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ABSTRACT. In the first part of this paper, we introduce two notions of multi-
variable Duggal transforms (toral and spherical), and study their basic prop-
erties including hyponormality and norm-continuity. In the second part, we
study how the Taylor spectrum and Taylor essential spectrum of 2-variable
weighted shifts behave under the toral and spherical Duggal transforms in-
cluding generalized Aluthge transforms. In the last part, we investigate non-
trivial common invariant subspaces between the toral (respectively spherical)
Duggal transform and the original n-tuple of bounded operators with dense
ranges. We also study the sets of common invariant subspaces among them.
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1. INTRODUCTION

LetH be a complex Hilbert space and B(H) denote the algebra of bounded
linear operators on H. Recall that T ∈ B(H) is normal if T∗T = TT∗, subnormal if
T = N|H, where N is normal and N(H) ⊆ H, and hyponormal if T∗T > TT∗. We
say that an n-tuple T : = (T1, . . . , Tn) of operators on H is (jointly) hyponormal if
the operator matrix

[T∗, T] :=

 [T∗1 , T1] · · · [T∗n , T1]
...

. . .
...

[T∗1 , Tn] · · · [T∗n , Tn]


is positive (semi-definite) on the direct sum of n copies of H (cf. [2], [4], [10]),
where [T∗i , Ti] := T∗i Ti − TiT∗i . For i = 1, 2 and Ti ∈ B(H), we say that a pair
T = (T1, T2) of operators on H is (jointly) normal if T is commuting and each Ti
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is normal, and T is (jointly) subnormal if T is the restriction of a normal pair to a
common invariant subspace. For k > 1, T = (T1, T2) is said to be k-hyponormal
([9]) if T(k) := (T1, T2, . . . , Tk

1 , T2Tk−1
1 , . . . , Tk

2 ) is (jointly) hyponormal. Clearly, for
all k > 1, normal⇒ subnormal⇒ k-hyponormal.

For T ∈ B(H), the polar decomposition of T is T = U|T|, the Aluthge transform
T̃ of T is T̃ := |T|1/2U|T|1/2, the generalized Aluthge transform T̃ε of T is T̃ε :=
|T|εU|T|1−ε, where 0 < ε < 1, and the Duggal transform T̃D of T is T̃D := |T|U
([1], [3], [15], [18], [20], [24]). In this paper, we set out to extend the Duggal and
generalized Aluthge transforms to commuting n-tuples of bounded operators.

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators and consider T = T1
...

Tn

 as an operator from H into
n⊕

i=1
Hi, where Hi = H for each i = 1, . . . , n.

Since T is an operator from H into
n⊕

i=1
Hi, T has a standard singular-operator

polar decomposition T = VP, that is, T1
...

Tn

 =

 V1
...

Vn

 P,

where V =

 V1
...

Vn

 is a partial isometry fromH to
n⊕

i=1
Hi and

P = (T∗T)1/2 = (T∗1 T1 + · · ·+ T∗n Tn)
1/2

is a positive operator on H. Then, V∗V = V∗1 V1 + · · ·+ V∗n Vn is the (orthogonal)
projection onto the initial space of the partial isometry V which in turn is

(ker T)⊥ =
(⋂n

i=1
ker Ti

)⊥
.

We can now define a polar decomposition of T:

T = (V1P, . . . , VnP)

(cf. [13], [14], [19]). Then, naturally we can get the spherical Duggal transform T̂D

for T as the following:

(1.1) T̂D := (T̂D
1 , . . . , T̂D

n ) = (PV1, . . . , PVn).

Even though T̂D
i = PVi is not the Duggal transform of Ti (for i = 1, 2, . . . , n), the

restriction of V∗V = V∗1 V1 + · · ·+ V∗n Vn to the range of P is the identity operator.
For a commuting n-tuple of operators T = (T1, . . . , Tn), we can define another
polar decomposition of T, that is,

T = (T1, . . . , Tn) = (U1|T1|, . . . , Un|Tn|).
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Thus, there is another Duggal transform (called toral Duggal transform) of T de-
fined by

T̃D := (T̃D
1 , . . . , T̃D

n ) = (|T1|U1, . . . , |Tn|Un).
We next define the generalized Aluthge transforms of T = (T1, . . . , Tn). The

generalized toral Aluthge transform of T is defined by

(1.2) T̃ε := (T̃ε
1, . . . , T̃ε

n) = (|T1|εU1|T|1−ε, . . . , |Tn|εUn|T|1−ε) (0 < ε < 1).

The generalized spherical Aluthge transform of T is defined by

(1.3) T̂ε := (T̂1
ε
, . . . , T̂ε

n) = (PεV1P1−ε, . . . , PεVnP1−ε) (0 < ε < 1).

For α = {αn}∞
n=0 a bounded sequence of positive real numbers (called

weights), let
Wα = shift(α0, α1, . . .) : `2(Z+)→ `2(Z+)

be the associated unilateral weighted shift, defined by Wαen := αnen+1 (all n > 0),
where {en}∞

n=0 is the canonical orthonormal basis in `2(Z+). The moments of Wα

are given as

γk = γk(Wα) :=

{
1 if k = 0,
α2

0 · · · α2
k−1 if k > 0.

Similarly, consider double-indexed positive bounded sequences αk, βk ∈ `∞(Z2
+),

k = (k1, k2) ∈ Z2
+ and let `2(Z2

+) be the Hilbert space of square-summable com-
plex sequences indexed by Z2

+. We define the 2-variable weighted shift W(α,β) =

(T1, T2) by
T1ek := αkek+ε1 and T2ek := βkek+ε2 ,

where ε1 := (1, 0) and ε2 := (0, 1). Clearly,

(1.4) T1T2 = T2T1 ⇔ βk+ε1 αk = αk+ε2 βk (all k ∈ Z2
+).

In an entirely similar way one can define multivariable weighted shifts. Trivially,
a pair of unilateral weighted shifts Wα and Wβ gives rise to a 2-variable weighted
shift W(α,β), if we let α(k1,k2)

:= αk1 and β(k1,k2)
:= βk2 (all (k1, k2) ∈ Z2

+). In this
case, W(α,β) is subnormal (respectively hyponormal) if and only if T1 and T2 are;
in fact, under the canonical identification of `2(Z2

+) with `2(Z+) ⊗ `2(Z+), we
have T1

∼= I ⊗Wα and T2 ∼= Wβ ⊗ I, and so W(α,β) is doubly commuting (see the
definition given below).

Given k = (k1, k2) ∈ Z2
+, the moment of W(α,β) of order k is

(1.5) γk(W(α,β)) :=


1 if k1=0 and k2=0,
α2
(0,0) · · · α

2
(k1−1,0) if k1>1 and k2=0,

β2
(0,0) · · · β

2
(0,k2−1) if k1 = 0 and k2 > 1,

α2
(0,0) · · · α

2
(k1−1,0)β

2
(k1,0) · · · β

2
(k1,k2−1) if k1 > 1 and k2 > 1.

Due to the commutativity condition (1.4), γk can be computed using any nonde-
creasing path from (0, 0) to (k1, k2).
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2. MAIN RESULTS

2.1. BASIC PROPERTIES FOR THE SPHERICAL AND TORAL DUGGAL TRANSFORMS.
Compared to the commuting properties of the spherical and toral Aluthge trans-
forms ([13], [19]), the spherical and toral Duggal transforms for commuting n-
tuples have better commuting properties. First, we have the following proposi-
tion.

