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ABSTRACT. It is known that if m > 3 and B is any ball in Cm with respect to
some norm, say ‖ · ‖B, then there exists a linear map L : (Cm, ‖ · ‖∗B)→Mk
which is contractive but not completely contractive. The characterization of
those balls in C2 for which contractive linear maps are always completely
contractive, however, remains open. We answer this question for balls of
the form ΩA in C2 and the balls in their norm dual, where ΩA = {(z1, z2) :
‖z1 A1 + z2 A2‖Op < 1} for some pair of 2× 2 matrices A1, A2.
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INTRODUCTION

In 1951, von Neumann (see Corollary 1.2 of [16]) proved that if T is a
bounded linear operator on a separable complex Hilbert space H, then, for all
complex polynomials p,

‖p(T)‖ 6 ‖p‖∞,D := sup{|p(z)| : |z| < 1}

if and only if ‖T‖ 6 1. Or, equivalently, the homomorphism ρT induced by T on
the polynomial ring P[z] by the rule ρT(p) = p(T) is contractive if and only if T
is contractive.

The original proof of this inequality is intricate. A couple of decades later,
Sz.-Nazy (see Theorem 4.3 of [16]) proved that a bounded linear operator T ad-
mits a unitary (power) dilation if and only if there exists a unitary operator U on
a Hilbert space K ⊇ H such that

PH p(U)|H = p(T),

for all polynomials p. The existence of such a dilation may be established by ac-
tually constructing a unitary operator U dilating T. This construction is due to
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Schäffer (cf. [18]). Clearly, the von Neumann inequality follows from the exis-
tence of a power dilation via the spectral theorem for unitary operators.

Let P = ((pij)) be a k× k matrix valued polynomial in m variables. Let

‖P‖∞,Ω = sup{‖((pij(z)))‖Op : z ∈ Ω},
where Ω ⊆ Cm is a bounded open and connected set. Define P(T) to be the
operator ((pij(T))), 1 6 i, j 6 k. The homomorphism ρT is said to be completely
contractive if

‖P(T)‖ 6 ‖P‖∞,Ω, k = 1, 2, . . . .
A deep theorem due to Arveson (cf. [1]) says that T has a normal boundary

dilation if and only if ρT is completely contractive. Clearly, if ρT is completely
contractive, then it is contractive. The dilation theorems due to Sz.-Nazy and
Ando (cf. [16]) give the non-trivial converse in the case of the disc and the bi-disc
algebras.

However, Parrott (cf. [14]) showed that there are three commuting contrac-
tions for which it is impossible to find commuting unitaries dilating them. In
view of Arveson’s theorem this naturally leads to the question of finding other
algebras O(Ω) for which all contractive homomorphisms are necessarily com-
pletely contractive. At the moment, this is known to be true of the disc, bi-disc
(cf. [16]), symmetrized bi-disc (cf. [3]) and the annulus algebras (cf. [2]). Coun-
terexamples are known for plane domains of connectivity > 2 (cf. [8]) and any
ball in Cm, m > 3, as we will explain below.

Neither Ando’s proof of the existence of a unitary dilation for a pair of com-
muting contractions, nor the counterexample to such an existence theorem due to
Parrott involved the notion of complete contractivity directly. In the papers [10],
[11], [12], it was shown that the examples of Parrott are not even 2-contractive.
In these papers, for any bounded, connected and open set Ω ⊂ Cm, the ho-
momorphism ρV : O(Ω) → Mp+q, induced by an m-tuple of p × q matrices
V = (V1, . . . , Vm), modeled after the examples of Parrott, was introduced. This
was further studied, in depth, by V. Paulsen [15], where he showed that the ques-
tion of “contractive vs completely contractive” for Parrott like homomorphisms
ρV is equivalent to the question of “contractive vs completely contractive” for
the linear maps LV (induced by V) from some finite dimensional Banach space
X toMp,q(C). The existence of linear maps of the form LV which are contractive
but not completely contractive for m > 5 were found by him. A refinement (see
remark at the bottom of p. 76 in [17]) includes the case m = 3, 4, leaving the ques-
tion of what happens when m = 2 open. This is Problem 1 on page 79 of [17] in
the list of “Open Problems”.

Let (C2, ‖ · ‖A) be the normed linear space with ‖z‖A = ‖z1 A1 + z2 A2‖Op,
for z = (z1, z2) in C2. We show, except when the pair A1, A2 is simultaneously
diagonalizable, that there is a contractive linear map LV on (C2, ‖ · ‖A) taking
values in 2 × 2 matrices, which is not completely contractive. Also, it follows
from Theorem 4.1 of [10] that the norm dual (C2, ‖ · ‖A)

∗ has exactly the same
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property. But when the matrices A1, A2 are simultaneously diagonalizable, the
unit ball ΩA is equivalent to the bidisc D2. So, among the examples of the linear
maps LV : (C2, ‖ · ‖A) → M2 we consider, only the normed space (C2, ‖ · ‖∞)
and its norm dual, namely (C2, ‖ · ‖1), have the property that all the contractive
linear maps are completely contractive.

We point out that the results of Paulsen used deep ideas from geometry
of finite dimensional Banach spaces. In contrast, our results are elementary in
nature, although the computations, at times, are somewhat involved.

