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ABSTRACT. In this paper, we study Birkhoff–James orthogonality of bounded
linear operators and give a complete characterization of Birkhoff–James or-
thogonality of bounded linear operators on infinite dimensional real normed
linear spaces. As an application of the results obtained, we prove a simple
but useful characterization of Birkhoff–James orthogonality of bounded linear
functionals defined on a real normed linear space, provided the dual space is
strictly convex. We also provide separate necessary and sufficient conditions
for smoothness of bounded linear operators on infinite dimensional normed
linear spaces.
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1. INTRODUCTION

Birkhoff–James orthogonality [2], [11] of elements in a normed linear space
was introduced by Birkhoff in [2], in order to generalize the concept of orthogo-
nality in inner product spaces. Over the years, Birkhoff–James orthogonality has
been undoubtedly established as an important concept in the study of geometry
of normed linear spaces by virtue of its rich connection with several geomet-
ric properties of the space, like strict convexity, smoothness etc. [11], [12], [13].
Recently, a renewed interest has been generated towards studying the Birkhoff–
James orthogonality of elements in the space of bounded linear operators be-
tween normed linear spaces [3], [16], [20]. While complete characterization of
Birkhoff–James orthogonality of bounded linear operators defined on a Hilbert
space [3], [15], or a finite dimensional real Banach space [19] has been obtained,
the problem of characterizing Birkhoff–James orthogonality of bounded linear
operators on infinite dimensional normed linear spaces remains unsolved. Our



400 DEBMALYA SAIN, KALLOL PAUL, AND ARPITA MAL

present paper settles the issue in that direction. Also a complete characterization
of the smoothness of bounded linear operators on infinite dimensional normed
linear spaces remains elusive for long despite having been studied by many math-
ematicians like [1], [6], [8], [9], [10], [14], [18] over the years. Recently in [16], a
sufficient condition for the smoothness of a bounded linear operator has been ob-
tained using Birkhoff–James orthogonality techniques. We carry on this work and
prove separate necessary and sufficient conditions for smoothness of bounded
linear operators on infinite dimensional normed linear spaces for the first time.
Without further ado, let us establish our notations and terminologies.

In this paper, letters X,Y denote normed linear spaces. Throughout the
paper, we will be working with real normed linear spaces. Let

BX = {x ∈ X : ‖x‖ 6 1} and SX = {x ∈ X : ‖x‖ = 1}
be the unit ball and the unit sphere of X, respectively. Let B(X,Y)(K(X,Y))
denote the space of all bounded (compact) linear operators from X to Y. For
x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff–James [2], written
as x ⊥B y, if ‖x‖ 6 ‖x + λy‖ for all λ ∈ R. Likewise for T, A ∈ B(X,Y), T is
said to be orthogonal to A in the sense of Birkhoff–James, written as T ⊥B A, if
‖T‖ 6 ‖T + λA‖ for all λ ∈ R. It is easy to observe that in inner product spaces,
x ⊥B y is equivalent to the usual inner product orthogonality x ⊥ y.

In a Hilbert space H, Bhatia and Šemrl [3] and Paul [15] independently
proved that T ⊥B A if and only if there exists {xn} ⊂ SH such that ‖Txn‖ → ‖T‖
and 〈Txn, Axn〉 → 0. If the space is finite dimensional it then follows that T⊥B A if
and only if there exists x ∈ SH such that ‖Tx‖ = ‖T‖ and 〈Tx, Ax〉 = 0. Recently
in [19], Sain characterized the Birkhoff–James orthogonality of linear operators
on a finite dimensional real Banach space. The following two definitions were
necessary to obtain the desired characterization in [19].

DEFINITION 1.1. Let T ∈ B(X,Y). We define MT to be the set of all unit
vectors in SX at which T attains norm, i.e.,

MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.

DEFINITION 1.2. For any two elements x, y in a real normed linear space X,
let us say that y ∈ x+ if ‖x + λy‖ > ‖x‖ for all λ > 0. Accordingly, we say that
y ∈ x− if ‖x + λy‖ > ‖x‖ for all λ 6 0.

In this paper, our aim is to extend the works of [19] to the setting of infinite
dimensional normed linear spaces. We extend Theorem 2.2 of [19] completely, in
case of compact linear operators defined on a reflexive Banach space. However,
the scenario is far more complicated in case of general bounded linear operators
defined on a normed linear space. At this point of our discussion, the following
definitions are in order.

DEFINITION 1.3 ([7]). Let X be a normed linear space and let x ∈ SX. We
say that x is a rotund point of BX if ‖y‖ =

∥∥ x+y
2

∥∥ = 1 implies that x = y.
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DEFINITION 1.4. A normed linear space X is said to be strictly convex if for
each x, y ∈ SX, ‖x + y‖ < ‖x‖+ ‖y‖ whenever x, y are linearly independent.

DEFINITION 1.5. A normed linear space X is said to be uniformly convex
if to each ε, 0 < ε 6 2, there corresponds a δ(ε) > 0 such that the conditions
‖x‖ = ‖y‖ = 1 and ‖x− y‖ > ε imply ‖x+y‖

2 6 1− δ(ε).

DEFINITION 1.6 ([17]). Let X be a normed linear space and let x, y ∈ X. We
say that x is strongly orthogonal to y in the sense of Birkhoff–James, written as
x ⊥SB y, if ‖x + λy‖ > ‖x‖ for all λ 6= 0.