PROPOSITION 2.1. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators.
Then, the spherical Duggal transform T̂D is also commuting.

Proof. Since T = (V1P, . . . , VnP) is commuting, for i, j ∈ {1, 2, . . . , n}

[Ti, Tj] = ViPVjP−VjPViP = (ViPVj −VjPVi)P = 0.

Thus, we have
ViPVj = VjPVi on(RanP).

On the other hand, ker

 V1
...

Vn

 = kerP and so kerP ⊂ kerVi ∩ kerVj. Hence,

ViPVj = VjPVi on ker P.

SinceH = kerP
⊕

(RanP), we have

(2.1) ViPVj = VjPVi.

Therefore, it follows from (2.1) that

[T̂D
i , T̂D

j ] = PViPVj − PVjPVi = P(ViPVj −VjPVi) = 0.

For the toral Duggal transform T̃D of a commuting n-tuple T, T̃D is not com-
muting in general (cf. Proposition 2.3(iv)). However, we can make it commuting
in many cases. First, we recall that a commuting n-tuple T = (T1, . . . , Tn) is said
to doubly commute if TiTj = TjTi and TiT∗j = T∗j Ti for all i, j = 1, 2, . . . , n and i 6= j.
Then, we have the following lemma.

LEMMA 2.2 ([19]). Let T = (U1|T1|, . . . , Un|Tn|) be a doubly commuting n-
tuple of injective operators. Then, we have for i, j = 1, 2, . . . , n, and i 6= j

(i) |Ti||Tj| = |Tj||Ti|,
(ii) UiUj = UjUi, and

(iii) |Ti|1/2Uj = Uj|Ti|1/2.

Further, recall that a commuting n-tuple

T = (T1, . . . , Tn) = (U1|T1|, . . . , Un|Tn|)

is said to isometrically commute if TiUj = TjUi for all i, j = 1, . . . , n [19].
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FIGURE 1. Weight diagram of a commutative 2-variable
weighted shift W(α,β) = (T1, T2) and weight diagram of its toral
Duggal transform W̃(α,β) = (T̃D

1 , T̃D
2 ), respectively.

It is known ([13]) that for the toral Aluthge transform W̃(α,β) of W(α,β) and
(k1, k2) ∈ Z2

+,

W̃(α,β) is commuting⇔ α(k1,k2+1)α(k1+1,k2+1) = α(k1+1,k2)
α(k1,k2+2).

The following results show when the toral Duggal transform T̃D of T is commut-
ing.

PROPOSITION 2.3. Consider T = (T1, . . . , Tn) = (U1|T1|, . . . , Un|Tn|).
(i) If {Ui}n

i=1 are self-adjoint, then T̃D is commuting.
(ii) If T is doubly-commuting, then T̃D is commuting.

(iii) If T is an isometrically commuting n-tuple of injective operators, then T̃D is com-
muting.

(iv) If T = W(α,β), then T̃D is commuting if and only if for all k1, k2 > 0,

α(k1,k2+1)α(k1+1,k2+1) = α(k1+1,k2)
α(k1,k2+2).

Proof. (i) For i, j = 1, 2, . . . , n, we let Ti = Ui|Ti| and Tj = Uj|Tj|, where
U∗i = Ui and U∗j = Uj. Then T∗i = (Ui|Ti|)∗ = |T1|U∗1 = |Ti|Ui = T̃D

i and

T∗j = T̃D
j . Since TiTj = TjTi, we have that T∗i T∗j = T∗j T∗i and so T̃D

i T̃D
j = T̃D

j T̃D
i .

(ii) By Lemma 2.2(iii), we have that for i, j = 1, 2, . . . , n

[T̃D
i , T̃D

j ] = |Ti||Tj|UiUj − |Tj||Ti|UjUi = |Ti||Tj|UiUj − |Ti||Tj|UiUj = 0.
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(iii) By the definition of T̃D and following the same way used in Proposi-
tion 2.16 of [19], we have

(2.2) |Ti| = |Tj| for all i, j = 1, . . . , n.

Hence, we get that

[T̃D
i , T̃D

j ] = |Ti|(Ui|Tj|Uj −Uj|Ti|Ui) = |Ti|(Ui|Ti|Uj −Uj|Tj|Ui) = 0.

(iv) Let Wα = shift(α0, α1, . . .). Then its polar decomposition is Wα = U+D,
where U+ is the unilateral shift and D = diag(α0, α1, . . .). Hence, the Duggal
transform W̃D

α of Wα is W̃D
α = DU+ = shift(α1, α2, . . .). Consider a 2-variable

weighted shift W(α,β) = (T1, T2) whose diagram is given as in Figure 1(i). Then,
for (k1, k2) ∈ Z2

+ we have

(2.3) T̃D
1 T̃D

2 e(k1,k2)
= T̃D

1 (β(k1,k2+1)e(k1,k2+1)) = α(k1+1,k2+1)β(k1,k2+1)e(k1+1,k2+1).

On the other hand,

(2.4) T̃D
2 T̃D

1 e(k1,k2)
= α(k1+1,k2)

β(k1+1,k2+1)e(k1+1,k2+1).

From (1.4), (2.3), and (2.4) it follows that T̃D
1 T̃D

2 = T̃D
2 T̃D

1 if and only if

(2.5) α(k1,k2+1)α(k1+1,k2+1) = α(k1+1,k2)
α(k1,k2+2),

as desired.

For an arbitrary 2-variable weighted shift W(α,β), we letMi (respectively Nj)

be the subspace of `2(Z2
+) spanned by the canonical orthonormal basis associated

to indices k = (k1, k2) with k1 > 0 and k2 > i (respectively k1 > j and k2 > 0).
We will often writeM1 simply asM and N1 as N . The core c(W(α,β)) of W(α,β)
is the restriction of W(α,β) to the invariant subspace M1 ∩ N1. W(α,β)|M means
the restriction of W(α,β) to the invariant subspaceM. A 2-variable weighted shift
W(α,β) = (T1, T2) is said to be of tensor form if it is of the form (I ⊗Wα, Wβ ⊗
I), where Wα and Wβ are unilateral weighted shifts. The class of all 2-variable
weighted shifts W(α,β) whose core is of tensor form will be denoted by

(2.6) T C := {W(α,β) : c(W(α,β)) is of tensor form}.

Given W(α,β) and for i, j > 0, we let

Wα(j) = shift(a0j, a1j, . . .) and Wβ(i) = shift(βi0, βi1, . . .)

denote the associated j-th horizontal and i-th vertical slice of W(α,β), respectively.

EXAMPLE 2.4. Consider a 2-variable weighted shift W(α,β) = (T1, T2) whose
diagram is given as in Figure 1(i), where c(W(α,β)) = (I ⊗U+, U+ ⊗ I), Wα(0) =

shift(x0, x1, . . .), Wβ(0) = shift(y0, y1, . . .), and U+ is the unilateral shift. Then, we
have that

W̃D
(α,β) is commuting if and only if x1 = y1 and xn = yn = 1 for all n > 1.
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The proof follows from Proposition 2.3(iv) and

c(W(α,β)) = (I ⊗U+, U+ ⊗ I).

The following example shows that the subnormality of the toral Duggal
transform does not guarantee the hyponormality of the original one.