1. PRELIMINARIES

The norm ‖z‖A = ‖z1 A1 + · · · + zm Am‖Op, z ∈ Cm, is obtained from the
embedding of the linear space Cm into the C∗-algebra of n × n matrices via the
map PA(z) := z1 A1 + · · · + zm Am. Let ΩA ⊂ Cm be the unit ball with respect
to the norm ‖ · ‖A. Let O(ΩA) denote the algebra of functions each of which is
holomorphic on some open set containing the closed unit ball ΩA. Given p× q
matrices V1, . . . , Vm and a function f ∈ O(ΩA), define

(1.1) ρV( f ) :=

 f (w)Ip
m
∑

i=1
∂i f (w) Vi

0 f (w)Iq

 for a fixed w ∈ ΩA.

Clearly, ρV : (O(ΩA), ‖ · ‖∞) → (Mp+q(C), ‖ · ‖Op) defines an algebra homo-
morphism.

At the outset we point out the interesting and useful fact that ρV is contrac-
tive on O(ΩA) if and only if it is contractive on the subset of functions which
vanish at w. This is the content of the following lemma. The proof is reproduced
from Lemma 5.1 of [15], a direct proof appears in Lemma 3.3 of [10].

LEMMA 1.1. The inequality sup
‖ f ‖∞=1

{‖ρV( f )‖Op : f ∈ O(ΩA)} 6 1 is equiva-

lent to the inequality sup
‖g‖∞=1

{‖ρV(g)‖Op : g ∈ O(ΩA), g(w) = 0} 6 1.

Proof. The implication in one direction is obvious. To prove the converse,
assume that ‖ρV(g)‖ 6 1 for every g such that g(w) = 0 and ‖g‖∞ = 1.

For f ∈ O(ΩA) with ‖ f ‖∞ = 1 let φ f (w) be the Möbius map of the disc
which maps f (w) to 0. We let g = φ f (w) ◦ f . Then g(w) = 0, ‖g‖∞ = 1 and, from
our assumption, ‖ρV(g)‖ 6 1. So

‖ρV( f )‖ = ‖ρV(φ
−1
f (w)
◦ g‖

= ‖φ−1
f (w)

(ρV(g))‖ (since ρV is a homomorphism)

6 1.
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In the last step we use the von Neumann inequality since φ−1
f (w)

is a rational func-
tion from the disc to itself.

Note. For the rest of this work, we restrict to the case where w = 0 in the
definition (1.1) of ρV above.

The following lemma provides a characterization of the unit ball Ω∗A with
respect to the dual norm ‖ · ‖∗A in Cm, that is Ω∗A = (Cm, ‖ · ‖A)

∗
1 .

LEMMA 1.2. The dual unit ball is

Ω∗A = {(∂1 f (0), ∂2 f (0), . . . , ∂m f (0)) : f ∈ Hol(ΩA,D), f (0) = 0}.
Proof. Given z ∈ Cm such that ‖z‖A = 1 and f ∈ Hol(ΩA,D), f (0) = 0, we

define gz : D→ ΩA by

gz(λ) = λz, λ ∈ D.

Then f ◦ gz : D → D with ( f ◦ gz)(0) = 0. Applying the Schwarz lemma to the
function ( f ◦ gz) we get

1 > |( f ◦ gz)
′(0)| = | f ′(gz(0)) · g′z(0)| = | f ′(0) · g′z(0)| = | f ′(0) · z|,

where, f ′(0) · z =
m
∑

i=1
(∂i f (0))zi, etc. Hence (∂1 f (0), ∂2 f (0), . . . , ∂m f (0)) ∈ Ω∗A.

Conversely, given w ∈ Ω∗A, define fw(z) = w · z so that ∂i fw(0) = wi.

1.1. THE MAPS L(k)
V . From Lemma 1.1 above it follows that

(1.2) ‖ρV‖ 6 1 if and only if sup
‖ f ‖∞=1, f (0)=0

∥∥∥ m

∑
i=1

∂i f (0) Vi

∥∥∥
Op

6 1.

Taking into account Lemma 1.2 and the equivalence (1.2) above, it is natural
to consider the induced linear map LV : (Cm, ‖ · ‖∗A)→Mp,q(C) given by

LV(w) = w1V1 + · · ·+ wmVm.

It follows from (1.2) above that

‖ρV‖ 6 1 if and only if ‖LV‖ 6 1.

We will show now that the complete contractivity of ρV and LV are also
related similarly.

For a holomorphic function F : ΩA → Mk with ‖F‖ = sup
z∈ΩA

‖F(z)‖, we

define

(1.3) ρ
(k)
V (F) := (ρV(Fij))

m
i,j=1 =

F(0)⊗ I
m
∑

i=1
(∂iF(0))⊗Vi

0 F(0)⊗ I

 .
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Using a method similar to that used for ρV it can be shown that ‖ρ(k)V ‖ 6 1 if and
only if

sup
F

{∥∥∥ m

∑
i=1

(∂iF(0))⊗Vi

∥∥∥ : F ∈ Hol(ΩA, (Mk)1), F(0) = 0
}
6 1,

that is, (by repeating the argument used for ρV) we have

‖ρ(k)V ‖ 6 1 if and only if ‖L(k)
V ‖ 6 1,

where
L(k)

V : (Cm ⊗Mk, ‖ · ‖∗A,k)→ (Mk ⊗Mp,q, ‖ · ‖Op)

is the map

L(k)
V (Θ1, Θ2, . . . , Θm) = Θ1 ⊗V1 + Θ2 ⊗V2 + · · ·+ Θm ⊗Vm

for Θ1, Θ2, . . . , Θm ∈ Mk.