Following the idea involved in the proof of Theorem 2.4 of [21], we observe
that x ∈ SX is a rotund point of BX if and only if for any y ∈ X \ {θ}, x ⊥B y
implies that x ⊥SB y. Equipped with this characterization of rotund points, we
proceed towards obtaining a complete characterization of Birkhoff–James orthog-
onality of rotund points in the space of bounded linear operators. In order to
obtain the desired characterization for rotund points and for general bounded
linear operators, we need to introduce a new definition which is essentially geo-
metric in nature. First, let us give a brief motivation in this regard. The notion of
approximate orthogonality (ε-orthogonality) was first considered by Chmieliński
in [4].

Let H be an inner product space and let x, y ∈ H. For ε ∈ [0, 1), we say that
x is ε-orthogonal to y, written as x ⊥ε y, if |〈x, y〉| 6 ε‖x‖‖y‖. The definition was
suitably modified in [5], to obtain an analogous definition of ε-orthogonality in
normed linear spaces.

DEFINITION 1.7 ([5]). Let X be a normed linear space and let x, y ∈ X. For
ε ∈ [0, 1), we say that x is ε-orthogonal to y (in the sense of Birkhoff–James), written
as x ⊥ε

D y, if ‖x + λy‖ >
√

1− ε2 ‖x‖ for all λ ∈ R.

In [19] we “decomposed” Birkhoff–James orthogonality (via Definition 1.2
stated in this paper) in order to obtain a complete characterization of Birkhoff–
James orthogonality of bounded linear operators on finite dimensional Banach
space. Following similar motivations, in this paper we decompose ε-orthogonality
in order to completely characterize Birkhoff–James orthogonality of bounded lin-
ear operators, by means of the following definition.

DEFINITION 1.8. Let X be a normed linear space and let x, y ∈ X. For ε ∈
[0, 1), we say that

y ∈ x+(ε) if ‖x + λy‖ >
√

1− ε2 ‖x‖ for all λ > 0.

Similarly, we say that

y ∈ x−(ε) if ‖x + λy‖ >
√

1− ε2 ‖x‖ for all λ 6 0.

Motivated by the result on rotund bounded linear operators, we finally
obtain a complete characterization of Birkhoff–James orthogonality of bounded
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linear operators on general normed linear spaces. As an application of the re-
sults obtained by us, we completely characterize Birkhoff–James orthogonality
of bounded linear functionals on a normed linear space whose dual is strictly
convex.

The study of the geometry of the space of bounded linear operators on a
general normed linear space X is far more complicated than that of the ground
space X. The relation of Birkhoff–James orthogonality of bounded linear opera-
tors with that of some special elements of X has been used in [16] to obtain a
sufficient condition for smoothness of a bounded linear operator. Carrying on
in this direction we here obtain separate necessary and sufficient conditions for
smoothness of a bounded linear operator on a general normed linear space. An
element x ∈ SX is said to be a smooth point if there exists a unique supporting
hyperplane to BX at x. The characterization of smooth points obtained by James
[12] has been used in our study, which states that x ∈ SX is a smooth point if and
only if x⊥By and x⊥Bz implies x⊥B(y + z).

2. MAIN RESULTS

Let us begin by giving a complete characterization of Birkhoff–James or-
thogonality of compact linear operators defined on a reflexive Banach space. This
extends Theorem 2.2 of [19].

THEOREM 2.1. Let X be a reflexive Banach space and Y be any normed linear
space. Then for any T, A ∈ K(X,Y), T⊥B A if and only if there exist x, y ∈ MT such
that Ax ∈ (Tx)+ and Ay ∈ (Ty)−.

Proof. Let us first prove the easier sufficient part. Since Ax ∈ (Tx)+, ‖T +
λA‖ > ‖Tx + λAx‖ > ‖Tx‖ = ‖T‖ for all λ > 0. Similarly Ay ∈ (Ty)− implies
that ‖T + λA‖ > ‖Ty + λAy‖ > ‖Ty‖ = ‖T‖ for all λ 6 0. This completes the
proof of the sufficient part.

Let us now prove the necessary part. Since T and A are compact linear
operators,

(
T + 1

n A
)

is also a compact linear operator for each n ∈ N. Since X is
reflexive,

(
T + 1

n A
)

attains norm for each n ∈ N.
Therefore, for each n ∈ N, there exists xn ∈ SX such that

∥∥(T + 1
n A
)
xn
∥∥ =∥∥T + 1

n A
∥∥. Since X is reflexive, BX is weakly compact. Therefore {xn} has a

weakly convergent subsequence. Without loss of generality we may assume that
{xn} weakly converges to x (say). Since T and A are compact linear operators,
Txn → Tx and Axn → Ax. Since T⊥B A,

∥∥T + 1
n A
∥∥ > ‖T‖ for all n ∈ N. There-

fore,
∥∥(T + 1

n A
)
xn
∥∥ =

∥∥T + 1
n A
∥∥ > ‖T‖ > ‖Txn‖ for all n ∈ N. Letting n → ∞,

we see that ‖Tx‖ > ‖T‖ > ‖Tx‖. This proves that ‖Tx‖ = ‖T‖, i.e., x ∈ MT .
Now we show that Ax ∈ (Tx)+. For any λ > 1

n , we claim that ‖Txn +

λAxn‖ > ‖Txn‖. Otherwise, Txn + 1
n Axn =

(
1 − 1

nλ

)
Txn + 1

nλ (Txn + λAxn)
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gives that
∥∥T + 1

n A
∥∥ =

∥∥Txn +
1
n Axn

∥∥ 6 (1− 1
nλ

)
‖Txn‖+ 1

nλ‖(Txn + λAxn)‖ <(
1− 1

nλ

)
‖Txn‖+ 1

nλ‖Txn‖ = ‖Txn‖ 6 ‖T‖, a contradiction. This completes the
proof of our claim.