EXAMPLE 2.5. Consider a 2-variable weighted shift W(α,β) = (T1, T2) whose
diagram is given as in Figure 1(i), where α(0,0) = 2, β(k1,0) = 1

2 (k1 > 1), and
otherwise 1. Then, W̃D

(α,β) is commuting and subnormal, so it is k-hyponormal for
all k > 1. However, we observe that W(α,β) is not hyponormal, because Wα(0) =

shift(2, 1, 1, . . .) is not hyponormal.

It is known that for T ∈ B(H), the Aluthge transform map T → T̃ is
(‖ · ‖, ‖ · ‖)-continuous on B(H) [15]. We next study the norm-continuity prop-
erty of the Duggal transform.

PROPOSITION 2.6. For a single operator T ∈ B(H), the Duggal transform map
T → T̃D is (‖ · ‖, ‖ · ‖)-contractive and continuous on B(H).

Proof. Let T = U|T| be the polar decomposition of T. Since U is a par-
tial isometry, U is a contraction and so U∗ is also a contraction. Hence |T|2 >
|T|UU∗|T|, i.e., T∗T = |T|2 > T̃D(T̃D)∗. Therefore, ‖T‖ > ‖(T̃D)∗‖ = ‖T̃D‖, that
is, the Duggal transform map is (‖ · ‖, ‖ · ‖)-contractive.

For any ε > 0, let p(t) be a real polynomial such that

max
t∈[0,‖T‖+1]

|p(t2)− t| < ε.

Then, by the continuous functional calculus, we have that ‖p(|T|2) − |T|‖ < ε,
i.e., ‖p(T∗T)− |T|‖ < ε. Let δ > 0 such that ‖T− S‖ < δ implies that ‖p(T∗T)−
p(S∗S)‖ < ε. Then

‖T̃D − S̃ D‖ = ‖T̃D − p(T∗T)U + p(T∗T)U − p(S∗S)U + p(S∗S)U − S̃ D‖

6 ‖T̃D − p(T∗T)U‖+ ‖p(T∗T)U − p(S∗S)U‖+ ‖p(S∗S)U − S̃ D‖
6 ‖|T| − p(T∗T)‖+ ‖p(T∗T)− p(S∗S)‖+ ‖p(S∗S)− |S|‖ 6 3ε.

Thus, the Duggal transform map is (‖ · ‖, ‖ · ‖)-continuous on B(H).

REMARK 2.7. We note that Proposition 2.6 can be extended to the multivari-
able case with the operator norm

(2.7) ‖T‖ := max{‖T1‖, . . . , ‖Tn‖} for T = (T1, . . . , Tn).

Thus, the toral Duggal transform map T → T̃D is (‖ · ‖, ‖ · ‖)-continuous on
B(H).

We next investigate the commutativity of the spherical Duggal transform
ŴD

(α,β) = (T̂D
1 , T̂D

2 ) for W(α,β) = (T1, T2). By the direct calculation, the spherical
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Duggal transform ŴD
(α,β) is a pair of weighted shifts with the following weights:

α̂D
(k1,k2)

:= α(k1,k2)

√√√√α2
(k1+1,k2)

+ β2
(k1+1,k2)

α2
(k1,k2)

+ β2
(k1,k2)

and

β̂D
(k1,k2)

:= β(k1,k2)

√√√√α2
(k1,k2+1) + β2

(k1,k2+1)

α2
(k1,k2)

+ β2
(k1,k2)

.

(2.8)

Therefore, by (1.4) and (2.8), we have

T̂D
1 T̂D

2 = T̂D
2 T̂D

1 .

We summarize the above results as follows.

PROPOSITION 2.8. Consider W(α,β) = (T1, T2). Then, ŴD
(α,β) = (T̂D

1 , T̂D
2 ) is

commuting.

Next, we consider the following proposition.

PROPOSITION 2.9. Let W(α,β) = (T1, T2) be a 2-variable weighted shift of hy-
ponormal operators. Then so is ŴD

(α,β).

Proof. Clearly, ŴD
(α,β) is a 2-variable weighted shift. Thus, we only show that

the hyponormality of T̂D
i (i = 1, 2). Fix a lattice point (k1, k2). Since the hyponor-

mality of an operator is invariant under multiplication by a nonzero scalar, we
may assume that α(k1,k2)

= 1 and β(k1,k2)
= 1. For simplicity, let α(k1,k2+1) = a,

α(k1+1,k2)
= b, α(k1+2,k2)

= c and β(k1+2,k2)
= d. Now, without loss of generality,

we will show that α̂D
(k1,k2)

6 α̂D
(k1+1,k2)

. Since T1 is hyponormal, we have a 6 bd
a ,

i.e., a2 6 bd, and b 6 c. Thus, we obtain that

(α̂D
(k1,k2)

)2 =
(a2 + b2)2

2(a2 + b2)
6

a4 + 2a2b2 + b4

2(a2 + b2)
6

a4 + b4

a2 + b2

6
b2d2 + b2c2

a2 + b2 = b2 c2 + d2

a2 + b2 = (α̂D
(k1+1,k2)

)2.

REMARK 2.10. (i) Recall that T ∈ B(H) is said to be a quasi-affinity if it
has a trivial kernel and dense range. If T ∈ B(H) is a quasi-affinity hyponormal
operator, then T̂ is also hyponormal. Indeed, let T = U|T| be the polar decompo-
sition. Then, U is unitary and |T| is a quasi-affinity. Since T is hyponormal and U
is unitary, we have that

T∗T > TT∗ ⇒ |T|2 > U|T|2U∗ ⇒ U∗|T|2U > |T|2.

On the other hand, 1 > UU∗ and so

|T|2 > |T|UU∗|T|.
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Hence, we get
U∗|T|2U > |T|UU∗|T| ⇔ T̂∗T̂ > T̂T̂∗.

(ii) Since a unilateral weighted shift is not a quasi-affinity, we still need to
prove Proposition 2.9 for the general case.

EXAMPLE 2.11. For 0 < x, y < 1, let W(α,β) be a 2-variable weighted shift as

in Figure 1(i), where α(0,0) = x, β(0,0) = y, α(0,k2)
=
√

3
2 (k2 > 1), β(k1,0) =

√
3y

2x
(k1 > 1), and otherwise 1. Then, we have:

(i) W(α,β) is hyponormal⇔ y 6 x
√

16(1−x2)
9−8x2 ;

(ii) W(α,β) is subnormal⇔ y 6 2
√

1− x2;

(iii) W̃D
(α,β) is always subnormal;

(iv) ŴD
(α,β)is always subnormal.

Proof. (i) By the definition of W(α,β), it is obvious that

W(α,β)|M ∼= (I ⊗ S√3/2, U+ ⊗ I) and W(α,β)|N ∼= (I ⊗U+, S√3y/2x ⊗ I),

where S√3/2 = shift(
√

3
2 , 1, 1, . . .), S√3y/2x = shift(

√
3y

2x , 1, 1, . . .), and U+ is the
unilateral shift. W(α,β)|M is subnormal with Berger measure

µM =
[1

4
δ0 +

3
4

δ1

]
× δ1

and W(α,β)|M is subnormal with Berger measure µN = δ1×
[(

1− 3y2

4x2

)
δ0 +

3y2

4x2 δ1
]
.

By the result in Theorem 2.4 of [9], to show the joint hyponormality of W(α,β) it is
enough to check that

M(0,0)(1)(W(α,β)) > 0.

