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1. INTRODUCTION

The well-known inequality, valid for p > 1 and 1/p + 1/q = 1, named after
W.H. Young, is usually stated as

αβ 6
1
p

αp +
1
q

βq

for any α, β ∈ R+, with equality if and only if αp = βq.
In this paper, we establish an analogue for the case of equality in the setting

of operators affiliated to semi-finite von Neumann algebras. For more references
and further discussion on the subject of Young’s inequality for matrices and op-
erators, we refer the reader to [2] for the proof for compact, trace class operators,
and to [14] where the proof is given for the case of compact operators in B(H),
the discrete (or atomic measure) case, of this fact. We also remark that it was the
fundamental paper by T. Ando [1] which initiated the study of Young’s inequality
for the singular values of n× n matrices.

The emphasis in this paper is in the measure theoretic approach to oper-
ators affiliated with a semi-finite von Neumann algebra, since the approach by
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induction used in [14] is not at hand. The inequality for s-numbers of operators
a, b affiliated with a semi-finite von Neuman algebra A, is stated as

(1.1) µs(ab∗) 6 µs

( 1
p
|a|p + 1

q
|b|q
)

, s > 0

and extended here to unbounded operators; we are interested in the case of equal-
ity.

We remark that this result includes all semi-finite von Neumann algebrasA,
since by a standard tensor product technique ([9], p. 286) we can always embed
A into the diffuse algebra A⊗L ∞([0, 1], dt) without altering the s-numbers.

This paper is organized as follows: Section 2 presents the general facts about
s-numbers recalling the well-known and establishing some simple lemmas used
later. Section 3 deals with some simplifications and reductions of the problem
to deal with it in full generality. Section 4, after certain technical propositions,
contains the main result of this paper, Theorem 4.7, which states that equality
holds for all s-numbers in (1.1) if and only if |a|p = |b|q, or equivalently, if equality
of norms

‖ab∗‖E =
∥∥∥ 1

p
|a|p + 1

q
|b|q
∥∥∥

E

holds for some strictly increasing symmetric norm ‖ · ‖E (definition given in Sec-
tion 4.1, just before the main theorem).

2. SINGULAR NUMBERS IN VON NEUMANN ALGEBRAS

In this paper A stands for a finite or semi-finite von Neumann algebra with
faithful normal trace τ, which when convenient we will assume represented in a
complex Hilbert spaceH. The set of (self-adjoint) projections inAwill be denoted
by P(A).

We consider the topology of convergence in measure in A: a neighbourhood
of 0 is given by

V(ε, δ) = {x ∈ A : ∃ p ∈ P(A) such that τ(1− p) < δ and ‖xp‖ < ε}.

We will denote by Ã the completion in measure of A, therefore Ã is the ring of
τ-measurable operators affiliated with A.

If x is a closed, densely defined operator and B ⊂ R>0 is a Borelian set, we
denote px(B) = χB(|x|). Let px(s,+∞) = χ(s,+∞)(|x|) denote the range projec-
tions of x. Then from the very definition of Ã, if a ∈ Ã the number τ(pa(s,+∞))
is eventually finite, and moreover τ(pa(s,+∞))→ 0 when s→ ∞.

Hence if the polar decomposition of a closed densely defined operator a
is a = u|a|, we have a ∈ Ã if and only if the partial isometry u ∈ A, and all
the spectral projections pa(B) = χB(|a|) are in Ã (in particular |a|p ∈ Ã for all
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1 6 p < ∞, see for instance Nelson’s paper [17], Section 3, and the paragraph
before it).

We remark that in the atomic case, convergence in measure reduces to the
norm topology, therefore Ã = A in that case.

2.1. s-NUMBERS. For x ∈ Ã and s > 0, we denote the s-th singular number of x
by µs(x):

µs(x) = inf{‖ |x| p‖ : p ∈ P(A) with τ(1− p) 6 s}.
The standard reference on the subject of s-numbers is the paper by Fack and
Kosaki [9].

We remark that lim
s→0+

µs(x) = ‖x‖ including the posibility of +∞ when x is

unbounded.
We comment here on some useful characterizations (Proposition 3.1 in [11]

and Proposition 2.2, Lemma 2.5, Proposition 3.1 in [9]).

(•) The variational (min-max) characterization:

(2.1) µs(x)= inf
p∈P(A) ,τ(1−p)6s

[
sup

ξ∈Ran (p) ,‖ξ‖=1
〈xξ, ξ〉

]
= sup

p∈P(A) ,τ(p)>s

[
inf

ξ∈Ran (p) ,‖ξ‖=1
‖xξ‖

]
.

(•) The distribution characterization: if px(s,+∞) = χ(s,+∞)(|x|) denote the
range projections of |x|, then

µt(x) = min{s > 0 : τ(px(s,+∞)) 6 t}.

