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ABSTRACT. In this paper self-adjoint realizations of the formal expression
Aα := A + α〈φ, ·〉φ are described, where α ∈ R ∪ {∞}, the operator A is self-
adjoint in a Hilbert space H and φ is a supersingular element from the scale
space H−n−2(A)\H−n−1(A) for n > 1. The crucial point is that the spectrum
of A may consist of the whole real line.

We construct two models to describe the family (Aα). It can be interpreted
in a Hilbert space with a twisted version of Krein’s formula, or with a more
classical version of Krein’s formula but in a Pontryagin space. Finally, we
compare the two approaches in terms of the respective Q-functions.
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1. INTRODUCTION

Classical extension theory of symmetric operators answers the question if
a given symmetric operator possesses self-adjoint extensions (in the same space)
and if so, how many there are. In the work of von Neumann these extensions
are parametrized in terms of certain classes of unitary operators [12]. An equiv-
alent description in terms of Hermitian operators is due to Birman, Krein and
Vishik; for an exposition cf. [2]. Another parametrization of the family of such
self-adjoint extensions is also achieved via the classical Krein formula which ad-
ditionally describes their resolvents.

Another classical problem is the investigation of finite rank perturbations
of self-adjoint operators. In particular, given a self-adjoint operator A = A∗ in
a Hilbert space (H, 〈·, ·〉), one can consider rank one perturbations Aα formally
given by

Aα := A + α〈φ, ·〉φ,
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where the coupling parameter α is usually taken to be a real number or formally
∞ (the latter case is made more precise below (1.2)). The construction of Aα de-
pends on the singularity of the element φ: if φ is an element from the Hilbert
space then the perturbation is called regular and the perturbed operator is de-
fined on the same domain as the original operator. If φ lies outside the original
Hilbert space then the perturbation is called singular or supersingular, depending
on whether the perturbed operator can be defined in the original Hilbert space
or not. To charaterize such perturbations it is natural to assume that φ belongs
to a certain space H−m(A) for m ∈ N from the scale associated with the given
operator A. (We briefly recall the definition of the spaces (Hm(A))m∈Z in the Ap-
pendix.) The case of singular perturbations corresponds to φ ∈ H−2(A)\H and
is generally well-understood [1], [13]. We give a very brief recollection of this
below.

The cases φ ∈ H−n−2(A)\H−2(A) for n > 1 are fundamentally different.
The technique that works for H−1(A) and H−2(A) — namely, restricting A to
a certain subspace of H, treating the resulting symmetric operator and then em-
ploying extension theory to define the family of self-adjoint perturbations inside
the original Hilbert space — fails. The reason for this is that the symmetric oper-
ator one receives from the above procedure is already essentially self-adjoint and
thus has the unique self-adjoint extension A. Therefore such perturbations have
been called supersingular.

Nevertheless, one can find several approaches in order to interpret the for-
mal perturbations Aα. One such possibility is to move from the Hilbert space
H to a Pontryagin space setting [5]. Another possibility, albeit under the extra
assumption that A is semibounded, has been developed in a series of papers [8],
[9], [10]: here, the perturbations are modeled in a new Hilbert space H which
essentially contains the original space H. Additionally, (a certain finite number
of) elements of the form φz := (A− z)−1φ — which lie outside H — are added
into H so that Krein’s formula really does again involve φz, i.e., an expression
closely related to the perturbation φ. This formula then gives a parametrization
of the family of perturbed operators Aα. The semiboundedness of A enters in
such a way that real points z from the resolvent set of A can be used to define the
(necessary number of) elements φz. A comparison of the two models constructed
— Pontryagin and Hilbert space — can be found in [4].

The aim of this paper is to investigate how the assumption of A being semi-
bounded can be removed while still staying close to the spirit of the model for
semibounded operators. We give a short review of the results mentioned so far
in the following two Subsections 1.1 and 1.2, whereas in the last Subsection 1.3
we formulate in detail the question we investigate in this paper.

1.1. CLASSICAL AND SINGULAR PERTURBATIONS OF OPERATORS. We begin by
briefly recalling the cases of φ ∈ H (classical, regular) as well as φ ∈ H−2(A)\H
(singular), cf. for example [1], [13]. In the first instance, where φ belongs to the
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Hilbert space, the definition of

Aα := A + α〈φ, ·〉φ, α ∈ R,(1.1)

gives no difficulties and in terms of resolvents a straightforward calculation yields

(Aα − z)−1 = (A− z)−1 − 〈φz, ·〉
q(z) + 1/α

φz(1.2)

for z /∈ σ(A)∪ σ(Aα) with φz := (A− z)−1φ and q(z) := 〈φ, (A− z)−1φ〉. For the
parameter value α = ∞, i.e. the case of so-called infinite coupling, formula (1.2)
serves as a definition for A∞. Here and in the following we adopt the common
convention 1/∞ = 0 and 1/0 = ∞.

For a singular φ, that is φ ∈ H−2(A)\H the formal sum (1.1) needs to be
interpreted as an operator inH since the perturbation does not immediately make
sense. This can be achieved by looking at a symmetric restriction S of A, namely
the restriction to all u ∈ dom A such that 〈u, φ〉 = 0. It turns out that S has
deficiency indices (1, 1) so that the well-known extension theory for symmetric
operators can be applied: the self-adjoint extensions of S in H are parametrized
by Krein’s formula

(Aτ − z)−1 = (A− z)−1 − 〈φz, ·〉
q(z) + 1/τ

φz(1.3)

with φz as above and q(z) defined by the relation q(z)−q(z0)
z−z0

= 〈φz0 , φz〉. This
family of self-adjoint operators (Aτ)τ∈R∪{∞} can be used to give meaning to (1.1).
If φ ∈ H−1(A) and given a certain α, it is possible to pick out one particular Aτ to
define Aα. For φ ∈ H−2\H−1 such a direct definition is not possible — at least not
without additional assumptions — but the whole family of self-adjoint operators
(Aα)α∈R∪{∞} in (1.1) is identified with the family (Aτ)τ∈R∪{∞}.

1.2. SUPERSINGULAR PERTURBATIONS FOR SEMIBOUNDED OPERATORS. When
one tries the above procedure for elements φ ∈ H−n−2(A)\H−2(A) for n > 1
one finds that restricting A inH gives an essentially self-adjoint operator. Hence,
there is no family (Aτ) to define (1.1). One could of course then consider A as an
operator inHn(A) where a symmetric restriction as above will again have defect
indices (1, 1). However, it then remains unclear how φ and (1.1) are connected
to the self-adjoint extensions inside Hn(A). Thus, some different approach is
needed at this point.

In this section we shall briefly recall the operator model in the case of semi-
bounded operators. Detailed arguments and proofs can be found in [10].

In the following let A > 0 and φ ∈ H−n−2(A)\H−n−1 for a fixed n > 1. The
main idea is to still consider A in the smaller space Hn(A), where a symmetric
restriction to u ∈ dom A with 〈u, φ〉 = 0 has the properties we need. At the
same time, elements φz := (A − z)−1φ are added to the space so that they will
naturally appear in Krein’s formula. Due to the resolvent identity, it is enough to
add n such elements. Thus, choose distinct points µ1, . . . , µn < 0 and define:
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the polynomial

b(z) :=
n

∏
k=1

(z− µk),(1.4)

the diagonal matrix

M := diag(µ1, . . . , µn),(1.5)

the set of coefficients from the partial fraction decompostion of b(z)−1

aj :=
n

∏
k=1, k 6=j

1
µj − µk

, ~a := (a1, . . . , an),(1.6)

the n elements

g(µi) :=
1

A− µi
φ ∈ H−n.(1.7)

Formally, these then solve (A − µi)g(µi) = φ. Finally, for some number µ < 0
distinct from the µi above, we define also the element

G(µ) :=
1

A− µ

n

∏
k=1

1
A− µk

φ ∈ Hn.(1.8)

Note that the µi are chosen “to the left of the spectrum” of A such that
the polynomial b(z) is positive on σ(A). Hence, instead of the standard scalar
product 〈 f , g〉Hn = 〈 f , (A + 1)ng〉H in Hn the equivalent one 〈 f , b(A)g〉H can be
used. Furthermore, a positive definite Gram matrix Γ can be chosen such that
ΓM = MΓ, e.g., by taking a diagonal matrix with positive entries.

