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ABSTRACT. For each 1 6 p < ∞ and each countable oriented graph Q we
introduce an Lp-operator algebra Op(Q), which contains the Leavitt path C-
algebra LQ as a dense subalgebra, and is universal for those Lp-representations
of LQ which are spatial in the sense of N.C. Phillips. We prove that Op(Q) is
simple as an Lp-operator algebra if and only if LQ is simple, in which case it is
isometrically isomorphic to ρ(LQ) for any nonzero spatial Lp-representation
ρ : LQ → L(Lp(X)). If moreover LQ is purely infinite simple and p 6= p′, then
there is no nonzero continuous homomorphism Op(Q)→ Op′ (Q).
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1. INTRODUCTION

The study of algebras of operators on Lp-spaces, for p ∈ [1, ∞), can be
traced back to the work of Carl Herz in the 60’s and 70’s on harmonic analy-
sis on Lp-spaces. There has been a much more recent interest for this area, with
an influx of ideas and motivations coming from operator algebras and specifi-
cally C∗-algebras ([9], [10], [11], [15], [16], [17]). These new ideas have led to
the solution of some long standing open problems, and have given the area new
impetus. In this context, it has proved to be very fruitful to study Lp-versions
of well-established and useful notions in C∗-algebras: Cuntz algebras, crossed
products, AF-algebras, groupoid algebras, etc. In the current paper, we introduce
and study Lp-algebras associated to graphs, which are Lp-versions of C∗-graph
algebras.

Let Q be a countable oriented graph, let Q0 and Q1 be the sets of vertices
and edges, and let LQ be the Leavitt path C-algebra. For 1 6 p < ∞ we call a
representation ρ : LQ → L(Lp(X)) spatial if X is a σ-finite measure space and ρ
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maps the elements of Q0tQ1t (Q1)∗ to partial isometries which are spatial in the
sense of Definition 6.4 in [15]. Each spatial representation ρ induces a seminorm
on LQ via ‖a‖ρ = ‖ρ(a)‖; the supremum ‖ · ‖ of these seminorms is a norm
(Proposition 4.11) and we writeOp(Q) for the completion of (LQ, ‖ · ‖). We show
that O2(Q) is the usual graph C∗-algebra (Proposition 7.9) and that for p 6= 1,
Op(Q) is the tight semigroup algebra of [9] (Proposition 7.12). We prove the
following theorem.

THEOREM 1.1 (Simplicity theorem). Let Q be a countable graph and let p ∈
[1, ∞). The following are equivalent:

(i) LQ is simple;
(ii) every nonzero spatial Lp-representation of LQ is injective;

(iii) every nondegenerate contractive nonzero Lp-representation ofOp(Q) is injective.
Furthermore, if either Q0 is finite or p > 1, then the above conditions are also

equivalent to:
(iv) for every Lp-operator algebra B, every contractive, nonzero homomorphism
Op(Q)→ B is injective.

Condition (iv) says that Op(Q) is simple as an Lp-operator algebra. Since
every Lp-operator algebra is isometrically embedded in L(Lp(X)) for some σ-
finite measure space X, simplicity as an Lp-operator algebra is equivalent to the
condition that every contractive nonzero representation ρ : Op(Q) → L(Lp(X)),
degenerate or not, be injective. For p = 2 any such contractive representation
factors through a nondegenerate one, so (iii) and (iv) are equivalent in this case.
We show (using a classical result of Andô [5] and a recent result of Gardella and
Thiel [11]) that a similar result holds for p 6= 2 if either Q0 is finite or p > 1; this
allows us to prove that (iii)⇔ (iv).

To prove Theorem 1.1 we first show the following uniqueness theorem.

THEOREM 1.2 (Uniqueness theorem). Let Q be a countable graph such that LQ
is simple. Let p ∈ [1, ∞), X a σ-finite measure space and ρ : LQ → L(Lp(X)) a
nonzero spatial representation. Then the canonical mapOp(Q)→ ρ(LQ) is an isometric
isomorphism.

Specializing Theorem 1.2 to the case when Q has only one vertex recovers
N.C. Phillips’ uniqueness result for Lp-analogues of Cuntz algebras ([15], Theo-
rem 8.7). We also show the following theorem (Theorem 11.2)).

THEOREM 1.3. Let Q be a countable graph and let p, p′ ∈ [1, ∞), p 6= p′ . If LQ
is purely infinite simple then there is no nonzero continuous homomorphism Op(Q) →
Op′(Q).

A similar result for Lp-Cuntz algebras was obtained by N.C. Phillips in The-
orem 9.2 of [15].

The rest of this paper is organized as follows. In Section 2 we recall some
definitions and basic facts on Leavitt path algebras and prove some elementary
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technical lemmas. In Section 3 we show (Lemma 3.1) that LQ is the universal
algebra for tight algebraic representations of the inverse semigroup S(Q) gen-
erated by Q. Spatial representations of the Leavitt path algebra LQ of a count-
able graph Q are introduced in Section 4. We give examples of such representa-
tions and show in Proposition 4.11 that for every countable Q and 1 6 p < ∞,
there is an injective, nondegenerate spatial representation LQ → L(`p(N)). Spa-
tial representations of matrix algebras MnLQ for 1 6 n 6 ∞ are considered
in Section 5 and it is shown that they are the same as spatial representations
of the Leavitt path algebra over the graph MnQ (Remark 5.1). Morever, we
prove that any such representation is equivalent to the matricial amplification
Mnρ of a spatial representation ρ of LQ (Lemma 5.3). Section 6 is concerned
with a characterization of spatiality of representations in terms of norm esti-
mates. We prove a spatiality criterion which we shall presently explain. The
subalgebra (LQ)0,1 = span{v ∈ Q0, ee∗, e ∈ Q1} ⊂ LQ is a direct sum of,
possibly infinite dimensional, matrix algebras and is thus naturally equipped
with an Lp-operator norm. The spatiality criterion, Theorem 6.2, says that if
p ∈ [1, ∞) \ {2}, then a nondegenerate representation ρ : LQ → L(Lp(X)) is
spatial if and only if its restriction to (LQ)0,1 is contractive and ‖ρ(x)‖ 6 1 for
every x ∈ Q1 ä(Q1)∗. Along the way we also prove a spatiality criterion for
nondegenerate Lp-representations of matricial algebras (Proposition 6.1). Both
spatiality criteria fail to be true if the nondegeneracy hypothesis is dropped (see
Remark 6.3). By contrast, for a representation ρ : LQ → L(L2(X)), the condition
that ‖ρ(x)‖ 6 1 for every x ∈ Q0 ä Q1 ä(Q1)∗ is equivalent to requiring that ρ
be a ∗-homomorphism (Proposition 6.4). In Section 7 we define Lp-operator al-
gebras and introduce the Lp-operator algebra Op(Q). By definition, any spatial
representation of LQ → L(Lp(X)) factors uniquely through a contractive rep-
resentation Op(Q) → L(Lp(X)) (1 6 p < ∞). Moreover we prove, using the
spatiality criterion of Section 6, that for p 6= 2, any nondegenerate contractive
representation Op(Q) → L(Lp(X)) induces a nondegenerate spatial representa-
tion LQ → L(Lp(X)) (Theorem 7.6). We show that if moreover p 6= 1, then the
nondegeneracy hypothesis may be dropped. We also prove that O2(Q) is just
the usual graph C∗-algebra C∗(Q) (Proposition 7.9). It follows from this that a
contractive L2-representation of C∗(Q) is equivalent to a ∗-representation of LQ
(Remark 7.10). We also show, using the material of Section 3, that if p ∈ (1, ∞)

then Op(Q) is the same as the Lp-algebra Fp
tight(S(Q)) introduced by E. Gardella

and M. Lupini in [9] (Corollary 7.11 and Proposition 7.12). The latter is universal
for those tight Lp-representations of S(Q) which are either spatial (if p 6= 2) or
∗-representations (if p = 2). In Section 8 we show that adding heads and tails
to a graph Q to obtain a new graph Q′ without sources, sinks or infinite emitters
results in an isometric inclusionOp(Q)→ Op(Q′) (Corollary 8.2). Section 9 is de-
voted to the proof of Theorem 1.2 (Theorem 9.1). The technical result of the previ-
ous section is used here to reduce the proof to the case of graphs without sources,
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sinks or infinite emitters. After this reduction, the strategy of proof is similar to
that of the analogous result for the Lp-Cuntz algebra ([15], Theorem 8.7), although
it requires several nontrivial technical adjustments. The simplicity Theorem 1.1 is
proved in Section 10. The last section of this article is Section 11, where we prove
Theorem 11.2, of which Theorem 1.3 is a particular case.

NOTATION 1.4. In this paper N = Z>1 and N0 = Z>0. All algebras, vector
spaces, and tensor products are over C. All identities pertaining measure spaces
are to be interpreted up to sets of measure zero. For example we say that a family
{Xn}n>1 of measurable sets in a measurable space X = (X,B, µ) is disjoint if
Xn ∩ Xm has measure zero for all n 6= m, and write ä

n
Xn for their union. In case

the latter agrees with X up to measure zero, we write X = ä
n

Xn. This reflects the

fact that under the above hypothesis (X,B, µ) is equivalent to the set theoretic
coproduct ä

n
Xn equipped with the σ-algebra generated by ä

n
Bn and the measure

induced by the sequence of measures {µ|Xn
}. We write L0(X) for the vector space

of classes of measurable functions X → C.

2. GRAPHS AND LEAVITT PATH ALGEBRAS

In this section we briefly recall some of the basics of Leavitt path algebras; a
general reference for the subject is [1].