(•) For x ∈ Ã, the following are equivalent:
(i) τ(px(t,+∞)) < +∞ for all t > 0;

(ii) lim
t→∞

µt(x)→ 0;

(iii) there exists a sequence of bounded operators xn ∈ L 1(A) such that
xn → x in the measure topology.

REMARK 2.1. If any of (i)–(iii) in the last characterization is fulfilled, we say
that x is τ-compact; these operators form a complete bilateral ideal in Ã that we
will denote by K (Ã); note that a τ-compact operator is not necessarily bounded.
We will denote with K (Ã)+ the positive (x > 0) τ-compact operators.

In the atomic case (when A = B(H)), we recover the ordinary compact
operators K (H). If {λk(x)}k∈N0 denotes the usual singular values of x (i.e. the
eigenvalues of |x|), and we arrange them in a right-continuous decreasing func-
tion which is constant on [k, k + 1), then we obtain the distribution function µs(x)
as follows:

µs(x) = ∑
k∈N0

λk χ[k,k+1)(s).

In this lemma we collect some other known facts on s-numbers that we will
use later.
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LEMMA 2.2. Let x, y ∈ A, a, b ∈ Ã. Then for each s > 0,
(i) µs(xay) 6 ‖x‖ ‖y‖µs(a), and if a 6 b then µs(a) 6 µs(b);

(ii) µs(|ab∗|) = µs(| |a| |b| |);
(iii) µs+t(a + b) 6 µs(a) + µt(b), s, t > 0;
(iv) if p ∈ P(A) then µs(ap) = 0 for each s > τ(p);

(v) τ(|a|) =
∞∫
0

µs(a)ds;

(vi) if a, b > 0, a ∈ K (Ã), ab = 0 and µs(a + b) = µs(a) for all s > 0, then b = 0.

Proof. The first assertion is a consequence of the min-max characterization
of the s-numbers. To prove the second, note that if b = ν|b| is the polar decom-
position of b, a straightforward computation using the functional calculus shows
that

|ab∗| = ν| |a| |b| |ν∗ and | |a| |b| | = ν∗|ab∗|ν.
Then by the first item we obtain µs(|ab∗|) = µs(| |a| |b| |). The proof of the third,
fourth and fifth assertion is due to Fack and Kosaki and can be found in their orig-
inal paper ([9], Lemmas 2.5, 2.6 and Proposition 2.7). The final assertion seems
evident, but requires some proof though. For t > 0, let pa[t,+∞) = χ[t,+∞)(a) be
the spectral projections of a, and likewise for b, a + b. Then µs(a + b) = µs(a) for
all s > 0 implies (since a is τ-compact and ab = 0) that

τ(pa(t,+∞)) = τ(pa+b(t,+∞)) = τ(pa(t,+∞)) + τ(pb(t,+∞))

for all t > 0 (cf. Corollary 2.9 of [9]). Therefore τ(pb(t,+∞)) = 0 for all t > 0,
implying b = 0.

3. DIFFUSE ALGEBRAS

Recall that an algebra is diffuse if it has no minimal projections. Following
Fack and Kosaki ([9], p. 286) we can always embed A into the diffuse algebra
A⊗L ∞([0, 1], dt) without altering the s-numbers. Then, the following remark
([9], Lemma 2.1) will be useful later.

REMARK 3.1. If A is diffuse and x > 0 is τ-measurable, then for each t > 0

sup{τ(xp) : p ∈ P(A), τ(p) 6 t} =
t∫

0

µs(x)ds.

3.1. COMPLETE FLAGS. If 0 6 x ∈ K (Ã) and A is a diffuse von Neumann al-
gebra, there exists an increasing assignment R>0 3 t 7→ et ∈ P(A) (es 6 et for
s 6 t) such that τ(et) = t for all t > 0 and

x =

∞∫
0

µs(x)de(s).



YOUNG’S INEQUALITY FOR SINGULAR NUMBERS 161

Note the analogy with the atomic case, where x = ∑
k∈N

λk(x)pk with pk the projec-

tion to the λk eigenspace of x, and we assume the eigenvalues are arranged in decrasing
order.

Since e0 = 0, we denote e(s, t) = et − es for s 6 t ∈ R>0 and since A is
diffuse,

et − es = e(s, t) = e[s, t) = e(s, t] = e[s, t].

The spectral resolution {et}t>0 is called a complete flag for x; for more details on
this useful constructions in diffuse semi-finite algebras, we refer the reader to the
papers [3], [4] by Argerami and Massey. In particular, for each t > 0,

t∫
0

µs(x)ds = τ(xet).

3.2. EQUALITY OF SINGULAR NUMBERS, τ-COMPACT OPERATORS. Let (A, τ) be
a semi-finite von Neumann algebra with semi-finite trace (τ(1) = +∞ here). In
Theorem 1 of [10] Farenick and Manjegani proved the remarkable Young’s in-
equality for the s-numbers: if p > 1, 1/p + 1/q = 1, and a, b ∈ A, then

(3.1) µs(ab∗) 6 µs

( 1
p
|a|p + 1

q
|b|q
)

for all s > 0. We now extend the inequality and the conjecture to unbounded
operators.