A Hilbert space is then given as

H := Hn ⊕Cn(1.9)

with elements H 3 U = (U,~u) and scalar product

〈U,V〉H := 〈U, b(A)V〉H + 〈~u, Γ~v〉Cn .(1.10)

It is clear that H can be embedded in H−n via i(U,~u) := U +
n
∑

i=1
uig(µi). In this

new space, A gives rise to two operators.
First, the operator Amax is defined via the following procedure: consider the

operator A|{u∈Hn+2 :〈u,φ〉=0}, then one can calculate its triplet adjoint operator A†

with respect to the Gelfand triplet Hn ⊆ H ⊆ H−n, and finally restrict A† to H.
The operator Amin is then defined as the adjoint of Amax in H. It turns out that
these two operators act in the following way:

(i) on dom Amax = {U ∈ H : U = Ur + uG(µ), Ur ∈ Hn+2, u ∈ C}

Amax

(
Ur + uG(µ)

~u

)
=

(
AUr + µuG(µ)

M~u + u~a

)
;(1.11)
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(ii) on dom Amin = {U ∈ dom Amax : u = 0, 〈Γ~a,~u〉 = 〈φ, Ur〉}

Amin

(
Ur
~u

)
=

(
AUr

Γ−1MΓ~u

)
=

(
AUr
M~u

)
.(1.12)

Due to Γ and M commuting Amin is symmetric with deficiency indices (1, 1)
and the defect element can be calculated to be

Φ(z) :=
(

G(z)
− 1

M−z~a

)
for nonreal z. Embedded in H−n this is the element iΦ(z) = b(z)−1(A− z)−1φ.
From this point on, classical extension theory can be employed to find all self-
adjoint extensions of Amin in H. In [10] this is achieved via restricting Amax by
certain conditions. This gives the operator family Aθ , θ ∈ [0, π), defined on the
sets

dom Aθ := {U ∈ dom Amax : sin θ〈φ, Ur〉+ cos θu− sin θ〈Γ~a,~u〉 = 0}

and acting like Amax there. If A0 = A⊕M is fixed then the resolvents of all other
selfadjoint operators can be related to it via Krein’s formula in H. The beauty of
this model is that by restricting this formula to Hn and then embedding it into
H−n one arrives at

i
1

Aθ − z
|Hn =

1
A− z

− 1
b(z)

(
Q(z) + cot θ

)〈 1
A− z

φ, ·
〉 1

A− z
φ(1.13)

with Q(z) := 〈φ, (z− µ)(A− µ)−1G(z)〉+ 〈~a, Γ(M− z)−1~a〉 the Q-function from
Krein’s formula and the factor b(z) in the denominator arising from the embed-
ding of the defect element. The model for supersingular perturbations of semi-
bounded operators has thus two key features that we want to preserve in gener-
alizations, namely:

(F1) the perturbation is modeled in a Hilbert space, and
(F2) the description of the perturbation is achieved by a Krein type formula.

REMARK 1.1. Another nice feature of the model is that spectral properties
of the perturbation operators are described by a certain generalized Nevanlinna
function. This function can also be obtained by regularizing the bordered resol-
vent 〈φ, (A− z)−1φ〉, cf. Section 8 of [10].

1.3. SUPERSINGULAR PERTURBATIONS. THE NON-SEMIBOUNDED CASE. From
now on we assume that A is a self-adjoint but not necessarily semibounded op-
erator in a given Hilbert space H. In particular, it might occur that σ(A) = R.
Furthermore, let φ ∈ H−n−2(A)\H−n−1(A) for n > 1 be given. The requirement
that φ /∈ H−n−1(A) is a minimality condition so that the constructed model is not
unnecessarily big but it does not play any role otherwise.

As before, our aim is to interpret (1.1), namely A+ α〈φ, ·〉φ for α ∈ R∪ {∞},
as self-adjoint operators in a suitable model space.
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REMARK 1.2. If the spectrum of A has gaps, it is possible to employ the
model for semibounded operators because an appropriate number of regulariza-
tion points µi can then be chosen in the gaps such that the function b(z) is positive
on σ(A). If there are parts of the spectrum to the left of the µi, this requires choos-
ing an even number of points. Thus, the model space might turn out to be slightly
bigger compared to the case of semibounded operators.

In the following sections we will look at two very natural ways to gener-
alize the existing Hilbert space model for semibounded operators to the non-
semibounded case. In order to really be able to talk about a generalization we
want to keep both features (F1) and (F2) in our more general case. The Hilbert
space property (F1) can be of particular interest as this is often a more natural
setting for many situations motivated by physics. Compare for example with for-
mulations of quantum mechanics in a Pontryagin space where models involving
self-adjoint operators there sometimes are restricted to certain positive subspaces
that reduce a given operator in order to make it “physical” whereas formulations
in a Hilbert space do not require such a step.

More to the point, we pose the question: Is the assumption that A is semi-
bounded only a technical property necessary for the construction of a Hilbert space model?
Or is it intrinsic in that without it a generalized model will fail?

The problem we face lies in the fact that we cannot use real regularization
points µi since all of the real line might be part of the spectrum of A. Thus, we
present two approaches:

(i) Split the Hilbert spaceH and the operator A into a direct sum with respect
to the positive and negative parts of the spectrum. This way, the spectrum of the
respective operators is contained in a half-line and this allows us to still choose
real regularization points so that in each component we can use the semibounded
model. This idea is described in the following Section 2.

(ii) We move the regularization points into the complex plane. In order to
define an inner product we need conjugate pairs but this is the only immediate
restriction. Otherwise the general ideas for the semibounded operators is still
applicable to define a suitable space and a symmetric operator acting in it so that
extension theory comes into play. This is done in Section 3.

In the last Section 4 we also compare the two approaches in terms of their
Q-functions.

2. HILBERT SPACE MODELS

We decompose the operator A in the following way: A = A+ ⊕ (−A−),
where σ(A±) ⊆ [0, ∞), i.e., we split A according to the two spectral subspaces
H+ and H− corresponding to the two parts of the spectrum contained in [0, ∞)
and (−∞, 0], respectively. If λ = 0 is an eigenvalue of A, we choose to add this
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spectral point to A+ but this convention is not essential for what follows. Hence,
A± > 0 and we can in each subspace employ the existing model for supersingular
perturbations.

REMARK 2.1. Choosing the splitting point at λ = 0 is completely arbitrary.
Any other point would lead to a model exhibiting similar features.

This splitting of the Hilbert space H also continues through the scale of
Hilbert spaces, Hk(A) = Hk(A+) ⊕ Hk(A−) for k ∈ Z. In the following, we
just write H±k := Hk(A±) and suppress the operators that are used to define the
spaces. Finally, we also decompose φ = φ+ + φ−, with φ± ∈ H±−n−2 and for
the sake of simplicity both φ+ /∈ H+

−n−1 and φ− /∈ H−−n−1. We comment on this
below in Remark 2.2.

2.1. THE HILBERT SPACE H. We choose distinct numbers µ1, . . . , µn < 0 and de-
fine b(z), M and ~a as in (1.4), (1.5) and (1.6), respectively. Furthermore, let as
in (1.7)

g±(µi) :=
1

A± − µi
φ± ∈ H±−n 1 6 i 6 n.

We also choose two positive definite Hermitian matrices Γ± ∈ Cn×n. So we
can build H± as in (1.9), i.e.,

H± := H±n ⊕Cn

and equip each of the spaces with scalar products as in (1.10). Consequently,
we put

H := H+ ⊕H−(2.1)

as the Hilbert space we shall work in. Clearly, H is a 2n-dimensional extension of
Hn and can be embedded intoH−n by

iH(U+,~u+, U−,~u−) := U+ +
n

∑
k=1

u+
k

1
A+ − µk

φ+ + U− +
n

∑
k=1

u−k
1

A− − µk
φ−.

REMARK 2.2. In case that either of the two conditions for φ± is not met, i.e,
φ+ ∈ H+

−n+−2\H
+
−n+−1 and φ− ∈ H−−n−−2\H

−
−n−−1 with n+ 6= n−, which in

general will happen, then the space H and the formulas that follow need to be
adapted. Let with loss of generality n+ > n−. Then we still will need Hn+ to
model the extension problem. However, while we extendH+

n+ by Cn+
, forH−n+ it

will be enough to add Cs with s = n− + b(n+ − n−)/2c. In this case, ιH will still
be an injective map into H−n+ . The changes that need to be made for the scalar
products and in the following formulas should be obvious from that.
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2.2. ACTION OF THE OPERATOR. We start by defining a maximal operator Amax
induced by A. It is clear that for any f± ∈ H±n+2 we have that A± f ∈ H±n .
Additionally, we choose an additional parameter µ ∈ (−∞, 0)\{µ1, . . . , µn} and
define

G+(µ) :=
1

(A+ − µ)b(A+)
φ+ ∈ H+

n ,

G−(µ) :=
1

(A− − µ)b(A−)
φ− ∈ H−n .

