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ABSTRACT. Let Lp(M) be the non-commutative Lp-space associated to a von
Neumann algebra M with the canonical positive cone Lp

+(M). Consider

Lp
+(M)1

1−ε := {T ∈ Lp
+(M) : 1− ε 6 ‖T‖ 6 1} (0 < ε < 1),

the positive spherical shell of Lp
+(M). If N is another von Neumann alge-

bra, p ∈ [1, ∞] and Φ : Lp
+(M)1

1−ε → Lp
+(N)1

1−ε is a metric preserving bi-
jection, then M, N are isomorphic as Jordan ∗-algebras. Assume further that
M � C is approximately semifinite and 1 < p < ∞. Then there is a Jor-
dan ∗-isomorphism Θ : N → M such that Φ(S1/p) = Θ∗(S)1/p for all S ∈
L1
+(M)1

(1−ε)p .
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1. INTRODUCTION

In the literature, several partial structures of von Neumann algebras were
shown to be complete Jordan ∗-invariants (see e.g. Théorème 3.3 of [4], [6], The-
orem 2 and Corollary 5 of [15], Theorem 4.5 of [16] and Theorem 3 of [30]). Gen-
eralizing results in [26], [34], [35], D. Sherman showed in [27] that the metric
space structure of the non-commutative Lp-space Lp(M) is a complete Jordan ∗-
invariant for the underlying von Neumann algebra M when p ∈ [1, ∞] \ {2}. Let
us recall it clearly as follows.

THEOREM 1.1 (Sherman [27]). Let p ∈ (1, ∞) \ {2}, let M and N be two von
Neumann algebras. If T : Lp(M) → Lp(N) is a bijective linear isometry, then there
exists a Jordan ∗-isomorphism J : M → N and a unitary w ∈ N such that T(ϕ1/p) =
w(ϕ ◦ J−1)1/p for all ϕ ∈ (M∗)+.
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The cases when p = 1 and p = ∞ are covered by the classical results
of Kadison [14], [15], since L1(M) ∼= M∗ (where M∗ is the predual of M) and
L∞(M) ∼= M. For a counterexample for the exceptional case of p = 2, observe that
the non-commutative L2-space associated to the von Neumann algebra B(`2) of
bounded linear operators on the separable infinite dimensional Hilbert space `2

and the one associated to the commutative von Neumann algebra `∞ of bounded
scalar sequences are both isometrically isomorphic to `2.

It is natural to ask whether it is possible to obtain a “smaller metric invari-
ant”. For example, motivated by the so-called Tingley’s problem (see e.g., [5],
[13], [33] and the references therein), the authors of [8] (respectively, [7]) showed
that the unit sphere of L∞(B(H)) ∼= B(H) (respectively, L1(B(H)) ∼= B(H)∗)
is a complete Jordan ∗-invariant for B(H). Moreover, it was shown in [31] that
the unit sphere of L∞(M) ∼= M is a complete Jordan ∗-invariant for a finite von
Neumann algebra M.

Along this line, we show in [20] that, for each p ∈ [1, ∞], the contractive
part Lp

+(M)1
0 of the positive cone Lp

+(M) of the non-commutative Lp-space is a
complete Jordan ∗-invariant for the underlying von Neumann algebra M; namely,
two von Neumann algebras M and N are Jordan ∗-isomorphic whenever there is
a metric preserving bijection between Lp

+(M)1
0 and Lp

+(N)1
0. Note that one can

include the case of p = 2 in this situation, since the positive cone of the non-
commutative L2-space encodes some information that cannot be recovered from
merely the normed space structure.

Based on our earlier work [21], the first main result of the article is a fur-
ther development along this direction. It shows that the positive spherical shell
Lp
+(M)1

1−ε is a complete Jordan ∗-invariant for the underlying von Neumann al-
gebra for any ε ∈ (0, 1].

When E is a subset of a normed space X and α, β ∈ R+ with α 6 β, let us put

Eβ
α := {x ∈ E : α 6 ‖x‖ 6 β}.

The precise statement of our first main result is the following.

THEOREM 1.2. Let p ∈ [1, ∞], ε ∈ (0, 1], and M and N be two von Neumann
algebras. If there is a metric preserving bijection Φ : Lp

+(M)1
1−ε → Lp

+(N)1
1−ε, then M

and N are Jordan ∗-isomorphic.

For p = 1, we have L1(M) ∼= M∗ and L1(N) ∼= N∗. Let SM and SN be the
sets of normal states of M and N with proper support projections, respectively.
We show that Φ restricts to a bijection from SM onto SN , which preserves or-
thogonality. We then use a result of Dye in [6] to obtain the conclusion. In the
case of p = ∞, we have L∞(M) ∼= M and L∞(N) ∼= N, and the above theorem
says (M+)1

1−ε is a complete Jordan ∗-invariant for the von Neumann algebra M.
This assertion actually holds for unital C∗-algebras M and N, and it is proved via
a generalization of the Mazur–Ulam theorem by Mankiewicz ([22]; see Proposi-
tion 4.3). For p ∈ (1, ∞), we use a strict convexity argument to verify that Φ is
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“partially affine” and can be extended to a metric preserving bijection between
the whole cones Lp

+(M) and Lp
+(N). Then we use results from [25] and [19] to

finish the proof.
In line with Theorem 1.1, it is natural to ask whether the map Φ in Theo-

rem 1.2 actually comes from a Jordan ∗-isomorphism. Although in the case of
p = ∞, the precise answer to the above question is negative (see Example 3.3 in
[20]), we know from the argument of Theorem 4.4 that Φ extends to an isometric
bijection, and hence is a Jordan ∗-isomorphism after translation and multiplica-
tion by a central symmetry. On the other hand, there is an evidence that the
answer for the case of p = 1 could be positive. In fact, it was proved in [18] (see
also [17]) that when p = 1 and M is of type I, then any isometric bijection from
L1
+(M)1

1 onto L1
+(N)1

1 is defined by a Jordan ∗-isomorphism. Note that the argu-
ments in [18] employ a lot of matrix function techniques and are very different
from those in this article.

In order to tackle the above question for the case when 1 < p < ∞, we
will first show that the extension of Φ to the positive cones further extends to
an isometric order isomorphism from Lp

sa(M) onto Lp
sa(N) (see Proposition 3.5).

Note that a difficulty of this extension is that Lp
+(M) may not contain any inte-

rior point of Lp
sa(M); otherwise, one could use a result of Mankiewicz (Proposi-

tion 4.3) to obtain this extension easily. On the other hand, to our best knowledge,
it is not known if such a bijective isometry between the self-adjoint parts of non-
commutative Lp-spaces has an isometric complexification on the whole Lp-space
(although it has to be the case if the strong version holds), and we cannot use
Theorem 1.1 to obtain what we wanted.

Therefore, we will employ the concept of EP1 as introduced by K. Watan-
abe [34] and D. Sherman [28], together with a result of Sourour [29] and Grein
[10] concerning surjective isometries of vector-valued Lp-spaces (in the ordinary
sense), to obtain the following second main theorem of the article. Note that a
von Neumann algebra M with a nonzero type I2 summand does not satisfy EP1
(see Example 5.10), whilst approximately semifinite von Neumann algebras (see
Definition A.5) without type I2 summand satisfy EP1 (see Proposition A.7). The
class of approximately semifinite von Neumann algebras includes, in particular,
all semifinite algebras, all hyperfinite algebras, and all type III0-factors with sep-
arable preduals (see Remark 5.8(ii)).

THEOREM 1.3. Let p ∈ (1, ∞) and ε ∈ (0, 1]. Suppose that M and N are
von Neumann algebras such that M � C and M is approximately semifinite. If Φ :
Lp
+(M)1

1−ε → Lp
+(N)1

1−ε is a metric preserving surjection, there is a unique Jordan ∗-
isomorphism Θ : N → M satisfying Φ(R1/p) = Θ∗(R)1/p, for any R ∈ L1

+(M)1
(1−ε)p .