An oriented graph or quiver Q = (Q0, Q1, r, s) consists of sets Q0 and Q1 of
vertices and edges, and range and source functions r, s : Q1 → Q0 . We say that Q
is finite or countable if Q0 and Q1 are both finite or countable. A vertex v ∈ Q0 is an
infinite emitter if s−1(v) is infinite, and is a sink if s−1(v) = ∅. A vertex is singular
if it is either a sink or an infinite emitter. We write sing(Q) = sink(Q) ∪ inf(Q) ⊂
Q0 for the set of singular vertices and reg(Q) = Q0 \ sing(Q). We call Q singular
if sing(Q) 6= ∅ and nonsingular (or regular) otherwise. We call Q row-finite if it has
no infinite emitters. A vertex v is a source if r−1(v) = ∅; we write sour(Q) ⊂ Q0

for the set of sources.
Since all our graphs will be oriented, we shall use the term graph to mean

oriented graph.
A path α is a (finite or infinite) sequence of edges α = e1 · · · ei · · · such that

r(ei) = s(ei+1) (i > 1). For such α, we write s(α) = s(e1); if α is finite of length
l, we put |α| = l and r(α) = r(el). Vertices are considered as paths of length 0.
A finite path α is closed if s(α) = r(α). A closed path α = α1 · · · αn is a cycle if in
addition s(ei) 6= s(ej) if i 6= j. Let P = P(Q) be the set of finite paths, and let Pn
be the set of paths of length n. Thus,

(2.1) P = ä
n∈N0

Pn.

We consider the following preorder in P :



Lp -OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS 229

(2.2) α 6 β⇔ ∃ γ such that r(β) = s(γ) and α = βγ.

Observe that (2.2) also makes sense when α is an infinite path.

DEFINITION 2.1. Let Q be a graph. The Leavitt path algebra LQ is the quotient
of the free C-algebra on Q0 ∪Q1 ∪ (Q1)∗, modulo the following relations:

(i) vv′ = δv,v′v for all v, v′ ∈ Q0;
(ii) s(e)e = er(e) = e for all e ∈ Q1;

(iii) r(e)e∗ = e∗s(e) = e∗ for all e ∈ Q1;
(iv) (CK1) e∗e′ = δe,e′r(e) for all e, e′ ∈ Q1;
(v) (CK2) v = ∑

{e∈Q1 :s(e)=v}
ee∗, if v ∈ reg(Q).

The Leavitt path algebra is a ∗-algebra with involution determined by v 7→
v, e 7→ e∗. It has a Z-grading where vertices have degree zero, edges have degree
1, and |e∗| = −1 for e ∈ Q1 ([1], Corollary 2.1.5). We write

(2.3) (LQ)n = span{αβ∗ : |α| − |β| = n}

for the n-th homogeneous component with respect to this grading.
The elementary lemmas below shall be used later in the article.

LEMMA 2.2. Let Q be a nonsingular graph and a1, . . . , am ∈ LQ. Then there
exist n ∈ N, a finite set F ⊂ P , and finitely supported functions λi : F × Pn → C,
(α, β) 7→ λi

α,β (i = 1, . . . , m, α ∈ F, β ∈ Pn), such that

ai = ∑
α∈F

∑
β∈Pn

λi
α,βαβ∗, for all i = 1, . . . , m.

Proof. For each i = 1, . . . , m, we may write ai =
ni
∑

j=1
λi

jα
i
jβ

i
j
∗ with paths βi

j of

length n := max
i,j
{|βi

j|}, using relation (CK2) of Definition 2.1. Put Fi := {αi
j : j =

1, . . . , ni}, Gi := {βi
j : j = 1, . . . , ni} and F :=

m⋃
i=1

Fi. Rewriting the sums for each

i, we have ai = ∑
α∈F

∑
β∈Pn

λi
α,βαβ∗ with λi

α,β = 0 if α /∈ Fi or β /∈ Gi.

LEMMA 2.3. Let Q be a graph, B a C-algebra, and ρ : LQ → B a homomorphism.
Let u := {uv}v∈Q0 ⊂ B such that uv is invertible in ρ(v)Bρ(v) for all v ∈ Q0. Then
there is a unique homomorphism ρu : LQ → B such that for all e ∈ Q1, v ∈ Q0

ρu(e) = us(e)ρ(e), ρu(e∗) = ρ(e∗)u−1
s(e) and ρu(v) = ρ(v).

Proof. One checks that for x ∈ Q0 ∪ Q1 ∪ (Q1)∗ the elements ρu(e), satisfy
the relations of Definition 2.1.
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3. LEAVITT PATH ALGEBRAS AND SEMIGROUPS

Let Q be a graph and P = P(Q) the set of finite paths. Write

(3.1) S = S(Q) = {0} ∪ {αβ∗ : α, β ∈ P} ⊂ LQ.

Then S is the inverse semigroup associated with Q. The Cohn algebra of Q is the
semigroup algebra CQ = C[S ] of S ; its elements are the finite linear combinations
of the elements of S with multiplication induced by that of S . Observe that LQ
is the quotient of CQ modulo the relation CK2. Consider the sub-semigroup E of
idempotent elements of S :

S ⊃ E = {0} ∪ {αα∗ : α ∈ P}.

The set E is partially ordered by p 6 q ⇔ pq = p and is a semilattice for this
partial order. Observe that for the order of paths defined in (2.2), the bijection
P → E \ {0}, α 7→ αα∗ is a poset isomorphism. Note also that p, q ∈ E are
incomparable if and only if pq = 0. Let p ∈ E and Z ⊂ {q ∈ E : q 6 p}.
We call Z a cover of p if for every q 6 p there exists z ∈ Z such that zq 6= 0.
Let (End(V), ◦) be the set of linear endomorphisms considered as a semigroup
under composition. A representation of S on a vector space V is a semigroup
homomorphism ρ : S → (End(V), ◦). The image of E under a representation ρ
generates a boolean algebra Bρ with operations p ∧ q = pq, p ∨ q = p + q− pq.
By Proposition 11.8 of [8], the boolean representation ρ : E → Bρ is tight in the
sense of Definition 11.6 in [8] if and only if for every p ∈ E and every finite cover
Z of p, we have

(3.2)
∨

z∈Z
ρ(z) = ρ(p).

Following Definition 13.1 of [8], we call the representation ρ of S tight if its re-
striction to E is tight.

Although the following lemma is well-known to experts, we have not been
able to find it explicitly stated in the literature, so we include it here with proof.
The particular case of Lemma 3.1 when Q has a single vertex is Lemma 7.5 of [11].
See also Corollary 5.3 of [22].

LEMMA 3.1. Let ρ : S(Q) → (End(V), ◦) be a representation. Then ρ is tight if
and only if it extends to an algebra homomorphism LQ → End(V).

Proof. If v ∈ reg(Q), then Z = {ee∗ : e ∈ Q1, s(e) = v} is a finite cover of
v and the supremum in (3.2) equals ∑

e∈Z
ρ(ee∗). It follows that if ρ is tight then it

extends to an algebra homomorphism LQ → End(V). Assume conversely that ρ
extends to LQ. We have to prove that (3.2) holds. Since the supremum in (3.2) de-
pends only on the maximal elements of Z, and any two of these are incomparable,
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we may assume that no two distinct elements of Z are comparable. Hence∨
z∈Z

ρ(z) = ∑
z∈Z

ρ(z).

If α ∈ P and r(α) = v, then W = α∗Zα is a cover of v and ∑
z∈Z

= α ∑
w∈W

wα∗. Hence

we may further assume that α = v. We must then prove that for each finite cover
Z of v in which no two distinct elements are comparable, the following identity
holds in LQ

∑
z∈Z

z = v.

We do this by induction on n = m(Z) = max{|α| : αα∗ ∈ Z}. For n = 0 this is
trivial. Assume n > 1 and let A = {α ∈ Pn : αα∗ ∈ Z}. Each α ∈ A can be written
uniquely as α̃eα where |α̃| = n− 1 and eα ∈ Q1. For w ∈ B := {s(eα) : α ∈ A},
put Cw = {eα : s(eα) = w}; because Z is a cover, Cw = s−1(w). Hence

∑
α∈A

αα∗ = ∑
β∈Ã

∑
α̃=β

αα∗ = ∑
β∈Ã

∑
s(e)=r(β)

βee∗β∗ = ∑
β∈Ã

ββ∗.

Let Z′ = (Z \ A) ∪ Ã; then m(Z′) = n − 1, any two distinct elements of Z′ are
incomparable, and by the calculation above, ∑

z′∈Z′
z′ = ∑

z∈Z
z. This concludes the

proof.

4. SPATIAL REPRESENTATIONS OF LQ

Let E be a Banach space. We write L(E) for the Banach algebra of bounded
linear maps E → E. A representation of LQ on E is an algebra homomorphism ρ :
LQ → L(E). We say that ρ is nondegenerate if ρ(LQ)E ⊂ E is dense. In this paper
we shall be mostly concerned with Lp-representations, that is, with representations
on Banach spaces of the form Lp(X), p ∈ [1, ∞), where X = (X,B, µ) is a σ-finite
measure space. If A ∈ B, we write P(A) for the set of subsets of A and consider
A as a measure space with σ-algebra BA := B ∩ P(A) and measure µ|BA

; thus

A = (A,BA, µ|BA
).

We write N (µ) = {A ∈ B : µ(A) = 0} and Bµ = B/N (µ).
In what follows, we need to borrow several definitions from [15], pertaining

to (partial) isometries between Lp-spaces.
Let X = (X,B, µ) and (Y, C, ν) be σ-finite measure spaces. A measurable set

transformation from X to Y is homomorphism of σ-algebras S : Bµ → Cν. If S is
bijective, then S∗(µ) = µS−1 is a σ finite measure on C, absolutely continuous
with respect to ν. By Proposition 5.6 of [15], there is also a map S∗ : L0(X) →
L0(Y) such that S∗(χE) = χS(E) (E ∈ Bµ).
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Let 1 6 p < ∞; to a bijective measurable set transformation S from X to Y
and a measurable function h : Y → C such that |h(x)| = 1 for almost every x ∈ B
one associates an isometric isomorphism u : Lp(X)→ Lp(Y) as follows:

(4.1) u(ξ)(y) = h(y)
([dS∗(µ)

dν(y)

])1/p
S∗(ξ)(y) for all ξ ∈ Lp(X), y ∈ X.