(2.2)

Now we can set

Amax := A+
max ⊕ (−A−max),(2.3)

where A±max are the maximal operators obtained from A± in H±, respectively, by
the procedure used for semibounded self-adjoint operators in [10], see also (1.11).
As a direct consequence of this definition of Amax we obtain the following result.

PROPOSITION 2.3. The maximal operator Amax has domain

dom Amax =

{
U ∈ H :

U± = U±r + u±G±(µ),
U±r ∈ H±n+2, u± ∈ C, ~u± ∈ Cn

}
(2.4)

and acts as

Amax


U+

r + u+G+(µ)
~u+

U−r + u−G−(µ)
~u−

 =


A+U+

r + µu+G+(µ)
M~u+ + u+~a

−A−U−r − µu−G−(µ)
−M~u− − u−~a

 .

As in the semibounded case, taking the adjoint of Amax will give us a sym-
metric operator to apply extension theory, compare also (1.12).

PROPOSITION 2.4. The minimal operator Amin := A∗max has domain

dom Amin = {U ∈ H : U± ∈ H±n+2, ~u± ∈ Cn, 〈φ±, U±〉 = 〈Γ±~a,~u±〉}

and its action is given by

Amin


U+

~u+

U−

~u−

 =


A+U+

(Γ+)−1MΓ+~u+

−A−U−

−(Γ−)−1MΓ−~u−

 .

It is symmetric with deficiency indices (2, 2) if and only if (Γ±)−1MΓ± = M and in
this case it is the restriction of Amax by four conditions

Amin = Amax|{U∈dom Amax : u±=0, 〈φ± ,U±r 〉=〈Γ±~a,~u±〉}.(2.5)

The proof is similar to the one in [10] but we include it for the sake of com-
pleteness.
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Proof. Let F ∈ H, then F ∈ dom Amin if and only if there exists W ∈ H such
that 〈F, AmaxU〉 − 〈W,U〉 = 0 for all U ∈ dom Amax. This W will be unique since
Amax is densely defined. Expanding the scalar product we get

0 =

〈
F+

~f+

F−
~f−

 ,


A+U+

r + µu+G+(µ)
M~u+ + u+~a

−A−U−r − µu−G−(µ)
−M~u− − u−~a


〉
−
〈

W+

~w+

W−

~w−

 ,


U+

r + u+G+(µ)
~u+

U−r + u−G−(µ)
~u−


〉

=
〈

F+, b(A+)A+U+
r + µu+ 1

A+ − µ
φ+
〉
+ 〈~f+, Γ+(M~u+ + u+~a)〉

+
〈

F−, b(A−)(−A−)U−r − µu−
1

A− − µ
φ−
〉
+ 〈~f−, Γ−(−M~u− − u−~a)〉

−
〈

W+, b(A+)U+
r + u+ 1

A+ − µ
φ+
〉
− 〈~w+, Γ+~u+〉

−
〈

W−, b(A−)U−r + u−
1

A− − µ
φ−
〉
− 〈~w−, Γ−~u−〉

= 〈A+F+ −W+, b(A+)U+
r 〉+ 〈−A−F− −W−, b(A−)U−r 〉

+ 〈MΓ+~f+ − Γ+~w+,~u+〉+ 〈−MΓ−~f− − Γ−~w−,~u−〉

+ u+
(〈

µF+ −W+,
1

A+ − µ
φ+
〉
+ 〈~f+, Γ+~a〉

)
+ u−

(〈
− µF− −W−,

1
A− − µ

φ−
〉
− 〈~f−, Γ−~a〉

)
.

If U−r = 0, u± = 0,~u± = 0, then we must have

0 = 〈A+F+ −W+, b(A+)U+
r 〉 ∀U+

r ∈ H+
n+2

and, thus, F+ ∈ H+
n+2 as well as A+F+ = W+ must hold. Similarly, one con-

cludes F− ∈ H−n+2 and −A−F− = W− as well as the rest of the claim.
The condition for symmetry and the particular description as a restriction

of Amax is now easily seen from the description of Amin.
As A± have defect indices (1, 1) in H±, summing them gives the defect

indices of Amin as claimed.

In the following we assume that the matrices Γ± both commute with M so
that we have a symmetric operator Amin ⊆ Amax.

Let Nz be the defect space for z ∈ C\R. To find the deficiency elements,
we solve (Amax − z)U = 0. Solving this system in the positive and negative
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component of H separately leads to the two linearly independent solutions

Φ+(z) :=


1

(A+−z)b(A+)
φ+

− 1
M−z~a
0
~0

 , Φ−(z) :=


0
~0

1
(−A−−z)b(A−)φ−

− 1
−M−z~a

 .

Hence, Nz for z ∈ C\R is spanned by Φ+(z) and Φ−(z). Note that they satisfy
Φ±(w) = A−z

A−w Φ±(z) and that embedding them intoH−n gives

iHΦ±(z) =
1

b(±z)
1

±A± − z
φ±.

REMARK 2.5. As expected from the model for semibounded operators, Φ+

has G+(z) in its first component:

Φ+(z) = (G+(z),−(M− z)−1~a, 0,~0)>.

In comparison to this, the second deficiency element Φ− is:

Φ−(z) = (0,~0,−G−(−z), (M− (−z))−1~a)>.

Standard extension theory now enables us to find all self-adjoint operators
AΘ such that

Amin ⊆ AΘ = (AΘ)∗ ⊆ Amax = A∗min.

However, this family is parametrized by 2 × 2 matrices or linear relations and
corresponds rather to defining formal sums

A + ∑
i,j∈{+,−}

αij〈φi, ·〉φj(2.6)

with Hermitian matrices (
α++ α+−

α−+ α−−

)
instead of (1.1). It is, so to say, too large to interpret the family (Aα)α∈R∪{∞} since,
motivated by the semibounded model, we would expect a one-parameter family
instead. There are two immediate possibilities to select a suitable one-parameter
family from all of the AΘ.

(i) On the one hand, we could think of selecting the sub-family where all αij,
with i, j ∈ {+,−}, are equal as in this case (2.6) and (1.1) coincide. This corre-
sponds formally to a restriction of the parameter Θ and the resulting operator is
an extension of A|{u∈Hn+2 :〈φ,u〉=0}.

(ii) On the other hand, we can restrict the domain of Amax by certain conditions
that ensure the appearance of 〈φ, Ur〉 = 〈φ+, U+

r 〉+ 〈φ−, U−r 〉. Motivated by the
semibounded case this boundary value, directly involving the original perturba-
tion element φ instead of φ+ and φ− separately, should explicitly appear in our
model.
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Both choices are motivated by what happens in the semibounded case and
are thus not as arbitrary as it might appear. In the following, we will continue
along both paths and show that the families we select coincide.

In order to describe all self-adjoint extensions of Amin we fix a certain exten-
sion as a reference operator. A somewhat obvious choice for this is the diagonal
operator

dom A0 := {U ∈ dom Amax : u± = 0} ∼= H+
n+2 ⊕Cn ⊕H−n+2 ⊕Cn,

A0 := A+ ⊕M⊕ (−A−)⊕ (−M).

More naturally, when instead considering as a domain Hn+2 ⊕C2n the operator
takes the form A0 ∼= A⊕ diag(M,−M).

REMARK 2.6. Note that Amin is the restriction of A0 by the two conditions
〈(A0 − z0)U, Φ±(z0)〉 = 0 for arbitrary z0 ∈ C\R, since

〈U±, φ±〉 =
〈
(±A± − z0)U±,

1
±A± − z0

φ±
〉

,

−〈~u±, Γ±~a〉 =
〈
(±M− z0)~u±, Γ±

(
− 1
±M− z0

)
~a
〉

and summing the terms from H+ and H− separately gives the restriction.

2.3. SELF-ADJOINT FAMILY OF OPERATORS VIA KREIN’S FORMULA. Let us calcu-
late the Q-function for the symmetric operator Amin. In our case this will be a
2× 2-matrix function Q(z). We choose an arbitrary z0 ∈ C+ as a base point. Then

the Q-function is defined by Q(z)−Q(z0)
z−z0

= 〈Φ(z0), Φ(z)〉, i.e.

Q(z)−Q(z0)

z− z0
=

(
〈Φ+(z0), Φ+(z)〉 〈Φ+(z0), Φ−(z)〉
〈Φ−(z0), Φ+(z)〉 〈Φ−(z0), Φ−(z)〉

)
.