Observe that in the case when M = N = C, we have

Lp
+(M)1

1−ε = Lp
+(N)1

1−ε = [1− ε, 1],



432 CHI-WAI LEUNG, CHI-KEUNG NG, AND NGAI-CHING WONG

and the induced metric is the Euclidean one: d(x, y) = |x − y|. The metric pre-
serving bijection from [1− ε, 1] to itself that sends x to 2 − ε − x cannot be ex-
tended to a linear map on Lp

sa(M). Therefore, we have an exception in this trivial
case of M ∼= C.

As noted above, all approximately semifinite algebras without a type I2
summand satisfy EP1. Therefore, we will consider the case when M is of type I2
and the case when M satisfies EP1 separately (and then combine the two cases to-
gether). For the benefit of the reader, some facts concerning the relation between
EP1 and approximately semifinite algebras will be recalled in the Appendix.

Theorems 1.2 and 1.3 concern with “closed” positive spherical shells. Of
course, one can also consider the “open” positive spherical shells:

{S ∈ Lp
+(M) : 1− ε < ‖S‖ < 1}.

Unlike the case of p = ∞ (in this case, L∞(M)+ = M+), the “open” positive
spherical shells do not contain any open subset of Lp

sa(M) when 1 6 p < ∞ (since
Lp
+(M) may not contain any open subset of Lp

sa(M); for example, `2
+ = L2

+(`
∞)

does not contain any interior point of `2
sa). Thus, one cannot use the Mazur–

Ulam–Mankiewicz theorem (see Proposition 4.3) to obtain a linear extension of
a metric preserving bijection between “open” positive spherical shells. Never-
theless, the corresponding statements of both Theorems 1.2 and 1.3 for “open”
positive spherical shells are also obtained.

COROLLARY 1.4. Let p ∈ [1, ∞] and ε ∈ (0, 1]. Suppose that there exists a metric
preserving bijection

Φ : {S ∈ Lp
+(M) : 1− ε < ‖S‖ < 1} → {T ∈ Lp

+(N) : 1− ε < ‖T‖ < 1}.

Then M and N are Jordan ∗-isomorphic. In the case when p = ∞, the map Φ can be
extended to a Jordan ∗-isomorphism from M onto N after translation and multiplication
by a central symmetry. Furthermore, if p ∈ (1, ∞), M � C and M is approximately
semi-finite, then there is a Jordan ∗-isomorphism Θ : N → M such that Φ(S1/p) =
Θ∗(S)1/p.

Proof. Note that Φ can be extended to a metric preserving bijection between
the metric completions of its domain and range, which coincide with the closed
sets Lp

+(M)1
1−ε and Lp

+(N)1
1−ε of the Banach spaces Lp(M) and Lp(N), respec-

tively. Thus the assertions follow from Theorems 1.2, 1.3 and 4.4.

With a simple rescaling argument, we can derive that Theorems 1.2, 1.3 and
4.4 as well as Corollary 1.4 hold when 1 and 1− ε are replaced, respectively, by
nonnegative numbers β and α satisfying α < β. In other words, the existence of
a metric preserving bijection Φ : Lp

+(M)
β
α → Lp

+(N)
β
α guarantees similar conclu-

sions in these results.
To end the introduction, we recall the link of our results to Tingley’s prob-

lem, which asks if every metric preserving bijection between the unit spheres of
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two Banach spaces extends to a linear isometry between the whole spaces (see,
e.g., [5], [7], [8], [13], [33]). Since a linear map between non-commutative Lp-
spaces is determined completely by its restriction to the positive sphere of the
domain, one might expect that the “minimum” complete Jordan ∗-invariant for
a von Neumann algebra M is Lp

+(M)1
1. In this respect, we make the following

conjecture.

CONJECTURE 1.5. Let M, N be von Neumann algebras, and let p ∈ [1, ∞).
If Ψ : Lp

+(M)1
1 → Lp

+(N)1
1 is a metric preserving bijection, then there is a Jordan ∗-

isomorphism Θ : N → M satisfying Ψ(R1/p) = Θ∗(R)1/p, for any R ∈ L1
+(M)1

1.

For p = 1, Conjecture 1.5 holds when M is commutative (see e.g., [17]), or
more general, when M is of type I (see [18]). The case of p > 1 is basically un-
known. Notice that one cannot use the solution for Tingley’s problem for Banach
spaces and operator algebras (even if the full generality were obtained) to give a
positive answer to the above conjecture (nor to prove Theorem 1.3). On the other
hand, Theorems 1.2 and 1.3 suggest that Conjecture 1.5 has a positive answer.
Furthermore, the methods provided in [11], [12] might be helpful, and we will
explore into this and other possibilities in a future project.

2. NOTATION AND PRELIMINARIES

We fix some notations and recall some facts of non-commutative Lp-spaces.
The material here is mainly taken from [25] and [32]. Let M be a von Neumann
algebra with predual M∗, let P(M) be the set of projections in M and let Z(M) be
the center of M. We fix a normal semifinite faithful weight ϕ on M, and consider
the modular automorphism group α corresponding to ϕ. There exists a normal
faithful semifinite trace τ on the von Neumann algebra crossed product M̌ :=
MoαR satisfying some compatibility condition with ϕ. Denote by L0(M̌, τ) the
completion of M̌ under the vector topology defined by a neighborhood basis at 0
of the form

U(ε, δ) := {x ∈ M̌ : ‖xp‖ 6 ε and τ(1− p) 6 δ, for a projection p ∈ M̌}.

Then the ∗-algebra structure of M̌ extends to a ∗-algebra structure of L0(M̌, τ).
If M is faithfully represented on a Hilbert space H, then elements in L0(M̌, τ)

can be regarded as closed operators on L2(R;H), the Hilbert space of square inte-
grable H-valued functions on R. More precisely, let T be a densely defined closed
operator on L2(R;H) affiliated with M̌, and |T| be its absolute value with spec-
tral measure E|T|. Then T corresponds uniquely to an element in L0(M̌, τ) if and
only if τ(1 − E|T|([0, λ])) < ∞ when λ is large. Conversely, every element in
L0(M̌, τ) arises from a closed operator in this way. Under this identification, the
∗-operation on L0(M̌, τ) coincides with the adjoint. The addition and the multi-
plication on L0(M̌, τ) are the closures of the corresponding operations for closed
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operators. Denote by L0
+(M̌, τ) the set of all positive self-adjoint operators in

L0(M̌, τ).
The dual action α̂ : R→ Aut(M̌) extends to an action on L0(M̌, τ). For any

p ∈ [1, ∞], we set

Lp(M) := {T ∈ L0(M̌, τ) : α̂s(T) = e−s/pT, for all s ∈ R}

(where, by convention, e−s/∞ = 1). Then L∞(M) coincides with the subalgebra
M of M̌ ⊆ L0(M̌, τ). Moreover, if T ∈ L0(M̌, τ) and T = u|T| is the polar
decomposition, then T ∈ Lp(M) if and only if |T| ∈ Lp(M). The product of
an element in L∞(M) with an element in Lp(M) (in whatever order) is again in
Lp(M). Hence, Lp(M) is canonically an M-bimodule. Let Lp

sa(M) denote the set
of all self-adjoint operators in Lp(M) and put Lp

+(M) := Lp(M) ∩ L0
+(M̌, τ).

When q ∈ (0, ∞), the Mazur map

S 7→ S1/q (S ∈ L0
+(M̌, τ))

restricts to a bijection from L1
+(M) onto Lq

+(M). Since we will use this connection
between L1

+(M) and Lq
+(M) frequently,

elements in Lq
+(M) may sometimes be written in the form S1/q (for a

unique element S ∈ L1
+(M)).

Throughout this article, we identify (L1(M), L1
+(M)) with (M∗, (M∗)+) as

ordered vector spaces. Thus, (L1(M), L1
+(M)) becomes an ordered Banach space

with the norm ‖ · ‖1 induced from M∗. When p ∈ (1, ∞), the function:

‖T‖p := ‖|T|p‖1/p
1

is a norm on Lp(M), and (Lp(M), Lp
+(M)) becomes an ordered Banach space. It

is well-known that this ordered Banach space is independent of the choices of ϕ
and τ (up to isometric order isomorphisms).