An isometric isomorphism u : Lp(X)→ Lp(Y) is called spatial if there exist S and
h such that u is of the form (4.1). If p 6= 2, then every isometric isomorphism in
L(Lp(X), Lp(Y)) is spatial, by the Banach–Lamperti theorem ([13], Theorem 3.1;
see Theorem 6.9 and Lemma 6.15 of [15] for a detailed proof). A partial isometry
s : Lp(X) → Lp(X) is spatial if there are A, B ∈ Bµ, called respectively the domain
and the range support of s, and a spatial isometric isomorphism u : Lp(A) →
Lp(B), such that for the projection πA : Lp(X) → Lp(A) and the inclusion ιB :
Lp(B)→ Lp(X) we have a factorization

(4.2) s = ιBuπA.

If S and h are as in (4.1) we call s the spatial partial isometry associated with the
spatial system (S, A, B, h); S and h are the spatial realization and the phase factor of
the spatial system. Observe that whereas different choices of h and S may induce
the same partial isometry s, πA and πB depend only on the latter. Indeed

πA = inf{πA′ : A′ ∈ B, sπA′ = s} and πb = inf{πB′ : B′ ∈ B, πB′ s = s}.

If s is as in (4.2), then t = ιAu−1πB is the unique spatial partial isometry such that
ts = πA and st = πB; we call t the reverse of s. If p = 2 and s is a spatial partial
isometry then the reverse of s is just its adjoint t = s∗.

EXAMPLE 4.1. Let X = (X,B, µ) be a σ-finite measure space. Let E ∈ B
and let χE be the characteristic function. Then the canonical projection πE :
Lp(X) → Lp(E) ⊂ Lp(X), πE(ξ) = χEξ is a spatial partial isometry with spatial
system (IdBE , E, E, 1). Every idempotent spatial partial isometry is of this form,
by Lemma 6.18 of [15].

EXAMPLE 4.2. Let X be as in the previous example and let s : Lp(X) →
Lp(X) be a spatial partial isometry with spatial system (S, A, B, h). If z ∈ S1 then
ξ 7→ zs(ξ) is again a spatial partial isometry with spatial system (S, A, B, zh).

REMARK 4.3. Spatial partial isometries in general and spatial idempotents
in particular have norm 1. However the converse does not hold. For example,(

1/2 1/2
1/2 1/2

)
∈ M2 = B(`p({1, 2}))

is a norm one idempotent that is not spatial in our sense (which is that of [15]) for
any p > 1 ([15], Example 7.3). However it is self-adjoint and therefore 2-spatial
in the sense of Definition 4.6 in [9].
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A representation ρ : LQ → L(Lp(X)) is spatial if for each v ∈ Q0, ρ(v) is
a spatial idempotent and for each e ∈ Q1, ρ(e) is a spatial partial isometry with
reverse ρ(e∗). If ρ is spatial then ρ(x) is spatial for every x ∈ S(Q), whence by
Lemma 3.1 a spatial representation of LQ is the same as a tight spatial representation
of S(Q), that is, a tight representation of S(Q) which takes values in the inverse
semigroup S(Lp(X)) of spatial partial isometries.

REMARK 4.4. As we explained above, the reverse of a spatial isometry s ∈
L2(X) is just its adjoint. Hence any spatial representation LQ → L(L2(X)) is a
∗-representation. The converse does not hold. For example C is the Leavitt path
algebra of the graph consisting of a single vertex and no edges, and the repre-
sentation ρ : C → M2 = L(`2(N)) that sends 1 to the self-adjoint idempotent of
Remark 4.3 is a ∗-representation that is not spatial in our sense.

REMARK 4.5. If ρ is spatial and α, β ∈ P(Q) are paths with r(α) = r(β), then
ρ(αβ∗) is a spatial partial isometry. In particular, ρ(αα∗) is an idempotent spatial
partial isometry, and thus by Example 4.1, there is Xα ∈ B such that ρ(αα∗) is the
canonical projection πXα : Lp(X) → Lp(Xα) ⊂ Lp(X). If Sα is the measurable set
transformation of ρ(α) then Xα = Sα(Xr(α)), so the spatial system of ρ(α) is of the
form

(Sα, Xr(α), Xα, gα)

for some gα : Xα → C such that |g(x)| = 1 for almost all x ∈ Xα. If α > β, say
β = αγ, then Xβ ⊂ Xα because Xβ = Sα(Xγ) ⊂ Sα(Xr(α)) = Xα. On the other
hand if α and β are not comparable then Xα and Xβ are disjoint. In particular, for
each v ∈ Q0 the family {Xe : s(e) = v} ⊂ B ∩ P(Xv) consists of pairwise disjoint
sets, and if v is regular its union is the whole Xv:

(4.3) Xv = ä
e∈s−1(v)

Xe for all v ∈ reg(Q).

It follows from (4.3) that if Q is nonsingular then for each l > 0 we have

(4.4) Xv = ä
α∈vPl(Q)

Xα.

Conversely, if we are given disjoint families {Xv : v ∈ Q0} ⊂ B and {Xe :
e ∈ Q1, s(e) = v} ⊂ B ∩ P(Xv) for each v ∈ Q0 satisfying (4.3) and a family
{se : e ∈ Q1} of spatial partial isometries in L(Lp(X)) with range and source
projections πXe and πXv , then there exists a unique algebra homomorphism ρ :
LQ → L(Lp(X)) satisfying ρ(v) = πXv , ρ(e) = se, and sending e∗ to the reverse
of se.

LEMMA 4.6. Let X be a σ-finite measure space. If ρ : LQ → L(Lp(X)) is a spatial
representation, then ρ is nondegenerate if and only if

(4.5) X = ä
v∈Q0

Xv.
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Proof. Immediate from the fact that

ρ(LQ)Lp(X) = ∑
v∈Q0

ρ(v)Lp(X) =
⊕

v∈Q0

Lp(Xv).

It follows from (4.4) and Lemma 4.6 that if Q is nonsingular and ρ is nonde-
generate, then for each l > 0 we have

(4.6) X = ä
α∈Pl(Q)

Xα.

LEMMA 4.7. Let Q be a graph, 1 6 p < ∞, X = (X,B, µ) a σ-finite measure
space, and ρ : LQ → L(Lp(X)) a spatial representation. Then there are X′ ∈ B and
a nondegenerate spatial representation ρ′ : LQ → L(Lp(X′)) such that ρ factors as ρ′

followed by the inclusion L(Lp(X′)) ⊂ L(Lp(X)).

For the proof put X′ = ä
v∈Q0

Xv.

The following example of a nondegenerate spatial representation is used in
the proof of Theorem 10.1.

EXAMPLE 4.8. Let Q be a graph, and let

(4.7) X = XQ = {α : infinite path in Q} ∪ {α ∈ P : r(α) ∈ sing(Q)}.
For α ∈ P , let

X ⊃ Zα = {x ∈ X : α > x} = αX.
The sets Zα are the basis of a topology on X which makes it a locally compact
Hausdorff space; modulo our different conventions for ranges and sources, this
is the space considered in page 3 of [6]. The inverse semigroup S = S(Q) acts on
X by partial homeomorphisms; an element u = αβ∗ ∈ S acts on X with domain
Zβ and range Zα via

(4.8) αβ∗(βx) = αx.

Let B be the σ-algebra of all Borel subsets of X. The semigroup S of (3.1) acts on
X via (4.8). If α, β ∈ P with r(α) = r(β), then

(4.9) Sαβ∗ : B|Zβ
→ B|Zα

, A 7→ αβ∗(A)

is a bijective homomorphism of σ-algebras. Let µ be a measure on B; µ is quasi-
invariant under αβ∗ if µ|Zβ

and µ|Zα
◦ βα∗ are equivalent measures (that is, if they

are absolutely continuous with respect to each other); µ is quasi-invariant under
S if it is quasi-invariant under any element of S . One can show that X always
has a σ-finite measure that is quasi-invariant under S . For example, in case X

is countable we can take µ to be the counting measure. Assume that µ is a σ-
finite measure on the Borel subsets of X, quasi-invariant under S , and let sαβ∗ be
the spatial isometry of (4.1) with spatial realization S = Sαβ∗ and constant phase
factor h = 1. Then

S → L(Lp(X, µ)), αβ∗ 7→ sαβ∗
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is a tight nondegenerate spatial representation of S and thus induces a nonde-
generate spatial representation ρµ : LQ → L(Lp(X, µ)). There are graphs Q such
that ρµ is not injective for any p ∈ [1, ∞). For example, if Q consists of one vertex
and one loop, then LQ ∼= C[t, t−1] and ρµ is 1-dimensional.

REMARK 4.9. Each element x ∈ X induces a tight Boolean representation
φx : E → {0, 1} (that is, a tight character in the sense of Definition 12.8 in [8]) so
that φx(αα∗) = 1 if and only if x ∈ Zα. One can show that the map x 7→ φx

is a homeomorphism between X and the space Êtight of tight characters with the
topology of point-wise convergence, and that the action (4.8) corresponds to the
canonical action of Proposition 12.8 in [8].

CONSTRUCTION 4.10. Let X be a countable set, and let I(X) be the inverse
semigroup of all partially defined injections

X ⊃ dom f
f−→ X.

Let Q be a countable graph, S = S(Q) its associated inverse semigroup and
S : S → I(X) a semigroup homomorphism. For each α ∈ P = P(Q), set Xα =
dom(Sα). We shall assume that S is tight, i.e. that the identities (4.3) and (4.5) are
satisfied. Let G = G(S , X) be the groupoid of germs, as defined in Section 4 of [8].
The elements of G are equivalence classes [αβ∗, x] where r(α) = r(β), x ∈ Xβ; the
equivalence relation is determined by the prescription that [αβ∗, x] = [αγγ∗β∗, x]
for any γ ∈ P with s(γ) = r(α). For αβ∗ ∈ S \ {0}, put

Θα,β = {[αβ∗, x] : x ∈ Xβ} ⊂ G.

