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ABSTRACT. We show that a compact quantum group whose all irreducible
representations have dimension bounded by a fixed constant must be of Kac
type, in other words, its Haar measure is a trace. The proof is based on estab-
lishing several facts concerning operators related to modular properties of the
Haar measure. In particular we study the spectrum of these operators and the
dimensions of some of their eigenspaces in relation to the quantum dimension
of the corresponding irreducible representation.
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1. INTRODUCTION

Let G be a compact quantum group. It is known that all irreducible repre-
sentations of G are finite dimensional. We will say that G has representations of
bounded degree if the dimensions (in algebraic literature called degrees) of all irre-
ducible representations of G are bounded by some fixed constant. This property
appeared recently in the paper [3] in connection with property (T) for discrete
quantum groups, where G with representations of bounded degree was termed
low (let us also mention that in a recent preprint [2] the main results of [3] have
been established without the assumption of bounded degree of representations).
The authors of [3] remark that compact quantum groups with representations of
bounded degree exist and provide some examples ([3], Remark 1.6). In fact exam-
ples of such compact quantum groups have been plentiful in non-commutative
geometry (see e.g. [5] or [1]).

Classical groups with representations of bounded degree have been studied
already in [7]. It was proved by C.C. Moore in [8] that such groups must be
virtually abelian, i.e. they have an abelian subgroup of finite index. The interest in
establishing a quantum analog of this result lead first to a much more mundane
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question whether a compact quantum group with representations of bounded
degree must necessarily be of Kac type (have tracial Haar measure, see Section 5
of [14] or [4]). Quite surprisingly this question turned out to be rather difficult
to settle. In this paper we show that indeed a compact quantum group with
representations of bounded degree is of Kac type. Compact quantum groups of
Kac type are characterized in many ways e.g. in Proposition 1.7.9 of [9] (see also
Theorem 3.4 of [4]). The task is carried out by exploiting a number of inequalities
between various numerical invariants like the quantum dimension or dimensions
of certain eigenspaces of operators naturally associated with representations of
quantum groups which are not of Kac type.

All necessary definitions and basic theory of compact quantum groups can
be found in the book [9]. We will also follow almost all notational conventions of
that book. In particular we refer the reader to Chapter 1 of [9] for the definitions of

(•) contragredient representation Uc ([9], Definition 1.3.8);
(•) intertwiners Mor(U, V) and self-intertwiners End(U) ([9], Section 1.3);
(•) direct sums and tensor products of representations ([9], Section 1.3);
(•) conjugate representation U ([9], Definition 1.4.5).

The paper is organized as follows: in Section 2 we recall certain aspects of
the theory of compact quantum groups and introduce some notation needed later
on. In particular we fix notation concerning decomposition of a tensor product of
representations into direct sum. Section 3 deals with spectral projections of oper-
ators ρα (see Section 2 and [9]). Theorem 3.3 in that section is an important tech-
nical tool for establishing our main result. The longest Section 4 focuses on the
proof of our main theorem (Theorem 4.3) and finally in the appendix we briefly
mention an algebraic characterization of the property of having representations
of bounded degree.

2. NOTATION

Let G be a compact quantum group. For a finite dimensional unitary repre-
sentation U ∈ B(HU)⊗ C(G) we will use the symbol ρU for the unique positive
invertible element of Mor(U, Ucc) such that Tr( · ρU) = Tr( · ρU

−1) on End(U)
([9], Proposition 1.4.4). We let IrrG denote the set of equivalence classes of irre-
ducible representations of G. For each α ∈ IrrG we fix a unitary representative
Uα ∈ α on a Hilbert space Hα of dimension nα (i.e. nα = dim Uα). The choice of
Uα is made so that defining α as the class of Uα we have Uα

= Uα. We write ρα

for ρUα and we fix an orthonormal basis {ξα
1 , . . . , ξα

nα
} of Hα in which the matrix

of ρα is diagonal with descending eigenvalues. We also write Mor(α, β) instead
of Mor(Uα, Uβ) etc.