For any p, q ∈ (1, ∞) satisfying 1/p + 1/q = 1, if S ∈ Lp(M) and T ∈
Lq(M), then ST ∈ L1(M). The function T 7→ Tr(T) := T(1) on L1(M) = M∗ is
called the “Haagerup trace”, and the assignment S 7→ Tr(S·) defines a bijection
from Lp(M) to (Lq(M))∗ that sends Lp

sa(M) and Lp
+(M) onto the set of hermitian

functionals and the set of positive functionals on Lq(M), respectively.
For R ∈ Lp

sa(M), we denote by sR and by zR the support and the central
support of R, respectively; namely, sR is the smallest element in P(M) satisfying
sRR = R and zR is the smallest element in P(M) ∩ Z(M) satisfying zRR = R. It
is easy to see that if T ∈ L1

+(M), then sT1/p = sT and zT1/p = zT .
The following lemma is a reformulation of Proposition A.2 in [25] together

with some well-known facts (see e.g. Fact 1.3 in [25]).

LEMMA 2.1. Let p ∈ (1, ∞).
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(i) Suppose that R1, R2 ∈ Lp
sa(M). If sR1 sR2 = 0, then ‖R1 + R2‖

p
p = ‖R1‖

p
p +

‖R2‖
p
p. Conversely, if p 6= 2 and ‖R1 + R2‖

p
p = ‖R1 − R2‖

p
p = ‖R1‖

p
p + ‖R2‖

p
p, then

sR1 sR2 = 0.
(ii) For T1, T2 ∈ L1

+(M), the following statements are equivalent:
(a) sT1 · sT2 = 0;

(b) T1/p
1 T1/p

2 = 0;

(c) ‖T1/p
1 + T1/p

2 ‖p
p = ‖T1/p

1 ‖p
p + ‖T

1/p
2 ‖p

p;
(d) ‖T1 − T2‖1 = ‖T1‖1 + ‖T2‖1.

(iii) S 7→ S1/p is a homeomorphism from L1
+(M) onto Lp

+(M).

The next lemma should also be well-known, but since we cannot find a
precise reference for it in the literature, we give its justification here.

LEMMA 2.2. Let q ∈ (0, ∞). If R, T ∈ L1(M)+ with sRsT = 0, then (R+T)q =
Rq + Tq.

Proof. Let KR := sR(L2(R;H)) and KT := sT(L2(R;H)). Let K0 be the or-
thogonal complement of KR + KT . As R = sRRsR, the restriction, R1, of R on KR
is a densely defined positive self-adjoint operator. The same is true for the restric-
tion, T1, of T on KT . One may then identify R, T and R + T with R1 ⊕ 0KT ⊕ 0K0 ,
0KR ⊕ T1 ⊕ 0K0 and R1 ⊕ T1 ⊕ 0K0 , respectively. Thus, Rq + Tq can be identified
with the closed operator Rq

1⊕ Tq
1 ⊕ 0K0 , which clearly coincides with (R+ T)q.

3. A PREPARATION: EXTENSION TO AN ORDER PRESERVING LINEAR ISOMETRY

We will show in this section that when p ∈ (1, ∞), the metric preserving
bijection Φ extends to a linear isometric order isomorphism from Lp

sa(M) onto
Lp

sa(N).
The first ingredient that we need is the following lemma concerning auto-

matic affineness, that generalises a result of Baker in [1]. However, we do not
find our generalization explicitly stated or used in any literature. Observe that
our proof is completely different from the arguments in [1], which seemingly do
not apply to our case.

LEMMA 3.1. Let X and Y be real Banach spaces with Y being strictly convex.
Suppose that E is a (not necessarily convex) nonempty subset of X and f : E → Y is a
metric preserving map. For any x, y ∈ E, one has

f (sx + (1− s)y) = s f (x) + (1− s) f (y)(3.1)

whenever s ∈ (0, 1) satisfies sx + (1− s)y ∈ E.
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Proof. It suffices to consider the case when y 6= x. Observe that

‖( f (x)− f (y))− ( f (sx + (1− s)y)− f (y))‖
= ‖x− (sx + (1− s)y)‖ = (1− s) · ‖x− y‖
= ‖ f (x)− f (y)‖ − ‖ f (sx + (1− s)y)− f (y)‖.(3.2)

Hence, the strict convexity of Y produces δ ∈ R+ such that

( f (x)− f (y))− ( f (sx + (1− s)y)− f (y)) = δ( f (sx + (1− s)y)− f (y)).

It follows again from (3.2) that

(1− s) · ‖x− y‖ = ‖( f (x)− f (y))− ( f (sx + (1− s)y)− f (y))‖ = δs · ‖x− y‖,

and so δ = (1 − s)/s. Hence, f (sx + (1 − s)y) = s f (x) + (1 − s) f (y) as re-
quired.

Our second lemma is easy. In fact, if we set f (z) := m f (z/m) when z ∈ Km
0

for some m ∈ N, then f is well-defined and will satisfy the requirement in the
statement.

LEMMA 3.2. Let X and Y be two Banach spaces, and let K ⊆ X and L ⊆ Y be
(not necessarily proper nor closed) cones. If f : K1

0 → L1
0 is an affine map (not necessarily

surjective) with f (0) = 0, then f extends uniquely to an affine map f from K to L. If, in
addition, f preserves metric, then so is f .

PROPOSITION 3.3. Let X and Y be strictly convex real Banach spaces. Suppose
that K ⊆ X and L ⊆ Y are (not necessarily proper nor closed) cones such that the
subspace generated by K and the one by L both have dimensions greater than one. Let
ε ∈ (0, 1]. If f : K1

1−ε → L1
1−ε is a metric preserving surjection, then f can be extended

to a metric preserving affine surjection from K onto L sending 0 to 0.

Proof. For simplicity we set υ := 1− ε. With Lemma 3.1, we only verify that
f extends to a metric preserving map sending 0 to 0. Let us first show that

(3.3) f (K1
1) = L1

1 and f (Kυ
υ) = Lυ

υ.

Consider an arbitrary element x ∈ K1
1. If ‖ f (x)‖ ∈ (υ, 1), then f (x) is the mid-

point of two distinct elements in K1
υ, and by Lemma 3.1 (applied to f−1), the

element x ∈ K1
1 is also the mid-point of two distinct elements in K1

υ, which is
impossible (as X is strictly convex). Consequently, f (K1

1) ⊆ Lυ
υ ∪ L1

1. Moreover,
since K1

1 is path-connected and f is continuous, one sees that

either f (K1
1) ⊆ Lυ

υ or f (K1
1) ⊆ L1

1.

If υ = 0, then Lυ
υ contains only one point, and hence f (K1

1) * Lυ
υ (because the

subspace generated by K1
1 has dimension strictly bigger than one). Suppose that

υ > 0, and consider two distinct elements x, y ∈ K1
1 which are so close to each

other that the line segment joining x and y lies inside K1
υ. Then Lemma 3.1 tells

us that the line segment joining f (x) and f (y) lies inside L1
υ, which forbids both
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f (x) and f (y) to belong to Lυ
υ (because of the strict convexity of Y). This means

that f (K1
1) ⊆ L1

1. By considering f−1, we obtain the asserted equality f (K1
1) = L1

1.
In order to establish f (Kυ

υ) = Lυ
υ, it suffices to show that f (Kυ

υ) ⊆ Lυ
υ (again,

because f−1 preserves metric). Suppose on the contrary that there exists x ∈ Kυ
υ

with ‖ f (x)‖ ∈ (υ, 1) (observe that ‖ f (x)‖ 6= 1 since f (K1
1) = L1

1). Then∥∥∥ f (x)
‖ f (x)‖ − f (x)

∥∥∥ =
( 1
‖ f (x)‖ − 1

)
‖ f (x)‖ = 1− ‖ f (x)‖ < 1− υ.

