)ψ(a) and (F − F∗)φ(a) ⊕ (G − G∗)ψ(a) to Z. Since γ = (α ⊕ β)|Z, the
induced grading ofL(Z) is the restriction of the induced grading ofL(W)⊕L(Y)
as at (2.3), and so we have [H, ρ(a)]gr = ([F, φ(a)]gr ⊕ [G, ψ(a)]gr)|Z for all a ∈ A.
Again, since [F, φ(a)]gr and [G, ψ(a)]gr are compact, we deduce that for every a ∈
A, the operator [H, ρ(a)]gr is the restriction to Z of a compact operator on W ⊕ Z.
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We regard W ⊕Y as a right-Hilbert C([0, 1]× {0, 1}, B)-module and let H̃ := F⊕
G. Lemma A.2 applied to W ⊕Y now shows that if T is of the form (H̃2 − 1)ρ(a),
(H̃− H̃∗)ρ(a) or [H̃, ρ(a)]gr for some a, then ε̃(t,i)(T) belongs to K((W ⊕Y)⊗ε(t,i)

B) for all (t, i) ∈ [0, 1]× {0, 1}; similarly Lemma A.2 applied to Z regarded as a
right-Hilbert C([0, 1], B)-module under the canonical identification (see below)

{ f ∈ C([0, 1]× {0, 1}, B) : f (1, 0) = f (0, 1)} = C([0, 1], B)

shows that T|Z ∈ K(Z). Hence, (H2 − 1)ρ(a), (H − H∗)ρ(a), [Hρ(a)]gr ∈ K(Z)
for all a.

We have H ◦ γ = (F ◦ α⊕ G ◦ β)|Z = ((−α ◦ F)⊕ (−β ◦ G))|Z = −γ ◦ H.
We have now established that (Z, ρ, H, γ) is a Kasparov A-C-module. We

can identify C with C([0, 1], B) via the isomorphism

( f , g) 7→
(

t 7→
{

f (2t) if t ∈ [0, 1
2 ],

g(2t− 1) if t ∈ [ 1
2 , 1],

)
,

and then with B⊗C([0, 1]) in the usual way. This identification makes(Z, ρ, H, γ)
into a Kasparov A-(B⊗ C([0, 1]))-module with

Z0 = W ⊗ε0 BBB ∼U0 X0 and Z1 = Y⊗ε1 BBB ∼V2 X2.

That is, (Z, ρ, H, γ) is a homotopy from (X0, φ0, F0, αX0) to (X2, φ2, F2, αX2).
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