THEOREM 3.2. Let a, b ∈ Ã, then for each s > 0

(3.2) µs(ab∗) 6 µs

( 1
p
|a|p + 1

q
|b|q
)

.

Proof. Let a = u|a|, b = ν|b| be the polar decompositions of a, b. Approx-
imating |a|, |b| in measure from below with bounded operators xn, yn > 0, we
have for each s > 0

µs(xnyn) 6 µs

( 1
p

xp
n +

1
q

yq
n

)
6 µs

( 1
p
|a|p + 1

q
|b|q
)

by (3.1) applied to the pair xn, yn and Lemma 2.2(i). Since xn 6 |a|, yn 6 |b|, it is
easy to check that |xnyn| 6 | |a| |b| |; since |ab∗| = ν| |a| |b| |ν∗, then µs(xnyn) 6
µs(ab∗). Since xnyn converges in measure to |a| |b|, then by Lemma 3.4 of [9],

lim
n

µs(xnyn) = µs(ab∗)

for each s > 0, proving the claim.

The purpose of this paper is to attack the following conjecture.
Let p, q > 1 with 1/p + 1/q = 1. Does

(3.3) µs(ab∗) = µs

( 1
p
|a|p + 1

q
|b|q
)
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for all s > 0 imply |a|p = |b|q?

REMARK 3.3. If the algebra A is atomic, we have already answered in the
affirmative the conjecture in Theorem 2.12 of [14]. There, we used the existence
of eigenvectors for each non-trivial eigenvalue. In this paper we will be dealing
with the continuous case (that contains the previous one, see Section 3), using
continuous techniques.

3.3. SOME RESTRICTIONS AND SIMPLIFICATIONS. To make sense out of the con-
jecture (3.3), we should ask for a complete description of an operator in terms of
its s-numbers. We therefore think that it is natural to confine the conjecture to the
ideal K (Ã) of τ-compact operators (Remark 2.1).

In fact, it is known that for x ∈ K (Ã)+,

σ(x) = clos{µs(x) : s > 0}

(see Theorem 4.10 of [19]). On the other hand, if e, f are disjoint and infinite
projections (τ(e) = τ( f ) = ∞), taking x = e+ (1/2) f shows that σ(x) = {1/2, 1}
while µs(x) = 1 for all s > 0, therefore it is hopeless to recover x from the data in
µs(x).

Exchanging a with b, we can always assume that 1 < p 6 2. Since λs =
µs(|ab∗|) = µs(|a| |b|), we can safely assume that a, b > 0. Moreover, we can
assume (see Section 3) that A is diffuse and there exist complete flags et, qt ∈
P(A) (t > 0, τ(et) = τ(qt) = t) such that

(3.4) |ab| =
∞∫

0

λsde(s) and
1
p

ap +
1
q

bq =

∞∫
0

λsdq(s),

since a, b ∈ K (Ã)+ and τ-compact operators form a (closed in measure) ideal
of Ã.

Our arguments will be based on continuous majorization. We are therefore
interested in those operators that are locally integrable. More precisely, let 1 6
p < ∞, let x ∈ A and assume that there exists δ > 0 such that

δ∫
0

µs(x)pds < ∞

(hence the integral is finite for all finite δ > 0). We will denote the set containing
all these operators by L

p
loc(A) ⊂ Ã. Note that in particular, all bounded opera-

tors a ∈ A are of this class. Moreover,
δ∫

0

µs(x)pds > µδ(x)p−1
δ∫

0

µs(x)ds

shows that L
p

loc(A) ⊂ L 1
loc(A) for each p > 1.
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LEMMA 3.4. Let a ∈ Ã and p > 1. Then a ∈ L
p

loc(A) if and only if a ∈
L p(A) +A, and in that case the decomposition can be taken as follows for some r > 0:

(3.5) a = apa(r,+∞) + apa[0, r].

Proof. By polar decomposition, it suffices to consider a > 0. Note that
apa[0, r] 6 r ∈ A and since a ∈ A, eventually τ(pa(r,+∞)) < ∞ for some r > 0.
Likewise, for p > 1,

ap = ap pa(r,+∞) + ap pa[0, r].

These expressions imply the following (see Proposition 1.2 of [12]):

ap ∈ L 1
loc(A)⇔ ap ∈ L 1(A) +A ⇔ ∃r > 0 such that ap pa(r,+∞) ∈ L 1(A).