However, for any y ∈ K1
1, one has ‖y− x‖ > 1− υ, and this contradicts f (K1

1) =

L1
1 (because f (x)/‖ f (x)‖ ∈ L1

1). Consequently, relation (3.3) is verified.
Next, we define f : K → L by setting f (0) = 0 as well as

(3.4) f (x) := ‖x‖ f (x/‖x‖) (x ∈ K \ {0}).
We claim that f is a metric preserving map extending f . Indeed, if υ = 0, then
f (0) = 0 (because K0

0 = {0} and L0
0 = {0}), and by Lemma 3.1, we know that f

is an affine map on K1
0, and the assertion on f follows from Lemma 3.2.

Suppose that υ > 0. Pick an arbitrary element x ∈ K1
1. It follows from

relation (3.3) that

‖ f (x)‖ = 1 = (1− υ) + υ = ‖x− υx‖+ ‖ f (υx)‖ = ‖ f (x)− f (υx)‖+ ‖ f (υx)‖,
and this, together with the strict convexity of Y, gives f (x) − f (υx) = δ f (υx)
for some δ ∈ R+. Consequently, relation (3.3) tells us that δ = (1− υ)/υ, which
means that f (υx) = υ f (x). Hence, Lemma 3.1 ensures that

(3.5) f (γx) = γ f (x) (γ ∈ [υ, 1]; x ∈ K1
1).

Thus, f extends f .
For each k ∈ Z, we set

Kk := Kυ−k

υ−k+1 , Lk := Lυ−k

υ−k+1 and fk := f |Kk .

It follows from (3.4) and (3.5) that

fk(x) =
f (υkx)

υk (x ∈ Kk).

Thus, the metric preserving property of f implies that fk preserves metric.
Fix arbitrary distinct elements x, y ∈ K \ {0} with ‖x‖ 6 ‖y‖. Notice that

the assignment
ω : s 7→ ‖sx + (1− s)y‖

is a continuous map from [0, 1] to R+. There exist k1 6 k2 in Z such that

υ−k1+1 < ‖x‖ 6 υ−k1 and υ−k2+1 6 ‖y‖ < υ−k2 .

If k1 = k2, then x, y ∈ Kk1 and we have ‖ f (x)− f (y)‖ = ‖x − y‖. Assume that
k1 < k2. One can find s1, . . . , sk2−k1 ∈ (0, 1) such that s1 < s2 < · · · < sk2−k1 and
that ω(si) = υ−k1−i+1. Denote

z0 := x, zk2−k1+1 := y and zi := six + (1− si)y (i = 1, . . . , k2 − k1).
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It follows that zi, zi+1 ∈ Kk1+i (i = 0, 1, . . . , k2 − k1), and we have

‖ f (zi)− f (zi+1)‖ = ‖ fk1+i(zi)− fk1+i(zi+1)‖ = ‖zi − zi+1‖.

Moreover, since

‖(sx + (1− s)y)− (s′x + (1− s′)y)‖ = (s′ − s)‖x− y‖ whenever s 6 s′,

we see that

‖z0 − z1‖+ · · ·+ ‖zk2−k1 − zk2−k1+1‖ = ‖x− y‖.

Thus,

‖ f (x)− f (y)‖ 6 ‖ f (z0)− f (z1)‖+ · · ·+ ‖ f (zk2−k1)− f (zk2−k1+1)‖ = ‖x− y‖.

Furthermore, it follows from the definition of f that ‖ f (sx)‖ = ‖sx‖. From these,

we conclude that f is contractive. By considering f
−1

, we conclude that f is a
metric preserving bijection extending f .

The above shows that Φ can be extended to a metric preserving bijection
from Lp

+(M) onto Lp
+(N). In order to further extend this map to Lp

sa(M), let us
recall the following well-known information about projections. Denote by

Pσ(M) := {sT : T ∈ L1
+(M) = (M∗)+}.

Elements in Pσ(M) are called σ-finite. By Zorn’s lemma, for any projection e ∈
P(M), one has

(3.6) e = sup{ f ∈ Pσ(M) : f 6 e},

and e can be written as an orthogonal sum of σ-finite projections.

DEFINITION 3.4 (Dye [6]). A bijection Υ : P(M)→ P(N) is called an orthoi-
somorphism if for every p and q in P(M), one has

pq = 0 equivalent to Υ(p)Υ(q) = 0.(3.7)

PROPOSITION 3.5. Let p ∈ (1, ∞), and let M and N be von Neumann algebras
of dimensions at least 2. Suppose that ε ∈ (0, 1], and Φ : Lp

+(M)1
1−ε → Lp

+(N)1
1−ε is

a metric preserving surjection. Then Φ extends to an isometric order isomorphism from
Lp

sa(M) onto Lp
sa(N). Moreover, there exists an orthoisomorphism Υ : P(M) → P(N)

such that Υ(sT) = sΦ(T) for all T ∈ Lp
+(M)1

1−ε.

Proof. For any T ∈ Lp(M)sa, we know that |T| ∈ Lp(M)+. Denote by T+

and T−, respectively, the positive part and the negative part of the self-adjoint
operator T. It is well-known that T± = (|T| ± T)/2 as elements in L0(M̌, τ).
Moreover, one has T± ∈ Lp(M)+ with sT+sT− = 0,

‖T‖p
p = ‖T+‖p

p + ‖T−‖
p
p and ‖T+ + T−‖p

p = ‖T+‖p
p + ‖T−‖

p
p.
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Conversely, if T ∈ Lp(M)sa and R, S ∈ Lp(M)+ satisfying sRsS = 0 and T =
R− S, then we have R + S = |T| (because (R + S)2 = (R− S)2 = T2 and one can
apply Theorem 12 in [3]), as well as

(3.8) R = T+ and S = T−.

It is well-known that Lp
sa(M) is strictly convex (see e.g., Section 5 of [24]). By

Proposition 3.3, the map Φ extends to a metric preserving affine surjection, again
denoted by Φ, from Lp

+(M) to Lp
+(N) with Φ(0) = 0.

As Φ is affine, one has

(3.9) ‖Φ(R) + Φ(S)‖p = ‖Φ(R + S)‖p = ‖R + S‖p (R, S ∈ Lp
+(M)).

Let us define Φ̃ : Lp
sa(M)→ Lp

sa(N) by

Φ̃(T) := Φ(T+)−Φ(T−) (T ∈ Lp
sa(M)).

Clear, Φ̃ is a linear extension of Φ. On the other hand, relation (3.9) implies

‖Φ(T+) + Φ(T−)‖p
p = ‖T+ + T−‖p

p = ‖T+‖p
p + ‖T−‖

p
p = ‖Φ(T+)‖p

p + ‖Φ(T−)‖p
p.

By Lemma 2.1(ii), we have sΦ(T+)sΦ(T−) = 0. Thus, the uniqueness of Φ̃(T)± (see
(3.8)) ensures that Φ̃(T)± = Φ(T±) for any T ∈ Lp

sa(M). Moreover, Φ̃ is surjective
because Φ is surjective. Furthermore, for any R, S ∈ Lp

sa(M), one has

‖Φ̃(R)− Φ̃(S)‖ = ‖Φ(R+)−Φ(R−)−Φ(S+) + Φ(S−)‖
= ‖Φ(R+ + S−)−Φ(R− + S+)‖
= ‖(R+ + S−)− (R− + S+)‖ = ‖R− S‖.

Finally, using Lemma 2.1(ii) and relation (3.9), one sees that Υσ : sT 7→ sΦ(T)
is a well-defined bijection from Pσ(M) onto Pσ(N) such that relation (3.7) holds.
By relation (3.6), the map Υσ extends to a bijection Υ from P(M) onto P(N) that
satisfies relation (3.7).

As said in the Introduction, it is not at all obvious that the complexification
of an isometry from Lp

sa(M) onto Lp
sa(N) is an isometry from Lp(M) onto Lp(N).

If it is true, then with Proposition 3.5 we can apply directly the main result of [27]
to obtain Theorem 1.3 for the case when p 6= 2 (even without assuming M to be
approximately semifinite).

4. THE FIRST MAIN RESULT

Let us now consider Theorem 1.2 for the case of p = 1. In order to obtain
a proof for this case, we need the following proposition from Proposition 2.2 in
[19], which is a variant of the main result in [6].