1.2. THE POLYNOMIAL PA . A very useful construct for our analysis is the matrix
valued polynomial PA with PA(ΩA) ⊆ (Mn, ‖ · ‖Op)1 defined by

PA(z1, z2, . . . , zm) = z1 A1 + z2 A2 + · · ·+ zm Am,

with the norm ‖PA‖∞ = sup
(z1,...,zm)∈ΩA

‖PA(z1, . . . , zm)‖Op. Note that ‖PA‖∞ = 1 by

definition. The typical procedure used to show the existence of a homomorphism
which is contractive but not completely contractive is to construct a contractive
homomorphism ρV (by a suitable choice of V) and to then show that its evalua-
tion on PA, that is, ρ

(n)
V (PA), has norm greater than 1.

1.3. HOMOMORPHISMS INDUCED BY m-VECTORS. We now consider the special
situation when the matrices V1, . . . , Vm are vectors inCm realized as row m-vectors.
For w = (w1, . . . , wm) in some bounded domain Ω ⊆ Cm, the commuting m-tuple

of (m + 1) × (m + 1) matrices of the form
(

wi Vi
0 wi Im

)
, 1 6 i 6 m, induce the

homomorphism ρV via the usual functional calculus, that is,

ρV ( f ) := f
((w1 V1

0 w1 Im

)
, . . . ,

(
wm Vm
0 wm Im

))
, f ∈ O(Ω),

see (1.1). The localization of a commuting m-tuple T of operators in the class
B1(Ω), introduced in [5], [6], is also a commuting m-tuple of (m + 1)× (m + 1)
matrices, which is exactly of the form described above. The vectors V1, . . . , Vm
appearing in such localizations are given explicitly in terms of the curvature of
the holomorphic Hermitian vector bundle corresponding to T as shown in [6].
The contractivity of the homomorphism ρV then results in curvature inequalities
(see [9], [11], [12], [13]).
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Let Vi =
(
vi1 vi2 · · · vim

)
, i = 1, . . . , m. The propositions below are

useful to study contractivity and complete contractivity in this special case, where,
as before, we assume that Ω = ΩA and w = 0.

PROPOSITION 1.3. The following are equivalent:
(i) ρV is contractive;

(ii) sup
∑m

j=1 |zj |261

∥∥∥ m
∑

j=1
zjBj

∥∥∥2

Op
6 1, where Bj =

m
∑

i=1
vij Ai.

Proof. We have shown that the homomorphisms ρV are contractive, that is,
‖ ρV ‖O(ΩA)→Mm+1(C) 6 1 if and only if the linear maps LV are contractive, that
is, ‖LV‖(Cm ,‖ · ‖∗A)→(Cm ,‖ · ‖2)

6 1, equivalently, ‖L∗V‖(Cm ,‖ · ‖2)→(Cm ,‖ · ‖A) 6 1.

The matrix representation of L∗V is

v11 . . . v1m
...

. . .
...

vm1 . . . vmm

 . Hence the contrac-

tivity of L∗V is given by the condition that

sup
∑m

j=1 |zj |261

∥∥∥
v11 . . . v1m

...
. . .

...
vm1 . . . vmm


 z1

...
zm

∥∥∥
A
6 1.

From the definition of ‖ · ‖A it follows that

‖L∗V‖(Cm ,‖ · ‖2)→(Cm ,‖ · ‖A) 6 1 if and only if sup
∑m

j=1 |zj |261

∥∥∥ m

∑
j=1

zjBj

∥∥∥2

Op
6 1,

where Bj =
m
∑

i=1
vij Ai.

In particular, if V1 =
(
u 0

)
and V2 =

(
0 v

)
, the condition (ii) above

becomes
sup

∑2
j=1 |zj |261

‖z1uA1 + z2vA2‖2 6 1,

which is equivalent to the following two conditions:
(i) |u|2 6 1

‖A∗1‖2 or |v|2 6 1
‖A∗2‖2 and

(ii) inf
β∈C2,‖β‖=1

{1−|u|2‖A∗1 β‖2−|v|2‖A∗2 β‖2+|uv|2(‖A∗1 β‖2‖A∗2 β‖2−|〈A1 A∗2 β, β〉|2)}

> 0.

PROPOSITION 1.4. The following are equivalent:

(i) ‖ρ(n)V (PA)‖ 6 1;

(ii) the n×mn matrix
(

B1 B2 · · · Bm
)

is contractive, where Bj =
m

∑
i=1

vij Ai.
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Proof. Since PA(0) = 0, it follows from the definition (1.3) that ‖ρ(n)V (PA)‖ 6
1 if and only if

‖A1 ⊗V1 + · · ·+ Am ⊗Vm‖ 6 1.

For Vi =
(
vi1 · · · vim

)
, we have

A1 ⊗V1 + · · ·+ Am ⊗Vm =
(

B1 B2 · · · Bm
)

.