Since x < 1, the positivity of M(0,0)(1)(W(α,β)) is equivalent to

det(M(0,0)(1)(W(α,β))) > 0,

i.e.,

(1− x2)(1− y2) >
(3y

4x
− yx

)2
,

which in turn is equivalent to

y 6 x

√
16(1− x2)

9− 8x2 .

(ii) Since W(α,β)|M and W(α,β)|N are both subnormal, by the result in Propo-
sition 3.10 of [11], we have that

W(α,β) is subnormal⇔ β2
00

∥∥∥1
t

∥∥∥
L1(µM)

(µM)X
ext 6 ν

⇔ y 6 2
√

1− x2 (because
√

3y 6 2x).
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(iii) Since the Duggal transform W̃D
α of Wα = shift(α0, α1, . . .) is

W̃D
α = shift(α1, α2, . . .),

we can observe that W̃D
(α,β) = (I ⊗U+, U+ ⊗ I). Hence W̃D

(α,β) is subnormal.
(iv) By (2.8), we first observe that

c(ŴD
(α,β)) = (I ⊗U+, U+ ⊗ I),

α̂D
(0,0) =

√
x2 + 3y2

4√
x2 + y2

, α̂D
(0,k2)

=

√
6
7

(all k2 > 1),

β̂D
(0,0) =

√
7y

2
√

x2 + y2
, and β̂D

(k1,0) =

√
6y

2
√

x2 + 3y2

4

(all k1 > 1).

By Proposition 2.9, we note that

β̂D
(k1,0) 6 1 (all k1 > 1).

Hence, if we follow the proof of (ii), we have that ŴD
(α,β) is subnormal, as de-

sired.

REMARK 2.12. Example 2.11 shows that both the spherical and toral Dug-
gal transforms may turn the given W(α,β) into a more nicely behaved 2-variable
weighted shift.

2.2. TAYLOR SPECTRA. In [17], I. Jung, E. Ko and C. Pearcy proved that T and T̃
have the same spectrum. In [3], M. Cho, I. Jung, and W.Y. Lee also proved that
T and T̃D have the same spectrum. In this section we show that these results
may be extended to the toral and spherical Duggal transform including the gen-
eralized toral and spherical Aluthge transforms under certain circumstances. For
this, we first introduce some terminology needed to describe the Taylor spectrum
and Taylor essential spectrum of commuting n-tuples T = (T1, . . . , Tn). For ad-
ditional facts about this notion of a joint spectrum, the reader is referred to ([5],
[6], [7]). Let Λ = Λn[e] be the complex exterior algebra on n generators e1, . . . , en
with identity e0 = 1, multiplication denoted by ∧ (wedge product) and complex
coefficients, subject to the collapsing property ei ∧ ej + ej ∧ ei = 0 (1 6 i, j 6 1). If
one declares {eI = ei1 ∧ · · · ∧ eik : I ∈ {1, . . . , n}} to be an orthonormal basis, the
exterior algebra becomes a Hilbert space with the canonical inner product, i.e.,
〈eI , eJ〉 := 0 if I 6= J, 〈eI , eJ〉 := 1 if I = J. It also admits an orthogonal decompo-

sition Λ =
n⊕

i=0
Λi with Λi ∧Λk ⊂ Λi+k. Moreover, dim Λk = (n

k) = n!
k!(n−k)! . Let

Ei : Λ → Λ denote the creation operator, given by ξ 7−→ ei ∧ ξ (i = 1, . . . , n). We
recall that E∗i Ej + EjE∗i = δij and Ei is a partial isometry (all i, j = 1, . . . , n). Con-

sider a Hilbert space H and set Λ(H) :=
n⊕

i=0
H⊗C Λi. For a commuting n-tuple
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T = (T1, . . . , Tn) of bounded operators onH, define

DT : Λ(H)→ Λ(H) by DT(x⊗ ξ) =
n

∑
i=1

Tix⊗ ei ∧ ξ.

Then DT ◦ DT = 0, so RanDT ⊆ kerDT. This naturally leads to a cochain com-
plex, called the Koszul complex K(T,H) associated to T onH, as follows:

K(T,H) : 0 0→ H⊗Λ0 D0
T−→ H⊗Λ1 D1

T−→ · · ·
Dn−1

T−→ H⊗Λn Dn
T=0
−→ 0,

where Di
T denotes the restriction of DT to the subspace H⊗Λi. We define T to

be invertible in case its associated Koszul complex K(T,H) is exact. Thus, we can
define the Taylor spectrum σT(T) of T as follows:

σT(T) = {(λ1, . . . , λn) ∈ Cn : K((T1 − λ1, . . . , Tn − λn),H) is not invertible}.

T is called Fredholm if ranDT is closed and dim(ker DT/ranDT) < ∞. We also
define the Taylor essential spectrum σTe(T) of T as follows:

σTe(T) := {(λ1, . . . , λn) ∈ Cn : (T1 − λ1, . . . , Tn − λn) is not Fredholm}.

J.L. Taylor showed that, ifH 6= {0}, then σT(T) is a nonempty, compact subset of
the polydisc of multiradius r(T) := (r(T1), . . . , r(Tn)), where r(Ti) is the spectral
radius of Ti (i = 1, . . . , n) ([22], [23]).

Now recall the following lemma.

LEMMA 2.13. (i) ([5], [7]) LetH1 andH2 be Hilbert spaces, and let Ai ∈ B(H1),
Ci ∈ B(H2) and Bi ∈ B(H1,H2), (i = 1, . . . , n) be such that(

A 0
B C

)
:=
((

A1 0
B1 C1

)
, . . . ,

(
An 0
Bn Cn

))
is commuting. Assume that A and

( A 0
B C
)

are Taylor invertible. Then, C is Taylor in-
vertible. Furthermore, if A and C are Taylor invertible, then

( A 0
B C
)

is Taylor invertible.
(ii) ([8]) For A and B two commuting n-tuples of bounded operators on Hilbert space,

we have:

σT(I ⊗A, B⊗ I) = σT(A)× σT(B) and

σTe(I ⊗A, B⊗ I) = σTe(A)× σT(B) ∪ σT(A)× σTe(B).

The following result shows that the toral Duggal transform preserves the
Taylor spectrum.

EXAMPLE 2.14. Consider the 2-variable weighted shift W(α,β) = T = (T1, T2)

whose weight diagram is given as in Figure 1(i), where α(k1,k2)
= ( 1

2 )
k2 and

β(k1,k2)
= ( 1

2 )
k1+1 for all k1, k2 > 0. Then, T̃D = (T̃D

1 , T̃D
2 ) is commuting and

we have the following:
(i) σT(T) = σT(T̃D) = (D× {0}) ∪ ({0} × 1

2D);
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FIGURE 2. Weight diagram of the 2-variable weighted shift
W(α,β) = (T1, T2) in Example 2.17 and weight diagram of the
spherical Duggal transform ŴD

(α,β) of W(α,β), respectively.

(ii) σTe(T) = σTe(T̃D), where

σTe(T) =
((
{0} ∪

(⋃∞
n=0

1
2n T

))
× {0}

)
∪
(
{0} ×

(
{0} ∪

(⋃∞
n=1

1
2n T

)))
.

Proof. The commutativity of (T̃D
1 , T̃D

2 ) is clear. Since `2(Z2
+) = `2(Z+) ⊕

`2(Z+) ⊕ · · · , we can write T1 = D ⊗ U+ and T2 = U+ ⊗ 1
2 D, where D =

diag(1, 1
2 , ( 1

2 )
2, ( 1

2 )
3, . . .).