The matrix on the right side is diagonal since 〈Φ±(z0), Φ∓(z)〉 = 0. Rearranging
yields

Q(z) = (z− z0)

(
〈Φ+(z0), Φ+(z)〉 0

0 〈Φ−(z0), Φ−(z)〉

)
+<Q(z0)− i=Q(z0)

where

−i=Q(z0) = −i
Q(z0)−Q(z0)

2i
= − z0 − z0

2

(
‖Φ+(z0)‖H+ 0

0 ‖Φ−(z0)‖H−

)
is diagonal as well. Regarding <Q(z0) we can assume this to be the zero matrix.
Let

Q±A(z) :=
〈

φ±,
[ z− z0

±A± − z0
+

z− z0

±A± − z0

] 1
2(±A± − z)b(A±)

φ±
〉

,(2.7)

Q±M(z) :=
〈
~a, Γ±

[ z− z0

±M− z0
+

z− z0

±M− z0

] 1
2(±M− z)

~a
〉

.(2.8)
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With the help of the resolvent identity one easily calculates

(z− z0)〈Φ+(z0), Φ+(z)〉 − z0 − z0

2
‖Φ+(z0)‖ = Q+

A(z) + Q+
M(z)

and similarly one concludes that the negative parts sum to Q−A(z) + Q−M(z). So

Q(z) =
(

Q+(z) 0
0 Q−(z)

)
:=
(

Q+
A(z) + Q+

M(z) 0
0 Q−A(z) + Q−M(z)

)
.(2.9)

Let furthermore

γz0 : C2 → Nz0 : (λ1, λ2) 7→ λ1Φ+(z0) + λ2Φ−(z0),

whence its adjoint is given by

γ∗z0
: H→ C2 : U 7→ (〈Φ+(z0),U〉, 〈Φ−(z0),U〉)>.

We have now collected all ingredients for Krein’s formula:

Amin ⊆ Amax, A0, z0, Nz, γz, γ∗z , Q(z).

Krein’s formula parametrises the whole family of self-adjoint extensions of
Amin by

1
AΘ − z

=
1

A0 − z
− γzΘ(I +Q(z)Θ)−1γ∗z(2.10)

when Θ runs through the set of all self-adjoint linear relations of C2 ×C2.
The entire family “describes” in particular self-adjoint perturbations of A

by all possible linear combinations of φ+ and φ−. In order to see only the rele-
vant combination φ+ + φ− = φ we only have to consider those self-adjoint linear
relations τβ — that is, we restrict ourselves to a certain subset of all the possible
parameter values of Θ — that are of the form

τβ = β

(
1 1
1 1

)
β ∈ R∪ {∞}.

One then easily finds

τβ(I +Q(z)τβ)
−1 =

1
1/β + Q+(z) + Q−(z)

(
1 1
1 1

)
,

γz

(
1 1
1 1

)
γ∗z = 〈Φ(z), ·〉Φ(z),

where

Φ(z) := Φ+(z) + Φ−(z).(2.11)

Let Q(z) := Q+(z) + Q−(z). Thus, we arrive at
1

Aτβ − z
:=

1
A0 − z

− 1
1/β + Q(z)

〈Φ(z), ·〉Φ(z),(2.12)

which gives a parametrization of the family of self-adjoint operators (Aτβ) de-
scribing the perturbations A + α〈φ, ·〉φ.
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REMARK 2.7. Clearly, Q±(z) — and thus also their sum Q(z) — are Nevan-
linna functions as they are the Q-functions of self-adjoint extensions of sym-
metric operators in Hilbert spaces. Alternatively, one can also easily check di-
rectly that they are analytic in C\R, symmetric with respect to the real axis, i.e.,
Q±(z) = Q±(z), and that

=Q±(z)
=z

=
∥∥∥ 1
(±A± − z)b(A±)

φ±
∥∥∥2

Hn+2
+
∥∥∥ 1

M− z
~a
∥∥∥2

Cn
= ‖Φ±(z)‖2

H > 0.

2.4. DIRECT DESCRIPTION VIA BOUNDARY CONDITIONS. In this section we in-
vestigate how a one-parameter family of self-adjoint operators describing (1.1)
can be chosen by restricting the maximal operator Amax. We start by calculating
the boundary form for Amin ⊆ Amax.

LEMMA 2.8. The boundary form 〈AmaxU,V〉 − 〈U, AmaxV〉 is given by〈(
u+

−u−

)
,
(
〈~a, Γ+~v+〉 − 〈φ+, V+

r 〉
〈~a, Γ−~v−〉 − 〈φ−, V−r 〉

)〉
−
〈(
〈~a, Γ+~u+〉 − 〈φ+, U+

r 〉
〈~a, Γ−~u−〉 − 〈φ−, U−r 〉

)
,
(

v+

−v−

)〉
.

Proof. This follows immediately using

Amax = A+
max ⊕−A−max

with A±max := PH±Amax|H± where we have orthogonal projections P± : H→ H±.
This way we can use the model for semibounded operators in each component
H+ and H− and find that the boundary form 〈AmaxU,V〉− 〈U, AmaxV〉 is equal to

〈A+
maxU+,V+〉 − 〈U+, A+

maxV+〉 − 〈A−maxU−,V−〉+ 〈U−, A−maxV−〉.

Given the boundary form, a parametrization of all self-adjoint extensions of
Amin can be given via suitable matrices B, C ensuring

B
(
〈~a, Γ+~u+〉 − 〈φ+, U+

r 〉
〈~a, Γ−~u−〉 − 〈φ−, U−r 〉

)
= C

(
u+

−u−

)
.(2.13)

Suitable in this context means that B∗C is Hermitian and that (B|C) has max-
imal rank, i.e., rank two. When we interpret A + α〈φ, ·〉φ as an operator then el-
ements that satisfy 〈Ur, φ〉 = 0 should always belong to the respective domain.
These elements can be thought of as invisible to the perturbation term so they
should not be affected by introducing Aα. To ensure the appearance of this term,
it seems then natural to choose matrices of the form

γ

(
1 1
1 1

)
in the place of B because in this case we calculate 〈φ+, U+

r 〉+ 〈φ−, U−r 〉 = 〈φ, Ur〉.
Furthermore, we make the choice that C is the identity matrix and in this case all
requirements on B and C are satisfied. In the light of this the following definition
is then straightforward.
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DEFINITION 2.9. The domains of the operators Aγ for γ ∈ R ∪ {∞} are
given by

dom Aγ := {U ∈ dom Amax : u+ = −u− = γ(〈~a, Γ+~u+ + Γ−~u−〉 − 〈φ, Ur〉)}.

In the next theorem we shall relate the two families (Aτβ) and (Aγ) to each
other by looking at the resolvents of Aγ.

THEOREM 2.10. The family (Aγ)γ∈R∪{∞} coincides with the family of self-adjoint
operators (Aτβ)β∈R∪{∞}.

Proof. We proceed in two steps. First, we calculate the resolvent of Aγ and
relate it to the resolvent of A0. Second, we show that this parametrizes the same
family as in (2.12).

Step 1. We invert (Aγ − z)U = F, i.e. for given F ∈ H we need to find
U ∈ dom Aγ. We thus have to solve, for z /∈ R ⊇ σ(Aγ), the system

(A+ − z)U+
r + (µ− z)G+(µ)u+ = F+

(M− z)~u+ + u+~a = ~f+

(−A− − z)U−r + (−µ− z)G+(µ)u− = F−

(−M− z)~u− − u−~a = ~f−.

Applying the respective resolvents and entering the definition of G±(µ) from
(2.2) gives

U+
r =

1
A+ − z

F+ +
z− µ

(A+ − z)(A+ − µ)b(A+)
φ+u+(2.14)

~u+ =
1

M− z
~f+ − 1

M− z
~au+(2.15)

U−r =
1

−A− − z
F− +

z + µ

(−A− − z)(A− − µ)b(A−)
φ−u−(2.16)

~u− =
1

−M− z
~f− +

1
−M− z

~au−.(2.17)

So we have found U = (U+
r + u+G+(µ),~u+, U−r + u−G−(µ),~u−) expressed in

terms of F and the two parameters u±. Note that the first summands on the right
sides in (2.14)–(2.17) are the respective terms of the resolvent of A0 applied to F.