Note that then apa(r,+∞) ∈ L p(A) for the same r, therefore a ∈ L p(A) +A
by (3.5). On the other hand, if a = l + m ∈ L p(A) +A, then taking f (x) = xp

which is continuous, convex and increasing in [0,+∞),

t∫
0

µs(a)pds =
t∫

0

µs(l + m)pds 6
t∫

0

(µs(l) + µs(m))pds

by Lemma 4.4(iii) of [9]. Therefore for any t > 0

( t∫
0

µs(a)pds
)1/p

6
( t∫

0

(µs(l) + µs(m))pds
)1/p

6
( t∫

0

µs(l)pds
)1/p

+
( t∫

0

µs(m)pds
)1/p

6
( t∫

0

µs(l)pds
)1/p

+ ‖m‖t1/p < ∞

by the classical Minkowski inequality, therefore a ∈ L
p

loc(A). Take r = µt(a), and
note that for all s > 0,

µs(apa(r,+∞)) =

{
µs(a) 0 < s < t,
0 s > t,

therefore (3.5) gives the stated decomposition.

4. MAIN RESULTS

We start by examining the ranges of a, b. Throughout, p, q are positive with
1/p + 1/q = 1.
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PROPOSITION 4.1. Let 0 6 a, b ∈ K (Ã) with ab ∈ L 2
loc(A). If p 6= 2 and

µs(ab) = µs

( 1
p

ap +
1
q

bq
)

for all s > 0

then Ran (a) = Ran (b).

Proof. Exchanging a, b it will suffice to consider 1 < p < 2. Let pb be the
projection onto the closure of the range of b. Let bε = b + ε(1− pb), then bq

ε =
bq + εq(1− pb) and b2

ε = b2 + ε2(1− pb). Fix t > 0, let {es} be a complete flag for
|ba|, then denoting λs = µs(ab) we have

t∫
0

λ2
s de(s) + ε2eta(1− pb)aet = et|ba|2et + ε2eta(1− pb)aet = et|bεa|2et.

Taking the trace, it follows that

t∫
0

λ2
s ds + ε2τ(eta(1− pb)aet) = τ(et|bεa|2) 6

t∫
0

µs(|bεa|)2

by Remark 3.1. On the other hand, by (3.2) applied to a, bε,

µs(|bεa|) 6 µs

( 1
p

ap +
1
q

bq
ε

)
= µs

( 1
p

ap +
1
q

bq +
1
q

εq(1− pb)
)

6 µs

( 1
p

ap +
1
q

bq
)
+

1
q

εq = µs(ab) +
1
q

εq = λs +
1
q

εq.

Note that in particular, all the integrals computed up to now are finite by the
hypothesis on ab, and

t∫
0

λ2
s ds + ε2τ(eta(1− pb)aet) 6

t∫
0

λ2
s ds +

1
q2 tε2q +

2
q

εq
t∫

0

λsds.

Canceling
t∫

0
λ2

s ds and dividing by ε2, noting that q > 2 and letting ε → 0 gives

us that τ(eta(1− pb)aet) = 0. Since the trace is faithful, we conclude that (1−
pb)aet = 0 or equivalently, aet = pbaet for all t > 0. Then

pba|ba| = pba
∞∫

0

λtde(t) =
∞∫

0

λt pbade(t) =
∞∫

0

λtade(t) = a|ba|,

that is a(Ran |ba|) ⊂ Ran (b).
Now if ξ ∈ H, then a|ba|ξ ∈ Ran (b), therefore a2|ba|ξ = a(a|ba|ξ) ∈

aRan (b) ⊂ Ran (ab) = Ran |ba|, and

a3|ba|ξ = a(a2|ba|ξ) ∈ aRan |ba| ⊂ Ran (b).
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Iterating this argument, we arrive to the conclusion that

a2n+1(Ran |ba|) ⊂ Ran (b)

for all n ∈ N0. Using an approximation of f = χσ(a) by odd functions, we
conclude that pa(Ran |ba|) = f (a)(Ran |ba|) ⊂ Ran (b) where pa is the projec-
tion onto the closure of the range of a. Therefore |ba|2ξ = ab2aξ = paab2aξ =

pa|ba|2ξ ⊂ Ran (b), which gives Ran |ba| = Ran (|ba|2) ⊂ Ran (b). But then

aRan (b) = Ran (ab) = Ran |ba| ⊂ Ran (b)

which proves that the range of b is invariant for a; since a > 0 the same is true
for the kernel of b. Therefore we can write a = ab + a⊥, with ab = pbapb > 0 and
a⊥ = (1− pb)a(1− pb) > 0. Note that ba2b = ba2

bb and ap = ap
b + ap

⊥, thus for all
s > 0,

µs

( 1
p

ap
b +

1
q

bq
)
6 µs

( 1
p

ap
b +

1
q

bq +
1
p

ap
⊥

)
= µs

( 1
p

ap +
1
q

bq
)
= µs(ab)

= µs(abb) 6 µs

( 1
p

ap
b +

1
q

bq
)

by the hypothesis and (3.2) applied to ab, b. This proves that for all s > 0

µs

( 1
p

ap
b +

1
q

bq
)
= µs

( 1
p

ap
b +

1
q

bq +
1
p

ap
⊥

)
which (by Lemma 2.2.5) is only possible if a⊥ = 0, proving the assertion of the
proposition.