PROPOSITION 4.1 (Dye). Suppose that there is an orthoisomorphism ∆ between
the projection lattices P(M) and P(N). Then M and N are Jordan ∗-isomorphic.
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The following result establishes the case of p = 1 of Theorem 1.2. Notice
that the situation when ε = 0 was already verified in Corollary 3.11 in [19].

THEOREM 4.2. Let ε∈ (0, 1]. If there is a metric preserving bijection Φ : L1
+(M)1

1−ε

→ L1
+(N)1

1−ε, then M and N are Jordan ∗-isomorphic.

Proof. If M is one dimensional, then L1
+(M)1

1−ε is an interval. This implies
that L1

+(N)1
1−ε is homeomorphic to an interval. Thus N is also one dimensional,

and hence isomorphic to M. We assume that both M and N are of dimension
greater than one in the following.

Set SM := {R ∈ L1
+(M)1

1 : sR 6= 1}. For any R ∈ L1
+(M)1

1−ε, it is easy to see,
via Lemma 2.1(ii), that R ∈ SM if and only if there exists T ∈ L1

+(M)1
1−ε such that

‖R− T‖1 = 2. In this case, T ∈ SM and sR · sT = 0. Hence, by considering Φ and
Φ−1, one has Φ(SM) = SN .

Let us formally define a map

∆0 : Pσ(M) \ {1} → Pσ(N) \ {1}

by ∆0(e) := sΦ(R), where R ∈ SM satisfies sR = e. To show that ∆0 is well-
defined, let us consider another element R′ ∈ SM with sR′ = e. Pick any pro-
jection f ∈ Pσ(N) with sΦ(R) · f = 0. Suppose that T ∈ SM satisfies sΦ(T) = f .
Lemma 2.1(ii) implies

‖R− T‖1 = ‖Φ(R)−Φ(T)‖1 = 2,

and e · sT = 0. Hence we have ‖Φ(R′)−Φ(T)‖1 = ‖R′ − T‖1 = 2, which gives
sΦ(R′) · f = 0. From this and (3.6), we conclude that sΦ(R′) = sΦ(R), and ∆0 is well-
defined. Suppose that e1, e2 ∈ Pσ(M) \ {1} such that e1 · e2 = 0. If R1, R2 ∈ SM
satisfy sRi = ei for i = 1, 2, then ‖Φ(R1) − Φ(R2)‖1 = 2, which gives ∆0(e1) ·
∆0(e2) = 0. By considering Φ−1, we know that if ∆0(e1) ·∆0(e2) = 0, then e1 · e2 =
0.

Now, we extend ∆0 to ∆ : P(M) → P(N) by setting ∆(e) to be the supre-
mum in P(N) of the set {∆0(e′) : e′ ∈ Pσ(N), e′ 6 e}. In particular, ∆(1) = 1.
Using (3.6), it is not hard to show that ∆ satisfies relation (3.7) and the conclusion
follows from Proposition 4.1.

Next, we consider the case when p = ∞. For this case, we need the fol-
lowing result of Mankiewicz from Theorem 2 in [22], which can also be found as
Theorem 14.1 in [2].

PROPOSITION 4.3 (Mazur–Ulam–Mankiewicz). Let U be a non-empty open
connected subset of a normed space X, and let W be an open subset of a normed space
Y. Then every isometry from U onto W can be extended uniquely to an affine isometry
from X onto Y.

Under the identification of (L∞(M), L∞(M)+) and (M, M+) as ordered Ba-
nach spaces, the following result gives the case of p = ∞ in Theorem 1.2.
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THEOREM 4.4. Let A and B be unital C∗-algebras. Assume ε ∈ (0, 1]. If there
is a metric preserving bijection Φ : (A+)1

1−ε → (B+)1
1−ε, then A and B are Jordan ∗-

isomorphic. Indeed, Φ extends to a Jordan ∗-isomorphism from A onto B after translation
and multiplication by a central symmetry.

Proof. For y ∈ B+ and r > 0, we set

DB(y, r) := {z ∈ Bsa : ‖z− y‖ < r}
as well as

V(y, r) := DB(y, r) ∩ (B+)
1
1−ε.

Clearly, {V(x, r) : r > 0} is a neighbourhood basis of an element x in (B+)1
1−ε.

Moreover, notice that

(B+)
1
0 =

{
z ∈ Bsa :

∥∥∥z− 1
2

∥∥∥ 6 1
2

}
(this can be verified by considering the C∗-subalgebra generated by z, when z
runs through all elements in (B+)1

0). In other words, (B+)1
0 is the closure of

DB(
1
2 , 1

2 ). Let us also put

O := DB(
1
2 , 1

2 ) \ (B+)
1−ε
0 ,

B1 :=
{

y ∈ Bsa :
∥∥∥y− 1

2

∥∥∥ =
1
2

, ‖y‖ > 1− ε
}

and B2 := (B+)
1−ε
1−ε.

Clearly, O is open in Bsa and (B+)1
1−ε = O ∪ B1 ∪ B2. It is not hard to see that O is

dense in (B+)1
1−ε.

Next, we want to find an element c in (A+)1
1−ε and a scalar t > 0 such

that DA(c, t) ⊆ (A+)1
1−ε and Φ(DA(c, t)) is an open subset of Bsa. Let us first

consider an arbitrary element a in the open set U := DA(
1
2 , 1

2 ) \ (A+)
1−ε
0 of Asa.

If Φ(a) ∈ O, then we may take c = a and it is clear that such a scalar t > 0
can be found. Suppose that Φ(a) /∈ O. The density of O in (B+)1

1−ε tells us that
O ∩V(Φ(a), s) 6= ∅ for all s > 0. We choose s > 0 so that DA(a, s) ⊆ U, and pick
an arbitrary element d ∈ O ∩V(Φ(a), s). Then c := Φ−1(d) ∈ DA(a, s). One may
then find small enough t > 0 with DB(d, t) ⊆ O and DB(c, t) ⊆ U.

Finally, Proposition 4.3 tells us that Φ|DA(c,t) extends to a bijective isometry
from Asa onto Bsa, and a well-known result of Kadison (see Theorem 2 in [15])
gives the desired conclusion.

Observe that {b ∈ B+ : 1− ε < ‖b‖ < 1} is not an open subset of Bsa
(actually, this set coincides with O ∪ B1 \ (B+)1

1). Moreover, the above argument
remains almost the same if we assume that Φ is a metric preserving bijection from
{b ∈ B+ : 1− ε < ‖b‖ < 1} onto {a ∈ A+ : 1− ε < ‖a‖ < 1} instead.

We now turn to the case when p ∈ (1, ∞). Since it is very rare that Lp
+(M)

contains an open subset of Lp
sa(M), Proposition 4.3 cannot be employed in this

case. Instead, we need Proposition 3.3 and the following result, namely, Theo-
rem 3.2(a) in [19], which is another variant of Dye’s theorem in [6].
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PROPOSITION 4.5. Suppose that there is a bijection Λ : L1
+(M)1

1 → L1
+(N)1

1
satisfying: for every R, T ∈ L1

+(M)1
1, one has

sR · sT = 0 if and only if sΛ(R) · sΛ(T) = 0.

Then M and N are Jordan ∗-isomorphic.

THEOREM 4.6. Let p ∈ (1, ∞) and ε ∈ (0, 1]. If there is a metric preserving
bijection Φ : Lp

+(M)1
1−ε → Lp

+(N)1
1−ε, then M and N are Jordan ∗-isomorphic.

Proof. If M ∼= C, then Lp
+(M)1

1−ε is a closed and bounded interval. As Φ is a
metric preserving bijection, the topological space Lp

+(N)1
1−ε is also of Hausdorff

dimension one, which implies that N ∼= C. The corresponding conclusion holds
when N ∼= C. Therefore, we will only consider the cases when M � C and N � C
in the following.