Throughout the paper we will use the constant

NG = sup{nα : α ∈ IrrG} ∈ N∪ {+∞}.
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For β, γ ∈ IrrG the tensor product, Uβ >©Uγ, is equivalent to a direct sum
of Uα1 , . . . , Uαn with α1, . . . , αn ∈ IrrG determined uniquely up to permutation.
Given α ∈ IrrG we let m(α, β>©γ) be the multiplicity of α in β>©γ, i.e. the number
of times α appears in the sequence (α1, . . . , αn) (this can be zero). Thus we have

(2.1) Uβ >©Uγ ≈
⊕

α∈IrrG

m(α,β >©γ)⊕
i=1

Uα.

Let

V(β, γ) :
⊕

α∈IrrG

m(α,β >©γ)⊕
i=1

Hα →Hβ ⊗Hγ

be the unitary operator implementing equivalence (2.1). Then

V(β, γ) = ∑
α∈IrrG

m(α,β >©γ)

∑
i=1

V(α, β>©γ, i)

where V(α, β>©γ, i) : Hα →Hβ ⊗Hγ are isometries with orthogonal ranges.

3. SPECTRAL PROJECTIONS OF ρU OPERATORS

For a finite dimensional unitary representation U ∈ B(HU)⊗C(G) ofG and
a number t > 0 let ρU(t) denote the spectral projection of ρU corresponding to
the subset {t} of R+, i.e. ρU(t) = χ{t}(ρU). Similarly let HU(t) denote the range
of the projection ρU(t). When U = Uα for some α ∈ IrrG we will write ρα(t) and
Hα(t) as usual. The properties of these spectral projections are summarized in
the next proposition.

PROPOSITION 3.1. Let U ∈ B(HU)⊗C(G) and V ∈ B(HV)⊗C(G) be finite
dimensional unitary representations of G. Then for any t > 0 we have:

(i) if T ∈ Mor(U, V) then TρU(t) = ρV(t)T;
(ii) ρU⊕V(t) = ρU(t)⊕ ρV(t) ∈ B(HU)⊕ B(HV) ⊂ B(HU ⊕HV);

(iii) ρU >©V(t) = ∑
t′>0

ρU(t′)⊗ ρV(t/t′) ∈ B(HU ⊗HV);

(iv) ρU(t) = ρU(t−1)>.

Proof. Let { fz}z∈C be the family of Woronowicz characters of G ([14], Theo-
rem 5.6, [9], Definition 1.7.1). Applying (id⊗ fn) with n ∈ N to both sides of

(T ⊗ 1)U = V(T ⊗ 1)

we obtain

∑
t>0

TtnρU(t) = Tρn
U = ρn

V T = ∑
t>0

tnρV(t)T, n ∈ N

which implies
TρU(t) = ρV(t)T, t > 0.
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Points (ii), (iii) and (iv) follow from the equalities

(3.1) ρU⊕V = ρU ⊕ ρV , ρU >©V = ρU ⊗ ρV and ρU = (ρU
−1)>

(see Section 1.4 of [9]).

PROPOSITION 3.2. For any α, β, γ ∈ IrrG we have

m(α, β>©γ) = m(β, α>©γ) = m(γ, β>©α).

Proof. Using Theorem 2.2.6 of [9] we obtain:

m(α, β>©γ) = dim Mor(α, β>©γ) = dim Mor(α>©γ, β)

= dim Mor(β, α>©γ) = m(β, α>©γ),

m(α, β>©γ) = dim Mor(α, β>©γ) = dim Mor(β>©α, γ)

= dim Mor(γ, β>©α) = m(γ, β>©α).

The next theorem provides the most important technical tools to be used in
the proof of our main result in Section 4.

THEOREM 3.3. For any α, β ∈ IrrG and s, t > 0 we have

∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγV(α, γ>©β, i)∗(ργ(s)⊗ ρβ(t))V(α, γ>©β, i)(3.2a)

=
dα

t
(dim Hβ(t)) ρα(st),

∑
γ∈IrrG

m(α,β >©γ)

∑
i=1

dγV(α, β>©γ, i)∗(ρβ(t)⊗ ργ(s))V(α, β>©γ, i)(3.2b)

= dαt(dim Hβ(t)) ρα(st).