(i) Let p(z1, z2) := z1z2. Then by the spectral mapping theorem,

p(σT(T1, T2)) = σT(p(T1, T2)) = σT(T1T2) = σT

(1
2

W ⊗ 1
2

W
)

= σ
(1

2
W ⊗ 1

2
W
)
= σ

(1
2

W
)
· σ
(1

2
W
)
= {0},

where W = shift(1, 1
2 , ( 1

2 )
2, ( 1

2 )
3, . . .) is a compact operator with the spectrum

{0}. Hence, we have that

σT(T1, T2) ⊆ p−1({0}).

Since T1 = U+ ⊕ 1
2 T1 and T2 = 1

2 D⊕ T2, by Lemma 2.13(i), we obtain that

σT(T1, T2) ⊆ (C× {0}) ∪ ({0} ×C).

Now, by the result in Lemma 4.16 of [25], we have that

σT(T1, T2) = (π1(σT(T1, T2))× {0}) ∪ ({0} × π2(σT(T1, T2))),
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where π1(z1, z2) = z1 and π2(z1, z2) = z2. By the spectral mapping theorem,

π1(σT(T1, T2)) = σT(π1(T1, T2)) = σT(T1) = σ(T1)

= σ(U+ ⊗ D) = σ(U+) · σ(D) = D ·
{

0, 1,
1
2

,
(1

2

)2
, . . .

}
= D.

Similarly, we have that

π2(σT(T1, T2)) =
1
2
D.

Hence

(2.9) σT(T1, T2) = (D× {0}) ∪
(
{0} × 1

2
D
)

.

(ii) By the result in Lemma 4.16 of [25], note that

σTe(T1, T2) = (π1(σTe(T1, T2))× {0}) ∪ ({0} × π2(σTe(T1, T2)))

= (π1(σTe(T1))× {0}) ∪ ({0} × π2(σTe(T2)))

= (π1(σe(T1))× {0}) ∪ ({0} × π2(σe(T2))).

Since T1 =
∞⊕

n=0

1
2n U+, we have that

σe(T1) = {0} ∪
(⋃∞

n=0

1
2n σe(U+)

)
= {0} ∪

(⋃∞

n=0

1
2n T

)
.

Similarly, we have that

σe(T2) = {0} ∪
(⋃∞

n=1

1
2n T

)
.

Hence, we obtain that

σTe(T) =
((
{0} ∪

(⋃∞

n=0

1
2n T

))
× {0}

)
∪
(
{0} ×

(
{0} ∪

(⋃∞

n=1

1
2n T

)))
.

Note that (T1, T2) = (T̃D
1 , T̃D

2 ). Hence, we have σT(T) = σT(T̃D) and σTe(T) =

σTe(T̃D), as desired.

REMARK 2.15. It is known that if T ∈ B(H) and M is an invariant sub-
space forH, then σ(T|M) ⊂ η(σ(T)), where η(σ(T)) is the union of σ(T) and all
bounded components of the resolvent set ρ(T) ([21], Theorem 0.8). Similarly, for
the W(α,β) = T in Theorem 2.14, we can see that σT(T|M∩N ) ⊆ σT(T), indeed, by
the spectral mapping theorem, we have that

σT(T|M∩N ) = σT

(1
2

T
)
=

1
2

σT(T).

Next recall the commuting property for the spherical Duggal transform
ŴD

(α,β) for W(α,β) in Proposition 2.8. We now have the following proposition.
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PROPOSITION 2.16. Let W(α,β) ∈ T C with c(W(α,β)) = (I ⊗Wα, Wβ ⊗ I).
Then, we have that for some r, s > 0,

ŴD
(α,β) ∈ T C ⇔ c(W(α,β)) = (rI ⊗U+, Wβ ⊗ I) or (I ⊗Wα, U+ ⊗ sI).

Proof. By (2.8), we first observe that

(2.10) c(ŴD
(α,β)) =

̂c(W(α,β))
D

.

(⇒) Since W(α,β) ∈ T C and ŴD
(α,β) ∈ T C, we observe that α(k1,k2)

=α(k1,k2+1),

β(k1,k2)
= β(k1+1,k2)

, and T̂D
1 e(k1,k2)

= T̂D
1 e(k1,k2+1) for (k1, k2) > (1, 1). Thus, we

have that

T̂D
1 e(k1,k2)

= T̂D
1 e(k1,k2+1)

⇔
α2
(k1+1,k2)

+ β2
(k1,k2)

α2
(k1,k2)

+ β2
(k1,k2)

=
α2
(k1+1,k2)

+ β2
(k1,k2+1)

α2
(k1,k2)

+ β2
(k1,k2+1)

⇔
(β2

(k1,k2)
− β2

(k1,k2+1))(α
2
(k1,k2)

− α2
(k1+1,k2)

)

(α2
(k1,k2)

+ β2
(k1,k2+1))(α

2
(k1,k2)

+ β2
(k1,k2)

)
= 0

⇔ α(k1,k2)
= α(k1+1,k2)

or β(k1,k2)
= β(k1,k2+1).

If β(k1,k2)
6= β(k1,k2+1) for some k2 > 1, then, by the commutativity of W(α,β) and

W(α,β) ∈ T C, we have α(k1,k2)
= α(1,1) for all (k1, k2) > (1, 1). Thus, c(W(α,β)) =

(rI ⊗U+, Wβ ⊗ I) for some r > 0. If α(k1,k2)
= α(k1+1,k2)

for all (k1, k2) > (1, 1),
then c(W(α,β)) = (I ⊗Wα, U+ ⊗ sI) for some s > 0.

(⇐) If c(W(α,β)) = (rI ⊗U+, Wβ ⊗ I) or (I ⊗Wα, U+ ⊗ sI) for some r, s > 0,

then by (2.8), ̂c(W(α,β))
D

is of tensor form. Hence, by (2.10), we have ŴD
(α,β) ∈ T C,

as desired.

Since ŴD
(α,β) is commuting, we have the following example.

EXAMPLE 2.17. Let W(α,β) = (T1, T2) ∈ T C be given as in Figure 2(i). As-
sume that T1 and T2 are hyponormal. Then, we have that

σT(ŴD
(α,β)) = σT(W(α,β)) and σTe(ŴD

(α,β)) = σTe(W(α,β)).

Proof. We have

Wx = shift(x, r, r, . . .), Wa = shift(a, r, r, . . .), and Dy = diag
(

y,
ay
x

,
ay
x

, . . .
)

.
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We first represent T1 =

[
Wx 0 0
0 Wa 0
0 0 R1

]
and T2 =

[
0 0 0

Dy 0 0
0 τ0 I R2

]
, where R1 = I⊗Wa and

R2 =


0 0 0 . . .

τ1 I 0 0 . . .
0 τ2 I 0 . . .
...

...
...

. . .

 .

Then, by Lemma 2.13(i), we obtain that

σT(T1, T2) ⊆ σT

([
ccWx0

0 Wa

]
,
[

0 0
Dy 0

])
∪ σT(I ⊗Wa, Wτ ⊗ I)

⊆ σT(Wx, 0) ∪ σT(Wa, 0) ∪ σT(I ⊗Wa, Wτ ⊗ I)

⊆ (rD× {0}) ∪ (rD× {0}) ∪ (rD× ‖Wτ‖D) = rD× ‖Wτ‖D,(2.11)

where Wτ = shift(τ1, τ2, . . .).
On the other hand,

σT(I ⊗Wa, Wτ ⊗ I) ⊆ σT(T1, T2) ∪ σT

([
Wx 0
0 Wa

]
,
[

0 0
Dy 0

])
⇒ rD× ‖Wτ‖D ⊆ σT(T1, T2) ∪ (rD× {0})
⇒ (rD× ‖Wτ‖D)\(rD× {0}) ⊆ σT(T1, T2).