Proposition 3.5 ensures that Φ extends to a metric preserving affine bijection
Φ from Lp

+(M) onto Lp
+(N). Let us define a bijection Λ : L1

+(M)1
1 → L1

+(N)1
1 by

Λ(S) := (Φ(S1/p))p (S ∈ L1
+(M)1

1),

where S 7→ S1/p is the Mazur map.
Pick arbitrary elements R, T ∈ L1

+(M)1
1 with sR · sT = 0. Lemma 2.1(ii)

gives ‖R1/p + T1/p‖p
p = 2, and we have

‖Λ(R)1/p + Λ(T)1/p‖p
p = ‖Φ(R1/p + T1/p)‖p

p = 2.

Therefore, Lemma 2.1(ii) again produces sΛ(R) · sΛ(T) = 0. By considering Φ−1,
we know that Λ satisfies the hypothesis of Proposition 4.5, and the required con-
clusion follows.

5. THE SECOND MAIN RESULT

In order to obtain Theorem 1.3, we need to deal with two cases separately.
They are the case of algebras of type I2 and the case of algebras having EP1.

5.1. THE CASE OF TYPE I2 ALGEBRAS. In the following, M2(C) is the von Neu-
mann algebra of 2 × 2 complex matrices. For p ∈ (1, ∞), we denote by S p

2
the four dimensional real vector space M2(C)sa equipped with the Schatten p-
norm. If (X, µ) is a semifinite measure space and M := L∞(µ, M2(C)), then
Lp

sa(M) = Lp(µ;S p
2 ) and

Lp
+(M) = Lp

+(µ;S p
2 ) := { f ∈ Lp(µ;S p

2 ) : f (x) ∈ M2(C)+ µ-a.e.}.

In this case, the center Z(M) can be identified with L∞(µ), and the central sup-
port zg coincides with the indicator function 1{x∈X:g(x) 6=0} of the cozero set of g,
for each g ∈ Lp

+(M).
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LEMMA 5.1. Let q ∈ (1, ∞) \ {2}. Then Sq
2 cannot be written as an `q-direct

sum of two proper subspaces.

Proof. Suppose X and Y are two proper subspaces of Sq
2 such that Sq

2 =
X ⊕̀

q
Y . Fix an arbitrary R ∈ X \ {0}. For every T ∈ Y , we have

‖R + T‖q
q = ‖R‖q

q + ‖T‖
q
q = ‖R− T‖q

q.

By Lemma 2.1(i), one has sR · sT = 0. Hence, if sR = 1, then Y = {0}, which
is a contradiction. This shows that sR is a rank one projection, and for each T ∈
Y \ {0}, the projection sT = 1− sR is also of rank one. Consequently,

Y = (1− sR)S
q
2 (1− sR),

and thus is of real dimension one. In the same way, X is of real dimension one.
However, this contradicts to the fact that Sq

2 has real dimension 4.

The following lemma should be well-known, but we give a simple argu-
ment here for completeness.

LEMMA 5.2. Let q ∈ (1, ∞) and Λ : Sq
2 → S

q
2 be a surjective linear isometry

with Λ(M2(C)+) = M2(C)+. Then Λ is an isometry on M2(C)sa, when it is equipped
with the operator norm.

Proof. Let e :=
(

1 0
0 0
)
. Since e and 1− e are orthogonal projections, one can

use Lemma 2.1(ii) and the isometric assumption of Λ to show that sΛ(e)sΛ(1−e)
= 0. This tells us that Λ(e) and Λ(1 − e) are rank one positive matrices, and
they can be simultaneously diagonalized. Therefore, one can find a unitary U ∈
M2(C) such that UΛ(e)U∗ = e (observe that ‖Λ(e)‖p = 1) and U(Λ(1)−Λ(e))U∗

= 1− e. Hence, Λ(1) = 1. Now, Corollary 5 in [15] gives the conclusion.

In order to verify Theorem 1.3 for M = M2(C) when p 6= 2, we also need
the following result (see [10] and [29]), which also appears as Theorem 8.3.9 in [9].

PROPOSITION 5.3 (Sourour–Greim). Suppose that q∈ [1, ∞)\{2}. Let (X1, µ1)
and (X2, µ2) be finite measure spaces, and let E1 and E2 be two separable real Banach
spaces such that neither of them can be decomposed into an `q-direct sum of two non-zero
subspaces. Assume Ψ : Lq(µ1, E1) → Lq(µ2, E2) is a surjective linear isometry. Then
there is a set isomorphism Ξ from measurable subsets of X1 onto measurable subsets of X2
as well as a strongly measurable map V : X2 → B(E1; E2) such that V(y) is a surjective
isometry µ2-a.e. and that for any measurable subset ∆ of X1 and a ∈ E1, one has

(5.1) Ψ(a1∆)(y) =
(dµ1 ◦ Ξ−1

dµ2

)1/q
(y)V(y)(a1Ξ(∆)(y)) for µ2-a.e. y.

We say that a map Φ : Lp
+(M) → Lp

+(N) preserves central supports if zT =

zΦ(T) for any T ∈ Lp
+(M).
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LEMMA 5.4. Let (X, µ) be a finite measure space and p ∈ (1, ∞) \ {2}. If
Φ : Lp(µ;S p

2 ) → Lp(µ;S p
2 ) is a surjective linear isometry preserving central sup-

ports and satisfying Φ(Lp
+(µ;S p

2 )) = Lp
+(µ;S p

2 ), then there is a Jordan ∗-isomorphism
Θ : L∞(µ; M2(C))→ L∞(µ; M2(C)) with Φ( f 1/p) = Θ∗( f )1/p ( f ∈ L1

+(µ;S p
2 )).

Proof. Notice that since S p
2 is finite dimensional, the dual Banach space of

Lp(µ;S p
2 ) is Lq(µ;Sq

2 ) (where 1/p+ 1/q = 1) and the canonical bijective isometry
between them will send the set of positive linear functionals on Lp(µ;S p

2 ) onto
Lq
+(µ;Sq

2 ). Therefore, the dual map Ψ of Φ is an order isomorphic isometry from
Lq(µ;Sq

2 ) to itself. It is easy to see that Ψ also preserves central supports.
By Lemma 5.1, we see that the hypothesis of Proposition 5.3 is satisfied.

Since Ψ preserves central supports, we know from relation (5.1) that the map Ξ
in Proposition 5.3 will satisfy

µ((∆ \ Ξ(∆)) ∪ (Ξ(∆) \∆)) = 0 for every measurable set ∆.

Thus, we may assume that Ξ is the identity map and obtain

Ψ(g)(x) = V(x)(g(x)) for µ-almost every x ∈ X and all g ∈ Lq(µ;Sq
2 )),

where V is the strongly measurable map in Proposition 5.3.
For any positive matrix a ∈ M2(C)+ with rational entries, by considering

the constant function ga ∈ Lq(µ;Sq
2 ) taking the value a, the positivity of Ψ tells

us that V(x)(a) > 0 for µ-a.e. x. As the set of positive matrices in M2(C) with
rational entries is countable and dense in M2(C)+, we conclude from the con-
tinuity of the map V(x) (on Sq

2 ) that V(x)(M2(C)+) ⊆ M2(C)+ for almost all
x. Thus, one may assume that V(x) > 0 for all x ∈ X. From Lemma 5.2, it is
known that V(x) is an isometric order isomorphism from M2(C)sa onto M2(C)sa
(both equipped with the operator norms). Moreover, because B(M2(C)sa) ∼=
B(Sq

2 ) as locally convex spaces, we know that V is a measurable map from X
to B(M2(C)sa). Consequently, Θ(h)(x) := V(x)(h(x)) (h ∈ L∞(µ; M2(C))) is the
Jordan ∗-isomorphism that satisfies the requirement.

The following lemma is a simple case of Corollary 1 in [6].

LEMMA 5.5. Let (X, µ) be a semifinite measure space. If Υ is an orthoisomorphism
from the projection lattice P(L∞(µ)) onto itself, then Υ extends to a ∗-isomorphism from
L∞(µ) onto itself.

PROPOSITION 5.6. Let M be a type I2 von Neumann algebra and Φ : Lp
+(M)1

1−ε

→ Lp
+(N)1

1−ε be a metric preserving surjection, where ε ∈ (0, 1]. There exists a Jordan
∗-isomorphism Θ : N → M such that Φ(S1/p) = Θ∗(S)1/p (S ∈ L1

+(M)1
1−εp).