REMARK 3.4. When G is of Kac type equations (3.2a), (3.2b) reduce to

δs,1δt,1 ∑
γ∈IrrG

m(α, γ>©β)nγ = δs,1δt,1nαnβ,

δs,1δt,1 ∑
γ∈IrrG

m(α, β>©γ)nγ = δs,1δt,1nαnβ,

which can be seen as an obvious equality of dimensions (see Proposition 3.2)

dim
(⊕

γ∈IrrG m(γ, α>©β) ·Uγ
)
=dim(α>©β)=dim

(⊕
γ∈IrrG m(γ, β>©α) ·Uγ

)
.

Proof of Theorem 3.3. We will use the notation and results of Chapter 2 in [9].
For any β ∈ IrrG we let (Rβ, Rβ) be the standard solutions of conjugate equations
([9], Section 2.2) as given in Example 2.2.13 of [9]. In particular, denoting by 1 the
trivial representation, we have Rβ ∈ Mor(1, β>©β) and Rβ ∈ Mor(1, β>©β) and

(Rβ
∗ ⊗ 1β)(1β ⊗ Rβ) = 1β, (Rβ

∗ ⊗ 1β)(1β ⊗ Rβ) = 1β,
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where 1β and 1β are the identities of B(Hβ) and B(Hβ) (by taking adjoints we can

also rewrite e.g. the first equation as (1β ⊗ Rβ
∗)(Rβ ⊗ 1β) = 1β).

By Proposition 3.1 we have

Rβ = ρβ >©β(1)Rβ = ∑
t′>0

(ρβ(t
′)⊗ ρβ(t′

−1
))Rβ,

so for any t > 0

(ρβ(t)⊗ 1β)Rβ = ∑
t′>0

(ρβ(t)ρβ(t
′)⊗ ρβ(t′

−1
))Rβ = (ρβ(t)⊗ ρβ(t−1))Rβ

= ∑
t′>0

(ρβ(t
′)⊗ ρβ(t−1)ρβ(t′

−1
))Rβ = (1β ⊗ ρβ(t−1))Rβ.

(3.3)

For any α, β, γ ∈ IrrG and T ∈ Mor(α, γ>©β) define T̃ = (T∗ ⊗ 1β)(1γ ⊗
Rβ). Then T̃ ∈ Mor(γ, α>©β) (cf. suggested proof of Theorem 2.2.6 of [9]). More-
over, for S, T ∈ Mor(α, γ>©β) we have S̃∗T̃ ∈ End(γ), so by irreducibility S̃∗T̃ =
λ1γ for some λ ∈ C.

Next we will use the so called categorical traces ([9], Theorem 2.2.16) which
we denote by Trζ for ζ ∈ IrrG extended to B(Hζ) (cf. Remark 2.2.17 and Sec-
tion 1.4 of [9]):

Trζ(Z) = Rζ
∗
(Z⊗ 1ζ)Rζ , Z ∈ B(Hζ).

We have

(3.4) S̃∗T̃ = (1γ ⊗ Rβ
∗
)(ST∗ ⊗ 1β)(1γ ⊗ Rβ) = (id⊗ Trβ)(ST∗),

and hence

(3.5) λ Trγ(1γ) = (Trγ⊗Trβ)(ST∗) = Trα(T∗S)

(the second equality follows from the paragraph after Remark 2.2.17 of [9]). It
also follows from (3.4) that if the ranges of T and S are orthogonal (S∗T = 0) then
so are the ranges of S̃ and T̃. Furthermore, since Trζ(1ζ) = dζ for all ζ, if T is an
isometry, putting S = T in (3.5) we obtain

λ =
dα

dγ
.

In particular
√

dγ

dα
T̃ is also an isometry.

Applying this to isometries

V(α, γ>©β, i) ∈ Mor(α, γ>©β), i ∈ {1, . . . , m(α, γ>©β)}

with orthogonal ranges spanning the whole space Hγ >©β we obtain operators

Ṽ(α, γ>©β, i) ∈ Mor(γ, α>©β), i ∈ {1, . . . , m(α, γ>©β)}
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satisfying

∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγṼ(α, γ>©β, i)Ṽ(α, γ>©β, i)∗ = dα1α ⊗ 1β.