Now for any λ > 0, there exists n0 ∈ N such that λ > 1
n0

. So for all n > n0,
‖Txn +λAxn‖ > ‖Txn‖. Therefore, letting n→ ∞, we have ‖Tx+λAx‖ > ‖Tx‖.
This completes the proof of the fact that Ax ∈ (Tx)+. Similarly, considering the
compact operators T − 1

n A, it is now easy to see that there exists y ∈ MT such
that Ay ∈ (Ty)−. This completes the proof.

REMARK 2.2. Theorem 2.2 of [19] now follows easily as a simple conse-
quence of the above theorem since every finite dimensional normed linear space
is reflexive and every bounded linear operator there is a compact linear operator.

For bounded linear operators defined on a normed linear space, the situa-
tion is far more complicated since in this case the norm attainment set may be
empty. In the next proposition, we give a sufficient condition for Birkhoff–James
orthogonality of bounded linear operators.

PROPOSITION 2.3. Let X and Y be normed linear spaces. Let T, A ∈ B(X,Y).
Suppose there exist two sequences {xn} and {yn} in SX satisfying the following two
conditions:

(i) ‖Txn‖ → ‖T‖ and ‖Tyn‖ → ‖T‖, as n→ ∞;
(ii) Axn ∈ (Txn)+ and Ayn ∈ (Tyn)− for all n ∈ N.

Then T⊥B A.

Proof. Since Axn ∈ (Txn)+, for any λ > 0 we have ‖T + λA‖ > ‖Txn +
λAxn‖ > ‖Txn‖ for all n ∈ N. Therefore letting n → ∞, we have ‖T + λA‖ >
‖T‖, since ‖Txn‖ → ‖T‖ as n→ ∞.

Similarly, Ayn ∈ (Tyn)− implies that, for any λ 6 0, ‖T + λA‖ > ‖Tyn +
λAyn‖ > ‖Tyn‖ for all n ∈ N. Therefore letting n → ∞, we have ‖T + λA‖ >
‖T‖, since ‖Tyn‖ → ‖T‖ as n → ∞. This completes the proof of the fact that
T⊥B A.

In the next example we illustrate the fact that the conditions stated in Propo-
sition 2.3 are only sufficient but not necessary for T ⊥B A.

EXAMPLE 2.4. Define T, A : l1 → l1 by

Ten =
(
1− 1

n + 1
)
en, n > 1, and Aen =

1
n + 1

en n > 1,

where en = (0, 0, . . . , 0, 1, 0, . . .), with 1 in the n-th position and 0 elsewhere. Let

x =
∞
∑

n=1
anen ∈ l1 where an ∈ R for all n. Then ‖Tx‖ =

∞
∑

n=1
|an|

∣∣1 − 1
n+1

∣∣ 6
∞
∑

n=1
|an| = ‖x‖. So ‖T‖ 6 1. Also ‖Ten‖ =

(
1− 1

n+1
)
→ 1 as n → ∞. Hence

‖T‖ = 1. First we show that T ⊥B A. For any scalar λ, ‖T + λA‖ > ‖(T +
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λA)en‖ =
∣∣1− (1−λ)

n+1

∣∣ → 1, so that ‖T + λA‖ > ‖T‖ for all λ. Now for x ∈ l1 \

{0}, we get ‖(T − A)x‖ =
∞
∑

n=1
|an|

∣∣1− 2
n+1

∣∣ < ∞
∑

n=1
|an|

∣∣1− 1
n+1

∣∣ = ‖Tx‖, which

implies that ‖(T − A)x‖ < ‖Tx‖ for all x ∈ l1 \ {0}. In particular, we must have
Ax /∈ (Tx)− for all x ∈ l1 \ {0}. Thus, we observe that in this example, although
T ⊥B A, it is not possible to find a sequence {yn} in SX such that ‖Tyn‖ → ‖T‖
as n→ ∞ and Ayn ∈ (Tyn)− for all n ∈ N.

Next we characterize Birkhoff–James orthogonality of rotund points in the
space of bounded linear operators. First we need the following lemma, which
also gives a characterization of rotund points. Note that the proof of the lemma
can be obtained similarly as the proof of Theorem 2.4 of [21].

LEMMA 2.5. Let X be a normed linear space.Then x ∈ SX is a rotund point if and
only if x⊥By⇒ x⊥SBy for any y ∈ X \ {θ}.

In the following theorem, we obtain the characterization of Birkhoff–James
orthogonality of rotund points in the space of bounded linear operators defined
between infinite dimensional normed linear spaces.

THEOREM 2.6. Let X and Y be two normed linear spaces. Let T be a rotund point
of B(X,Y). Then for any A ∈ B(X,Y), T⊥B A if and only if there exist two sequences
{xn}, {yn} in SX and two sequences of positive real numbers {εn}, {δn} such that:

(i) εn → 0 , δn → 0 as n→ ∞;
(ii) ‖Txn‖ → ‖T‖ and ‖Tyn‖ → ‖T‖ as n→ ∞;

(iii) Axn ∈ (Txn)+(εn) and Ayn ∈ (Tyn)−(δn) for all n ∈ N.

Proof. Let us first prove the easier sufficient part. Since Axn ∈ (Txn)+(εn)

for all n ∈ N, ‖Txn + λAxn‖ >
√

1− ε2
n ‖Txn‖ for all λ > 0. This implies, given

any λ > 0, ‖T + λA‖ > ‖(T + λA)xn‖ >
√

1− ε2
n‖Txn‖. Since εn → 0 and

‖Txn‖ → ‖T‖ as n→ ∞, we obtain,

‖T + λA‖ > ‖T‖.