In order for U to belong to dom Aγ we require that u+ = −u−. Let us call
their common value u. To calculate u define first

q±A(z) :=
〈

φ±,
±z− µ

(±A± − z)(A± − µ)b(A±)
φ±
〉

q±M(z) :=
〈
~a, Γ±

1
±M− z

~a
〉

and for the sum of these four terms set

q(z) := q+A(z) + q+M(z) + q−A(z) + q−M(z).(2.18)
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Then projecting (2.14) and (2.16) onto−φ± and (2.15) and (2.17) onto Γ±~a, respec-
tively, gives

−〈φ+, U+
r 〉 = −

〈
φ+,

1
A+ − z

F+
〉
− q+A(z)u

〈~a, Γ+~u+〉 =
〈
~a, Γ+ 1

M− z
~f+
〉
− q+M(z)u

−〈φ−, U−r 〉 = −
〈

φ−,
1

−A− − z
F−
〉
− q−A(z)u

〈~a, Γ−~u−〉 = 〈~a, Γ−
1

−M− z
~f−〉 − q−M(z)u.

Note that summing the first summands on the right sides gives just −〈Φ(z),F〉H
with Φ(z) defined as in (2.11). Hence, when we sum the above system of four
equations we get

〈~a, Γ+~u+ + Γ−~u−〉 − 〈φ, Ur〉 = −〈Φ(z),F〉 − q(z)u

and due to the requirement of U ∈ dom Aγ the left side must be equal to γ−1u.
Hence,

u = − 1
1/γ + q(z)

〈Φ(z),F〉.

Thus, (2.15) and (2.17) give the vectors ~u± and for the remaining two coordinates
U± = U±r + u±G±(µ) of U we calculate

U+=
1

A+ − z
F+ +

( z− µ

A+ − z
+ I
)

G+(µ)u =
1

A+ − z
F+ + u

1
(A+ − z)b(A+)

φ+,

U−=
1

−A−−z
F−−

( z + µ

−A−−z
+ I
)

G−(µ)u=
1

−A−−z
F−+u

1
(−A−−z)b(A−)

φ−.

Hence, U = (A0 − z)−1F+ uΦ(z) and comparing the resolvents shows

1
Aγ − z

=
1

A0 − z
− 1

1/γ + q(z)
〈Φ(z), ·〉Φ(z).(2.19)

Step 2. The only point of difference between (2.12) and (2.19) is the appear-
ance of q(z) + γ−1 instead of Q(z) + β−1. We claim that

q(z)−Q(z) = <q(z0),(2.20)

i.e., the two functions differ only by a real constant. In this case, the appearance
of β−1 and γ−1 is irrelevant when parametrizing the resolvents of the families
Aτβ and Aγ as this only amounts to a reparametrization. We begin by collecting
all terms from the definitions:

q(z)−Q(z) = ∑
s∈{+,−}, J∈{A,M}

qs
J(z)−Qs

J(z).
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In each of the four possible combinations of s and J we can apply the resolvent
identity to simplify the relevant difference; for example, in the case s = + and
J = A we have

q+A(z)−Q+
A(z)

=
〈

φ+,
[ z− µ

(A+−z)(A+−µ)
− z− z0

2(A+−z)(A+−z0)
− z− z0

2(A+−z)(A+−z0)

]
φ+
〉

=
〈

φ+,
1
2

[ z0 − µ

(A+ − µ)(A+ − z0)
+

z0 − µ

(A+ − µ)(A+ − z0)

]
φ+
〉
= <q+A(z0).

Hence, we find that each difference sums to a term of the form<qs
J(z0). Collecting

all terms gives the claim.
So (2.19) parametrizes the same family of self-adjoint extensions of Amin as

(2.12) and, thus, we also have a description of (Aτβ) via boundary values.

Note also that the function q(z), as defined in (2.18), is a Nevanlinna func-
tion since Q(z) certainly is a Nevanlinna function and thus q(z) shares this prop-
erty by (2.20).

COROLLARY 2.11. The restricted-embedded resolvents for the family Aτβ satisfy

iH
1

Aτβ−z
|Hn =

1
A−z

−〈(1/(A−z))φ, ·〉
1/β + Q(z)

( 1
b(z)

1
A+−z

φ++
1

b(−z)
1

−A−−z
φ−
)

.

REMARK 2.12. In the case of a semibounded operator, one could take out
the factor b(z)−1 and consider the generalized Nevanlinna function b(z)( 1

β +

Q(z)), cf. [7], compare also (1.13). In the case of not necessarily semibounded
operators, one gets an extra twist due to the minus sign in b(±z). Thus, even
though we could preserve the Hilbert space property (F1), the property (F2) has
been distorted.

3. PONTRYAGIN SPACE MODELS

In the present section we want to investigate how (F2) can be saved. How-
ever, it turns out that this comes at the cost of losing the Hilbert space property
of our model space.

From now on we work directly with the given A and φ, so the scale of
Hilbert spaces Hn is taken with respect to A. We modify our assumption on φ
by requiring that φ ∈ H−2k−2\H−2k for k > 1. The model we will build is again
closely related to the one for semibounded operators. However, since the spec-
trum of A might occupy the whole real line, some modifications relating to the
regularization points are necessary.
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3.1. MODEL SPACE K. We choose k regularization points ν1, . . . , νk ∈ C+ and add
νk+j := νj for 1 6 j 6 k. Let us define

d(z) :=
2k

∏
j=1

(z− νj) = d0(z)d0(z) where d0(z) :=
k

∏
j=1

(z− νj) and(3.1)

N := diag(ν1, ν2, . . . , ν2k).(3.2)

Furthermore, set g(νj) := (A− νj)
−1φ and let

cj :=
2k

∏
`=1, ` 6=j

1
νj − ν`

, ~c := (c1, . . . , c2k)

be the coefficients appearing in the partial fraction decomposition of d(z)−1.
It is important to take conjugate pairs of complex numbers as regularization

points in order to define a scalar product. We formulate this in a lemma to draw
attention to it.

LEMMA 3.1. The standard scalar product 〈U, V〉H2k = 〈U, (|A| + 1)2kV〉H is
equivalent to 〈U, d(A)V〉H.

Proof. First we note that 〈U, (|A|+ 1)2kV〉 is equivalent to 〈U, (A2k + 1)V〉
and using positivity of d(z) on R this in turn is equivalent to 〈U, d(A)V〉.

Furthermore, choose an invertible self-adjoint matrix Γ ∈ C2k×2k. In order
to build a model space, we add again a finite dimensional space toH2k and define

K := H2k ⊕C2k

with scalar product

〈U,V〉K := 〈U, d(A)V〉H + 〈~u, Γ~v〉C2k .(3.3)

We can embed K intoH−2k by way of

iK(U,~u) := U +
2k

∑
j=1

uj
1

A− νj
φ.

Thus, K can be thought of as a 2k-dimensional extension ofH2k insideH−2k.

REMARK 3.2. The Hilbert space H was a 2n-dimensional extension of Hn.
Since n = 2k, the extension H of Hn = H2k had twice as many dimensions as the
present one K.

We note that the scalar product in the first component is surely positive def-
inite due to Lemma 3.1. The question is thus whether the matrix Γ can be chosen
positive definite as well, which we will answer in the negative after recovering
the operator induced by A in K.
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3.2. ACTION OF THE OPERATOR. First, take some ν∈C+\{ν1, . . . , ν2k} and define

G(ν) :=
1

(A− ν)d(A)
φ ∈ H2k.

Define the maximal operator Amax through the procedure as laid out in [10]: Re-
strict A such that

S := A|{u∈H2k+2 :〈u,φ〉=0}

and calculate its triplet adjoint operator S† with respect toH2k ⊆ H ⊆ H−2k. This
construction does not depend on A being semibounded, so it carries over to our
situation without any big changes in the arguments. Finally we can take Amax
to be the restriction of S† to K. The operator Amax can also be described in the
following explicit way.

PROPOSITION 3.3. The maximal operator Amax has domain

domAmax = {U ∈ K : U = Ur + uG(ν), Ur ∈ H2k+2, u ∈ C}
and acts as

Amax

(
Ur + uG(ν)

~u

)
=

(
AUr + νuG(ν)

N~u + u~c

)
.

Proof. This follows as in [10] in the proofs of Lemmata 5.1 and 5.2. The
obvious modifications of the argument come from using the complex numbers
ν1, . . . , ν2k, ν instead of negative real regularization points.

PROPOSITION 3.4. The minimal operator Amin := A∗max has domain

domAmin = {U ∈ K : U = Ur ∈ H2k+2,~u ∈ C2k, 〈U, φ〉 = 〈~u, Γ~c〉}
and acts as

Amin

(
U
~u

)
=

(
AU

Γ−1N∗Γ~u

)
.