Now for s > 0 let X(s) = dαρα >©β(s). Then by Proposition 3.1(i)

X(s) =
(

∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγṼ(α, γ>©β, i)Ṽ(α, γ>©β, i)∗
)
ρα >©β(s)

= ∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγṼ(α, γ>©β, i)ργ(s)Ṽ(α, γ>©β, i)∗

= ∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγ(V(α, γ>©β, i)∗ ⊗ 1β)(ργ(s)⊗ RβRβ
∗
)(V(α, γ>©β, i)⊗ 1β).

Let θt be the functional on B(Hβ) given by

θt(W) = Rβ
∗(Wρβ(t

−1)⊗ 1β)Rβ, W ∈ B(Hβ)

and let us compute (id⊗ θt)(X(s)). Using the conjugate equations and (3.3) we
obtain the following equality of operators on Hβ:

(1β ⊗ Rβ
∗)(RβRβ

∗ ⊗ 1β)(1β ⊗ ρβ(t
−1)⊗ 1β)(1β ⊗ Rβ)

= (Rβ
∗ ⊗ 1β)(1β ⊗ 1β ⊗ ρβ(t))(1β ⊗ Rβ) = ρβ(t)

which shows that

(3.6) (id⊗ θt)(X(s)) = ∑
γ∈IrrG

m(α,γ >©β)

∑
i=1

dγV(α, γ>©β, i)∗(ργ(s)⊗ ρβ(t))V(α, γ>©β, i).

On the other hand by Proposition 3.1(iii)

(id⊗ θt)(X(s)) = dα(id⊗ θt) ∑
t′>0

ρα(t′)⊗ ρβ(s/t′)

= dα(id⊗ θt) ∑
u>0

ρα(su)⊗ ρβ(u
−1) = µdαρα(st),

(3.7)

where µ = Rβ
∗(ρβ(t

−1)⊗ 1β)Rβ = Rβ
∗(1β ⊗ ρβ(t))Rβ (again by (3.3)). This can

be computed using the explicit expression

Rβ =

nβ

∑
b=1

ξ
β
b ⊗ ρ−1/2

β ξ
β
b

from Example 2.2.3 of [9] to obtain µ = t−1 dim Hβ. Combining this with (3.6)
and (3.7) we obtain (3.2a).

Formula (3.2b) can be proved analogously with the operation

Mor(α, γ>©β) 3 T 7−→ T̃ ∈ Mor(γ, α>©β)
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replaced by

Mor(α, γ>©β) 3 T 7−→ T̂ ∈ Mor(β, γ>©α)

defined by T̂ = (1γ ⊗ T∗)(Rγ ⊗ 1β).

REMARK 3.5. Theorem 3.3 can also be proved without invoking the theory
of C∗-tensor categories (in other words the material of Chapter 2 in [9]). The proof
is then based on the following formula for comultiplication on the dual Ĝ of G
([11], Section 3):

∆Ĝ(e
α
a,a′) = ∑

β,γ∈IrrG

m(α,β >©γ)

∑
i=1

∑
b,b′ ,c,c′

V(α, β>©γ, i)b,c
a (eγ

c,c′ ⊗ eβ
b,b′)V(α, β>©γ, i)b′ ,c′

a′ ,

where for each α ∈ IrrG and any a, a′ ∈ {1, . . . , nα} the matrix unit eα
a,a′ is given by

eα
a,a′ = |ξ

α
a′〉〈ξ

α
a′ |

and the numbers V(α, β>©γ, i)b,c
a are matrix elements of the isometric operators

V(α, β>©γ, i):

V(α, β>©γ, i) = ∑
a,b,c

V(α, β>©γ, i)b,c
a (|ξβ

b 〉 ⊗ |ξ
γ
c 〉)〈ξα

a |.

4. BOUNDED DEGREE OF REPRESENTATIONS IMPLIES KAC TYPE

Before proceeding with our main result (Theorem 4.3) let us introduce the
following useful notation. For a finite dimensional unitary representation U ∈
B(HU) ⊗ C(G) we will write Γ(U) for the maximal eigenvalue of ρU which is
also equal to the operator norm of ρU , i.e. Γ(U) = ‖ρU‖. Let us also denote by
DU the vector space dimension of HU(Γ(U)). Whenever U = Uα for α ∈ IrrG
we will write Γ(α) and Dα instead of Γ(Uα) and DUα (Γ(U) and DU depend only
on equivalence class of U). The following proposition describing some properties
of the map U 7→ Γ(U) is an immediate consequence of (3.1).