Thus ‖ρ(n)V (PA)‖ 6 1 if and only if ‖
(

B1 B2 · · · Bm
)
‖ 6 1.

In particular if V1 =
(
u 0

)
and V2 =

(
0 v

)
the condition (ii) above be-

comes
inf

β∈C2,‖β‖=1
{1− |u|2‖A∗1 β‖2 − |v|2‖A∗2 β‖2} > 0.

Note. For most of this paper we will restrict to the two dimensional case.
That is, we consider C2 with the norm defined by a matrix pair (A1, A2). In fact,
for the most part, we even restrict to the situation where A1, A2 are 2× 2 matrices.
This is adequate for our primary purpose of constructing homomorphisms of
O(ΩA) which are contractive but not completely contractive. Many of the results
can be adapted to the higher dimensional situation.

2. DEFINING FUNCTIONS AND TEST FUNCTIONS

Recall the matrix valued polynomial PA : ΩA → (M2, ‖ · ‖Op)1 defined
earlier by

PA(z1, z2) = z1 A1 + z2 A2,

where (M2, ‖ · ‖Op)1 is the matrix unit ball with respect to the operator norm.
For (z1, z2) in ΩA, the norm

‖PA‖∞ := sup
(z1,z2)∈ΩA

‖PA(z1, z2)‖Op = 1

by definition of the polynomial PA.
Let B2 be the unit ball in C2. For (α, β) ∈ B2 × B2, define p(α,β)

A : ΩA → D
to be the linear map

p(α,β)
A (z1, z2) = 〈PA(z1, z2)α, β〉 = z1〈A1α, β〉+ z2〈A2α, β〉.

The sup norm ‖p(α,β)
A ‖∞, for any pair of vectors (α, β) in B2 × B2, is at most 1

by definition. Let PA denote the collection of linear functions {p(α,β)
A : (α, β) ∈

B2 ×B2}.
The map PA which we call the defining function of the domain and the collec-

tion of functions PA which we call a family of test functions encode a significant
amount of information relevant to our purpose about the homomorphism ρV. For
instance ρV is contractive if its restriction to PA is contractive. Also the lack of
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complete contractivity can often be shown by evaluating ρ
(2)
V on PA. Some of the

details are outlined in the lemma below.

LEMMA 2.1. In the notation fixed in the preceding discussion, we have:

(i) sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖ 6 ‖ρ(2)V (PA)‖;

(ii) ρV is contractive if and only if sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖ 6 1.

Proof. (i) Since

ρV(p(α,β)
A ) =

(
0 (∂1 p(α,β)

A (0)) V1 + (∂2 p(α,β)
A (0)) V2

0 0

)

by definition, it follows that

‖ρV(p(α,β)
A )‖ = ‖(∂1 p(α,β)

A (0)) V1 + (∂2 p(α,β)
A (0)) V2‖Op

= ‖〈A1α, β〉 V1 + 〈A2α, β〉 V2‖Op

= sup
‖u‖=‖v‖=1

|〈A1α, β〉〈V1u, v〉+ 〈A2α, β〉〈V2u, v〉|.

Hence

sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖= sup

‖α‖=‖β‖=1
sup

‖u‖=‖v‖=1
|〈A1α, β〉〈V1u, v〉+ 〈A2α, β〉〈V2u, v〉|

= sup
‖α‖=‖β‖=1

sup
‖u‖=‖v‖=1

|〈(A1 ⊗V1 + A2 ⊗V2)α⊗ u, β⊗ v〉|

= sup
‖α‖=‖β‖=1

sup
‖u‖=‖v‖=1

|〈ρ(2)V (PA)α⊗ u, β⊗ v〉|

6‖ρ(2)V (PA)‖.(2.1)

(ii) As indicated earlier the contractivity of ρV is equivalent to the contrac-
tivity of

LV : (C2, ‖ · ‖∗A)→ (Mp,q, ‖ · ‖Op)

given by the formula

LV(ω1, ω2) = ω1V1 + ω2V2.

So we identify the conditions for the contractivity of LV:

‖LV‖ = sup
‖(ω1,ω2)‖∗A61

‖ω1V1 + ω2V2‖Op

= sup
‖(ω1,ω2)‖∗A61

sup
‖u‖=‖v‖=1

|ω1〈V1u, v〉+ ω2〈V2u, v〉|.
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Hence, since (ω1, ω2) lies in the dual of ΩA,

‖LV‖ 6 1 ⇐⇒ (〈V1u, v〉, 〈V2u, v〉) ∈ ΩA ∀u, v such that ‖u‖ = ‖v‖ = 1

⇐⇒ sup
‖u‖=‖v‖=1

‖〈V1u, v〉A1 + 〈V2u, v〉A2‖Op 6 1

⇐⇒ sup
‖α‖=‖β‖=1

sup
‖u‖=‖v‖=1

|〈A1α, β〉〈V1u, v〉+ 〈A2α, β〉〈V2u, v〉| 6 1

⇐⇒ sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖ 6 1 from (2.1) above.

As mentioned earlier, by choosing a pair (V1, V2) such that the inequality
in (i) above is strict, we can often construct a contractive homomorphism which
is not completely contractive. We illustrate below choices of (V1, V2) for the Eu-
clidean ball for which the inequality is strict.