It is symmetric if and only if N∗Γ = ΓN. In this case, Amin has deficiency indices (1, 1)
and it is a restriction of Amax by two conditions:

Amin = Amax|{U∈domAmax :u=0, 〈Ur ,φ〉=〈~u,Γ~c〉}.(3.4)

Proof. The proof runs along the lines of the proof of Lemma 5.3 in [10]. The
statement on symmetry and on Amin being a restriction of Amax follows once we
have shown the formulas for domAmin and the action of the operator.

An element F ∈ H belongs to domAmin if and only if there is a (unique,
since Amax is densely defined) L ∈ H such that 〈F,AmaxU〉 − 〈L,U〉 = 0 for all
U ∈ domAmax. In this case that means that

0 =

〈(
F
~f

)
,
(

AUr + νuG(ν)
N~u + u~c

)〉
−
〈(

L
~̀

)
,
(

Ur + uG(ν)
~u

)〉
= 〈AF− L, d(A)Ur〉+ u

(〈
νF− L,

1
A− ν

φ
〉
+ 〈~f , Γ~c〉

)
+ 〈N∗~f −~̀ , Γ~u〉.
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For u = 0,~u = ~0 one concludes that AF− L must belong to H2k−2 for the scalar
product to be well-defined, so that F ∈ H2k and AF = L.

Using the latter relation in the product with u, we get 〈F, φ〉 − 〈~f , Γ~c〉 = 0
and for that to be well-defined F must even belong toH2k+2.

In the case that N∗Γ = ΓN, the deficiency element of Amin is

Ψ(z) =

(
1

(A−z)d(A)
φ

− 1
N−z~c

)
=

(
G(z)
− 1

N−z~c

)
(3.5)

and embedded inH−2k we have

iKΨ(z) =
1

d(z)
1

A− z
φ.

We conclude that the defect space Nz for nonreal z is generated by Ψ(z). Further-
more, it also holds that Ψ(w) = A−z

A−w Ψ(z).
For the following sections, we shall again fix one self-adjoint extension of

Amin, namely the diagonal operator

domA0 := {U ∈ domAmax : u = 0} ∼= H2k+2 ⊕C2k,

A0 := A⊕ N.

REMARK 3.5. It holds that Amin is A0 restricted by 〈(A0 − z0)U, Ψ(z0)〉 = 0
for any nonreal z0.

We finish this section with a closer look at Γ, which will imply that K cannot
be a Hilbert space.

LEMMA 3.6. Let N be the diagonal matrix in (3.2) and Γ = Γ∗ ∈ C2k×2k, then
N∗Γ = ΓN holds if and only if

Γ =

(
0 Ξ

Ξ∗ 0

)
with Ξ = diag(ξ1, . . . , ξk) ∈ Ck×k. Moreover, Γ is non-degenerate if and only if none
of the ξ j are equal to zero.

Proof. Write Γ = (γij)
2k
i,j=1 and note that N∗ = diag(νk+1, . . . , ν2k, ν1, . . . , νk)

since νi = νi+k for i 6 k. Let N∗Γ − ΓN =: (mij)
2k
i,j=1 and we want to know

when this is the zero matrix. Clearly, N∗Γ is the matrix where the i-th row of Γ
is multiplied by νi+k if i 6 k and by νi−k if i > k. Furthermore, ΓN is the matrix
where the j-th column of Γ is multiplied by νj. Then

mij =

{
γij(νi+k − νj) i 6 k,
γij(νi−k − νj) i > k.

We see that when νi+k 6= νj or νi−k 6= νj hold, the corresponding γij must vanish.
Only in the cases j = i + k and j = i − k, for i 6 k and i > k respectively, can
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the entries of Γ be different from zero. Since as a Gram matrix Γ should be self-
adjoint, choosing γi,i+k =: ξi ∈ C for 1 6 i 6 k already determines the rest of the
entries and Γ is indeed of the block off-diagonal form as claimed.

This leads us immediately to conclude the following corollary.

COROLLARY 3.7. The matrix Γ has exactly k negative eigenvalues and thus K is
a Pontryagin space with negative index k.

Proof. Let I2k and Ik be the identities on C2k and Ck, respectively. Then since
−λIk and Ξ commute it follows that

det(Γ− λI2k) = det
(
−λIk Ξ

Ξ∗ −λIk

)
= det((−λIk)(−λIk)− ΞΞ∗)

and thus the determinant equals
k

∏
j=1

(λ2 − |ξ j|2) so that the eigenvalues of Γ are

exactly±|ξ j| for 1 6 j 6 k. Since 〈·, ·〉H2k = 〈·, d(A)·〉H is positive definite, K gets
its k negative squares exactly from Γ.

REMARK 3.8. With a similar argument one can show that the matrices Γ±

in the previous section both have to be diagonal. All entries are real numbers and
it is in particular possible to choose all of them strictly positive. So even though
we could possibly also turn H into a Pontryagin space, a clever choice of Γ avoids
this. In contrast to this we see that in the case of K this Hilbert space possibility
no longer exists.

3.3. SELF-ADJOINT FAMILY OF OPERATORS VIA KREIN’S FORMULA. Let us calcu-
late the Q-function for the symmetry Amin. We first fix an arbitrary nonreal point
z0. In the present situation we will of course get a scalar Q-function, which is

again defined by QK(z)−QK(z0)
z−z0

= 〈Ψ(z0), Ψ(z)〉, where the defect elements Ψ(z)

have been calculated in (3.5). In the constant QK(z0) = <QK(z0)− i=QK(z0) we
can assume the first summand to be zero. For the second summand, we have that

−i=QK(z0) = −i
QK(z0)−QK(z0)

2i
= − z0 − z0

2
‖Ψ(z0)‖2

K.

If we define

QK
A(z) :=

〈
φ,
[ z− z0

A− z0
+

z− z0

A− z0

] 1
2(A− z)d(A)

φ
〉

,(3.6)

QK
N(z) :=

〈
~c, Γ

[ z− z0

N − z0
+

z− z0

N − z0

] 1
2(N − z)

~c
〉

,(3.7)

then we immediately get

QK(z) = (z− z0)〈Ψ(z0), Ψ(z)〉 − z0 − z0

2
‖Ψ(z0)‖2

K = QK
A(z) + QK

N(z).(3.8)
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Next, define

γz0 : C→ Nz0 : λ 7→ λΨ(z0),

which has the adjoint

γ∗z0
: K→ C : U 7→ 〈Ψ(z0),U〉.

With this, we can apply Krein’s formula for

Amin ⊆ Amax, A0, z0, Nz0 , γz, γ∗z , QK(z)

and parametrise all self-adjoint extensions of Amin, as t runs through R∪ {∞}, by

1
At − z

:=
1

A0 − z
− 1

1/t + QK(z)
〈Ψ(z), ·〉Ψ(z),(3.9)

where the second term on the right is just γzt(1 + QK(z)t)−1γ∗z . As before, we
use the family (At)t∈R∪{∞} to define the perturbated operators A + α〈φ, ·〉φ.

Regarding the goal of keeping the property (F2) intact, we can already con-
clude from this that

iK
1

At − z
|H2k =

1
A− z

− 1
1/t + QK(z)

〈 1
A− z

φ, ·
〉 1

d(z)
1

A− z
φ.(3.10)

REMARK 3.9. As the Q-function of an operator in a Pontryagin space with
negative index k we clearly have that QK(z) belongs to the class of generalized
Nevanlinna functions with negative index k, denoted by Nk.

3.4. DIRECT DESCRIPTION VIA BOUNDARY CONDITIONS. As in the previous sec-
tion we want to complete the picture by giving a more concrete description of
(At)t∈R∪{∞} through boundary conditions that make domAt more palpable.

In the following, we need the positive constant

C := ‖G(ν)‖2
H2k

=
∥∥∥ 1
(A− ν)d0(A)

φ
∥∥∥2

H
.(3.11)

Note that (A− ν)−1d0(A)−1φ involves the least amount of resolvents needed to
push φ into the Hilbert spaceH.

LEMMA 3.10. The boundary form 〈AmaxU,V〉 − 〈U,AmaxV〉 is equal to

(〈Γ~c,~v〉 − 〈φ, Vr〉)u− v(〈Γ~c,~u〉 − 〈φ, Ur〉)− 2i=νuvC,

and it vanishes if and only if

〈Γ~c,~u〉 − 〈φ, Ur〉 =
(1

h
+ i=(ν)C

)
u

for arbitrary h ∈ R∪ {∞}.

REMARK 3.11. We point out that in comparison to the parameter µ in the
Hilbert space model the parameter ν had to be chosen nonreal in the Pontryagin
space case in order to avoid the spectrum of A. This leads to an additional term
in the boundary form now.
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Proof of Lemma 3.10. For U,V ∈ domAmax we have to calculate〈(
AUr + νuG(ν)

N~u + u~c

)
,
(

Vr + vG(ν)
~v

)〉
−
〈(

Ur + uG(ν)
~u

)
,
(

AVr + νvG(ν)
N~v + v~c

)〉
.