PROPOSITION 4.1. Let U ∈ B(HU)⊗C(G) and V ∈ B(HV)⊗C(G) be finite
dimensional unitary representations of G. We have:

(i) Γ(U ⊕V) = max{Γ(U), Γ(V)};
(ii) Γ(U >©V) = Γ(U)Γ(V).

The next result will be needed in the proof of Theorem 4.3. In what follows,
for α, β, γ ∈ IrrG, we will write γ 4 α>©β if m(γ, α>©β) 6= 0.

PROPOSITION 4.2. Let α, β, γ∈IrrG be such that γ4α>©β, Γ(γ)=Γ(α)Γ(β) and

dγ

Dγ
= max

{ dγ′

Dγ′
: γ′ ∈ IrrG, γ′ 4 α>©β, Γ(γ′) = Γ(α)Γ(β)

}
.
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Then

(4.1) 1 6
dγDα

dαΓ(β)Dγ
=

dγ

Γ(γ)Dγ

Γ(α)Dα

dα
.

Let us note that γ as in Proposition 4.2 always exists. Indeed, the repre-
sentation Uα >©Uβ is equivalent to Uγ1 ⊕ · · · ⊕ Uγn for some γ1, . . . , γn ∈ IrrG
(possibly with repetitions). By Proposition 4.1 we have

Γ(α)Γ(β) = Γ(α>©β) = max{Γ(γ1), . . . , Γ(γn)},

so there must exist γ ∈ IrrG such that γ 4 α>©β and Γ(γ) = Γ(α)Γ(β).

Proof of Proposition 4.2. The first equality of Theorem 3.3 and the fact that
ρβ = (ρβ

−1)> imply

∑
γ′∈IrrG

m(α,γ′ >©β)

∑
i=1

dγ′V(α, γ′ >©β, i)∗(ργ′(Γ(α)Γ(β))⊗ ρβ(Γ(β)−1))V(α, γ′ >©β, i)

= dαΓ(β)(dim Hβ(Γ(β)−1))ρα(Γ(α))

= dαΓ(β)(dim Hβ(Γ(β)))ρα(Γ(α)) = dαΓ(β)Dβ ρα(Γ(α)).

(4.2)

Taking norm of both sides of (4.2) and using Propositions 3.1, 3.2, 4.1 we get

dαΓ(β)Dβ =
∥∥∥ ∑

γ′∈IrrG

m(α,γ′ >©β)

∑
i=1

dγ′V(α, γ′ >©β, i)∗

(ργ′(Γ(α)Γ(β))⊗ ρβ(Γ(β)−1))V(α, γ′ >©β, i)
∥∥∥

6 ∑
γ′∈IrrG

m(α, γ′ >©β)dγ′‖ργ′(Γ(α)Γ(β))‖

= ∑
γ′∈IrrG

m(γ′, α>©β)dγ′‖ργ′(Γ(α)Γ(β))‖

= ∑
γ′∈IrrG:

Γ(γ′)=Γ(α)Γ(β)

m(γ′, α>©β)dγ′ = ∑
γ′∈IrrG:

Γ(γ′)=Γ(α)Γ(β)

m(γ′, α>©β)
dγ′

Dγ′
Dγ′

6
dγ

Dγ
∑

γ′∈IrrG:
Γ(γ′)=Γ(α)Γ(β)

m(γ′, α>©β)Dγ′ =
dγ

Dγ
DαDβ,

which yields (4.1).

Now we are able to prove the main theorem of the paper.

THEOREM 4.3. Assume that NG < +∞. Then G is of Kac type.

The remainder of this section (apart from Corollary 4.4) will be devoted to
the proof of Theorem 4.3.
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Proof. Case NG = 1 is trivial, hence assume that NG > 2. Assume by contra-
diction that G is not of Kac type. Then there exists α ∈ IrrG such that Γ(α) > 1.