Similarly, Ayn ∈ (Tyn)−(δn) for all n ∈ N implies that, for any λ < 0,

‖T + λA‖ > ‖T‖.

This completes the proof of the sufficient part.
Let us now prove the more involved necessary part. Since T ∈ B(X,Y) is a

rotund point, clearly T is nonzero. Also by Lemma 2.5, T⊥B A⇒ T⊥SB A for any
nonzero A ∈ B(X,Y). Therefore for each n ∈ N,∥∥∥T +

1
n

A
∥∥∥ > ‖T‖.

This implies that for each n ∈ N, there exists xn ∈ SX such that ‖
(
T + 1

n A
)

xn‖ >
‖T‖. We claim that ‖Txn‖ → ‖T‖. Indeed, ‖Txn‖ =

∥∥(T + 1
n A
)
xn − 1

n Axn
∥∥
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>
∥∥(T + 1

n A
)

xn
∥∥ − 1

n‖Axn‖ > ‖T‖ − 1
n‖A‖ → ‖T‖ as n → ∞. Since xn ∈ SX,

‖Txn‖ 6 ‖T‖. This proves our claim.
Since ‖Txn‖ → ‖T‖ > 0, there exists n1 ∈ N such that ‖Txn‖ > ‖T‖

2 > 0

for all n > n1. Choose n2 ∈ N such that n2 > 2‖A‖
‖T‖ . Let n0 = max{n1, n2}.

Then for all n > n0, 0 < ‖A‖
n‖Txn‖ < 2‖A‖

n‖T‖ < 1, which implies that for all n > n0,

0 < 1− ‖A‖
n‖Txn‖ < 1.

Choose εn =
√

1−
(
1− ‖A‖

n‖Txn‖
)2. Then clearly εn → 0 as n→ ∞.

We claim that Axn ∈ (Txn)+(εn) for all n > n0. Let n > n0. Then for 0 < λ 6
1
n , ‖Txn + λAxn‖ > ‖Txn‖ − |λ|‖Axn‖ > ‖Txn‖ − 1

n‖A‖ =
√

1− ε2
n‖Txn‖. For

λ > 1
n > 0, we claim that ‖Txn + λAxn‖ > ‖Txn‖. Suppose on the contrary, we

have ‖Txn + λAxn‖ < ‖Txn‖ for some λ > 1
n . Now, there exists t ∈ (0, 1) such

that Txn + 1
n Axn = t(Txn) + (1 − t)(Txn + λAxn). This implies that,

∥∥Txn +
1
n Axn

∥∥ 6 t‖Txn‖+ (1− t)‖Txn + λAxn‖ < t‖Txn‖+ (1− t)‖Txn‖ = ‖Txn‖ 6
‖T‖, a contradiction. Therefore, for all λ > 0, ‖Txn + λAxn‖ > ‖Txn‖ − 1

n‖A‖ =√
1− ε2

n ‖Txn‖. This completes the proof of our claim.
Similarly, considering

∥∥T − 1
n A
∥∥ > ‖T‖ for each n ∈ N, we can find the

desired sequences {yn} in SX and {δn} in R+ such that all the conditions (i), (ii)
and (iii) are satisfied.

Next we illustrate with an example that the conditions mentioned in Theo-
rem 2.6 are not sufficient to characterize Birkhoff–James orthogonality of bounded
linear operators.

EXAMPLE 2.7. Define T, A : `1 → `1 by Te1 = 1
2 e1, Ten =

(
1− 1

n4

)
en, n > 2,

and Ae1 = 1
2 e1, Aen = 1

n2

( 1
n2 − 1

)
en, n > 2, where en = (0, 0, . . . , 0, 1, 0, . . .), with

1 in the n-th position and 0 elsewhere. Then both T and A are bounded linear
operators on `1 with ‖T‖ = 1. Also T⊥B A, since ‖T + λA‖ > ‖(T + λA)en‖ =∥∥(1− 1

n4

)
en + λ 1

n2

( 1
n2 − 1

)
en
∥∥ =

∥∥1− 1
n4 +

λ
n4 − λ

n2

∥∥→ 1 = ‖T‖.
Now for each x = (a1, a2, . . . , . . . ) ∈ S`1 we have

‖Tx + Ax‖ =
∥∥∥(a1,

(
1− 1

22

)
a2, . . . ,

(
1− 1

n2

)
an, . . .

)∥∥∥
= |a1|+ |a2|

(
1− 1

22

)
+ · · ·+ |an|

(
1− 1

n2

)
+ · · ·

=
∣∣∣ a1

2

∣∣∣+ |a2|
(

1− 1
24

)
+ · · ·+ |an|

(
1− 1

n4

)
+ · · ·

+
∣∣∣ a1

2

∣∣∣+ |a2|
( 1

24 −
1
22

)
+ · · ·+ |an|

( 1
n4 −

1
n2

)
+ · · ·

6 ‖Tx‖+ 1
2
+

∞

∑
n=2

( 1
n4 −

1
n2

)
< ‖Tx‖ − 0.06 6 ‖T‖ − 0.06.
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This shows that there does not exist {εn} with εn → 0 and {xn} ⊂ S`1 such that
‖Txn‖ → ‖T‖ and Axn ∈ (Txn)+(εn), for otherwise√

1− εn2‖Txn‖ 6 ‖Txn + Axn‖ < ‖Txn‖ − 0.06,

and so letting n → ∞ we get a contradiction. Thus T⊥B A but T does not satisfy
hypothesis of Theorem 2.6.