Since σT(T1, T2) is closed,

(2.12) rD× ‖Wτ‖D ⊆ σT(T1, T2).

By (2.11) and (2.12), we have

(2.13) σT(T1, T2) = rD× ‖Wτ‖D.

Since W(α,β) is a compact perturbation of (I ⊗Wa, Way/x ⊗ I), where

Way/x = shift
( ay

x
, τ0, τ1, . . .

)
,

we have that

σTe(T1, T2) = σTe(I ⊗Wa, Way/x ⊗ I)

= (σTe(Wa)× σT(Way/x)) ∪ (σT(Wa)× σTe(Way/x))(2.14)

= (rT× ‖Wτ‖D) ∪ (rD× ‖Wτ‖T).

Now, ŴD
(α,β) is given as in Figure 2(ii). Since

∥∥∥shift
(

y

√
a2 + τ2

0√
x2 + y2

, τ0

√
a2 + τ2

1√
z2 + τ2

0

, τ1

√
a2 + τ2

2√
z2 + τ2

1

· · ·
)∥∥∥ = ‖Wτ‖,
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by the previous argument and Proposition 2.9, we have that

σT(ŴD
(α,β)) = rD× ‖Wτ‖D and

σTe(ŴD
(α,β)) = (rT× ‖Wτ‖D) ∪ (rD× ‖Wτ‖T).

We next direct our attention to generalized (toral and spherical) Aluthge
transforms.

PROPOSITION 2.18. (i) If Wα = shift(α0, α1, . . .) is a weighted shift, then the
generalized Aluthge transform W̃ε

α is

W̃ε
α = shift(α1−ε

0 αε
1, α1−ε

1 αε
2, . . .).

(ii) Let W(α,β)=(T1, T2). Then, we have Ŵε
(α,β)=(T̂ε

1, T̂ε
2), where for (k1, k2)∈Z2

+,

T̂ε
1(e(k1,k2)

) = α(k1,k2)

(α2
(k1+1,k2)

+ β2
(k1+1,k2)

)ε/2

(α2
(k1,k2)

+ β2
(k1,k2)

)ε/2
e(k1+1,k2)

and(2.15)

T̂ε
2(e(k1,k2)

) = β(k1,k2)

(α2
(k1,k2+1) + β2

(k1,k2+1))
ε/2

(α2
(k1,k2)

+ β2
(k1,k2)

)ε/2
e(k1,k2+1).(2.16)

Proof. (i) is clear from the definition of W̃ε
α.

For (ii), note that

(2.17) T̂ε
i = PεViP1−ε = PεTiP−ε (i = 1, 2).

Thus, (2.15) and (2.16) are straightforward from Proposition 2.8 and (2.17).

THEOREM 2.19. For W(α,β) = (T1, T2), we have that

W̃ε
(α,β) = Ŵε

(α,β) ⇔ α(k1+1,k2)
= α(k1,k2+1) and

β(k1+1,k2)
= β(k1,k2+1) (all (k1, k2) ∈ Z2

+).

Proof. By Proposition 2.18, we have that

W̃ε
(α,β) = Ŵε

(α,β) if and only if

α1−ε
(k1,k2)

αε
(k1+1,k2)

α(k1,k2)
=
(α2

(k1+1,k2)
+ β2

(k1+1,k2)

α2
(k1,k2)

+ β2
(k1,k2)

)ε/2
and

β1−ε
(k1,k2)

βε
(k1+1,k2)

α(k1,k2)
=
(α2

(k1,k2+1) + β2
(k1,k2+1)

α2
(k1,k2)

+ β2
(k1,k2)

)ε/2

for all (k1, k2) ∈ Z2
+. Since

α1−ε
(k1,k2)

αε
(k1+1,k2)

α(k1,k2)
=
(α2

(k1+1,k2)
+ β2

(k1+1,k2)

α2
(k1,k2)

+ β2
(k1,k2)

)ε/2

⇔ α(k1+1,k2)
β(k1,k2)

= α(k1,k2)
β(k1+1,k2)

,
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and, by the commutativity α(k1,k2)
β(k1+1,k2)

= α(k1,k2+1)β(k1,k2)
, we have that

α1−ε
(k1,k2)

αε
(k1+1,k2)

α(k1,k2)
=
(α2

(k1+1,k2)
+ β2

(k1+1,k2)

α2
(k1,k2)

+ β2
(k1,k2)

)ε/2
⇔ α(k1+1,k2)

= α(k1,k2+1).

Similarly, we have that

β1−ε
(k1,k2)

βε
(k1+1,k2)

α(k1,k2)
=
(α2

(k1,k2+1) + β2
(k1,k2+1)

α2
(k1,k2)

+ β2
(k1,k2)

)ε/2
⇔ β(k1+1,k2)

= β(k1,k2+1).

Hence, the result follows.

PROPOSITION 2.20. Let W(α,β) = (T1, T2) be a 2-variable weighted shift of hy-
ponormal operators. Then, so is Ŵε

(α,β).

The proof is straightforward from the proof of Proposition 2.9.

FIGURE 3. Weight diagram of the 2-variable weighted shift
in Theorem 2.21 and weight diagram of its generalized toral
Aluthge transform W̃ε

(α,β), respectively.

THEOREM 2.21. Let W(α,β) = (T1, T2) be given as in Figure 3(i). Assume that
T1 and T2 are hyponormal. Then, we have:

(i) σT(W(α,β)) = ‖Wω‖D× ‖Wτ‖D;
(ii) σTe(W(α,β)) = (‖Wω‖T× ‖Wτ‖D) ∪ (‖Wω‖D× ‖Wτ‖T);

(iii) σT(W̃ε
(α,β)) = σT(W(α,β)) and σTe(W̃ε

(α,β)) = σTe(W(α,β)).
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Proof. Let

Wx = shift(x, ω0, ω1, . . .), Wa = shift(a, ω0, ω1, . . .) and

Dy = diag
(

y,
ay
x

,
ay
x

, . . .
)

.

We consider

T1 =

Wx 0 0
0 Wa 0
0 0 R1

 and T2 =

 0 0 0
Dy 0 0
0 τ0 I R2

 ,

where

R1 = I ⊗Wa, R2 =


0 0 0 . . .

τ1 I 0 0 . . .
0 τ2 I 0 . . .
...

...
...

. . .

 = Wτ1 ⊗ I, Wτ1 = shift(τ1, τ2, . . .).

Hence, we get that

σT(T1, T2) ⊆ σT

([
Wx 0
0 Wa

]
,
[

0 0
Dy 0

])
∪ σT(I ⊗Wa, Wτ1 ⊗ I)

⊆ σT(Wx, 0) ∪ σT(Wa, 0) ∪ σT(I ⊗Wa, Wτ1 ⊗ I)

⊆ (‖Wω‖D× {0}) ∪ (‖Wω‖D× {0})
∪ (rD× ‖Wτ‖D) = ‖Wω‖D× ‖Wτ‖D.(2.18)

On the other hand,

σT(I ⊗Wa, Wτ ⊗ I) ⊆ σT(T1, T2) ∪ σT

([
Wx 0
0 Wa

]
,
[

0 0
Dy 0

])
⇒ ‖Wω‖D× ‖Wτ‖D ⊆ σT(T1, T2) ∪ (‖Wω‖D× {0})
⇒ (‖Wω‖D× ‖Wτ‖D)\(‖Wω‖D× {0}) ⊆ σT(T1, T2).