We now proceed to choose a sequence (αk)k∈N of elements of IrrG such that
α1 = α (as above),

(i) αk+1 4 αk >©αk,
(ii) Γ(αk+1) = Γ(αk)

2,
and

(iii)
dαk+1
Dαk+1

= max
{ dγ

Dγ
: γ ∈ IrrG, γ 4 αk >©αk, Γ(γ) = Γ(αk)

2},

for all k ∈ N.
Property (ii) implies Γ(αk) = Γ(α)2(k−1)

for every k ∈ N.
We will continue to refine our sequence by choosing appropriate subse-

quences in order to finally arrive at a contradiction. Let us note that by Proposi-
tion 4.2, the sequence of real numbers(

Γ(αk)
Dαk

dαk

)
k∈N

is non-increasing. For each k the matrix of the operator ραk in the basis
{ξαk

1 , . . . , ξ
αk
nαk
} is

ραk = diag(Γ(αk), Γ(αk)
θk

2 , . . . , Γ(αk)
θk

nαk )

for some numbers θk
2, . . . , θk

nαk
∈]−∞, 1] such that θk

2 > · · · > θk
nαk

. For notational

convenience we will also put θk
1 = 1, so that

ραk = diag(Γ(αk)
θk

1 , . . . , Γ(αk)
θk

nαk ).

Observe that since Tr(ραk ) = Tr(ρ−1
αk

), we have θk
nαk

< 0 and

nαk Γ(α)2(k−1)
=nαk Γ(αk)>

nαk

∑
j=1

Γ(αk)
θk

j =

nαk

∑
j=1

Γ(αk)
−θk

j >Γ(αk)
−θk

nαk =Γ(α)
−2(k−1)θk

nαk ,

i.e.
log(nαk ) + 2(k−1) log(Γ(α)) > −2(k−1)θk

nαk
log(Γ(α)),

and hence

(4.3) θk
nαk

> −1−
log(nαk )

2(k−1) log(Γ(α))
> −1−

log(nαk )

log(Γ(α))
.

We will now show that there is a subsequence (αkn)n∈N of (αk)k∈N such that:
(i) nαkn

= N for each n ∈ N and some N ∈ {2, . . . ,NG};
(ii) dimension Dαkn

is the same for each n ∈ N;
(iii) for each n ∈ N we have

2(kn+1−1) > 2(kn−1)
(

2 +
log(N)

log(Γ(α))

)
;
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(iv) for each n ∈ N and j ∈ {1, . . . , N} we have

Γ(α)
2(kn+1−1)θ

kn+1
j 6 Γ(α)2(kn+1−1)−2(kn−1)

Γ(α)
2(kn−1)θkn

j .

We note that the inequality in (iv) is equivalent to

2(kn−1)(1− θkn
j ) 6 2(kn+1−1)(1− θ

kn+1
j ).

It is easy to see that there is a subsequence (αk0
n
)n∈N of (αk)k∈N satisfying (i),

(ii) and (iii). In order to see that we can refine it so that the resulting subsequence
also satisfies (iv) we note first that it follows from the construction of the sequence
(αk)k∈N that we have

Sp(ραk0
n
) ⊂ Sp(ρα) · · · Sp(ρα)︸ ︷︷ ︸

2(k
0
n−1)

for each n ∈ N. Now for each j ∈ {1, . . . , N} the number Γ(α)
2(k

0
n−1)θ

k0
n

j be-
longs to the spectrum of ραk0

n
, so it can be written as a product of eigenvalues

{λ1, . . . , λ# Sp(ρα)} in appropriate powers:

Γ(α)
2(k

0
n−1)θ

k0
n

j =
# Sp(ρα)

∏
m=1

λ
d(k0

n ,m,j)
m ,

where the non-negative integers

{d(k0
n, m, j) : m ∈ {1, . . . , # Sp(ρα)}, j ∈ {1, . . . , N}}

satisfy
# Sp(ρα)

∑
m=1

d(k0
n, m, j) = 2(k

0
n−1), n ∈ N.