The last example indicates that some additional condition is required to ob-
tain the most general characterization of Birkhoff–James orthogonality of bounded
linear operators defined between infinite dimensional normed linear spaces. We
accomplish the goal in the next theorem.

THEOREM 2.8. Let X and Y be two normed linear spaces. Let T ∈ B(X,Y) be
nonzero. Then for any A ∈ B(X,Y), T⊥B A if and only if either of the conditions in (i)
or in (ii) holds:

(i) There exists a sequence {xn} in SX such that ‖Txn‖ → ‖T‖ and ‖Axn‖ → 0 as
n→ ∞.

(ii) There exist two sequences {xn}, {yn} in SX and two sequences of positive real
numbers {εn}, {δn} such that:

(a) εn → 0, δn → 0 as n→ ∞;
(b) ‖Txn‖ → ‖T‖ and ‖Tyn‖ → ‖T‖ as n→ ∞;
(c) Axn ∈ (Txn)+(εn) and Ayn ∈ (Tyn)−(δn) for all n ∈ N.

Proof. We first prove the easier sufficient part. Suppose (i) holds. Now for
any scalar λ, ‖T + λA‖ > ‖Txn + λAxn‖ > ‖Txn‖− |λ|‖Axn‖ → ‖T‖ as n→ ∞.
Therefore T⊥B A.

Now suppose (ii) holds. Then following the same line of arguments as in
the proof of the sufficient part of Theorem 2.6, we obtain T ⊥B A. This completes
the proof of the sufficient part.

Let us now prove the comparatively trickier necessary part. Suppose (i)
does not hold. Without loss of generality let us assume that ‖A‖ 6 1. Since
T⊥B A, for any nonzero scalar λ, ‖T + λA‖ > ‖T‖. In particular, for each n ∈ N,∥∥∥T +

1
n

A
∥∥∥ > ‖T‖ − 1

n3 .

Therefore, for each n ∈ N, there exists a sequence {xn} in SX such that
∥∥(T +

1
n A
)

xn
∥∥ > ‖T‖ − 1

n3 > ‖Txn‖ − 1
n3 .

We claim that ‖Txn‖ → ‖T‖. Indeed, ‖Txn‖ =
∥∥(T + 1

n A
)

xn − 1
n Axn

∥∥
>
∥∥(T+ 1

n A
)

xn
∥∥− 1

n‖Axn‖> ‖T‖− 1
n3 − 1

n‖A‖→ ‖T‖ as n→ ∞. Since xn ∈ SX,
‖Txn‖ 6 ‖T‖. This proves our claim.

Since (i) does not hold, we assume that, inf
n∈N
‖Axn‖ = c > 0. Choose n1 ∈ N

such that n1 > 2‖T‖
c . Since ‖Txn‖ → ‖T‖ > 0, there exists n2 ∈ N such that

‖Txn‖ > ‖T‖
2 > 0 for all n > n2. Choose n3 ∈ N such that n3 > 2

‖T‖ . Let n0 =
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max{n1, n2, n3}. Then for all n > n0, 0 < 1
n‖Txn‖ < 2

n‖T‖ < 1, which implies that

for all n > n0, 0 < 1− 1
n‖Txn‖ < 1.

Choose εn =
√

1−
(
1− 1

n‖Txn‖
)2. Then clearly εn → 0 as n → ∞. We

claim that Axn ∈ (Txn)+(εn) for all n > n0. Let n > n0. Then for 0 6 λ < 1
n ,

‖Txn + λAxn‖ > ‖Txn‖ − λ‖Axn‖ > ‖Txn‖ − 1
n . For 1

n 6 λ 6 n, we claim that
‖Txn + λAxn‖ > ‖Txn‖ − 1

n .
Suppose on the contrary, we have ‖Txn + λAxn‖ < ‖Txn‖ − 1

n for some
1
n 6 λ 6 n. Now, Txn + 1

n Axn =
(
1− 1

nλ

)
Txn + 1

nλ (Txn + λAxn). This implies
that, ‖Txn‖ − 1

n3 <
∥∥Txn + 1

n Axn
∥∥ 6

(
1 − 1

nλ

)
‖Txn‖ + 1

nλ‖(Txn + λAxn)‖ <(
1 − 1

nλ

)
‖Txn‖ + 1

nλ

(
‖Txn‖ − 1

n
)
= ‖Txn‖ − 1

n2λ
. This implies that λ > n, a

contradiction. Thus for 0 6 λ 6 n, ‖Txn + λAxn‖ > ‖Txn‖ − 1
n . Hence, 0 6 λ 6

2‖T‖
c gives that ‖Txn + λAxn‖ > ‖Txn‖ − 1

n .

Now, for λ > 2‖T‖
c , ‖Txn + λAxn‖ > λ‖Axn‖ − ‖Txn‖ > λc − ‖Txn‖ >

2‖T‖ − ‖Txn‖ > ‖Txn‖ − 1
n . Therefore for all λ > 0, ‖Txn + λAxn‖ > ‖Txn‖ −

1
n =

√
1− ε2

n ‖Txn‖. This completes the proof of our claim.
Similarly, considering

∥∥T − 1
n A
∥∥ > ‖T‖ − 1

n3 for each n ∈ N, we can find
the desired sequences {yn} in SX and {δn} in R+ such that all the conditions of
(ii) are satisfied.

As an application of Theorem 2.6 we give a complete characterization of
Birkhoff–James orthogonality of bounded linear functionals on a normed linear
space, whose dual is strictly convex. First, we need the following easy proposi-
tion.