EXAMPLE 2.2 (Euclidean ball). Choosing A =
((1 0

0 0

)
,
(

0 1
0 0

))
, we

see that ΩA defines the Euclidean ball B2 in C2. Choose V1 = (v11 v12), V2 =
(v21 v22). We will prove that

sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖ < ‖ρ(2)V (PA)‖Op,

if V1 and V2 are linearly independent.
In fact we can choose (V1, V2) such that sup

‖α‖=‖β‖=1
‖ρV(p(α,β)

A )‖ 6 1 and

‖ρ(2)V (PA)‖Op > 1. This example of a contractive homomorphism of the ball alge-
bra which is not completely contractive was found in [10], [11].

THEOREM 2.3. For ΩA = B2, let V1 =
(
v11 v12

)
, V2 =

(
v21 v22

)
. Then

(i) sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖2 =

∥∥∥(v11 v12
v21 v22

)∥∥∥2

op
;

(ii) ‖ρ(2)V (PA)‖2
Op =

∥∥∥(v11 v12
v21 v22

)∥∥∥2

HS
(HS is the Hilbert–Schmidt norm).

Consequently, sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖ < ‖ρ(2)V (PA)‖Op if V1 and V2 are linearly

independent.

Proof. By the definition of ρV we have

sup
‖α‖=‖β‖=1

‖ρV(p(α,β)
A )‖2

= sup
‖α‖=‖β‖=‖u‖=‖v‖=1

|〈A1α, β〉〈V1u, v〉+ 〈A2α, β〉〈V2u, v〉|2

= sup
‖α‖=‖β‖=‖u‖=1

|α1(v11u1 + v12u2) + α2(v21u1 + v22u2)|2|β1|2
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= sup
‖α‖=‖u‖=1

|α1(v11u1 + v12u2) + α2(v21u1 + v22u2)|2

= sup
‖u‖=1

|v11u1 + v12u2|2 + |v21u1 + v22u2|2 =
∥∥∥((v11 v12

v21 v22

))∥∥∥2

op
.

On the other hand, we have

‖ρ(2)V (PA)‖2
Op = ‖V1‖2 + ‖V2‖2 =

∥∥∥(v11 v12
v21 v22

)∥∥∥2

HS
.

If V1 and V2 are linearly independent, then∥∥∥(v11 v12
v21 v22

)∥∥∥2

op
<
∥∥∥(v11 v12

v21 v22

)∥∥∥2

HS

and we have
sup

‖α‖=‖β‖=1
‖ρV(p(α,β)

A )‖ < ‖ρ(2)V (PA)‖Op.

Now choose V1 =
(
1 0

)
and V2 =

(
0 1

)
. From Lemma 2.1 and Theo-

rem 2.3 it follows that ρV is contractive but ‖ρ(2)V (PA)‖ =
√

2.

3. UNITARY EQUIVALENCE AND LINEAR EQUIVALENCE

If U and W are 2× 2 unitary matrices and Ã = (UA1W, UA2W), then

‖(z1, z2)‖A = ‖z1 A1 + z2 A2‖Op = ‖z1(UA1W) + z2(UA2W)‖Op = ‖(z1, z2)‖Ã.

There are, therefore, various choices of the matrix pair (A1, A2) related as above
which give rise to the same norm. We use this freedom to ensure that A1 is di-
agonal. Consider the invertible linear transformation (z̃1, z̃2) 7→ (z1, z2) on C2

defined as follows.
For z̃ = (z̃1, z̃2) in C2, let

z1 = pz̃1 + qz̃2, z2 = rz̃1 + sz̃2,

where p, q, r, s ∈ C. Then

‖(z1, z2)‖A = ‖(z̃1, z̃2)‖Ã,

where Ã is related to A as follows:

Ã1 = pA1 + rA2, Ã2 = qA1 + sA2.

More concisely, if T is the linear transformation above on C2, then

‖Tz̃‖A = ‖z̃‖A(T⊗I).

In particular T maps ΩÃ onto ΩA.
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LEMMA 3.1. For k = 1, 2, . . . , the contractivity of the linear maps L(k)
V defined on

(C2⊗Mk, ‖ · ‖∗
Ã,k

) determine the contractivity of the linear maps L(k)
Ṽ

defined on (C2⊗
Mk, ‖ · ‖∗A,k) and conversely, where Ã = A(T ⊗ I) and Ṽ = (T ⊗ I)V.

Proof. For k = 1, 2, . . . , we have to show that

‖L(k)
V ‖(C2⊗Mk ,‖·‖∗

Ã,k
)→(Mk⊗Mp,q ,‖·‖Op)

6 1

⇐⇒ ‖L(k)
Ṽ
‖(C2⊗Mk ,‖·‖∗A,k)→(Mk⊗Mp,q ,‖·‖Op)

6 1.

We prove this result for the case k = 1, that is, for the map LV. The proof for
the general case is similar.

Consider the bijection between the spaces

{ f ∈ Hol(ΩA,D), f (0) = 0} and { f̃ ∈ Hol(ΩÃ,D), f̃ (0) = 0}
defined as follows:

f 7→ f̃ = f ◦ T, f̃ 7→ f = f̃ ◦ T−1.