By choosing an appropriate subsequence (kn)n∈N of (k0
n)n∈N we can arrange

that we have d(kn+1, m, j) > d(kn, m, j) for all m and a fixed j. It remains to repeat
this procedure for all j refining the sequence each time. Having done so, let us
keep the notation (kn)n∈N for the resulting sequence of natural numbers. We have

Γ(α)
2(kn+1−1)θ

kn+1
j =

# Sp(ρα)

∏
m=1

λ
d(kn+1,m,j)
m

=
( # Sp(ρα)

∏
m=1

λ
(d(kn+1,m,j)−d(kn ,m,j))
m

)( # Sp(ρα)

∏
m=1

λ
d(kn ,m,j)
m

)
6 Γ(α)∑

# Sp(ρα)
m=1 (d(kn+1,m,j)−d(kn ,m,j))

# Sp(ρα)

∏
m=1

λ
d(kn ,m,j)
m

= Γ(α)2(kn+1−1)−2(kn−1)
Γ(α)

2(kn−1)θkn
j

(the inequality follows from the fact that Γ(α) = max{λ1, . . . , λ# Sp(ρα)}). In other
words (αkn)n∈N satisfies conditions (i)–(iv).
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Now using the fact that
Γ(αkn+1

)

dαkn+1

6
Γ(αkn )

dαkn
and properties (i)–(iv) of (αkn)n∈N

we will arrive at a contradiction. We have

1 6
dαkn+1

dαkn

Γ(αkn)

Γ(αkn+1)

=
∑N

j=1 Γ(α)
2(kn+1−1)θ

kn+1
j

∑N
j=1 Γ(α)

2(kn−1)θkn
j

Γ(α)2(kn−1)−2(kn+1−1)

=
∑N−1

j=1 Γ(α)
2(kn+1−1)θ

kn+1
j + Γ(α)2(kn+1−1)θ

kn+1
N

∑N−1
j=1 Γ(α)

2(kn−1)(−1+θkn
j )+2(kn+1−1)

+ Γ(α)2(kn−1)(−1+θkn
N )+2(kn+1−1)

.

(4.4)

Thanks to condition (iv) we have

(4.5) Γ(α)
2(kn+1−1)θ

kn+1
j 6 Γ(α)

2(kn−1)(−1+θkn
j )+2(kn+1−1)

for every j ∈ {1, . . . , N − 1}. Moreover, condition (iii) and inequality (4.3) (with
nαk = N) implies

2(kn−1)(1−θkn
N )62(kn−1)

(
2+

log(N)

log(Γ(α))

)
<2(kn+1−1)62(kn+1−1)(1−θ

kn+1
N ),

2(kn+1−1)θ
kn+1
N <2(kn−1)(−1 + θkn

N ) + 2(kn+1−1),(4.6)

Γ(α)2(kn+1−1)θ
kn+1
N <Γ(α)2(kn−1)(−1+θkn

N )+2(kn+1−1)
.

Comparing appropriate terms in the numerator and denominator of the right
hand side of (4.4) and using (4.5) and (4.6) we find that

∑N−1
j=1 Γ(α)

2(kn+1−1)θ
kn+1
j + Γ(α)2(kn+1−1)θ

kn+1
N

∑N−1
j=1 Γ(α)

2(kn−1)(−1+θkn
j )+2(kn+1−1)

+ Γ(α)2(kn−1)(−1+θkn
N )+2(kn+1−1)

< 1

which contradicts (4.4) and therefore proves Theorem 4.3.

At the end of this section we use Theorem 4.3 to derive a corollary concern-
ing quantum groups which are not of Kac type.

COROLLARY 4.4. Let G be a compact quantum group and let U ∈ C(G⊗B(HU)
be a finite dimensional unitary representation such that Γ(U) > 1. Then

sup{nβ : β ∈ IrrG, β 4 U >©k1 >© · · · >©U >©kn , n ∈ Z+, k1, . . . , kn ∈ Z} = +∞,

where we have used conventions U >©(−n) = U >©(n) for n ∈ N and U0 = 1.