Using that ΓN = N∗Γ, one can simplify most of the resulting terms to the first
two summands in the lemma. In contrast to the semibounded (or Hilbert space
from the previous section) case, 〈νuG(ν), d(A)vG(ν)〉H − 〈uG(ν), d(A)νvG(ν)〉H
does not cancel owing to =ν 6= 0 and instead just sums up to uv(ν − ν)C. The
claim about the form vanishing is then obvious.

REMARK 3.12. For h = ∞ we set 1
h = 0. The case h = 0 should be inter-

preted as u = 0, so we see that this is in agreement with the definition of the
operator A0.

With this we can now give a description of the family (At)t∈R∪{∞} in terms
of boundary conditions. For h ∈ R ∪ {∞} define Ah as the restriction of Amax to
the domain

domAh =
{
U ∈ domAmax : 〈Γ~c,~u〉 − 〈φ, Ur〉 =

(1
h
+ i=νC

)
u
}

.

THEOREM 3.13. The family (Ah)h∈R∪{∞} coincides with (At)t∈R∪{∞}.

Proof. We follow the technique used in the proof of Theorem 2.10. In a first
step we relate the resolvent of Ah to the one of A0. In a second step we show that
the formula giving this relation is (3.9) up to a change in a real constant.

Step 1. For nonreal z and given F ∈ K, we solve (Ah − z)U = F, i.e., we
consider the system

(A− z)Ur + (ν− z)G(ν)u = F(3.12)

(N − z)~u +~cu = ~f .(3.13)

A general formula for U = (U,~u) can be expressed in terms of u since

U = Ur + uG(ν) =
1

A− z
F +

z− ν

A− z
G(ν)u + uG(ν) =

1
A− z

F + uG(z)

and a formula for ~u is obvious. In order for U to belong to dom Ah we thus need
to specify the parameter u. So to do this, apply (A− z)−1 to (3.12) and project the
result on −φ, and apply (N − z)−1 to (3.13) and project on Γ~c. With the notation

qKA(z) :=
〈

φ,
z− ν

(A− z)(A− ν)d(A)
φ
〉

, qKN(z) :=
〈

Γ~c,
1

N − z
~c
〉

,

the above procedure yields

−〈φ, Ur〉 = −
〈

φ,
1

A− z
F
〉
− qKA(z)u, 〈Γ~c,~u〉 =

〈
Γ~c,

1
N − z

~f
〉
− qKN(z)u.

The first terms on the right from each equation together give −〈Ψ(z),F〉 where
Ψ(z) is the defect element calculated in (3.5). Summing the above equations
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yields 〈Γ~c,~u〉 − 〈φ, Ur〉 = −〈Ψ(z),F〉 − (qKA(z) + qKN(z))u. Requiring U ∈ domAh

allows us to express the left side in terms of u, whence

u = − 1
1/h + i=νC + qKA(z) + qKN(z)

〈Ψ(z),F〉.

Hence, U = (A0 − z)−1F+ uΨ(z). If we set

qK(z) := qKA(z) + qKN(z) + i=νC(3.14)

we can finally relate the resolvents of Ah and A0 via

1
Ah − z

=
1

A0 − z
− 1

1/h + qK(z)
〈Ψ(z), ·〉Ψ(z).(3.15)

Step 2. Comparing (3.15) with (3.9) shows that we are done once we show
the following claim:

qK(z)−QK(z) = <qK(z0).(3.16)

Note first that

i=νC =
1
2

〈
φ,

ν− ν

(A− ν)(A− ν)d(A)
φ
〉

.

Hence, from
z− ν

(A− z)(A− ν)
+

ν− ν

2(A− ν)(A− ν)
− z− z0

2(A− z)(A− z0)
− z− z0

2(A− z)(A− z0)

=
1
2

( z0 − ν

(A− z0)(A− ν)
+

z0 − ν

(A− z0)(A− ν)

)
it readily follows that qKA(z) + i=νC− QK

A(z) = <qKA(z0). Secondly, also qKN(z)−
QK

N(z) = <qKN(z0) becomes clear via a similar calculation. The claim is shown.
Hence, the families of self-adjoint operators Ah and At do coincide.

COROLLARY 3.14. The function qK(z) belongs to the generalized Nevanlinna
class with negative index k.

Proof. Since QK(z) ∈ Nk and qK(z) only differs from it by a real constant,
the claim follows immediately.

4. COMPARISON OF THE H- AND K-MODELS

The two models obtained in the previous sections preserve different aspects
of the original model for semibounded operators. They are still rather closely
related to each other when considering the Q-functions that appear. In the fol-
lowing we make the assumption that

n = 2k,

i.e., to build the Hilbert space model we consider φ ∈ H−n+2\H−n for even n > 1.
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We have already pointed out in Remark 3.9 that QK(z) is a generalized
Nevanlinna function. From its definition as the sum of (3.6) and (3.7) it is then
clear that it has generalized poles not of positive type exactly in ν1, . . . , νk and
they all arise from the term QK

N(z) associated with the indefinite component C2k

in K. The degree of non-positivity ρνj in νj is just the order of the pole in each
of these nonreal points and it is thus clearly equal to one for 1 6 j 6 k, with of

course
k
∑

j=1
ρνj = k, cf. [11]. We also recall that for a generalized Nevanlinna func-

tion q̃(z) with a generalized pole at ∞, the degree of non-positivity ρ∞ is given by
the number that satisfies

lim
z→̂∞

z2ρ∞−1q̃
(
− 1

z

)
∈ (0, ∞], lim

z→̂∞
z2ρ∞+1q̃

(
− 1

z

)
∈ (−∞, 0].

LEMMA 4.1. Let d(z) be the regularizing polynomial given with respect to the
regularization points ν1, . . . , νk. Then the function d(z)QK(z) belongs to Nk with a
generalized pole not of positive type only in ∞ and with degree of non-positivity ρ∞ = k.

Proof. As was discussed, QK(z) belongs to Nk with generalized poles not
of positive type exactly in ν1, . . . , νk. Furthermore, d is symmetric, i.e., it is of the
form d(z) = d0(z)d0(z) and so d(z)QK(z) is a generalized Nevanlinna function as
well, with negative index k′. The zeros of d0(z) are exactly the generalized poles
not of positive type of QK. Thus, the negative index cannot grow and so k′ 6 k.
The strict inequality k′ < k holds if and only if ∞ is a zero not of positive type of
the function QK, cf. for example equation (3.2) of [3] and consequences.

We need the following two well-known facts:
(i) A generalized Nevanlinna function q has a generalized zero at ∞ if and

only if (cf. [6])
lim
y↑∞

y|q(iy)| < ∞.

(ii) For a generalized Nevanlinna function of the form

q(z) = q(z0) + (z− z0)[v, (I + (z− z0)(A− z)−1)v]

with A an operator it holds that

v ∈ domA ⇔ lim
y↑∞

y|=q(iy)| < ∞.

So let us now assume that the above inequality is strict, so that k′ < k. In
this case lim

y↑∞
y|QK(iy)| has to be finite. In particular, the same must be true for

lim
y↑∞

y|=QK(iy)|.

Look at QK(z) = QK
A(z) + QK

N(z) as defined in (3.8). It is straight-forward
to conclude QK(z0) = −QK(z0) and from there to calculate

QK
A(z)−QK

A(z0) = (z− z0)
〈 1
(A− z0)d0(A)

φ,
A− z0

A− z
1

(A− z0)d0(A)
φ
〉

,
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QK
N(z)−QK

N(z0) = (z− z0)
〈 1

N − z0
~c, Γ

N − z0

N − z
1

N − z0
~c
〉

.

Hence,

QK(z) = QK(z0) + (z− z0)

[
V,

((
IH 0
0 IC2k

)
+ (z− z0)

(
1

A−z 0
0 1

N−z

))
V
]

with the vector V :=((A−z0)
−1d0(A)−1φ, (N−z0)

−1~c)∈K and the inner product
[F,G] = 〈F, G〉H+〈~f , Γ~g〉C2k . We consider the domain of the operator A⊕N. Of
course, (N−z0)

−1~c∈dom N=C2k. However, since φ∈H−2k−2\H−2k we get

1
(N − z0)d0(A)

φ ∈ H0\H2 = H\dom A.