PROPOSITION 2.9. For any two real numbers x, y and for any ε ∈ [0, 1), y ∈
x+(ε) if and only if xy > 0. Similarly, y ∈ x−(ε) if and only if xy 6 0.

Now, the promised characterization.

THEOREM 2.10. Let X be a normed linear space such that X∗ is strictly convex.
Then for any f , g ∈ X∗, f⊥Bg if and only if there exist {xn}, {yn} in SX such that:

(i) | f (xn)| → ‖ f ‖ and | f (yn)| → ‖ f ‖ as n→ ∞;
(ii) f (xn) · g(xn) > 0 and f (yn) · g(yn) 6 0 for all n ∈ N.

Proof. Since X∗ is strictly convex, f , g are rotund points of X∗. The rest of
the proof follows directly from Theorem 2.6 and Proposition 2.9.

Similarly as an application of Theorem 2.8, Birkhoff–James orthogonality of
bounded linear functionals on an infinite dimensional normed linear space can
be stated as follows.

THEOREM 2.11. Let X be a normed linear space. Then for any f , g ∈ X∗, f⊥Bg
if and only if either of the conditions in (i) or in (ii) holds:
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(i) There exists {xn} in SX such that ‖ f (xn)‖ → ‖ f ‖ and g(xn)→ 0.
(ii) There exist {xn}, {yn} in SX such that:

(a) | f (xn)| → ‖ f ‖ and | f (yn)| → ‖ f ‖ as n→ ∞;
(b) f (xn) · g(xn) > 0 and f (yn) · g(yn) 6 0 for all n ∈ N.

REMARK 2.12. If X is reflexive then every bounded linear functional on X,
by virtue of being compact, attains the norm. In that case, considering Y = R
in Theorem 2.1 we get a complete description of the Birkhoff–James orthogonal-
ity of bounded linear functionals on X. In fact, the following reformulation of
Theorem 2.1 is worth mentioning in this context.

THEOREM 2.13. Let X be a reflexive Banach space. Then for any f , g ∈ X∗, f⊥Bg
if and only if there exist x, y ∈ M f such that f (x) · g(x) > 0 and f (y) · g(y) 6 0. In
addition, if X is strictly convex then f⊥Bg if and only if there exists x ∈ M f such that
f (x) · g(x) = 0.

REMARK 2.14. However, if X is not reflexive then the norm attaining set of
a bounded linear functional may be possibly empty and Theorem 2.1 is no longer
applicable. In fact, it is well known that if X is not reflexive then there exists a
bounded linear functional on X such that the functional does not attain the norm.
It is particularly in these cases that Theorem 2.10 can be effectively applied, pro-
vided that the dual space X∗ is strictly convex. We would also like to note that
there exists a non-reflexive Banach space whose dual is strictly convex. Indeed,
the classical c0 space (with the sup norm) has an unconditional basis and it does
not contain a copy of l1. Therefore, as pointed out in [22], there exists an equiva-
lent renorming of this space with a strictly convex dual norm. Furthermore, we
note that if a Banach space is reflexive under a particular norm, then it is reflex-
ive under any equivalent norm. Combining these observations, we may and do
conclude that there exists a norm on c0 such that the space is nonreflexive and the
dual space is strictly convex.

The next two theorems show how Birkhoff–James orthogonality (T⊥B A)
and strong Birkhoff–James orthogonality (T⊥SB A) are related in the space of
bounded linear operators. A scalar λ is said to belong to the approximate point
spectrum of A, written as σapp(A), if there exists a sequence {xn} of unit vec-
tors such that ‖(A − λI)xn‖ → 0. In the following theorem we show that if
0 /∈ σapp(A), then the notions T⊥B A and T⊥SB A are equivalent.

THEOREM 2.15. Let H be a Hilbert space, T, A ∈ B(H) and 0 /∈ σapp(A). Then
T⊥B A and T⊥SB A are equivalent.

Proof. Clearly T⊥SB A implies T⊥B A. On the other hand, if possible sup-
pose that T⊥B A but T 6⊥SB A. Then there exists a nonzero scalar λ0 ∈ R
such that ‖T‖ = ‖T − λ0 A‖. Now, for all λ ∈ R, ‖T − λ0 A‖ 6 ‖T + λA‖ =
‖(T − λ0 A) + (λ + λ0)A‖. Hence (T − λ0 A)⊥B A. Then from Paul [15], it fol-
lows that there exists {xn} ⊆ SH such that ‖(T − λ0 A)xn‖ → ‖T − λ0 A‖ and
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〈(T−λ0 A)xn, Axn〉 → 0. Now, using the fact that ‖Axn‖ 6→ 0 (since 0 /∈ σapp(A))
we have ‖T − λ0 A‖2 = lim

n→∞
‖(T − λ0 A)xn‖2 = lim

n→∞
{‖Txn‖2 + |λ0|2‖Axn‖2 −

2λ0〈Txn, Axn〉} = lim
n→∞
{‖Txn‖2 − |λ0|2‖Axn‖2} < ‖T‖2. Therefore, ‖T − λ0 A‖

< ‖T‖, a contradiction. This proves the theorem.

The result obtained in the previous theorem can be improved to show that
the notions T⊥B A and T⊥SB A are equivalent, where T, A ∈ B(X,Y), if 0 /∈
σapp(A) and Y is a uniformly convex space.

THEOREM 2.16. Let X be a normed linear space, Y be a uniformly convex space
and T, A ∈ B(X,Y). If 0 /∈ σapp(A) then T⊥B A and T⊥SB A are equivalent.