Proof. As any unitary representation decomposes into sum of irreducible
ones, it is enough to prove this claim for U = Uα, where α ∈ IrrG. Let H be
the image of G in the representation U, i.e. C(H) is the C∗-algebra generated by
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{Uα
i,j : i, j ∈ {1, . . . , nα}} and ∆H = ∆G|C(H) (cf. Remarks 3 and 1 of [10]). It

is easily seen that ·hG|C(H) is a bi-invariant state on C(H) and consequently, by
uniqueness of Haar measure, we have hH = hG|C(H).

For some n ∈ Z+, and k1, . . . , kn ∈ Z let β 4 α >©k1 >© · · · >©α >©kn be a (class of)
an irreducible representation of G. Then Uβ is also irreducible as a representation
of H since

hH(χβ
∗χβ) = hG(χβ

∗χβ) = 1

(where χβ is the character of Uβ, cf. Corollary 5.10 of [14]). Since matrix elements
of such representations span a dense subspace in C(H) we have

IrrH = {β ∈ IrrG : β ∈ IrrG, β 4 U >©k1 >© · · · >©U >©kn , n ∈ Z+, k1, . . . , kn ∈ Z}.

Since Γ(α) > 1 (where α is considered as a class of representation of H) we must
have

sup{nβ : β ∈ IrrG, β 4 U >©k1 >© · · · >©U >©kn , n ∈ Z+, k1, . . . , kn ∈ Z} = +∞

due to Theorem 4.3.

Appendix A. ALGEBRAIC CHARACTERIZATION OF GROUPS WITH REPRESENTATIONS
OF BOUNDED DEGREE

In this section we note a characterization of the property of G having irre-
ducible representations of bounded degree in terms of the comultiplication on
Pol(G). The reasoning is based on the fact that the algebra of n × n matrices
(over a field of characteristic 0) satisfies a polynomial identity of degree 2n and
not lower (cf. [6]).

PROPOSITION A.1. Let G be a compact quantum group. Then NG < +∞ if and
only if there exists r > 2 such that

(A.1) ∑
π∈Sr

sgn(π)xπ(1)· · ·xπ(r) = 0, x1, . . . , xr ∈ c00(Ĝ).

Proof. By the Amitsur–Levitzki theorem ([6], Section 4) for any n > 2 we
have

∑
π∈S2n

sgn(π)mπ(1)· · ·mπ(2n) = 0, m1, . . . , m2n ∈ Mn(C).

Moreover Mn(C) does not have a proper polynomial identity of degree strictly
smaller than 2n ([6], Section 3, Lemma 2). Since c00(Ĝ) is the algebraic direct sum
of matrix algebras of sizes equal to the dimensions of irreducible representations
of G, we see that NG is finite if and only if (A.1) is satisfied for some r (namely
r = 2NG or larger).
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Condition (A.1) from Proposition A.1 can be rewritten in the following way:
for π ∈ Sr let π̃ be the operator on c00(Ĝ)⊗r permuting the tensor factors and let
µ be the multiplication map c00(Ĝ)⊗ c00(Ĝ) → c00(Ĝ). Further let (µ(k))k∈N be
the obvious extensions of multiplication to higher tensor powers of c00(Ĝ):

µ(k) : c00(Ĝ)⊗(k+1) → c00(Ĝ), k ∈ N.

Then (A.1) means simply

∑
π∈Sr

sgn(π) · µ(r−1) ◦ π̃ = 0.

Now recall that Pol(G) is the (multiplier) Hopf algebra dual to c00(Ĝ) ([13]).
In particular, for each k > 2 the map µ(k) is dual to

∆
(k)
G : c00(Ĝ)→ M(c00(Ĝ)⊗(k+1)),

where M( · ) denotes the multiplier functor ([12], [13]). Thus the condition of
having irreducible representations of bounded degree can be expressed in terms
of the coalgebra structure of Pol(G).

COROLLARY A.2. Let G be a compact quantum group. Then NG < +∞ if and
only if there exists r > 2 such that

(A.2) ∑
π∈Sr

sgn(π) · π̃ ◦∆
(r−1)
G = 0.

REMARK A.3. Let us note that it can be shown that for a classical group
G = G condition (A.2) is equivalent to condition Pr considered by Kaplansky
([7], Section 3), which for connected G is further equivalent to commutativity of
the group.
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