Let A(G) ⊂ map(G,C) be the linear subspace generated by the characteristic
functions χΘα,β , (αβ∗ ∈ S \ {0}). One checks that A(G) is an algebra under the
convolution product (it is in fact the Steinberg algebra of G [21]) and that

(4.11) ψ : LQ → A(G), ψ(αβ∗) = χΘα,β

is an algebra homomorphism. Let

(4.12) L : A(G)→ L(`p(G)), L( f )(ξ)(h) = ∑
g∈G

f (g)ξ(g−1h),

for f ∈ A(G), ξ ∈ `p(G) and h ∈ G. This is well-defined because the domain and
range functions are injective on each Θα,β. One checks that L is a monomorphism.
Consider the composite

(4.13) ρ = Lψ : LQ → L(`p(G)).

Let αβ∗ ∈ S(Q) and consider the following subsets of G:

A = {[γδ∗, δx] : β > γx}, B = {[αβ∗γδ∗, δx] : β > γx}.
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The map

A→ B,

[γδ∗, δx] 7→ [αβ∗, γx][γδ∗, δx] = [αβ∗γδ∗, δx]

is bijective and thus induces a cardinality preserving bijection Sα,β : P(A)→P(B).
One checks that ρ(αβ∗) is the spatial isometry with spatial system (Sα,β, A, B, 1).
Hence ρ is a spatial, nondegenerate representation.

LEMMA 4.10. Assume that in Construction 4.10, one has Xv 6= ∅ for all v ∈
Q0. Then (4.11) is an isomorphism and (4.13) is an injective, nondegenerate spatial
representation.

Proof. Put A(G)n = span{ψ(αβ∗) : |αβ∗| = n}; we have

(4.14) A(G) = ∑
n
A(G)n.

Let c : G → Z, c([αβ∗, x]) = |αβ∗|; note that the elements of A(G)n are supported
in c−1({n}). It follows from this that the sum in (4.14) is direct. Moreover, because
c is a groupoid homomorphism, we have A(G)nA(G)m ⊂ A(G)n+m. Thus ψ is
a homogeneous homomorphism of graded algebras. For v ∈ Q0, ψ(v) is the
characteristic function of {[v, x] : x ∈ Xv} which is nonempty by hypothesis, so
ψ(v) 6= 0. By Theorem 2.2.15 of [1] this implies that ψ is an isomorphism.

PROPOSITION 4.11. Let Q be a countable graph and let p ∈ [1, ∞). Then LQ has
an injective, nondegenerate spatial representation LQ → L(`p(N)).

Proof. Let X be any countably infinite set. Because X is infinite and #Q0 6
#X, there exists a bijection φ : X→ Q0×X. For v ∈ Q0, set Xv = φ−1({v}×X);
observe that (4.5) is satisfied by construction. Put Q1(v,−)=s−1({v})⊂Q1 and let

Rv =

{
Q1(v,−) v ∈ reg(Q),
{v}ä Q1(v,−) v ∈ sing(Q).

Because #Xv = #X is infinite and #Rv 6 #Xv, there is a bijection ζv : Xv → Rv×X.
Set Xe = ζ−1

s(e)({e}×Xs(e)) (e ∈ Q1). By construction, (4.3) is satisfied. For e ∈ Q1,

let r−1 × 1 : {r(e)} × X → {e} × X be the obvious bijection. Define a semigroup
homomorphism S : S(Q)→ I(X) by setting

Sv = 1Xv , Se = ζ−1
s(e)(r

−1 × 1)φ : Xr(e) → Xe, Se∗ = S−1
e for v ∈ Q0, e ∈ Q1.

Let G be the groupoid of germs associated to this action of S on X, and consider
the nondegenerate spatial representation ρ : LQ → L(`p(G)) of (4.13). Then ρ is
injective by Lemma 4.10; furthermore, #G = ℵ0 and any bijection G ∼= N induces
a spatial isometric isomorphism `p(G) ∼= `p(N).
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5. MATRIX ALGEBRAS AND SPATIAL REPRESENTATIONS

Let 1 6 n 6 ∞ and let A be an algebra. Write Mn for the algebra of n× n-
matrices with finitely many nonzero entries, and Mn A = Mn ⊗ A. If i, j ∈ N, we
write Ei,j for the canonical matrix unit. Let Q be a countable graph, X a σ-finite
measure space, and p ∈ [1, ∞). Call a representation ρ : Mn(LQ) → L(Lp(X))

spatial if for every x ∈ Q0 ∪ Q1 and i, j, ρ(Ei,j ⊗ x) is a spatial partial isometry
with reverse ρ(Ej,i ⊗ x∗).

REMARK 5.1. Let n 6 ∞ and let MnQ be the graph obtained by adding a
head

· · · // vi
ev

i // vi−1
ev

i−1 // · · ·
ev

2 // v1
ev

1 // v

for each v ∈ Q0 and i < n. By Propositions 9.3 and 9.8 of [3], there is a ∗-isomor–
phism

LMnQ
∼=−→ MnLQ,

v 7→ E1,1 ⊗ v, vi 7→ Ei+1,i+1 ⊗ v(5.1)

e 7→ E1,1 ⊗ e, ev
i 7→ Ei+1,i ⊗ e.

It is clear that a representation MnLQ → L(Lp(X)) is spatial in the matricial sense
above if and only if its composition with the map (5.1) is a spatial representation
of LMnQ.

EXAMPLE 5.2. Let σ : LQ → L(Lp(X)) be a spatial representation. Let
I = {1, . . . , n} if n is finite, and I = N if n = ∞. We have a canonical isometric
isomorphism Lp(I × X) ∼= `p(I, Lp(X)). Let

σI : MnLQ → L(`p(I, Lp(X))), σI(Ei,j ⊗ a)(ξ)(k) = δk,iσ(a)(ξ(j)).

Then σI is spatial. Indeed if a ∈ S(Q) and σ(a) is a spatial isometry with domain
support A and rank support B, then σI(Ei,j⊗ a) is a spatial isometry with domain
support {j} × A and range support {i} × B. We remark that for I = {1, . . . , n},
σI is the representation induced by the amplification of σ in the sense of Defini-
tion 4.10 in [9].

LEMMA 5.3. Let Q be a countable graph, I a countable set, X a σ-finite measure
space, p ∈ [1, ∞), and ρ : M|I|LQ → L(Lp(X)) a nondegenerate spatial representation.
Then there exist a σ-finite measure space Y, a spatial representation σ : LQ → L(Lp(Y))
and a spatial isometric isomorphism u : `p(I, Lp(Y)) → Lp(X) such that ρ(a) =
uσI(a)u−1 for all a ∈ LQ.

Proof. For each i ∈ I and v ∈ Q0, let Xi,v be the domain support of the spatial
idempotent ρ(Ei,i ⊗ v). Set Xi = ä

v∈Q0
Xi,v; we have X = ä

i∈I
Xi. Hence we have

Lp-direct sum decompositions Lp(X) =
⊕
i∈I

Lp(Xi) and Lp(Xi) =
⊕

v∈Q0
Lp(Xi,v).
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Choose i0 ∈ I, and let Y = Xi0 . Then u =
⊕
i,v

ρ(Ei,i0 ⊗ v) is a spatial isometric

isomorphism `p(I, Lp(Y)) =
⊕
i∈I

Lp(Y)→ Lp(X). Let σ : LQ → L(Lp(Y)), σ(a) =

ρ(Ei0,i0 ⊗ a). One checks that u conjugates σI to ρ, concluding the proof.

6. A SPATIALITY CRITERION

We have a natural identification Mn = L(`p({1, . . . , n}) for n < ∞ and a
natural embedding M∞ → L(`p(N)); by pulling back the operator norm, we get
a norm ‖ · ‖p on Mn, for n ∈ [1, ∞], which makes the latter into a normed algebra
Mp

n . If I is a set and

(6.1) n = (ni)i∈I

is a family with ni ∈ [1, ∞], we write

(6.2) Mp
n =

⊕
i∈I

Mp
ni

for the algebraic direct sum equipped with the supremum norm

‖(ai)‖ = sup
i∈I
‖ai‖p.

We write Ei
a,b (i ∈ I), 1 6 a, b 6 ni for the canonical matrix unit.

The following proposition generalizes Theorem 7.2 of [15]; its proof is
adapted from loc. cit.

PROPOSITION 6.1. Let p ∈ [1, ∞) \ {2}, I a countable set, n as in (6.1), and Mp
n

as in (6.2). Let X = (X,B, µ) be a σ-finite measure space with µ 6= 0. The following are
equivalent for a nondegenerate representation ρ : Mp

n → L(Lp(X)):
(i) ρ(Ei

a,b) is a spatial partial isometry for all i ∈ I and, a, b ∈ [1, ni];
(ii) ρ is contractive.

Proof. Assume that (i) holds. Then each ρ(Ei
a,a) is a spatial idempotent,

whence by Example 4.1 there is Xi
a ∈ B such that ρ(Ei

a,a) = πXi
a

is the canonical
projection. For each i ∈ I putNi = N if ni = ∞ andNi = {1, . . . , ni} if ni < ∞. Be-
cause ρ is nondegenerate, we have X = ä

i∈I
ä

a∈Ni

Xi
a. Put Xi = ä

a∈Ni

Xi
a. By restric-

tion, we obtain a nondegenerate representation ρi : Mni → L(Lp(Xi)) satisfying
(i); hence we may assume that I = {1} has only one element. If n < ∞, nondegen-
eracy implies that ρ(1) = 1, so ρ is contractive by Theorem 7.2 of [15]. Assume
n = ∞. Proceed as in loc. cit., using the partial isometries ρ(E1,a) : Lp(Xa) →
Lp(X1) to construct an isometry u : Lp(X) → `p(N, Lp(X1)) = `p(N)⊗p Lp(X1)
(the Lp-tensor product) that conjugates ρ to the contractive representation T 7→
T ⊗ 1. It follows that ρ is contractive, concluding the proof that (i)⇒ (ii).
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Assume now that (ii) holds. Then {ρ(Ei
a,a) : i ∈ I, a ∈ Ni} is a family of

orthogonal idempotents. Let Bi
a = ρ(Ei

a,a)Lp(X); then the algebraic direct sum
B =

⊕
i,a

Bi
a is dense in Lp(X). For each z ∈ S1, i ∈ I and a ∈ Ni define an

operator ui,a(z) : B → B as multiplication by z on Bi
a and the identity on every

other summand. Because ρ is contractive, ui,a(z) has norm 1, so it extends to a
norm 1 operator ui,a(z) ∈ L(Lp(X)). Since this also holds for ui,a(z−1), ui,a(z) is
a bijective isometry. Hence it is spatial, by the Banach–Lamperti theorem. Now
proceed as in page 42 of [15] to deduce that ρ(Ei

a,a) = (1− ui,a(−1))/2 is a spatial
idempotent. Hence there exists Xi

a ∈ B such that Bi
a = Lp(Xi

a) and X = ä Xi
a.