Proof. Clearly T⊥SB A implies T⊥B A. On the other hand, if possible sup-
pose that T⊥B A but T 6⊥SB A. Without loss of generality, assume that ‖T‖ = 1.
Then from Theorem 2.8, it follows that there exist sequences {xn}, {yn} ⊆ SX and
{εn}, {δn} ⊆ [0, 1) such that ‖Txn‖ → ‖T‖, ‖Tyn‖ → ‖T‖ and Axn ∈ (Txn)+(εn),
Ayn ∈ (Tyn)−(δn) and εn → 0, δn → 0.

Then there exists a non-zero scalar λ0 such that ‖T + λ0 A‖ = ‖T‖. Without
loss of generality, assume that λ0 > 0. Then for any λ ∈ (0, λ0), T + λA =(
1− λ

λ0

)
T + λ

λ0
(T + λ0 A). Thus ‖T + λA‖ 6

(
1− λ

λ0

)
‖T‖+ λ

λ0
‖(T + λ0 A)‖ =(

1− λ
λ0

)
‖T‖+ λ

λ0
‖T‖ = ‖T‖ 6 ‖T + λA‖ since T⊥B A. Therefore, ‖T + λA‖ =

‖T‖ for all 0 6 λ 6 λ0. Thus for all λ ∈ [0, λ0], we have ‖T‖ = ‖T + λA‖ >
‖(T + λA)xn‖ >

√
1− εn2‖Txn‖ → ‖T‖. Hence

(2.1) ‖(T + λA)xn‖ → ‖T‖ = 1 ∀ λ ∈ [0, λ0].

Now, suppose that inf ‖Axn‖ = c > 0, since 0 /∈ σapp(A). Take λ1, λ2 ∈ [0, λ0]

such that λ1 6= λ2 and |λ1 − λ2| 6 2
c . Now, choose 0 < ε < c|λ1 − λ2|. Then

‖(Txn + λ1 Axn)− (Txn + λ2 Axn)‖ = |λ1 − λ2|‖Axn‖ > |λ1 − λ2|c > ε. Again
‖Txn + λi Axn‖ 6 ‖T‖ = 1 ⇒ Txn + λi Axn ∈ B(Y) for i = 1, 2. Since Y is
uniformly convex, clearly

∥∥ Txn+λ1 Axn
2 + Txn+λ2 Axn

2

∥∥ 6 1− δY(ε), where δY(ε) > 0
is the modulus of convexity of Y. This implies that

∥∥Txn + λ1+λ2
2 Axn

∥∥ 6 1−
δY(ε). Thus lim

n→∞

∥∥Txn + λ1+λ2
2 Axn

∥∥ 6 1 − δY(ε) < 1, which contradicts (2.1).

This completes the proof.

REMARK 2.17. From Theorem 2.6 and Example 2.7, it follows that if 0 ∈
σapp(A) then T⊥B A may not imply T⊥SB A.

3. SMOOTHNESS OF BOUNDED LINEAR OPERATOR

To characterize smoothness of a bounded linear operator in the space of
bounded linear operators is one of the most complicated and sought after area of
study in the geometry of Banach spaces. Mathematicians including Holub [10],
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Heinrich [8], Hennefeld [9], Abatzoglou [1], Kittaneh and Younis [14], Rao [18]
have studied smoothness over the years, yet a complete characterization of
smoothness remain elusive. In [16] a sufficient condition for smoothness has
been obtained for the first time. Extending the work done in [16], we here ob-
tain separate necessary and sufficient conditions for smoothness of a bounded
linear operator. We begin with the following theorem.

THEOREM 3.1. Let X,Y be normed linear spaces. Let T ∈ B(X,Y) and MT =
{±x0} for some x0 ∈ SX and T further satisfies the following property: given any δ > 0,
if {Hα : α ∈ Λ} is the collection of all hyperspaces such that d(x0, Hα) > δ then
sup{‖Tx‖ : x ∈ (

⋃
α Hα)∩ SX} < ‖T‖; then for any A ∈ B(X,Y), T⊥B A if and only

if Tx0⊥B Ax0.

Proof. If Tx0⊥B Ax0 then clearly T⊥B A, since x0 ∈ MT . For the other part,
suppose that T⊥B A but Tx0 6⊥B Ax0. Then there exists a scalar λ0 6= 0 such that
‖Tx0 + λ0 Ax0‖ < ‖T‖. Then we can find an ε1 > 0 such that

‖Tx0 + λ0 Ax0‖ < ‖T‖ − ε1.

Without loss of generality, we assume that λ0 > 0. By continuity of the function
T + λ0 A at the point x0, we can find an open ball B(x0, r0) such that

‖Tx + λ0 Ax‖ < ‖T‖ − ε1 ∀x ∈ B(x0, r0).

Let λ ∈ (0, λ0). Then for all z ∈ B(x0, r0) ∩ SX,

Tz + λAz =
(

1− λ

λ0

)
Tz +

λ

λ0
(Tz + λ0 Az)

⇒ ‖Tz + λAz‖ 6
(

1− λ

λ0

)
‖Tz‖+ λ

λ0
‖(Tz + λ0 Az)‖

⇒ ‖Tz + λAz‖ <
(

1− λ

λ0

)
‖T‖+ λ

λ0
(‖T‖ − ε1) = ‖T‖ −

λ

λ0
ε1.

Since ‖(T+λA)z‖=‖(T+λA)(−z)‖, we get for all z∈ (B(x0, r0)∪B(−x0, r0))∩SX,

‖Tz + λAz‖ < ‖T‖ − λ

λ0
ε1, ∀λ ∈ (0, λ0).