The following will be used twice throughout the proof of the main theorem,
therefore we preferred to state it as a separate lemma.

LEMMA 4.2. Let 0 6 x ∈ L 1
loc(A) and p ∈ A be a projection with finite trace.

Then

τ(px) =

τ(p)∫
0

µs(x)ds

implies xp = px.

Proof. Since p is a projection and x > 0,

(pxp)2 = pxpxp 6 px2 p = |xp|2.

Since the square root is operator monotone (see Theorem 2 of [13] for the details
for unbounded operators), we have pxp 6 |xp|. Take the trace and invoke items
(iv) and (v) of Lemma 2.2, then

τ(|xp|) =
∞∫

0

µs(xp)ds =

τ(p)∫
0

µs(xp)ds 6

τ(p)∫
0

µs(x)ds,
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thus by the hypothesis pxp and |xp| have equal (and finite) trace. Since the trace
is faithful this is only possible if pxp = |xp|, or equivalently if pxpxp = px2 p.
This implies that

〈px, xp〉2 = τ(pxpx) = τ(px2 p) = ‖px‖2
2 = ‖px‖2‖xp‖2,

which by the case of equality in Cauchy–Schwarz inequality implies xp = px.

We will also need the following classical result on operator ranges, in fact
the original proof of Douglas ([7], Theorem 2) is given for closed, densely defined
operators and therefore it applies to elements of Ã.

REMARK 4.3 (Douglas’ lemma). Let x, y ∈ Ã. If xx∗ 6 λyy∗ for some λ > 0,
there exists a contraction c such that x = yc, therefore Ran (x) ⊂ Ran (y).

With these tools at hand, we are now able to prove the main theorem.

THEOREM 4.4. Let 0 6 a, b ∈ K (Ã) with ab ∈ L 2
loc(A). If

µs(ab) = µs

( 1
p

ap +
1
q

bq
)

for all s > 0,

then ap = bq. When p = q = 2 it suffices to assume ab ∈ L 1
loc(A).

Proof. Exchanging a, b it will suffice to consider 1 < p 6 2. Denoting λs =

µs(ab) we write ba2b = |ab|2 =
∞∫
0

λ2
s de(s) with a complete flag {es}s>0 ⊂ P(A).

For I = [s, t] ⊂ [0,+∞) denote eI = es − et = e(s, t), then et = e[0,t]. Since λs is
non-increasing,

(4.1) ba2b = ba(ba)∗ = |ab|2 =

∞∫
0

λ2
s de(s) >

∫
I

λ2
s de(s) > λ2

t

t∫
s

de(s) = λ2
t eI ,

and the previous lemma ensures that Ran (eI) ⊂ Ran (|ab|) = Ran (ba) ⊂ Ran (b)
for each interval I = [s, t]. Moreover, if e =

∨
s>0

es is the join of the increasing

projections, clearly e = p|ab|, the projection onto the closure of the range of |ab|.
We now treat three cases separately.
Case 4/3 6 p < 2. By Proposition 4.1 we can consider H = Ran (a) =

Ran (b), and the semi-finite von Neumann subalgebraM ⊂ A generated by the
(finitely supported) spectral projections of a, b, ab. We giveM the inherited trace
τ and identity 1 = 1M = PH = pb. All the operators involved a, b, ab, ap, bq are
in M̃, and M can be faithfully represented in this B(H). Then we can safely
assume that b is injective, e, eI ∈ M for each interval I, andM⊂ H is a common
core for all x ∈ M̃.

We remark that in what follows, we will only use that b is injective, or equiva-
lently, that the range of b is dense.



YOUNG’S INEQUALITY FOR SINGULAR NUMBERS 167

Again for each interval I, let HI be the closure of b−1Ran (eI) ⊂ H. Let
f I = PHI and f =

∨
s>0

fs the closed join of all projections, where fs = f[0,s]. We

divide the proof in several smaller claims.

Claim 1. f = pa, the projection onto the closure of the range of a. Let η ∈
Ran ( fs); then η = lim

n
ηn with bηn = esξn; since Ran (es) ⊂ Ran (|ab|) = Ran (ba),

it must be bηn = baψn for some ψn ∈ H, and by the injectivity of b, we obtain
ηn ∈ Ran (a), therefore η ∈ Ran (a). This proves that f 6 pa. On the other hand, if
η ∈ Ran (a), then bη ∈ Ran (ba) = Ran |ab| ⊂ Ran (e), therefore bη = lim ξn with
ξn ∈ Ran (esn) for some sn > 0. Therefore ξn = bηn with ηn ∈ Ran ( fsn) ⊂ Ran ( f )
for each n. Now

|〈ηn − ηm, bξ〉| = |〈bηn − bηm, ξ〉| = |〈ξn − ξm, ξ〉| 6 ‖ξn − ξm‖‖ξ‖

and since the range of b is dense, {ηn}n is a weak Cauchy sequence in Ran ( f )
which, being closed and linear, it is weakly closed. Therefore ηn converges weakly
to some η0 ∈ Ran ( f ). But for each ξ ∈ H,

〈bη, ξ〉 = lim
n
〈bηn, ξ〉 = lim

n
〈ηn, bξ〉 = 〈η0, bξ〉 = 〈bη0, ξ〉,

which implies that bη = bη0, and by the injectivity of b, we obtain η = η0 ∈
Ran ( f ), thus pa 6 f . This proves that f = pa.