Since ρ(Ei
a,b) is an isometry Bi

b → Bi
a, another application of the Banach–Lamperti

theorem shows that it is spatial.

Recall that the Leavitt path algebra is equipped with a Z-grading LQ =⊕
n
(LQ)n where (LQ)n is as in (2.3). Write (LQ)0,n ⊂ (LQ)0 for the subalgebra

linearly spanned by the elements of the form αβ∗ with r(α) = r(β) and |α| =
|β| 6 n. We have an increasing union

(LQ)0 =
∞⋃

n=0
(LQ)0,n.

Each (LQ)0,n is isomorphic to a direct sum of (possibly infinite dimensional) ma-
trix algebras.

THEOREM 6.2 (cf. Theorem 7.7 of [9]). Let X = (X,B, µ) be a σ-finite measure
space with µ 6= 0, p ∈ [1, ∞) \ {2}, and Q a countable graph. The following are
equivalent for a nondegenerate representation ρ : LQ → L(Lp(X)):

(i) ρ is spatial;
(ii) ‖ρ(e)‖, ‖ρ(e∗)‖ 6 1 (e ∈ Q1) and the restriction of ρ to ((LQ)0,1, ‖ · ‖p) is

contractive.

Proof. The implication (i)⇒ (ii) is clear using Proposition 6.1. Assume that
(ii) holds; then ρ(e) is a bijective isometry ρ(r(e))Lp(X) → ρ(ee∗)Lp(X) with
inverse ρ(e∗). By Proposition 6.1, ρ(v) and ρ(ee∗) are spatial idempotents for
all v ∈ Q0 and e ∈ Q1. Hence it follows from the Banach–Lamperti theorem,
Theorem 6.9 in [15] and from Lemma 6.15 of [15] that ρ(e) and ρ(e∗) are spatial.
This concludes the proof.

REMARK 6.3. The assumption that ρ be nondegenerate in necessary in both
Proposition 6.1 and Theorem 6.2. For example the trivial graph on one vertex has
Leavitt algebra C, which equals Mp

1 for all 1 6 p < ∞, and the representation
C → Mp

2 that maps 1 to the idempotent of Remark 4.3 is contractive but not
spatial. The correct version of Theorem 6.2 for p = 2 is Proposition 6.4.
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PROPOSITION 6.4. Let (X,B, µ) and Q be as in Theorem 6.2. The following are
equivalent for a representation ρ : LQ → L(L2(X)):

(i) ρ is a ∗-homomorphism;
(ii) ‖ρ(e)‖, ‖ρ(e∗)‖, ‖ρ(v)‖ 6 1 for every e ∈ Q1 and v ∈ Q0.

Proof. Recall that an idempotent π ∈ L(L2(X)) is contractive if and only if
it is self-adjoint. It follows that if two elements s, t ∈ L(L2(X)) satisfy sts = s and
tst = t then ‖s‖ 6 1 > ‖t‖ if and only if t = s∗. The proposition is immediate
from this observation applied to π = ρ(v), s = ρ(e) and t = ρ(e∗) for all v ∈ Q0

and e ∈ Q1.

7. THE Lp-OPERATOR ALGEBRA Op(Q)

DEFINITION 7.1. Let p ∈ [1, ∞). An Lp-operator algebra is a Banach alge-
bra B together with a norm on each MnB that makes into a Banach algebra in
such a way that there exists a nondegenerate representation ρ : B → L(Lp(X))
for some σ-finite measure space X, such that Mnρ : MnB → MnL(Lp(X)) =

L
(

Lp
( n

ä
i=1

X
))

is isometric for each 1 6 n < ∞. We call B standard if X can

be chosen to be a standard Borel space. A homomorphism f : A → B between
Lp-operator algebras is p-completely contractive (respectively isometric) if Mn f is
contractive (respectively isometric) for every n.

REMARK 7.2. By Proposition 1.25 of [16], any separable Lp-operator algebra
admits an isometric representation on a separable, whence standard, Lp-space.
Thus a separable Lp-operator algebra is automatically standard.

REMARK 7.3. If either p ∈ [1, ∞) and B has a contractive unit or p 6= 1
and B has a contractive approximate unit, then the condition that the isometric
representation in Definition 7.1 be nondegenerate can be dropped, by Theorem 4
of [5] and Theorem 3.19 of [11].

Let Q be a countable graph and let p ∈ [1, ∞). A spatial p-seminorm on
its Leavitt path algebra is a seminorm h : LQ → R>0 such that there exist a σ-
finite measure space X and spatial representation ρ : LQ → L(Lp(X)) such that
h(a) = ‖ρ(a)‖ for all a ∈ LQ. Observe that by Lemma 4.7, every spatial seminorm
is induced by a nondegenerate spatial representation. Put

(7.1) ‖a‖ = sup{h(a) : h is a spatial p-seminorm}.

By Proposition 4.11, ‖ · ‖ is a norm.

DEFINITION 7.4. Let Q be a countable graph and let p ∈ [1, ∞). Write

Op(Q) = L‖·‖Q for the completion of LQ with respect to the norm (7.1). By def-
inition, Op(Q) is a Banach algebra; we shall see in Proposition 7.5 below that
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furthermore, Op(Q) is an Lp-operator algebra. We call Op(Q) the Lp-operator
algebra of Q.

Observe that the canonical map LQ → Op(Q) is injective, by Proposi-
tion 4.11. Since Q is countable, there is a countable family {ρn} of σ-finite non-
degenerate spatial representations such that ‖ · ‖ is the norm associated to the
Lp-direct sum

(7.2) ρ =
⊕

n
ρn : LQ → L

(
Lp
(

ä
n

Xn

))
which is a nondegenerate spatial representation. Hence Op(Q) is isometrically
isomorphic to the closure of ρ(LQ).

PROPOSITION 7.5. Let Q be a countable graph. Then Op(Q) has a canonical
structure of Lp-operator algebra such that there is an isometric isomorphism MnOp(Q) ∼=
Op(MnQ) for all n ∈ [1, ∞).

Proof. By Remark 5.1, every Lp-representation of MnLQ which is spatial
in the sense of Section 5 factors uniquely through the canonical map MnLQ ∼=
LMnQ → Op(MnQ). By Lemma 5.3 and the discussion above, for each n there is
a spatial representation σn : LQ → L(Lp(Yn)) such that ‖ · ‖n := ‖Mnσn(·)‖ is
the supremum of all p-spatial norms on LMn(Q). Let Y = ä

n
Yn and let σ =

⊕
n

σn :

LQ → L(Lp(Y)) be the Lp-direct sum. Then ‖Mnσ(·)‖ = ‖ · ‖n for all n > 1, and
we have isometric isomorphisms

Op(MnQ) ∼= σ(Mn(LQ)) = Mn(σ(LQ)) = Mn(σ(LQ)) ∼= MnOp(Q).

THEOREM 7.6. Let X be a σ-finite measure space with nonzero measure, p ∈
[1, ∞) \ {2}, Q a countable graph, ρ̂ : Op(Q) → L(Lp(X)) a representation and
ρ : LQ → L(Lp(X)) the restriction of ρ̂. If ρ is nondegenerate, then the following
conditions are equivalent:

(i) ρ̂ is contractive;
(ii) ρ is spatial.

Further assume either that p 6= 1 or that Q0 is finite. Then for any, possibly
degenerate representation, condition (i) is equivalent to

(ii’) there exist a σ-finite measure space Y, an isometry ι : Lp(Y)→ Lp(X), a norm 1
operator π : Lp(X) → Lp(Y) such that πι = 1, and a spatial representation ρ′ : LQ →
L(Lp(Y)), such that for f : L(Lp(Y)) → L(Lp(X)), f (T) = ιTπ, the following
diagram commutes

LQ

ρ′ $$H
HH

HH
HH

HH
ρ // L(Lp(X))

L(Lp(Y))
f

88qqqqqqqqqq
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Proof. First assume that ρ is nondegenerate. If ρ is spatial then it induces
a contractive homomorphism ρ̂′ : Op(Q) → L(Lp(X)) which agrees with ρ on
LQ; since ρ̂ does the same, we must have ρ̂ = ρ̂′. This proves that (ii) ⇒ (i).
Conversely if (i) holds, then ρ is spatial by Theorem 6.2. Next observe that if ρ is
any (possibly degenerate) representation that satisfies (ii’) then ρ′ factors through
a contractive representation ρ̂′ : Op(Q)→ L(Lp(Y)). Thus f ρ̂′ = ρ̂ is contractive.
Assume conversely that (i) holds. Let E ⊂ Lp(X) be the closure of ρ(LQ)(Lp(X)).
If Q0 is finite then Op(Q) is unital with unit 1 = ∑

v∈Q0
v which has norm 1; thus

E is the image of the contractive idempotent ρ(1). For general Q, the family{
∑

v∈F
v
}

indexed by the finite subsets of Q0 is a contractive approximate unit

of Op(Q); hence if p 6= 1, then again E is the image of a contractive idempotent,
by Corollary 3.13 of [11]. Hence under either hypothesis, by Theorem 4 of [5]
there are a contractive projection π′ : Lp(X) → E and an isometric isomorphism
h : E→ Lp(Y) for some standard Borel space Y. Put π = hπ′, let ι be h−1 followed
by the inclusion E ⊂ Lp(X), and set ρ′(a) = hρ(a)h−1. It is clear that the diagram
commutes; moreover, ρ′ is spatial by Theorem 6.2.