Proof. As the case of p = 2 follows directly from Théorème 3.3 in [4] and
Proposition 3.5, we will only consider the case of p 6= 2. It follows from The-
orem 1.2 (which was established in Section 4 above) that there is a Jordan ∗-
isomorphism from N to M. By composing Φ with this isomorphism, we may
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assume that N = M. By Proposition 3.5, the map Φ extends to an isometric order
isomorphism from Lp

sa(M) onto itself.
Let M = L∞(µ)⊗M2(C) for a semifinite measure space (X, µ). It follows

from Lemma 1 in [6] that the map Υ as given by Proposition 3.5 restricts to an
orthoisomorphism from P(Z(M)) = P(L∞(µ)) onto itself. Let Ψ : L∞(µ) →
L∞(µ) be the ∗-isomorphism extending this restriction (as given in Lemma 5.5).
Replacing Φ with its composition with Ψ−1 ⊗ id : M → M, we may assume that
Φ preserves central supports.

Consider a family {Xi}i∈I of pairwise disjoint measurable subsets of fi-
nite measures with X =

⋃
i∈I

Xi. If µi := µ|Xi , one sees from the central sup-

port preserving assumption of Φ that it restricts to an isometric order isomor-
phism from Lp

sa(µi; M2(C)) onto itself. Therefore, Lemma 5.4 produces a Jordan
∗-automorphism Θi on L∞(µi; M2(C)) that implements Φ|Lp

sa(µi ;M2(C)). Now, it is

not hard to verify that the map from M ∼=
`∞⊕
i∈I

L∞
sa(µi; M2(C)) to itself induced by

{Θi}i∈I is the Jordan ∗-isomorphism satisfying the asserted property.

5.2. THE CASE OF ALGEBRAS HAVING EP1 . In this section, we verify Theorem 1.3
for non-type I2 algebras that satisfy an extra assumption, the so-called EP1. Let
us first give the reason why we need this assumption through the illustration of
the commutative case.

Let (X, µ) and (Y, ν) be two semi-finite measure spaces. Let p ∈ (1, ∞) and
ε ∈ (0, 1). Suppose that Φ : Lp

+(µ)
1
1−ε → Lp

+(ν)
1
1−ε is a metric preserving bijec-

tion. By Proposition 3.5, we can extend Φ to a metric preserving affine bijection
Ψ from Lp

+(µ) onto Lp
+(ν). The map Ψ : f 7→ Ψ( f 1/p)p is then a bijective map

from L1
+(µ) onto L1

+(ν). However, we do not know a priori that this continu-
ous bijection Ψ is isometric or affine. Nevertheless, it can be shown that convex
combinations of elements with orthogonal supports are sent to the correspond-
ing convex combinations under Ψ. If it happens that every such “orthogonally
affine” map is actually affine, then Ψ will restrict to an affine bijection from the
normal state space L∞(µ) onto that of L∞(ν), and we can use a well-known result
to obtain the ∗-isomorphism from L∞(ν) onto L∞(µ) that induces Φ. Fortunately,
some von Neumann algebras do satisfy this property (e.g. semi-finite ones), and
they are studied under the name EP1. In fact, the EP1 property was first intro-
duced by K. Watanabe (see [34]) and was extended to EPp (for any p ∈ [1, ∞)) by
D. Sherman (see [28]). Let us restate this property clearly in the following.

DEFINITION 5.7. Let M be a von Neumann algebra.
(i) For a normed space X, a map τ : L1

+(M)1
1 → X is said to be orthogonally

affine if for every s ∈ (0, 1),

τ(sR+(1−s)T)= sτ(R)+(1−s)τ(T) whenever R, T∈L1
+(M)1

1 with sR · sT =0.
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(ii) M is said to have EP1 if every norm continuous orthogonally affine func-
tion κ : L1

+(M)1
1 → [0, 1] is actually affine.

REMARK 5.8. (i) Our definition of EP1 is the same as the one introduced in
[28]. In fact, suppose that κ : L1

+(M)1
1 → [0, 1] is a norm continuous orthogonally

affine function. We define ρ : L1
+(M)→ R+ by

ρ(T) := ‖T‖κ
( T
‖T‖

)
(T ∈ L1

+(M) \ {0}).

Since ‖sR + (1 − s)T‖ = s‖R‖ + (1 − s)‖T‖ for any R, T ∈ L1
+(M), it is not

hard to check that ρ will satisfy the four conditions in Definition 4.1 in [28] for
C = 1. Conversely, if a function ρ : L1

+(M) → R+ satisfies the four conditions in
Definition 4.1 in [28], and we define κ : L1

+(M)1
1 → [0, 1] by

κ(T) :=
ρ(T)

C
(T ∈ L1

+(M)1
1),

then κ is a norm continuous orthogonally affine map.
(ii) It was shown in Theorem 1.2 in [28] that all semifinite algebras without

type I2 summand, all hyperfinite algebras without type I2 summand as well as
all type III0 factors with separable preduals have EP1. In fact, all these algebras
are approximately semifinite algebras, and it was shown in [28] that all approxi-
mately semifinite algebras with no type I2 summand have EP1 (the precise state-
ment is stated in Proposition A.7). For the benefit of the reader, we will recall in
the appendix some materials from [28] that lead to this fact.

LEMMA 5.9. Suppose that M has EP1. Let Φ : L1
+(M)1

1 → L1
+(N)1

1 be a
norm continuous orthogonally affine map (not assumed to be surjective). Then Φ is an
affine map.

Proof. Fix an arbitrary element f ∈ L1(N)∗+ with ‖ f ‖ 6 1. Consider the map
κ : L1

+(M)1
1 → [0, 1] given by κ(R) := f (Φ(R)). Clearly, κ is a norm-continuous

orthogonally affine function. By the assumption, we know that κ is affine, and
hence Φ is affine (since f is chosen arbitrarily).

As said in [28], the von Neumann algebra M2(C) does not have EP1. In fact,
Lemma 5.9 does not hold for M = M2(C), as shown in the following.

EXAMPLE 5.10. Recall that in the so-called Bloch sphere model there is a met-
ric preserving affine bijection from L1

+(M2(C))1
1 (considered as the state space of

M2(C)) onto the closed unit ball B of R3. More precisely, fix any a ∈ M2(C)+
with normalized trace being 1. There exist u, v, w ∈ Rwith u2 + v2 + w2 6 1 such
that

a =
1
2

(
1− u v + iw
v− iw 1 + u

)
.
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Conversely, (1/2)
(

1−u v+iw
v−iw 1+u

)
is positive when u2 + v2 + w2 6 1. The assign-

ment Ra : b 7→ Tr(ba) is a state of M2(C) (i.e., it belongs to L1
+(M2(C))1

1 un-
der the identification L1(M2(C)) ∼= M2(C)∗), and any state of M2(C) is of this
form. Moreover, Ra is pure, i.e., sRa is a rank one projection, exactly when u2 +
v2 + w2 = 1. We thus identify the state Ra with the point (u, v, w) in B, and
the set of pure states with the unit sphere S . Furthermore, it is easy to see that
for any other pure state Rb ∈ L1

+(M2(C))1
1, one has sRa sRb = 0 if and only if

b = (1/2)
(

1+u −v−iw
−v+iw 1−u

)
.

Now, consider a homeomorphism Γ from S onto itself that does not pre-
serve the metric but satisfies

Γ(−(u, v, w)) = −Γ((u, v, w)) ((u, v, w) ∈ S).

Consider Φ : B → B to be the map that sends (2s− 1)(u, v, w) to (2s− 1)Γ(u, v, w)
for any s ∈ [0, 1] and (u, v, w) ∈ S . It is easy to see that Φ is a continuous orthog-
onally affine map extending Γ. However, Φ cannot be affine, because continuous
affine bijections between normal state spaces are metric preserving.