Using this bijection

‖LV‖(C2,‖·‖∗
Ã
)→(Mp,q ,‖·‖Op)

6 1

⇐⇒ sup
f̃

{‖D f̃ (0) ·V‖Op : f̃ ∈ Hol(ΩÃ,D), f̃ (0) = 0} 6 1

⇐⇒ sup
f
{‖D( f ◦ T)(0) ·V‖Op : f ∈ Hol(ΩA,D), f (0) = 0} 6 1

⇐⇒ sup
f
{‖D f (0) T ·V‖Op : f ∈ Hol(ΩA,D), f (0) = 0} 6 1

⇐⇒ sup
f
{‖D f (0) · (T ⊗ I)V‖Op : f ∈ Hol(ΩA,D), f (0) = 0} 6 1

⇐⇒ ‖ L(T⊗I)V ‖(C2,‖·‖∗A)→(Mp,q ,‖·‖op)
6 1.

In the above, D f is a row vector, T is a 2× 2 matrix and by an expression of the

form X ·Y we mean
2
∑

i=1
XiYi.

It follows that, in our study of the existence of contractive homomorphisms
which are not completely contractive, two sets of matrices A = (A1, A2) and
Ã = (Ã1, Ã2) which are related through linear combinations as above yield the
same result. We can, therefore, restrict our attention to a subcollection of matrices.

Since A1 has already been chosen to be diagonal, we consider transforma-
tions as above with r = 0 to preserve the diagonal structure of A1. By choosing
the parameters p, q, s suitably we can ensure that one diagonal entry of A1 is 1
and the diagonal entries of A2 are 1 and 0. By further conjugating with a diago-
nal unitary and a permutation matrix it follows that we need to consider only the
following three families of matrices:
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TABLE 1. Cases modulo unitary and linear equivalence

A1 A2(
1 0
0 d

)
d ∈ C

(
1 b
c 0

)
c ∈ C, b ∈ R+(

d 0
0 1

)
d ∈ C

(
1 b
c 0

)
c ∈ C, b ∈ R+(

1 0
0 d

)
d ∈ C

(
0 b
c 0

)
c ∈ C, b ∈ R+

In the above, R+ represents the set of non-negative real numbers.

3.1. SIMULTANEOUSLY DIAGONALIZABLE CASE. For the study of contractivity
and complete contractivity in this situation we consider two possibilities. The
first when A1 and A2 are simultaneously diagonalizable and the second when
they are not. The simultaneously diagonalizable case reduces to the case of the
bi-disc where we know that any contractive homomorphism is completely con-
tractive. In all the other cases (when A1 and A2 are not simultaneously diago-
nalizable) we show that there exists a contractive homomorphism which is not
completely contractive.

Consider first the case when A1 and A2 are simultaneously diagonalizable.
Based on the discussion of linear equivalence above we need to study only the
following possibilities:

TABLE 2. Simultaneously diagonalizable cases

A1 A2(
1 0
0 d

)
d ∈ C

(
1 0
0 0

)
(

d 0
0 1

)
d ∈ C

(
1 0
0 0

)

Applying linear transformations as before, both cases can be reduced to

A =
((1 0

0 0

)
,
(

0 0
0 1

))
,

which represents the bi-disc. As mentioned earlier, it is known that any contrac-
tive homomorphism is completely contractive in this case. We now study the
situation when A1 and A2 are not simultaneously diagonalizable.
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4. CONTRACTIVITY, COMPLETE CONTRACTIVITY AND OPERATOR SPACE STRUCTURE

We recall some notions about operator spaces which are relevant to our pur-
pose.

DEFINITION 4.1. (cf. Chapters 13, 14 of [16]) An abstract operator space is
a linear space X together with a family of norms ‖ · ‖k defined onMk(X), k =
1, 2, 3, . . . , where ‖ · ‖1 is simply a norm on the linear space X. These norms are
required to satisfy the following compatibility conditions:

(i) ‖T ⊕ S‖p+q = max{‖T‖p, ‖S‖q} and
(ii) ‖ASB‖p 6 ‖A‖Op‖S‖q‖B‖Op

for all S ∈ Mq(X), T ∈ Mp(X) and A ∈ Mp,q(C), B ∈ Mq,p(C).

Two such operator spaces (X, ‖ · ‖k) and (Y, ‖ · ‖k) are said to be completely
isometric if there is a linear bijection T : X → Y such that

T ⊗ Ik : (Mk(X), ‖ · ‖k)→ (Mk(Y), ‖ · ‖k)

is an isometry for every k ∈ N. Here we have identified Mk(X) with X ⊗Mk
in the usual manner. We note that a normed linear space (X, ‖ · ‖) admits an
operator space structure if and only if there is an isometric embedding of it into
the algebra of operators B(H) on some Hilbert space H. This is the well-known
theorem of Ruan (cf. [17]).

We recall here the notions of MIN and MAX operator spaces and a measure
of their distance, α(X), following Chapter 14 of [16].