Claim 2. There exists a closed operator cI = ”b−1eIb−1” defined on Ran (b) such
that 0 6 cI 6 (1/λ2

t )a2. Since b is injective and Ran (eI) ⊂ Ran (b), for each ξ ∈ H
there exists a unique η ∈ HI such that bη = eIξ. Define cI in Ran (b) as follows:
cIbξ = η. We now compute

〈cIbξ1, bξ2〉 = 〈η1, bξ2〉 = 〈bη1, ξ2〉 = 〈eIξ1, ξ2〉

which shows that cI is a symmetric operator on Ran (b). Moreover, since eI 6
(1/λ2

t )ba2b (recall I = [s, t] and equation (4.1)), it follows that

〈cIbξ, bξ〉 = 〈η, bξ〉 = 〈eIξ, ξ〉 6 1
λ2

t
〈ba2bξ, ξ〉 = 1

λ2
t
〈a2bξ, bξ〉,

therefore cI has a self-adjoint extension (cf. Theorem 5.1.13 of [18], that we still
denote cI), and 0 6 cI 6 (1/λ2

t )a2.

Claim 3. cI ∈ M̃. Let u ∈ M′, let ξ ∈ H. Then there exist unique η, ψ ∈ H
such that eIξ = bψ and eI(uξ) = bη. Now eIuξ = ueIξ since u ∈ M′, therefore

bη = eIuξ = ueIξ = ubψ = buψ,

and since b is injective, uψ = η. We now compute

cIu(bξ) = cIb(uξ) = η = uψ = u(cIbξ) = ucI(bξ),

which shows that cIu = ucI , proving that cI ∈ M̃.
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Claim 4. bcIb = eI , eIb f I = b f I and f Ib2 f IcI = f I for each I. From the very
definition, bcIb = eI . On the other hand note that if η ∈ f I then η = lim

n
ηn with

bηn ∈ Ran (eI) and for any ξ ∈ H

|〈bηn − bη, ξ〉| = |〈ηn − η, bξ| 6 ‖ηn − η‖‖bξ‖

therefore bηn ∈ Ran (eI) converges weakly to bη, therefore bη ∈ Ran (eI) and we
obtain eIb f I = b f I . Taking adjoints, f Ib = f IbeI , hence for each ξ ∈ H,

f Ib2 f IcI(bξ) = f Ib2 f Iη = f Ib2η = ( f Ib)(bη) = ( f Ib)(eIξ) = f I(bξ),

which proves that f Ib2 f IcI = f I for any I.

Claim 5. f IcJ = cJ f I for any I, J. Since when eIξ = bη, then η ∈ Ran ( f I),
clearly f IcI = cI = cI f I . Moreover it is not hard to see that f IcJ = cI∩J for any
pair of intervals I, J by the injectivity of b, therefore f IcJ = cJ f I .

Claim 6. f I ∼ eI . Inspection of the ranges shows that (again by the injectivity
of b)

Ran (eI) = Ran (bcI) and Ran ( f I) = Ran (cIb),

and since cIb = (bcI)
∗, it follows that eI is von Neumann equivalent to f I , which

implies that f , f I ∈ M and moreover τ( f I) = τ(eI) for each I.
Summing up our findings: for any interval I = [s, t] ⊂ [0,+∞), we have

e, eI , f , f I ∈ P(M) with f I ' eI , τ( f I) = τ(eI) = t− s, eIb f I = b f I , f Ib = f IbeI .
Moreover cI ∈ M̃, bcIb = eI ,

(4.2) f IcJ = cI∩J = cJ f I , f Ib2 f IcI = f I = cI f Ib2 f I , a2>λ2
t cI and f I a2 f I >λ2

t cI .

Claim 7. ap fs = fsap for all s > 0. Let π = {Ii}i=1···n with Ii = [si, si+1] be a
partition of [0,+∞), and denote ei = eIi and likewise with fi, ci. We have

ba2b > ∑
i

∫
Ii

λ2
s de(s) > ∑

i
λ2

si+1
ei = ∑

i
λ2

si+1
bcib

which implies a2 > ∑
i

λ2
si+1

ci since b is injective with dense range. Now refining

the partition

〈a2bξ, bξ〉 = 〈ba2bξ, ξ〉 =
〈 +∞∫

0

λ2
s de(s)ξ, ξ

〉
= lim
|π|→0

〈
∑

i
λ2

si+1
eiξ, ξ

〉
= lim
|π|→0

〈
∑

i
λ2

si+1
ci bξ, bξ

〉
for any ξ ∈ H. Since the range of b is dense and the operators involved are
positive, we conclude that lim

|π|→0
∑
i

λ2
si+1

ci = a2 in the strong operator topology.