Since σT(T1, T2) is closed,

(2.19) ‖Wω‖D× ‖Wτ‖D ⊆ σT(T1, T2).

By (2.18) and (2.19), we have

(2.20) σT(T1, T2) = ‖Wω‖D× ‖Wτ‖D.

Since W(α,β) is a compact perturbation of (I ⊗Wa, Way/x ⊗ I), we have that

σTe(T1, T2) = σTe(I ⊗Wa, Way/x ⊗ I)

= (σTe(Wa)× σT(Way/x)) ∪ (σT(Wa)× σTe(Way/x))

= (‖Wω‖T× ‖Wτ‖D) ∪ (‖Wω‖D× ‖Wτ‖T),(2.21)
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where Way/x = shift( ay
x , τ0, τ1, . . .). Now, consider W̃ε

(α,β) given as in Figure 3(ii).
Since T1 and T2 are hyponormal, we have that

‖shift(ω1−ε
0 ωε

1, . . .)‖ = ‖Wω‖ and ‖shift(τ1−ε
0 τε

1 , . . .)‖ = ‖Wτ‖.

Hence, by the previous argument, we obtain that

σT(W̃ε
(α,β)) = ‖Wω‖D× ‖Wτ‖D and

σTe(W̃ε
(α,β)) = (‖Wω‖T× ‖Wτ‖D) ∪ (‖Wω‖D× ‖Wτ‖T).

THEOREM 2.22. Let W(α,β) = (T1, T2) ∈ T C be given as in Figure 2(i). Assume
that T1 and T2 are hyponormal. Then, we have

σT(Ŵε
(α,β)) = σT(W(α,β)) and σTe(Ŵε

(α,β)) = σTe(W(α,β)).

Proof. By Proposition 2.18, we easily get the weight diagram for Ŵε
(α,β).

By Proposition 2.20, since the structure of the weight diagram for Ŵε
(α,β) is en-

tirely similar to that of W(α,β), the results follow by imitating the proof of Exam-
ple 2.17.

In view of Theorems 2.21 and 2.22, it is natural to consider the following
conjecture.

CONJECTURE 2.23. Let W(α,β) = (T1, T2) be a 2-variable weighted shift with
hyponormal T1 and T2. Assume that W̃D

(α,β) and W̃ε
(α,β) are commuting. Then

W(α,β), W̃D
(α,β), ŴD

(α,β), W̃ε
(α,β), and Ŵε

(α,β) all have the same Taylor spectrum and
the same Taylor essential spectrum.

2.3. COMMON INVARIANT SUBSPACES. In [16], I. Jung, E. Ko, and C. Pearcy
proved that an operator T ∈ B(H) with dense range has a nontrivial invariant
subspace if and only if T̃ does. Our next result shows that T has a nontrivial in-
variant subspace if and only if T̃D does, where T̃D is the Duggal transform for T.

THEOREM 2.24. Let T = U|T| in B(H) be an operator with dense range. Then,
T has a nontrivial invariant subspace if and only if T̃D does.

Proof. (i) If ker T = {0}, then U is unitary and |T| is a quasi-affinity. Since

UT̃D = U|T|U = TU,

T̃D and T are unitarily equivalent. So Lat(T) = Lat(T̃D), where Lat(T) be the set
of common invariant subspaces for T and Lat(T̃D) for T̃D.

(ii) If ker T 6= {0}, T has a nontrivial invariant subspace. Since ker T =
ker U, we have that

T̃D(ker T) = |T|U(ker T) = 0,

i.e., T̃D(ker T) ⊂ ker T. Hence T̃D also has a nontrivial invariant subspace.
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REMARK 2.25. For T ∈ B(H) with dense range, we have T̃D 6= 0. If T̃D = 0,
then T̃D(H) = |T|U(H) = 0, i.e., U(H) ⊆ ker(|T|). Thus, we have

T(H) = U|T|(H) ⊆ U(H) ⊆ ker(|T|),

i.e.,
T(H) ⊆ ker(|T|) = ker T.

Since T has a dense range, ker T = H, i.e., T = 0. This is a contradiction to the
fact that T has dense range. Therefore, we have T̃D 6= 0 as desired.

In [19], it was proved that for a commuting n-tuple of operators with dense
ranges T = (T1, . . . , Tn), T has a common nontrivial invariant subspace if and
only if T̂ does. Our next result shows that it is true for T̂D. Now, we have the
following theorem.

THEOREM 2.26. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators with
dense ranges. Then, T̂D has a common nontrivial invariant subspace if and only if T does.

Proof. We let Lat(T) be the set of common invariant subspaces for T =

(T1, . . . , Tn) and Lat(T̂D) for T̂D.
Case 1. T is a commuting n-tuple of quasi-affinities.
(⇒) LetM be a common nontrivial invariant subspace for T̂D. We want to

show that
(V1PV2 · · · PVnM)

is a common nontrivial invariant subspace for T, where (V1PV2 · · · PVnM) means
the smallest closed set containing V1PV2 · · · PVnM. First, we assume that

V1PV2 · · · PVnM = {0}.

By (2.1), we have that

V2PV3P · · · PVnP(V1M) = T2 · · · Tn(V1M) = {0}.

Since each Ti is one-to-one, we have that

(2.22) V1M = {0}.

By (2.1) and the one-to-one property of Ti again, we have that

T1T3 · · · Tn(V2M) = {0} ⇒ V2M = {0}.

Repeating this argument, we have ViM = {0} for each i. Thus, we get that

M⊆ ker(V1) ∩ · · · ∩ ker(Vn) = ker

 V1
...

Vn

 = ker T = {0},

which is a contradiction, becauseM is nontrivial. Thus, we have

V1PV2 · · · PVnM 6= {0}.
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SinceM ∈ Lat(PVi) for i = 1, 2, . . . , n, we know have

P(V1PV2 · · · PVnM) ⊆M.

Since P is injective, (V1PV2 · · · PVnM) 6= H. Therefore, (V1PV2 · · · PVnM) is
nontrivial.

Now, by (2.1), we have that for each i,

Ti(V1PV2 · · · PVnM) = ViP(V1PV2 · · · PVnM)

= V1PV2 · · · PVn(PVi)M = (V1PV2 · · · PVn)(T̂D
i M)

⊆ V1PV2 · · · PVnM⊆ (V1PV2 · · · PVnM),

i.e.,
Ti((V1PV2 · · · PVnM)) ⊆ (V1PV2 · · · PVnM).

Hence, (V1PV2 · · · PVnM) is a nontrivial invariant subspace for T.
(⇐) LetN be a common nontrivial invariant subspace for T = (T1, . . . , Tn).

Then, since P is injective, (PN ) 6= {0}. Next, suppose that (PN ) = H. Since
T1 is a quasi-affinity, V1H must be dense in H. So V1((PN )) = V1H is dense in
H. On the other hand, since T1N ⊆ N , we have that V1(PN ) ⊆ N . So H ⊆ N ,
which is a contradiction. Hence, (PN ) 6= H.