PROPOSITION 5.11. Let p ∈ (1, ∞), and let M and N be von Neumann algebras
such that M has EP1 and M � C. Suppose that ε ∈ (0, 1] and Φ : Lp

+(M)1
1−ε →

Lp
+(N)1

1−ε is a metric preserving surjection. There is a Jordan ∗-isomorphism Θ : N →
M satisfying

(5.2) Φ(R1/p) = Θ∗(R)1/p (R1/p ∈ Lp
+(M)1

1−ε)

Proof. By Proposition 3.5, the map Φ extends to a metric preserving affine
bijection Φ : Lp

+(M) → Lp
+(N). Since Φ(0) = 0, we know that Φ restricts to a

bijection from Lp
+(M)1

1 onto Lp
+(N)1

1. Let Λ : L1
+(M)1

1 → L1
+(N)1

1 be the bijection
defined by

(5.3) Λ(S) := Φ(S1/p)p (S ∈ L1
+(M)1

1).

Suppose that s ∈ (0, 1) and R, T ∈ L1
+(M)1

1 satisfying sR · sT = 0. It follows from
Lemma 2.2 and the affineness of Φ that

Λ(sR + (1− s)T)=Φ((sR + (1− s)T)1/p)p = Φ(s1/pR1/p + (1− s)1/pT1/p)p

=(s1/pΦ(R1/p) + (1− s)1/pΦ(T1/p))p = sΛ(R) + (1− s)Λ(T).

In other words, Λ is orthogonally affine. Moreover, we know from Lemma 2.1(iii)
that the bijection Λ is a homeomorphism. It now follows from Lemma 5.9 and
the hypothesis that Λ is affine. Consequently, Theorem 4.5 in [16] gives a Jordan
∗-isomorphism Θ : N → M such that for every T ∈ L1

+(M)1
1, one has Λ(T) =

Θ∗(T), or equivalently, Φ(T1/p) = Θ∗(T)1/p. From this, one obtains relation (5.2)
(as Φ is positively homogeneous).
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5.3. THE PROOF OF THE SECOND MAIN THEOREM. Theorem 1.3 is a direct con-
sequence of the following more general result. For a von Neumann algebra M if
M0 is the type I2 part of M and M = M0 ⊕M1, then M1 is called the non-type-I2
part of M. Note that by Proposition A.7 and Lemma A.6, if M is approximately
semi-finite, then its non-type-I2 part of M has EP1.

THEOREM 5.12. Let p ∈ (1, ∞) and ε ∈ (0, 1]. Suppose that M and N are
von Neumann algebras with M � C such that the non-type-I2 part of M has EP1. If
Φ : Lp

+(M)1
1−ε → Lp

+(N)1
1−ε is a metric preserving bijection, then there is a Jordan ∗-

isomorphism Θ : N → M satisfying Φ(R1/p) = Θ∗(R)1/p, for any R ∈ L1
+(M)1p

1−εp .

Proof. It follows from Proposition 3.5 that Φ extends to an isometric order
isomorphism, again denoted by Φ, from Lp

sa(M) onto Lp
sa(N). Moreover, as in

Proposition 3.5, the assignment sT 7→ sΦ(T) induces an orthoisomorphism Υ from
P(M) onto P(N).

Let e0 be the central projection in M with e0M being the type I2 part of M.
If f0 := Υ(e0), then f0 is a central projection. Therefore, Φ can be written as a
sum of an order preserving bijective isometry Φ0 : Lp

sa(e0M) → Lp
sa( f0N) and

order preserving bijective isometry Φ1 : Lp
sa((1− e0)M) → Lp

sa((1− f0)N). By
Theorem 1.2, we know that e0M and (1− e0)M are Jordan ∗-isomorphic to f0N
and (1− f0)N, respectively. Thus, f0N is the type I2 part of N.

Now, Proposition 5.6 produces a Jordan ∗-isomorphism Θ0 : f0N → e0M
such that Φ0(S1/p) = Θ∗0(S)

1/p for each S ∈ L1
+(e0M), while Proposition 5.11 pro-

duces a Jordan ∗-isomorphism Θ1 : (1− f0)N → (1− e0)M such that Φ1(T1/p) =
Θ∗1(T)

1/p for each T ∈ L1
+((1− e0)M). Set Θ := Θ0 +Θ1. As Φ is linear, one con-

cludes that Φ(R1/p) = Θ∗(R)1/p as required.

Appendix A. APPROXIMATELY SEMIFINITE ALGEBRAS AND PROPERTY EP1

The notion of EP1 is first introduced by Watanabe in [34] and further studied
by Sherman in [28]. In Theorem 1.2 in [28], some algebras with EP1 were listed,
and their proofs were given in the main body of [28] (in fact, the more general case
of EPp was considered there). In particular, it was shown that an approximately
semifinite algebra with no type I2 summand has EP1. However, the proof for this
fact scatters in [28] and is not easy to trace. For the benefit of the readers, we
collect some facts as well as some arguments from both [28] and [34] that lead to
the above statement. There is no new result nor new proof given in this appendix.

First of all, let us recall from Theorem 4.8 in [34] the following result.

LEMMA A.1. Any von Neumann algebra with a normal faithful tracial state and
with no type I2 summand has EP1.

Secondly, we recall the following lemma from Theorem 5.3(a) in [28].
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LEMMA A.2. Let M be a von Neumann algebra. Suppose that there is an increas-
ing family {Mi}i∈I of von Neumann subalgebras (of M) having EP1 such that

⋃
i∈I

Mi is

σ(M, M∗)-dense in M, and that for each i ∈ I, there is a normal conditional expectation
Ei : M → Mi with Ei(1) being the identity of Mi and Ei ◦ Ej = Ei whenever i 6 j.
Then M has EP1.

Suppose now that M is a semifinite algebra without type I2 summand. Let
M1 and M2 be the type I and the type II parts of M, respectively. Clearly, qM2q
does not have any type I2 summand, for any q ∈ P(M2). On the other hand,
M1 can be decomposed as

⊕
λ∈Λ

L∞(Xλ,L(Hλ)) with dimHλ 6= 2 for every λ ∈ Λ.

Thus, there exists an increasing net {pi}i∈I in the set

{p ∈ P(M) : pMp has a normal faithful tracial state

and does not have any type I2 summand}

that σ(M, M∗)-converges to 1. This, together with Lemmas A.1 and A.2, gives the
following.

PROPOSITION A.3. If M is a semifinite von Neumann algebra with no type I2
summand, then M has EP1.

Our next lemma follows readily from the definition of EP1, because all ele-
ments in L1

+(M)1
1 have disjoint supports from elements in L1

+(N)1
1.

LEMMA A.4. If M and N are two von Neumann algebras with EP1, then M⊕ N
has EP1.

Let us now recall the definition of approximately semifinite algebras from
the paper [28].

DEFINITION A.5. A von Neumann algebra M is said to be approximately
semifinite if there is an increasing family {Mi}i∈I of semifinite von Neumann sub-
algebras as well as a net {Ei}i∈I of normal conditional expectations satisfying the
conditions as in Lemma A.2. In this case, {(Mi, Ei)}i∈I is called a semifinite paving
for M.

LEMMA A.6. If N and L are von Neumann algebras with L⊕ N being approxi-
mately semifinite, then N is approximately semifinite.

Indeed, if {(Mi, Ei)}i∈I is a semifinite paving for L⊕ N, and P : L⊕ N →
N is the canonical projection, then {(P(Mi), P ◦ Ei|N)}i∈I is a semifinite paving
for N.

PROPOSITION A.7. If M is an approximately semifinite von Neumann algebra
with no type I2 summand, then M has EP1.

In fact, we consider L and N to be the finite part and the properly infinite
part of M, respectively. It follows from Proposition A.3 that L has EP1. Moreover,
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by Lemma A.6, the algebra N is approximately semifinite. If {(Ni, Ei)}i∈I is a
semifinite paving for N, then {(Ni ⊗ M3(C), Ei ⊗ id)}i∈I is a semifinite paving
for N ⊗M3(C) ∼= N (because N is properly infinite). Since the semifinite algebra
Ni ⊗M3(C) can never have a type I2 summand, we know from Proposition A.3
and Lemma A.2 that N has EP1. Now, it follows from Lemma A.4 that M has EP1.
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