Put together, this means V /∈ dom(A ⊕ N) and thus lim
y↑∞

y|=QK(iy)| cannot be

finite. We have arrived at a contradiction and thus k = k′.

In the Pontryagin space K we have not split the operator A into a positive
or negative part related to spectral subspaces H+ ⊕H− but nothing prevents us
from doing this: we can split A = A+ ⊕ (−A−) and φ = φ+ + φ− in the Hilbert
space componentH2k of K, i.e.,

K = H2k ⊕C2k = H+
2k ⊕H

−
2k ⊕C2k,

so that we can compare the positive and negative parts of the models individu-
ally. The function QK

A(z) consequently splits into the summands

QK,±
A (z) :=

〈
φ±,

[ z− z0

±A± − z0
+

z− z0

±A± − z0

] 1
2(±A± − z)d(±A±)

φ±
〉

.(4.1)

Considering the Krein-type formulas in Corollary 2.11 and in (3.10) it seems
natural to compare the models when restricted to H±n , respectively. In this case,
the Q-functions b(z)Q+(z) and b(−z)Q−(z) appear in the Hilbert space model
and they should then have a connection to d(z)QK(z).

THEOREM 4.2. Let QK(z) be given as in (3.8) and QK,±
A (z) by (4.1). Let Q±(z)

be defined as in (2.9). Let b(z) be the regularizing polynomial given in terms of the
regularization points µ1, . . . , µn. Then there exist polynomials p±(z) of degree at most n
satisfying p±(z) = p±(z) such that

b(z)Q+
A(z) = d(z)QK,+

A (z) + p+(z),(4.2)

b(−z)Q−A(z) = d(z)QK,−
A (z) + p−(z).(4.3)

Consequently, we also have

(b(z)Q+(z) + b(−z)Q−(z)) = d(z)QK(z) + p(z)(4.4)

for some polynomial p(z) of degree at most n and satisfying the same kind of symmetry
about the real axis.
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Proof. We can assume without loss of generality that all Q-functions in-
volved are defined with respect to the same nonreal number z0. Furthermore,
when regarding (4.4) we see that each of the three Q-functions are the sum of an
inner product in a scale space involving (parts of) the operator A and an inner
product in Cn involving the matrices M and N, respectively.

For the inner products in Cn we have to study the expression

∑
s∈{+,−}

〈
~a, Γs

[ z− z0

sM−z0
+

z− z0

sM−z0

] b(sz)
2(sM−z)

~a
〉
−
〈
~c, Γ

[ z− z0

N−z0
+

z− z0

N−z0

] d(z)
2(N−z)

~c
〉

.

Since of course

(±M− z)−1 = diag((±µ1 − z)−1, . . . , (±µn − z)−1),

(N − z)−1 = diag((ν1 − z)−1, . . . , (ν2k − z)−1)

we see that

b(z)(z− z0)

M− z
,

b(−z)(z− z0)

−M− z
,

d(z)(z− z0)

N − z

give diagonal matrices with polynomials of degree n as entries and thus the com-
plete sum is a polynomial of degree at most n as well. Furthermore, it is clear that
this polynomial also has the stated symmetry property.

Regarding (4.2), i.e., the Q-functions in H+
2k, we have to consider the differ-

ence b(z)Q+
A(z)− d(z)QK,+

A (z), which amounts to〈
φ+,

[ z− z0

A+ − z0
+

z− z0

A+ − z0

] 1
2(A+ − z)

[ b(z)
b(A+)

− d(z)
d(A+)

]
φ+
〉

(4.5)

and we want to show that b(z)d(A+) − d(z)b(A+) has a factor A+ − z. As a
function of ζ we have in any case that d(z)b(ζ)− b(z)d(ζ) = (ζ − z)p(ζ, z) with
p(ζ, z) ∈ C[z][ζ] being a polynomial in ζ of degree at most n− 1 with coefficients
that are polynomials in z of degree also at most n− 1. Thus, (4.5) is formally the
same as 〈

φ+,
[ z− z0

A+ − z0
+

z− z0

A+ − z0

] p(A+, z)
2b(A+)d(A+)

φ+
〉

.(4.6)

Since p(A+, z) gives at most a contribution of (A+)n−1, the element on the
right in the scalar product above always belongs toH+

n+2. Hence, we see that (4.6)
is well-defined. Thus (4.5) and (4.6) are indeed equal. The resulting expression
(4.5) can be rearranged with respect to z and gives a polynomial of degree at most
n with the stated symmetry property.

For (4.3), i.e., inH−n , we have b(−z)Q−A(z)−d(z)QK,−
A (z) to consider, which is〈

φ−,
[ z− z0

−A− − z0
+

z− z0

−A− − z0

] 1
2(−A− − z)

[ b(−z)
b(A−)

− d(z)
d(−A−)

]
φ−
〉
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and just as above we cancel a factor (−A− − z) from the difference in the square
brackets to end up with a polynomial of degree at most n in the variable z and
symmetric with respect to the real axis.

Thus, the claim is proven.

COROLLARY 4.3. The function b(z)Q+(z) + b(−z)Q−(z) is from the class Nk
with its pole not of positive type at ∞ and with corresponding degree of non-positivity
ρ̃∞ = k.

Proof. We know already that d(z)QK(z) ∈ Nk. Furthermore, polynomials
that are symmetric with respect to the real axis always belong to some class Nκ .
By Theorem 4.2 the function b(z)Q+(z) + b(−z)Q−(z) is the sum of two general-
ized Nevanlinna functions. Thus, it belongs to some class Nk′ as well.

In order to show k = k′ we study the generalized poles not of positive type
of the right side in (4.4). For the case of d(z)QK(z) we already know that the only
such pole is ∞ and its degree of non-positivity is ρ∞ = k.

Let p(z) be the polynomial on the right side of (4.4). We know that its degree
is at most n = 2k and that p(z) = p(z) with only generalized pole located at ∞.

Then, k′ arises as the degree of non-positivity of the generalized pole ∞ of
d(z)QK(z) + p(z), i.e., it is equal to the number ρ̃∞ satisfying

lim
z→̂0

d
(
− 1

z

)
QK
(
− 1

z

)
z2ρ̃∞−1 + p

(
− 1

z

)
z2ρ̃∞−1 ∈ (0, ∞],

lim
z→̂0

d
(
− 1

z

)
QK
(
− 1

z

)
z2ρ̃∞+1 + p

(
− 1

z

)
z2ρ̃∞+1 ∈ (−∞, 0].

Since deg p 6 n = 2k it follows that the limit of the second summand either
behaves in the same way as the first one, which happens if deg p = n, or is equal
to zero in both cases, which happens if deg p < n, and thus does not even give
a contribution when determining ρ. We conclude that k′ = ρ = ρ∞ = k and are
done.

5. CONCLUSION

In the beginning we formulated as a goal to generalize an existing operator
model to describe supersingular perturbations of semibounded operators to also
include not necessarily semibounded operators. The two properties exhibited by
the model in the semibounded case were

(F1) the perturbation is modeled in a Hilbert space, and
(F2) the description of the perturbation is achieved by a Krein type formula.

Throughout our investigation it has become clear that we cannot achieve to
keep both properties intact in the case where our operators might have a spec-
trum covering all of the real line.
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By keeping (F1) as a requirement, we showed in Corollary 2.11 that the
Krein type formula we wanted to find does not appear in the expected “natural”
form. Conversely, when (F2) is used as a starting point, Corollary 3.7 demon-
strates why negative squares will have to appear in our model space.

The conclusion we draw from this is the following: the operator model for
the semibounded case is intrinsically linked to and subtly built around the fact
that the spectrum does not occupy all of the real line. If one thus wants to have
both (F1) and (F2) in a perturbation model for the more general operators we
considered in this paper then this model needs to be built up in a different way
instead.

6. APPENDIX

We use the standard scale of Hilbert spaces (Hn(A))n∈Z associated to a self-
adjoint operator A inH, that is the scale

· · · ⊇ H−2(A) ⊇ H−1(A) ⊇ H0(A) ⊇ H1(A) ⊇ H2(A) ⊇ · · ·

where the space Hn(A) for n > 1 is the domain of (|A| + 1)n/2 equipped with
the norm ‖ · ‖n = ‖(|A| + 1)n/2 · ‖ and H0(A) is the original Hilbert space H.
The spaces with negative indices H−n(A) are the completions of H with respect
to the similarly defined norms ‖ · ‖−n := ‖(|A|+ 1)−n/2 · ‖H and are dual spaces
in the sense that Hn(A)∗ = H−n(A). For every positive integer, we thus have a
Gelfand tripletHn(A) ⊆ H ⊆ H−n(A).
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