REMARK 7.7. The argument of the proof that (ii)⇒ (i) in Theorem 7.6 still
works for p = 2. The proof of the converse uses Theorem 6.2, which in turn relies
on the Banach–Lamperti theorem. Since the latter does not hold for p = 2, the
proof above does not apply.

Recall that the circle group S1 acts on LQ via the gauge action, which asso-
ciates to each z ∈ S1 an automorphism

(7.3) γz : LQ → LQ.

This action is characterized by the fact that γz(a) = zna whenever a ∈ (LQ)n.

LEMMA 7.8. Let Q be a countable graph, p ∈ [1, ∞) and z ∈ S1. Then the map
(7.3) extends to an isometric isomorphism γ̂z : Op(Q)→ Op(Q). Moreover, the map

γ̂(a) : S1 → Op(Q), w 7→ γ̂w(a)

is continuous for each fixed a ∈ Op(Q).

Proof. Let ι : LQ → Op(Q) be the inclusion and let ρ : Op(Q) → L(Lp(X))

be an isometric embedding. If z ∈ S1, then ριγz is a spatial representation by
Example 4.2, hence it gives rise to a contractive homomorphism γ̂z : Op(Q) →
Op(Q). Because S1 → Aut(LQ), z 7→ γz is a group homomorphism, γ̂z is an iso-
metric isomorphism with inverse γ̂z. This proves the first assertion of the lemma.
The second assertion follows as in the proof of Proposition 2.1 in [19].
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As pointed out above, the reverse of a 2-spatial partial isometry is just its ad-
joint. It follows from this that any 2-spatial representation of LQ is a ∗-representa–
tion. Hence O2(Q) is a C∗-algebra and we have a canonical ∗-homomorphism

(7.4) πQ : C∗(Q)→ O2(Q).

We shall show that πQ is an isomorphism. For the proof we need the desingular-
ization of a singular graph whose definition we shall presently recall. Let Q be a
countable, singular graph. Recall from Section 5 of [2] that the desingularization of
Q is a nonsingular graph Qd obtained from Q as follows. For each sink v, add an
infinite tail

(7.5) v = v0
f1→ v1

f2→ v2
f3→ · · · .

For each infinite emitter v, number the elements of s−1(v) = {e1, e2, . . . } and
add a tail (7.5) and an arrow gi : vi → r(ei) (1 6 i). There is a canonical ∗-
monomorphism ([2], Proposition 5.5)

φd : LQ → LQd
,(7.6)

φd(v) = v, φd(e) =

{
e s(e) ∈ reg(Q),
f1 · · · figi e = ei.

PROPOSITION 7.9. Let Q be a countable graph. Then the map πQ in (7.4) is a
C∗-algebra isomorphism.

Proof. The image of πQ is a closed subalgebra containing the image LQ,
which is dense, so the map is surjective. If moreover, Q is row-finite, then πQ
is injective by Lemma 7.8 and the gauge invariant uniqueness theorem ([19], The-
orem 2.2). Hence for general Q, πQδ

is an isomorphism. Thus the top row of
the following commutative diagram, whose columns are induced by (7.6), is an
isomorphism:

(7.7) C∗(Qd)
πQd // O2(Qd)

C∗(Q)

OO

πQ
// O2(Q).

OO

Moreover, the first vertical map is injective by Theorem 2.11 of [7]. It follows that
the bottom row of (7.7) is injective. This concludes the proof.

REMARK 7.10. Let ρ̂ : O2(Q) → L(L2(X)) be a representation and ρ its
restriction to LQ. It follows from Propositions 6.4 and 7.9 and the universal prop-
erty of C∗(Q), that ρ̂ is contractive if and only if ρ is a ∗-homomorphism if and
only of ρ̂ is a ∗-homomorphism.
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Let S(Q) be the semigroup of (3.1) and let p ∈ (1, ∞). Let Fp
tight(S(Q)) be the

standard Lp-operator algebra of Definition 6.7 in [9]; Fp
tight(S(Q)) is universal for

tight Lp-representations of S(Q) which are spatial in the sense of Definition 4.6
in [9] and take values in Lp-spaces of standard Borel spaces.

COROLLARY 7.11. Let S(Q) be the semigroup generated by Q. Then there is a
C∗-algebra isomorphism F2

tight(S(Q)) ∼= O2(Q).

Proof. A partial isometry s : L2(X) → L2(X) of a standard L2-space is spa-
tial in the sense of Definition 4.6 in [9] if and only if s = s∗ss∗. Hence F2

tight(S(Q))

is universal for tight ∗-representations of S(Q) on Hilbert space, which by Lem-
ma 3.1 are the same as the ∗-representations of LQ. Since C∗(Q) has the same
universal property, we have C∗(Q) ∼= F2

tight(Q). Now apply Proposition 7.9.

As pointed out above, the spatiality notion of [9] agrees with ours for p 6= 2.
Hence by Lemma 3.1 and the universal property of Op(Q), for p ∈ (1, ∞) \ {2},
we have a canonical contractive homomorphism

(7.8) Op(Q)→ Fp
tight(S(Q)).

Moreover, since the p-operator space structure on Fp
tight(S(Q)) is defined in [9]

so that Mn(Fp
tight(S(Q)) = Fp

tight(S(MnQ)), the induced map Mn(Op(Q)) →
Mn(Fp

tight(S(Q))) is also contractive, by Proposition 7.5. In other words (7.8) is
p-completely contractive.

PROPOSITION 7.12. Let p ∈ [1, ∞) \ {2}. Then the map (7.8) is a p-completely
isometric isomorphism.

Proof. It suffices to show that Fp
tight(S(Q)) is universal for all σ-finite spatial

representations. Let X be a σ-finite measure space and let ρ : LQ → L(Lp(X)) be a
spatial representation; we have to show that ρ factors through LQ → Fp

tight(S(Q)).
An argument similar to that of the proof of Theorem 7.6 shows that ρ factors
through a nondegenerate representation ρ′ : LQ → L(Lp(Y)) with Y standard
Borel. Thus ρ factors through LQ → Fp

tight(S(Q)), as required.

8. SPATIAL SEMINORMS, DESINGULARIZATION, AND SOURCE REMOVAL

If Q is a graph such that sour(Q) 6= ∅, we may embed it in the source-free
graph Qr obtained by adding an infinite head

(8.1) w = w0
f1← w1

f2← w2
f3← · · ·
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at each w ∈ sour(Q). The obvious inclusion Q ⊂ Qr induces an algebra mono–
morphism

(8.2) φr : LQ → LQr
.

Recall from Section 7 that if Q is a singular graph, we write Qd for its desin-
gularization.

PROPOSITION 8.1. Let Q be a countable graph, p ∈ [1, ∞), and # ∈ {r, d}.
Then for every nonzero spatial representation ρ : LQ → L(Lp(X)) there exist a spatial
representation ρ# : LQ# → L(Lp(Y)) and a spatial isometry s : Lp(X) → Lp(Y) with
reverse t, with both Y and s depending on ρ and #, such that for the map σ : L(Lp(X))→
L(Lp(Y)), σ(A) = sAt, the following diagram commutes:

(8.3) LQ

φ#

��

ρ // L(Lp(X))

σ

��
LQ# ρ#

// L(Lp(Y)).

Proof. We begin by the case # = r. If α ∈ P(Q), we write Xα for the sup-
port of the spatial projection ρ(αα∗). Regard N as a measure space with counting
measure; set Y := X t ⊔

w∈sour(Q)
(Xw × N). Let s and t be the inverse isometries

induced by the inclusion X ⊂ Y. The canonical identification Xw → Xw × {n}
induces an isometric spatial isomorphism τn : Lp(Xw) → Lp(Xw × {n}). Extend
ρ along φr to a map ρr : LQr

→ L(Lp(Y)) by setting ρr(wn) := IdLp(Xw×{n}),
ρr( fn) := τnτ−1

n−1, ρr( f ∗n ) = τn−1τ−1
n . One checks that ρr is well-defined and

makes (8.3) commute.
Next we consider the case # = d. The measure space Y will be a coproduct

Y = X t ä
v∈sing(Q),n>1

Yvn ;

the isometries s, t will be those induced by the inclusion X ⊂ Y. For v ∈ sink(Q),

we set Yvn = Xv × {n}, τn : Xv
∼=−→ Xv × {n} the obvious bijection, and put

ρd( fn) = τn−1τ−1
n . If v ∈ inf(Q) and X′v = Xv \

∞
ä
i=1

Xei , we set

Yvn = X′v tä
i>n

Xei

and let ρd( fn) be induced by the inclusion Yvn ⊂ Yvn−1 and ρd(gn) by the compos-
ite of ρ(en) : Lp(Xr(en)) → Lp(Xen) followed by the inclusion Lp(Xen) ⊂ Lp(Yvn).
One checks that this prescription defines a spatial representation ρd : LQd

→
L(Lp(Y)) that makes (8.3) commute.

COROLLARY 8.2. The canonical homomorphisms (7.6) and (8.2) induce isometric
homomorphisms Op(Q)→ Op(Qd) and Op(Q)→ Op(Qr).
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REMARK 8.3. One may wonder whether other standard graph transforma-
tions also induce isometric embeddings of the corresponding Lp-operator alge-
bras. We show in Remark 9.7 that such is indeed the case of the standard graph
transformations described in Chapter 6, Section 3 of [1], at least in the simple case.

9. A UNIQUENESS THEOREM

The purpose of this section is to prove the following theorem.

THEOREM 9.1. Let Q be a countable graph, p ∈ [1, ∞) and ρ : LQ → L(Lp(X))
a nonzero spatial representation. If LQ is simple, then the natural map is an isometric
isomorphism

Op(Q)
∼=−→ ρ(LQ).

The proof of Theorem 9.1 will be given at the end of the section, after a
series of propositions, definitions, and lemmas, which adapt and extend those in
Section 8 of [15].