DEFINITION 4.2. The MIN operator structure MIN(X) on a (finite dimen-
sional) normed linear space X is obtained by isometrically embedding X in the
C∗-algebra C((X∗)1), of continuous functions on the unit ball (X∗)1 of the dual
space. Thus for ((vij)) inMk(X), we set

‖((vij))‖MIN = ‖((v̂ij))‖ = sup{‖(( f (vij)))‖ : f ∈ (X∗)1},

where the norm of a scalar matrix (( f (vij))) inMk is the operator norm.

For an arbitrary k × k matrix over X, we simply write ‖((vij))‖MIN(X) to
denote its norm in Mk(X). This is the minimal way in which we represent the
normed space as an operator space. There is also a “maximal” representation
which is denoted MAX(X).

DEFINITION 4.3. The operator space MAX(X) is defined by setting

‖((vij))‖MAX = sup{‖((T(vij)))‖ : T : X → B(H)},

and the supremum is taken over all isometries T and all Hilbert spacesH.

Every operator space structure on a normed linear space X “lies between”
MIN(X) and MAX(X). The extent to which the two operator space structures
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MIN(X) and MAX(X) differ is characterized by the numerical constant α(X) in-
troduced by Paulsen (cf. Chapter 14 of [16]), which we recall below.

DEFINITION 4.4. The numerical constant α(X) is defined as

α(X) := sup{‖((vij))‖MAX : ‖((vij))‖MIN 6 1, ((vij)) ∈ Mk(X), k ∈ N}.

Thus α(X) = 1 if and only if the identity map is a complete isometry from
MIN(X) to MAX(X). Equivalently, we conclude that there exists a unique oper-
ator space structure on X whenever α(X) is 1. Therefore, those normed linear
spaces for which α(X) = 1 are rather special. Unfortunately, there are not too
many of them! The familiar examples are (C2, ‖ · ‖∞), and consequently C2 with
the `1 norm. It is pointed out in pp. 76 of [17]) that α(X) > 1 for dim(X) > 3,
refining an earlier result of Paulsen that α(X) > 1 whenever dim(X) > 5. This
leaves the question open for normed linear spaces whose dimension is 2.

Returning to the space (C2, ‖ · ‖A) with ‖(z1, z2)‖A = ‖z1 A1 + z2 A2‖Op, we
show below that α(ΩA) > 1 in a large number of cases. From Theorem 4.2 of [15],
it therefore follows that, in all these cases, there must exist a contractive homo-
morphism of O(ΩA) into the algebra B(H) which is not completely contractive.
In the remaining cases, the existence of a contractive homomorphism which is
not completely contractive is established by a careful study of certain extremal
problems.

The norm ‖(z1, z2)‖A = ‖z1 A1 + z2 A2‖Op defines a natural isometric em-
bedding intoM2(C) given by (z1, z2) 7→ z1 A1 + z2 A2. However, note that

‖(z1, z2)‖A = ‖z1 A1 + z2 A2‖Op = ‖z1 At
1 + z2 At

2‖Op = ‖(z1, z2)‖At .

We, therefore, get another isometric embedding intoM2(C) given by (z1, z2) 7→
z1 At

1 + z2 At
2.

In a variety of cases the operator spaces determined by these two embed-
dings are distinct and it follows that α > 1. Therefore, the existence of contrac-
tive homomorphisms which are not completely contractive is established in these
cases. We present the details below.

Recall the map PA defined earlier by

PA(z1, z2) = z1 A1 + z2 A2.

Let P(2)
A = PA ⊗ I2. For the three families of matrices A = (A1, A2) characterized

in Table 1 we show that A and At define distinct operator space structures unless
|d| = 1 or b = |c|.

THEOREM 4.5. Let

Z1 =

(
1 0
0 0

)
and Z2 =

(
0 1
0 0

)
.

If |d| 6= 1 and b 6= |c| then ‖P(2)
A (Z1, Z2)‖Op 6= ‖P

(2)
At (Z1, Z2)‖op.
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Proof. We illustrate the proof for the case A1 =

(
1 0
0 d

)
, A2 =

(
1 b
c 0

)
. The

other cases can be proved similarly. For this case, we have

‖P(2)
A (Z1, Z2)‖2

Op

=

∥∥∥∥((Z1 + Z2) bZ2
cZ2 dZ1

)(
(Z1 + Z2)

∗ cZ∗2
bZ∗2 dZ∗1

)∥∥∥∥
Op

=

∥∥∥∥((Z1 + Z2)(Z1 + Z2)
∗ + b2Z2Z∗2 c(Z1 + Z2)Z∗2 + bdZ2Z∗1

cZ2(Z1 + Z2)
∗ + bdZ1Z∗2 |c|2Z2Z∗2 + |d|2Z1Z∗1

)∥∥∥∥
Op

.(4.1)

Similarly we have

‖P(2)
At (Z1, Z2)‖2

Op

=

∥∥∥∥((Z1 + Z2)(Z1 + Z2)
∗ + |c|2Z2Z∗2 b(Z1 + Z2)Z∗2 + cdZ2Z∗1

bZ2(Z1 + Z2)
∗ + cdZ1Z∗2 b2Z2Z∗2 + |d|2Z1Z∗1

)∥∥∥∥
Op

.(4.2)

Assume ‖P(2)
A (Z1, Z2)‖2

op = ‖P(2)
At (Z1, Z2)‖2

Op. Using the form of (Z1, Z2) this is
equivalent to∥∥∥∥(2 + b2 c

c |c|2 + |d|2
)∥∥∥∥

Op
=

∥∥∥∥(2 + |c|2 b
b b2 + |d|2

)∥∥∥∥
Op

i.e. (b2 − |c|2)(1− |d|2) = 0 (note that the matrices on the left and right have the
same trace), from which the result follows.