Since fsci = ci fs(= c[0,s]∩Ii
), we conclude that fsa2 = a2 fs for all s > 0, which

implies that ap fi = fiap for all i.
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We now take the p/2-th root in (4.2), which is a monotone operator function
since 1 < p < 2. Thus

(4.3) λ
p
si+1 cp/2

i 6 ap and λ
p
si+1 cp/2

i 6 fiap fi = ap fi.

Since 4/3 6 p < 2, this implies that 2 < q 6 4. Then t 7→ tq/2 is operator
convex ([18], Theorem 2.4) and ( fib2 fi)

q/2 6 fibq fi. By Young’s inequality in the
commutative algebra generated by ci, fi ([8], Lemma 2.2) we have:

λsi+1 fi = λsi+1 f 1/2
i = λsi+1 c1/2

i ( fib2 fi)
1/2

6
1
p

λ
p
si+1 cp/2

i +
1
q
( fib2 fi)

q/2

6
1
p

fiap fi +
1
q

fibq fi = fi

( 1
p

ap +
1
q

bq
)

fi = fiD fi,(4.4)

where D = (1/p)ap + (1/q)bq for short.

Claim 8. ftD = D ft for all t > 0. Assume that π is a partition of [0, t].
Summing over i, we obtain ∑

i
λsi+1 fi 6 ∑

i
fiD fi, and taking traces

∑
i

λsi+1(si+1 − si) 6 ∑
i

τ( fiD) = τ(D ft) 6

t∫
0

µs(D)ds =
t∫

0

λsds < ∞

by (3.4), Remark 3.1 and the assumption on a, b (recall L 2
loc(A) ⊂ L 1

loc(A)). Re-

fining the partition π, it follows that
t∫

0
λsds = τ(D ft). Since λs = µs(D) and

τ( ft) = t, Lemma 4.2 implies that ftD = D ft.

Claim 9. D =
∞∫
0

λsd f (s). Since t was arbitrary, fiD = D fi also holds. Re-

turning to the previous inequality (4.4) we now sum over i to obtain

∑
i

λsi+1 fi 6 ∑
i

fiD fi = ∑
i

fiD = ftD = ftD.

Let D =
∞∫
0

λsd f (s), then (1− f )D = 0 and D ft =
t∫

0
λsd f (s). Refining the parti-

tion π of [0, t] we obtain D ft 6 ftD, and since τ(D ft) = τ( ftD) =
t∫

0
λsds, it must

be D ft = D ft = ftD for each t > 0. Recall f =
∨
t

ft is the union of the projections

ft, then clearly D = D f = f D; on the other hand

µs(D) = λs = µs(D) = µs(D f + (1− f )D) = µs(D + (1− f )D)

and by Lemma 2.2.3 it is only possible if (1− f )D = 0, or equivalently D = D.
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Claim 10. a commutes with b, b commutes with all ft and bq f = bq. Since ap

commutes with all fs, then ap commutes with

D =

∞∫
0

λsd f (s) =
1
p

ap +
1
q

bq.

Then ap commutes with bq or equivalently, a commutes with b. Note that since
f = pa, then

1
p

ap +
1
q

bq = D = D f =
1
p

ap +
1
q

bq f ,

therefore bq f = bq. Since ap commutes with all ft and (1/q)bq = D − (1/p)ap,
then bq commutes with all ft.

Claim 11. ft = et for all t. Recall that for all t, b ft = etb ft, therefore ftbet =
ftb. Since ft commutes with b, b ftet = b ft; since b is injective, ftet = ft. Therefore
ft = ftet = et ftet 6 et, and since τ( ft) = τ(et) = t, it must be ft = et for all t.

Finally,

|ab| = ab =

∞∫
0

λsd f (s) =
1
p

ap +
1
q

bq.

Let at = a ft, bt = b ft, then (1/p)µs(at)p 6 µs(Dt) = λs ∈ L 1
loc(A) for 0 < s < t

and likewise with b. This means that ap
t , bq

t ∈ L 1
loc(A) and

|atbt| = atbt = ab ft =

t∫
0

λsd f (s) =
1
p

ap
t +

1
q

bq
t ,

and all the operators involved have finite trace. Farenick and Manjegani proved
that in that case (see Theorem 3.1 of [10] or Theorem 2.1 of [16]), it must be ap ft =
ap

t = bq
t = bq ft. We give here an alternative argument: taking traces

1
p
‖at‖p

p +
1
q
‖bt‖q

q = τ
( 1

p
ap

t +
1
q

bq
t

)
= τ(|atbt|) = ‖atbt‖1

6 ‖at‖p‖bt‖q 6
1
p
+ ‖at‖p

p +
1
q
‖bt‖q

q

by the operator Hölder inequality (applied to ‖atbt‖1) and Young’s numeric in-
equality (applied to ‖at‖p, ‖bt‖p). This implies ‖atbt‖1 = ‖at‖p‖bt‖q, and this is
only possible if ap