DEFINITION 9.2. Let Q be a countable row-finite graph, p ∈ [1, ∞), X =
(X,B, µ) a σ-finite measure space, and ρ : LQ → L(Lp(X)) a representation.

(i) We say that ρ is free if there is a partition X =
⊔

m∈Z
Em, Em ∈ B, such that

for all m ∈ Z, e ∈ Q1, we have

(9.1) ρ(e)(Lp(Em)) ⊂ Lp(Em+1) and ρ(e∗)(Lp(Em)) ⊂ Lp(Em−1).

(ii) We say that ρ is approximately free if for every N ∈ N, there are n > N and a

partition X =
n−1⊔
m=0

Em, Em ∈ B, such that for m = 0, . . . , n− 1 and all e ∈ Q1 (9.1)

holds if we set En = E0 and E−1 = En−1.

LEMMA 9.3. Let p > 1, X = (X,B, µ) and Y = (Y, C, ν) be σ-finite measure
spaces, Q a row-finite graph, ρ : LQ → L(Lp(X)) a representation, and u ∈ L(Lp(Y))
an invertible operator. Then, there is a unique representation ρu : LQ → L(Lp(X×Y))
such that, for all e ∈ Q1, we have ρu(e) = ρ(e)⊗ u and ρu(e∗) = ρ(e∗)⊗ u−1.

Moreover, ρu has the following properties:
(i) if α ∈ LQ is homogeneous of degree k with respect to the Z-grading of (2.3), then

ρu(α) = ρ(α)⊗ uk;
(ii) if u is isometric, p 6= 2 and ρ is spatial, then ρu is spatial;

(iii) if there is a partition Y = ä
m∈Z

Fm, Fm ∈ C, such that u(Lp(Fm)) = Lp(Fm+1) for

all m ∈ Z, then ρu is free in the sense of Definition 9.2.

The proof is analogous to that of Lemma 8.2 in [15] using Lemma 2.3 instead
of Lemmas 2.18, 2.19 and 2.20 in [15].



Lp -OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS 247

PROPOSITION 9.4. Let p, X, Q, and ρ be as in Lemma 9.3. Let u ∈ L(`p(Z))
be the shift operator, (u(x))(m) := x(m− 1) (x ∈ `p(Z)). Let ρu be as in Lemma 9.3.
Then, for all a ∈ LQ, we have ‖ρu(a)‖ > ‖ρ(a)‖.

The proof is analogous to that of Proposition 8.3 in [15], using Lemma 9.3
instead of Lemma 8.2 in [15].

LEMMA 9.5. Let Q be a nonsingular countable graph such that LQ is simple. Let
X = (X,B, µ) be a σ-finite measure space. Let {Xv}v∈Q0 ⊂ B be a family of sets of
nonzero measure, {Xe}e∈Q1 ⊂ B a disjoint family such that X = ä

v∈Q0
Xv and Xv =

ä
{e:s(e)=v}

Xe ( for all v ∈ Q0), and

Se : (Xr(e),B|Xr(e)
, µ|Xr(e)

)→ (Xe,B|Xe
, µ|Xe

) (e ∈ Q1)

a bijective measurable set transformation. If α = α1 · · · αm is a path, write Sα = Sα1 ◦
· · · ◦ Sαm . Then, for each n > 0 and each v ∈ Q0 there is a set Ev ∈ B|Xv

such that
µ(Ev) 6= 0, and such that the following family is disjoint:

{Sα(Ev) : r(α) = v, |α| 6 n}.
Proof. We shall use the fact that, because LQ is simple, Q is cofinal, i.e. for

every v ∈ Q0 and each cycle c there is a path starting at v and ending at some
vertex in c (see Theorem 2.9.7 of [1]). Let v ∈ Q0. If v ∈ Q0 is not in any cycle,
we set Ev = Xv; observe that µ(Ev) 6= 0 by hypothesis. Because v is not in any
cycle, any two distinct paths ending in v are incomparable, and so Ev satisfies the
disjointness condition of the lemma. Next assume that v belongs to a cycle. Let
α := αv be a cycle based at v and let β be a closed path with s(β) = v that agrees
with α up to an exit, goes out following the exit, returns to c (which is possible by
cofinality) and follows it till it gets back to v. Consider the infinite path

γ := αβααββαααβββ · · · .

It is long, but straightforward to check that

(9.2) @ θ ∈ P(Q) such that θθ > γ.

Let n ∈ N and v ∈ E0. For i > 1, let γi be the i-th edge of γ. Put

B 3 Ev := Xγ1···γ2n .

Then µ(Ev) 6= 0 because µ(Xw) 6= 0 for all w ∈ Q0. Let η and τ be different
paths such that r(η) = r(τ) = v, of lengths k and l respectively (k 6 l 6 n).
We have to check that Sη(Ev) and Sτ(Ev) are disjoint. If k = 0 this is clear from
Remark 4.5, because Sτ(Ev) = Xτγ1···γ2n and the paths τγ1 · · · γ2n and γ1 · · · γ2n
are incomparable, by (9.2). So assume that 0 < k 6 l; if η and τ are incomparable,
we are done. Otherwise, we must have η > τ; say τ = ηδ. Hence Sη(Ev) ∩
Sτ(Ev) = Sη(Ev ∩ Sδ(Ev)) has measure zero because Ev ∩ Sδ(Ev) does.
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Let (X,B, µ) be a σ-finite measure space and τ1, . . . , τn ∈ L(Lp(X)) spa-
tial partial isometries with reverses σ1, . . . , σn. Call τ1, . . . , τn orthogonal if τjσi =
σiτj = 0 whenever i 6= j.

LEMMA 9.6. Let X be a σ-finite measure space, p∈ [1, ∞), τ1, . . . , τn∈L(Lp(X))

orthogonal spatial partial isometries, λ ∈ Cn, and τλ =
n
∑

i=1
λiτi. Then ‖τλ‖ = ‖λ‖∞.

The proof is straightforward.

REMARK 9.7. Let Q and Q′ be countable graphs and let φ : LQ → LQ′ be a
∗-homomorphism with the property that for any x ∈ Q0 ä Q1, φ(x) decomposes
as a sum ∑ xi of elements of S(Q′) such that xix∗j = x∗j xi = 0 whenever i 6=
j. Then for every spatial representation ρ′ : LQ′ → L(Lp(X)), ρ′φ is spatial,
by Lemma 9.6. Hence φ induces a contractive homomorphism φ̂ : Op(Q) →
Op(Q′), which, by Theorem 9.1 is isometric whenever LQ is simple. This applies,
in particular, when Q is finite, LQ is simple, and Q′ is obtained from Q by any
of the three expansive standard graph transformations described in Definitions
6.3.1, 6.3.17, 6.3.20 and 6.3.23 of [1], and φ is the canonical homomorphism.

PROPOSITION 9.8. Let Q be a nonsingular countable graph without sources. Let
p ∈ [1, ∞) \ {2}, and let X and Y be measure spaces and ρ : LQ → L(Lp(X)) and
φ : LQ → L(Lp(Y)) spatial representations. Assume that LQ is simple and that ρ is
approximately free. Then

‖ρ(a)‖ 6 ‖φ(a)‖ (a ∈ LQ).

Proof. This proposition generalizes Proposition 8.6 of [15]; we shall adapt
the argument therein using Lemma 9.5 instead of Lemma 8.5 in [15]. Let

X′ = ä
v∈Q0

Xv;

observe that the corestriction ρ′ of ρ to L(Lp(X′)) is approximately free. Hence
by Lemma 4.7 we may assume that ρ and φ are both nondegenerate. For each
α ∈ P = P(Q), let Rα and Sα be the bijective measurable set transformations
Xr(α) → Xα, Yr(α) → Yα associated to ρ(α) and φ(α), as in Remark 4.5. We have to
show that if a ∈ LQ is such that ‖ρ(a)‖ = 1, then ‖φ(a)‖ > 1. By Lemma 2.2, there
are N0 > 0, a finite set F0 ⊂ P and a finitely supported function λ0 : F0 ×PN0 →
C such that

a = ∑
α∈F0

∑
β∈PN0

λ0
α,βαβ∗.

Because sour(Q) = ∅ by hypothesis, for each v ∈ s(F0) we may choose a path
τv ∈ PN0 with r(τv) = v. Put

x = ∑
v∈s(F0)

τv, b = xa.
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Because every path in the set τF0 = {τv : v ∈ s(F0)} is of length N0, any two
of them are incomparable. Hence by Remark 4.5, the elements of ρ(τF0) are or-
thogonal spatial partial isometries. Therefore ‖ρ(x)‖ = 1, by Lemma 9.6; sim-
ilarly, ‖ρ(x∗)‖ = 1. Hence ‖ρ(b)‖ = ‖ρ(a)‖ = 1 and by the same argument,
‖φ(b)‖ = ‖φ(a)‖. Therefore it suffices to show that for every ε > 0,

(9.3) ‖φ(b)‖ > 1− ε.

For β ∈ PN0 and α ∈ F0, let

λτs(α)α,β = λ0
α,β.

Put F = {τs(α)α : α ∈ F0}; the map F0 → F, α 7→ τs(α)α is clearly surjective.
Moreover, because τv ∈ PN0 for all v ∈ s(F0), it is also injective. Using this in the
third step, we obtain

b =
(

∑
v∈s(F0)

τv

)(
∑

α∈F0

∑
β∈PN0

λ0
α,βαβ∗

)
= ∑

v∈s(F0)
∑

s(α)=v, α∈F0

∑
β∈PN0

λτvα,βαβ∗

= ∑
α∈F

∑
β∈PN0

λα,βαβ∗.

Let N1 = max{|α| : α ∈ F0}; then N0 6 |α| 6 N0 + N1 for all α ∈ F. If
N0 = N1 = 0, then b is a linear combination of vertices, b = ∑

v
λvv, whence by

Lemma 9.6 we have
‖φ(b)‖ = ‖λ‖∞ = ‖ρ(b)‖ = 1.