Consider C = SX \ (B(x0, r0)∪ B(−x0, r0)). For any z ∈ C, x0 and z being linearly
independent (from Theorem 2.3 of [12]) there exists βz ∈ R such that x0 + βzz⊥Bz.
Therefore ‖x0 + λz‖ > ‖x0 + βzz‖ = cz (say), for all λ ∈ R. Clearly cz > 0
as {x0, z} is linearly independent. Define a function fz : Span{x0, z} → R by
fz(ax0 + bz) = a. Clearly fz is a bounded linear functional on Span{x0, z} and so
there exists a norm preserving extension say f of fz on X. Clearly ‖ f ‖ = ‖ fz‖ 6
1
cz

. Let Hz = ker( f ). Then for all y ∈ Hz, 1 = | f (x0 − y)| 6 ‖ f ‖‖x0 − y‖ 6
1
cz
‖x0 − y‖. So ‖x0 − y‖ > cz. Therefore d(x0, Hz) > cz. Thus for each z ∈ C,

there exists a hyperspace Hz of X containing z such that d(x0, Hz) > cz. So C ⊂
(
⋃

z∈C Hz)∩ SX. It is easy to check that there exists a δ > 0 such that d(x0, Hz) > δ
for all z ∈ C.
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Now, by the hypothesis sup{‖Tx‖ : x ∈
(⋃

z∈C Hz
)
∩ SX} < ‖T‖ and so

sup{‖Tx‖ : x ∈ C} < ‖T‖. Hence there exists ε2 > 0 such that sup{‖Tx‖ : x ∈
C} < ‖T‖ − ε2.

Choose 0 < λ̃ < min
{

λ0, ε2
2‖A‖

}
. Then for all z ∈ C, we get

‖Tz + λ̃Az‖ 6 ‖Tz‖+ |λ̃|‖Az‖ < ‖T‖ − ε2 + |λ̃|‖A‖ < ‖T‖ − 1
2

ε2.

Choose ε = min
{ 1

2 ε2, λ̃
λ0

ε1
}

. Then for all x ∈ SX we get,

‖Tx + λ̃Ax‖ < ‖T‖ − ε.

This shows that ‖T + λ̃A‖ < ‖T‖, which contradicts the fact that T ⊥B A. This
completes the proof.

We next prove a sufficient condition for the smoothness of a bounded linear
operator.

THEOREM 3.2. Let X,Y be normed linear spaces. Let T ∈ B(X,Y). Suppose the
following conditions hold:

(i) MT = {±x0}, for some x0 ∈ SX;
(ii) Tx0 is a smooth point of Y;

(iii) given any δ > 0, if {Hα : α ∈ Λ} is the collection of hyperspaces such that
d(x0, Hα) > δ then sup{‖Tx‖ : x ∈ (

⋃
α Hα) ∩ SX} < ‖T‖.

Then T is smooth.

Proof. Let T⊥B Ai, i = 1, 2 with Ai ∈ B(X,Y). Then by Theorem 3.1, for
i = 1, 2 we have Tx0⊥B Aix0. As Tx0 is a smooth point of Y so Tx0⊥B(A1 +
A2)x0. Therefore, T⊥B(A1 + A2). Then from Theorem 5.1 [12], it follows that T
is smooth.

On the other hand, we prove that the following conditions are necessary for
smoothness of a bounded linear operator T.

THEOREM 3.3. Let X,Y be normed linear spaces. Let T ∈ B(X,Y) be a smooth
point in the space of bounded linear operators such that MT 6= ∅. Then

(i) MT = {±x0}, for some x0 ∈ SX;
(ii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where {Hα : α ∈ Λ} is the

collection of all hyperspaces such that d(x0, Hα) > 0.

Proof. The condition (i) follows from Theorem 4.5 of [16]. We need only to
show (ii). If possible, suppose that sup{‖Tx‖ : x ∈ Hα ∩ SX} = ‖T‖ for some
α ∈ Λ. Then there exists a sequence {xn} ∈ Hα ∩ SX such that ‖Txn‖ → ‖T‖.
Then each z ∈ X can be written as

z = ax0 + h,

where a ∈ R and h ∈ Hα. Assume that d(x0, Hα) = r > 0. So inf{‖x0 + h‖ : h ∈
Hα} = r. Therefore for any a 6= 0,

∥∥x0 +
1
a h
∥∥ > r ⇒ ‖z‖ = ‖ax0 + h‖ > r|a| ⇒
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|a| 6 ‖z‖
r . Define linear operators A1, A2 : X→ Y as follows:

A1(z) = aTx0, A2z = Th.

It is easy to verify that A1, A2 are bounded linear operators. Now, for all λ ∈ R,
‖T + λA1‖ > ‖(T + λA1)xn‖ = ‖Txn‖ → ‖T‖. Thus T⊥B A1. Similarly, for all
λ ∈ R, ‖T + λA2‖ > ‖(T + λA2)x0‖ = ‖Tx0 + λA2x0‖ = ‖Tx0‖ = ‖T‖. Hence
T⊥B A2. But T = A1 + A2, which shows that T 6⊥B (A1 + A2). This shows that
T is not right additive and so from Theorem 5.1 of [12], it follows that T is not
smooth.

We would like to conclude the present paper with the following remark.

REMARK 3.4. Although the necessary and sufficient conditions for the
smoothness of a bounded linear operator mentioned in Theorems 3.3 and 3.2 are
different, they are strikingly similar. Also the characterization of the smoothness
of a bounded linear operator is still open when the norm attaining set is empty.
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