t = bq
t [5], [15]. Since this holds for all t > 0, ap = ap f = bq f = bq

as we claimed.
Case 1 < p < 4/3. This implies that q > 4, but since the ranges of a and b

still match by Proposition 4.1, we can assume that b is injective with dense range,
and the computation goes through the same lines, modifying the step regarding
the commutative operator Young inequality (4.4) according to Theorem 2 of [1]
or Proposition 2.3 of [8].
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Case p = q = 2. First note that

1
2

µs(a)2 6 µs

(1
2

a2 +
1
2

b2
)
= µs(ab) ∈ L 2

loc(A) ⊂ L 1
loc(A),

therefore µs(a) ∈ L 2
loc(A) and likewise with b. Proposition 4.1 is of no use here,

therefore it suffices to assume µs(ab) ∈ L 1
loc(A).

Let ã = (pba2 pb)
1/2. Then Ran (ã) ⊂ Ran (b) and bã2b = ba2b, therefore

|ãb| = |ab|. Hence

µs

(1
2

ã2 +
1
2

b2
)
= µs

(
pb

(1
2

a2 +
1
2

b2
)

pb

)
6 µs

(1
2

a2 +
1
2

b2
)
= µs(ab)

= µs(ãb) 6 µs

(1
2

ã2 +
1
2

b2
)

by (3.2) applied to the pair ã, b. Therefore, for all s > 0,

µs(ãb) = µs

(1
2

ã2 +
1
2

b2
)

.

Since Ran (ã) ⊂ Ran (b), we can assume that b is injective, and argumenting
as in the previous cases, arrive to ã2 = b2, that is pba2 pb = b2. In particular
µs(b)2 6 µs(a)2 for all s > 0. Reversing the argument, we also get pab2 pa = a2,
therefore µs(a) = µs(b) for all s > 0.

Let {bs}s>0 be a complete flag for b =
∞∫
0

µs(b)db(s) with τ(bt) = t. Then

for all t > 0, bt commutes with b, we have btb =
t∫

0
µs(b)db(s) and since bt 6 pb,

bt pb = bt. Therefore from pba2 pb = b2 we obtain bta2bt = btb2, which implies
that

τ(bta2) = τ(btb2) =

t∫
0

µs(b)2ds =
t∫

0

µs(a)2ds < ∞.

By Lemma 4.2, this is only possible if a commutes with bt. Therefore, if a com-
mutes with b, then from pab2 pa = a2 we have bpa = pab = a. But

µs(a) = µs(b) = µs(bpa + (1− pa)b) = µs(a + (1− pa)b)

implies (Lemma 2.2.6) b = pab = a.

REMARK 4.5. As the proof goes, it suffices to consider ab ∈ L 1
loc(A) if either

Ran (a) ⊂ Ran (b) or Ran (b) ⊂ Ran (a).

COROLLARY 4.6. Let 0 6 a, b ∈ A ∩K (Ã) and assume

µs(ab) = µs

( 1
p

ap +
1
q

bq
)

for all s > 0.

Then ap = bq.
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4.1. SYMMETRIC NORMS. We close the paper putting this result in context with
the theory of symmetric norms on Ã, see for instance [6] and the references
therein.

We say that a symmetric norm ‖ · ‖E is strictly increasing if x, y ∈ E ⊂ Ã,
µs(x) 6 µs(y) for all s > 0 and ‖x‖E = ‖y‖E implies µs(x) = µs(y) for all s > 0.
All L p-norms are strictly increasing for 1 6 p < ∞, while the uniform norm or

the Ky–Fan norms ‖x‖(t) =
t∫

0
µs(x)ds are not.

THEOREM 4.7. Let a, b ∈ K (Ã)∩L 2
loc(A). If p > 1 and 1/p + 1/q = 1, then

the following are equivalent:
(i) |a|p = |b|q;

(ii) z|ab∗|z∗ = (1/p)|a|p + (1/q)|b|q for some contraction z ∈ A;
(iii) ‖z|ab∗|w‖E = ‖(1/p)|a|p + (1/q)|b|q‖E for a pair of contractions z, w ∈ A

and ‖ · ‖E a strictly increasing symmetric norm;
(iv) µs(ab∗) = µs((1/p)|a|p + (1/q)|b|q) for all s > 0.

The proof is much like as in Theorem 2.13 of [14], therefore it is omitted.
As in Theorem 4.4, Remark 4.5 or Corollary 4.6, the hypothesis ab ∈ L 2

loc(A)
is unnecessary when ab is bounded, and can be relaxed to ab ∈ L 1

loc(A) if p =
q = 2 or if there is an inclusion of ranges.
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