Hence (9.3) holds in this case. So we may assume N0 + N1 > 0, and take j > (N0 +
N1)(2/ε)p. By our hypothesis on ρ, there are N > j(N0 + N1) and a partition

(9.4) X =
N−1

ä
n=0

Dn

such that for the remainder n of n modulo N, we have ρ(e)(Lp(Dn)) ⊂ Lp(Dn+1)
and ρ(e∗)(Lp(Dn)) ⊂ Lp(Dn−1). By the argument of pages 54–55 in [15], after
cyclic permutation of the Dn if necessary, there exists

ξ =
N−1

∑
m=0

ξm ∈
N−1⊕
m=0

Lp(Dm) = Lp(X)

with ξm = 0 for m 6 N0 − 1 and for m > N − N1, and such that ‖ξ‖ 6 1 and
‖ρ(b)ξ‖ > 1− ε. For each γ ∈ P , put

Dγ = Rγ(Xr(γ) ∩ D0) = D|γ| ∩ Xγ.

Because Q is nonsingular by hypothesis, and because we have assumed that ρ is
nondegenerate, for each l > 0 we have a decomposition (4.6). It follows from this
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that

(9.5) Dm = ä
|γ|=m

Dγ for all m ∈ [0, N − 1].

Let W = P6N−1 = ä
06l6N−1

Pl . It follows from (9.4) and (9.5) that X = ä
γ∈W

Dγ.

Hence we can write any η ∈ Lp(X) as a sum η = ∑
γ∈W

ηγ with ηγ ∈ Lp(Dγ).

Next, by Lemma 9.5, for each v ∈ Q0 there is a measurable set Ev ⊂ Y of nonzero
measure such that the family {Sγ(Er(γ)) : γ ∈W} is disjoint. Choose a norm-one
element ζv ∈ Lp(Ev) for each v ∈ Q0. Let

u : Lp(X)→ Lp(X×Y),

uη = ∑
γ∈W

ρ(γ)ηγ ⊗ φ(γ)ζr(γ).

One checks, as in the proof of Proposition 8.6 in [15], that u is an isometry. Let
ψ = 1⊗ φ : LQ → L(Lp(X×Y)), be as in Lemma 9.3. Observe that

(9.6) ‖ψ(b)‖ = ‖φ(b)‖.

A calculation similar to that of the proof of Proposition 8.6 in [15] shows that for
ξ as above,

(9.7) uρ(b)ξ = ψ(b)uξ.

It follows from (9.6) and (9.7) that (9.3) holds. This completes the proof.

Proof of Theorem 9.1. Because LQ is simple by hypothesis, the C∗-algebra
C∗(Q) is simple; thus every nonzero ∗-representation LQ → L(L2(X)) induces
the same norm. But by Remark 4.4 every spatial representation is a ∗-represen-
tation, so the theorem is clear for p = 2. Assume p 6= 2. By Proposition 8.1
and Corollary 8.2, we may assume that Q is nonsingular and has no sources. By
Lemma 9.3 and Propositions 9.4 and 9.8, every spatial seminorm is associated
to a free spatial representation. Applying Proposition 9.8 again, we get that any
two nonzero approximately free spatial representations induce the same semi-
norm.

10. A SIMPLICITY THEOREM

THEOREM 10.1. Let p ∈ [1, ∞). The following are equivalent for a countable
graph Q:

(i) LQ is simple;
(ii) every spatial nonzero Lp-representation of LQ is injective;

(ii’) every spatial nonzero representation LQ → L(`p(N)) is injective;
(ii") every nondegenerate spatial nonzero representation LQ → L(`p(N)) is injective;
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(iii) every nondegenerate, contractive, nonzero Lp-representation of Op(Q) is injec-
tive;

(iii’) every nondegenerate, contractive, nonzero representationOp(Q)→ L(`p(N)) is
injective.

If in addition we assume either that p 6= 1 or that Q0 is finite, then the above
conditions are also equivalent to the following:

(iv) every nonzero contractive homomorphism from Op(Q) to another Lp-operator
algebra is injective.

Proof. If either p 6= 1 or Q0 is finite, then (iii) and (iv) are equivalent, by
Theorem 7.6 and Remark 7.10. For p ∈ [1, ∞) \ {2} the implication (i) ⇒ (iii)
follows from Theorems 7.6 and 9.1. It is well-known that C∗(Q) is simple if and
only if LQ is; using this and Remark 7.10 we obtain (i) ⇒ (iii) ⇒ (ii) for p = 2.
It follows from Lemma 4.7 and Theorem 7.6 that (iii)⇒ (ii) for p 6= 2. Similarly,
(iii’)⇒ (ii"). It is clear that (ii)⇒ (ii’)⇒ (ii") and that (iii)⇒ (iii’).

It remains to show that (ii") ⇒ (i). By Theorem 2.9.1 of [1], LQ is simple if
and only if Q0 is the only nonempty hereditary and saturated subset of vertices,
and every cycle in Q has an exit. We shall show that if any of these two conditions
does not hold, then (ii") does not hold either.

So suppose there is a proper hereditary and saturated subset H ⊂ Q0. Let
Q/H be the quotient graph described in Definition 2.4.11 of [1]. Then the natu-
ral map π : LQ → LQ/H is a nonzero surjection with nonzero kernel the ideal
generated by H. Hence if ρ is an injective nondegenerate spatial representation
LQ/H → L(`p(N)) (which exists by Proposition 4.11) then ρπ is a nondegenerate
nonzero spatial representation LQ → L(`p(N)) which is not injective.

So assume that Q0 is the only nonempty saturated and hereditary set of ver-
tices, or equivalently, by Lemma 2.9.6 of [1], that Q is cofinal in the sense of Defi-
nitions 2.9.4 in [1] and that it has a cycle c without exits. Cofinality implies that c
is the only cycle of Q modulo cycle rotation (by Lemma 2.7.1 and Theorem 2.7.3
of [1]), and that sink(Q) = ∅ (by Lemma 2.9.5 of [1]). Moreover, Q cannot have
any infinite emitters. For this suppose v ∈ inf(Q); then v cannot be in any cycle,
since any cycle containing v would have exits. In particular if e ∈ Q1 and s(e) = v
then r(e) 6= v and by Lemma 2.0.7 of [1] the hereditary and saturated closure of
{r(e)} does not contain v, a contradiction. Hence Q = reg(Q), and therefore the
space X of (4.7) consists of the infinite paths of Q. If s(c) = w, then any such
path is of the form αc∞ for some finite path α ∈ P with r(α) = w. In particular
X is countable and Xw = Xcn = {c∞} for all n > 1. Hence for the counting mea-
sure µ on X, there is a spatial isometric isomorphism Lp(X, µ) ∼= `p(N), and the
nondegenerate representation ρµ of Example 4.8 maps c− c2 to zero, so it is not
injective. This concludes the proof.

REMARK 10.2. By [10], an Lp-operator algebra may admit Banach algebra
quotients which are not again Lp-operator algebras. Thus Phillips’ theorem that
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the Lp-Cuntz algebra Op
d is simple as a Banach algebra for d ∈ [2, ∞) ([17], The-

orem 5.14) does not follow from Theorem 10.1 above. We expect Op(Q) to be
simple as a Banach algebra whenever LQ is simple. We intend to investigate this
in a forthcoming joint paper.

11. Op(Q) VS. Op′ (Q)

For each integer n ∈ [1, ∞], let Rn be the countable graph with exactly one
vertex and n loops. We write Ln = L(Rn), Op

n = Op(Rn). In particular,

L∞ = C{xi, x∗i : 1 6 i}/〈x∗i xj − δi,j〉.

LEMMA 11.1. Let Q be a countable graph and let p ∈ [1, ∞). Assume that LQ
is purely infinite simple. Then there is a homomorphism L∞ → LQ which induces an
isometry Op

∞ → Op(Q).

Proof. Let α be a cycle in Q and let v = s(α). Choose a closed path β with
s(β) = v so that α and β are not comparable under the preorder of paths, as in the
proof of Lemma 9.5. Then β∗α = α∗β = 0 and, of course, α∗α = β∗β = v. Hence
there is a ∗-homomorphism φ : L∞ → LQ such that φ(xi) = βiα. Observe that if
ρ : LQ → L(Lp(X)) is any spatial representation, then ρφ is again spatial. Hence
φ induces a contractive homomorphism φ̂ : Op

∞ → Op(Q). By Theorem 9.1, if
ρ : LQ → L(Lp(X)) is a nonzero spatial representation, then φ̂ agrees, up to
isometric isomorphism, with the isometric inclusion ρφ(L∞) ⊂ ρ(LQ).

THEOREM 11.2. Let Q, Q′ be countable graphs and let p, p′ ∈ [1, ∞), p 6= p′.
Assume that LQ is purely infinite simple. If in addition, any of the following conditions
holds, then there is no nonzero continuous homomorphism Op(Q)→ Op′(Q′):

(i) LQ′ is simple;
(ii) p′ 6 2 and p /∈ (p′, 2];

(iii) p′ > 2 6= p.

Proof. Assume that there is a nonzero continuous homomorphism f : Op(Q)

→ Op′(Q′). Because the inclusion LQ ⊂ Op(Q) is dense, f (LQ) 6= 0, which in
view of the simplicity of LQ implies that f is injective on LQ. Let φ : L∞ → LQ be
as in Lemma 11.1. Then f φ is injective, whence f φ̂ : Op

∞ → Op′(Q′) is a nonzero
continuous homomorphism. Hence by Theorem 9 of Chapter 15, Section 3 of [20]
there exists X ∈ {N, [0, 1]} and a spatial representation ρ′ : LQ′ → L(Lp′(X))

such that ρ̂′ f φ̂ : Op
∞ → L(Lp′(X)) is nonzero. By Lemma 9.1 of [15] this implies

that Lp′(X) contains a subspace isomorphic to `p(N). If X = N, this cannot be,
as noted in the proof of Theorem 9.2 in [15] and by page 54 in [14]; if X = [0, 1]
and either (ii) or (iii) holds, this cannot happen either, by Theorem 6.4.19 of [4].
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Thus parts (ii) and (iii) of the theorem are proved. Part (i) also follows, using
Proposition 4.11 and Theorem 9.1.
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