Now, for each j, we consider

T̂D
j (PN ) = PVjP(N ) = PTj(N ) ⊆ PN ⊆ (PN ),

i.e.,
T̂D

j ((PN )) ⊆ (PN ).

Therefore, (PN ) is a nontrivial common invariant subspace for T̂D.
Case 2. Suppose ker(Ti) 6= {0} for some i ∈ {1, 2, . . . , n}. Since Ti and Tj

commute for i, j = 1, 2, . . . , n,

TiTjx = TjTix = 0 for all x ∈ ker(Ti),

i.e.,
Tj(ker(Ti)) ⊆ ker(Ti) for j = 1, 2, . . . , n.

Therefore, ker(Ti) is a common invariant subspace for T.
On the other hand, we consider two subcases, that is, ker(P) 6= {0} or

ker(P) = {0}. Let ker(P) 6= {0}. Since ker(V1) ∩ · · · ∩ ker(Vn) = ker

 V1
...

Vn

 =

ker P,
T̂D

j (ker P) = PVj(ker P) = 0 ⊆ ker P

for j = 1, 2, . . . , n. Hence, T̂D has a common nontrivial invariant subspace. Let
ker(P) = {0}. Then, P(ker Ti) 6= {0}. If (P(ker(Ti))) = H, then

Vi[P(ker(Ti))] = Ti(ker(Ti)) = 0,
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so that, Vi = 0, that is, Ti = 0. Thus, we have derived a contradiction to our
assumption that Ti 6= 0. Therefore, (P(ker(Ti))) 6= H. Therefore, we have

(P(ker(Ti))) 6= {0},H.

Now, we have for j = 1, 2, . . . , n,

T̂D
j (P(ker(Ti))) = (PVj)(P(ker(Ti))) = PTj(ker(Ti))

⊆ P(ker(Ti)) ⊆ (P(ker(Ti))).

Hence, (P(ker(Ti))) is a common nontrivial invariant subspace for T̂D. Therefore,
we have the desired result.

REMARK 2.27. (i) By Proposition 2.3, we can see that T̃D has a common
nontrivial invariant subspace if and only if T does, whenever T is a doubly-
commuting n-tuple of quasi-affinities. To see this, let T be a doubly commuting
n-tuple of quasi-affinities. Lemma 2.2 shows that for i = 1, 2, . . . , n

(U1 · · ·Un)T̃D
i = Ti(U1 · · ·Un) and(2.23)

T̃D
i (|T1||T2| · · · |Tn|) = (|T1||T2| · · · |Tn|)Ui|Ti| = (|T1||T2| · · · |Tn|)Ti.(2.24)

If K ∈ Lat(T̃D) is nontrivial, then by (2.23), we have that for i = 1, 2, . . . , n,

Ti(U1 · · ·UnK) = (U1 · · ·Un)T̃D
i K ⊆ U1 · · ·UnK ⇒ (U1 · · ·UnK) ∈ Lat(T).

Since U1, . . . , Un are unitary, (U1 · · ·UnK) is nontrivial. On the other hand, if
L ∈ Lat(T) is nontrivial, then by (2.24) we obtain

(|T1||T2| · · · |Tn|L) ∈ Lat(T̃D).

Since each |Ti| is quasi-affinity, |T1||T2| · · · |Tn|L 6= {0}. Lemma 2.2 shows that

T1 · · · TnL ⊆ L ⇒ U1 · · ·Un(|T1| · · · |Tn|L) ⊆ L.

Since U1 · · ·Un is unitary, |T1||T2| · · · |Tn|L can not be dense inH. Thus,

(|T1||T2| · · · |Tn|L)

is a common nontrivial invariant subspace for T̃D.
(ii) We also see that T̃D has a common nontrivial invariant subspace if and only

if T does, whenever T is an isometrically commuting n-tuple of operators of quasi-
affinities. To see this, let T be an isometrically commuting n-tuple of operators of
quasi-affinities. IfW is a common nontrivial invariant subspace for T̃D, then by
Proposition 2.3 and similar arguments introduced in Theorem 2.26 and the above
(i), we can show that (U1|T1|U2|T2| · · ·UnW) is a common nontrivial invariant
subspace for T. On the other hand, if V is a common trivial invariant subspace for
T, then we can also show that (|T1|V) is a common nontrivial invariant subspace
for T̃D.
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(iii) If we assume that T̃D is commuting, then by Remark 2.25, the above re-
sults (i) and (ii) can be extended to a commuting n-tuple of operators with dense
ranges.

We next study Lat(T), Lat(T̂D), and Lat(T̃D). The following examples show
that there are many commuting pairs T = (T1, T2) such that Lat(T) and Lat(T̂D)
are isomorphic. However, we can prove that there are examples in which Lat(T)
and Lat(T̃D) are not isomorphic.

EXAMPLE 2.28. (i) Consider a Hilbert space H and a set B ⊆ B(H). Let the
commutant of B denoted by

B′ := {A ∈ B(H) : [A, B] = 0 for all B ∈ B}.
Let T = (T1, T2) be a commuting pair of operators, where T2 is an isometry, (e.g.,
the unilateral shift) and T1 ∈ {T2}

′
. Then,

P2 = T∗1 T1 + T∗2 T2 =
√

T∗1 T1 + I

is invertible. Hence, the polar decomposition for T is

T=(V1P, V2P)=
(

T1

√
T∗1 T1 + I

−1√
T∗1 T1 + I, T2

√
T∗1 T1 + I

−1√
T∗1 T1 + I

)
and

T̂D=(PV1, PV2) =
(√

T∗1 T1 + IT1

√
T∗1 T1 + I

−1
,
√

T∗1 T1 + IT2

√
T∗1 T1 + I

−1)
.

Therefore, we get

Lat (T̂D) = Lat
(√

T∗1 T1 + IT1

√
T∗1 T1 + I

−1)
∩ Lat

(√
T∗1 T1 + IT2

√
T∗1 T1 + I

−1)
= Lat (T1) ∩ Lat(T2) = Lat (T).

(ii) We consider the polar decomposition of A = U|A| ∈ B(H). Let

T1 =

(
0 0
A 0

)
and T2 =

(
0 0
1 0

)
onH⊕H.

Then, T∗1 T1 =
( 0 0

A∗A 0

)
, and so |T1| =

(
0 0
|A| 0

)
. Hence,

T1 =

(
0 0
U 0

)(
|A| 0
0 0

)
is the polar decomposition of T1 and

T2 =

(
0 0
1 0

)(
1 0
0 0

)
is the polar decomposition of T2, respectively. Note that T̃D

i = 0 (i = 1, 2) and
T1T2 = T2T1 = 0, so that (T1, T2) is a commuting pair and T̃D = (T̃D

1 , T̃D
2 ) has

all subspaces of H ⊕H as common invariant subspaces. However, T does not
have H ⊕ {0} as a common invariant subspace. Thus, Lat(T) and Lat(T̃D) are
not isomorphic.



104 JAEWOONG KIM AND JASANG YOON

We conclude this section with problems of independent interest. On the
basis of Remark 2.27 and Example 2.28(i), it is natural to pose the following con-
jecture.

CONJECTURE 2.29. For a commuting n-tuple T, we have:
(i) T̃D has a common nontrivial invariant subspace if and only if T does;

(ii) Lat(T) and Lat(T̂D) are isomorphic.
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