Since α(ΩA) = 1 if and only if the two operator spaces MIN(ΩA) and
MAX(ΩA) are completely isometric, it follows from the theorem we have just
proved that if |d| 6= 1 and b 6= |c|, then α(X) > 1. Consequently, there exists a
contractive homomorphism of O(ΩA) into B(H), which is not completely con-
tractive.

EXAMPLE 4.6 (Euclidean ball). The Euclidean ball B2 is characterized by

A1 =

(
1 0
0 0

)
, A2 =

(
0 1
0 0

)
.

So, in Theorem 4.5, we have |d| 6= 1 and b 6= |c|. Hence A and At give rise
to distinct operator space structures and, consequently, there exists a contractive
homomorphism which is not completely contractive.

5. CASES NOT AMENABLE TO THE OPERATOR SPACE METHOD

Theorem 4.5 shows that there is a contractive homomorphism which is not
completely contractive for all the choices of (A1, A2) listed in Table 1 except when
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|d| = 1 or b = |c|. We are, therefore, left with the following families of (A1, A2)
to be considered:

TABLE 3. Cases not covered by the operator space approach

A1 A2

(i)
(

1 0
0 eiθ

)
θ ∈ R

(
1 b
c 0

)
c ∈ C, b ∈ R+

(ii)
(

1 0
0 eiθ

)
θ ∈ R

(
0 b
c 0

)
c ∈ C, b ∈ R+

(iii)
(

eiθ 0
0 1

)
θ ∈ R

(
1 b
c 0

)
c ∈ C, b ∈ R+

(iv)
(

1 0
0 d

)
d ∈ C

(
1 |c|
c 0

)
c ∈ C

(v)
(

1 0
0 d

)
d ∈ C

(
0 |c|
c 0

)
c ∈ C

(vi)
(

d 0
0 1

)
d ∈ C

(
1 |c|
c 0

)
c ∈ C

These six families are not disjoint and have been classified as such on the basis of
the method of proof used.

5.1. DUAL NORM METHOD. We first consider a special case of type (ii) in Table 3

with A1 =

(
1 0
0 1

)
, A2 =

(
0 1
0 0

)
. Although this case is covered by the more

general method to be outlined later we present an alternate, interesting procedure
for this example since it is possible to explicitly calculate the dual norm ‖ · ‖∗A in
this case. Equipped with the information about the dual norm we can directly
construct a pair V = (V1, V2) such that ‖LV‖ 6 1 and ‖L(2)

V (PA)‖ > 1.
Note that in this case

(5.1) ‖(z1, z2)‖A =
|z2|+

√
|z2|2 + 4|z1|2

2
and the unit ball

ΩA = {(z1, z2) : |z1|2 + |z2| < 1}.

LEMMA 5.1. Let A1 =

(
1 0
0 1

)
, A2 =

(
0 1
0 0

)
. If (ω1, ω2) ∈ (C2, ‖ · ‖A)

∗,

then the dual norm ‖ · ‖∗A is given by the formula

‖(ω1, ω2)‖∗A =


|ω1|2+4|ω2|2

4|ω2|
if |ω2| > |ω1|

2 ;

|ω1| if |ω2| 6 |ω1|
2 .
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Proof. Let fω1,ω2 be the linear functional on (C2, ‖ · ‖A) defined by

fω1,ω2(z1, z2) = ω1z1 + ω2z2.

Then

‖(ω1, ω2)‖∗A = sup
(z1,z2)∈ΩA

| fω1,ω2(z1, z2)| = sup
|z2|61−|z1|2

|ω1z1 + ω2z2|

= sup
|z2|61−|z1|2

(|ω1||z1|+ |ω2||z2|) = sup
|z1|61

(|ω1||z1|+ |ω2|(1− |z1|2)).

If |ω2| > |ω1|
2 the expression on the right attains its maximum at |z1| =

|ω1|
2|ω2|

6 1 and the maximum value is |ω1|2+4|ω2|2
4|ω2|

.

If |ω2| 6 |ω1|
2 the expression on the right is monotonic in |z1| and the maxi-

mum is attained at |z1| = 1. The maximum value in this case is |ω1|.

THEOREM 5.2. Let A1 =

(
1 0
0 1

)
, A2 =

(
0 1
0 0

)
and V1 =

(
1√
2

0
)

, V2 =(
0 1

)
. Then

(i) ‖LV‖(C2,‖·‖∗A)→(C2,‖·‖2)
= 1;

(ii) ‖L(2)
V (PA)‖ =

√
3
2 .

Consequently ρV, for this choice of V = (V1, V2), is contractive on O(ΩA) but not
completely contractive.

Proof. (i) By definition of the various norms, we have

‖LV‖2
(C2,‖·‖∗A)→(C2,‖·‖2)

= sup
‖(ω1,ω2)‖∗A=1

‖ω1V1+ω2V2‖2
2= sup
‖(ω1,ω2)‖∗A=1

( |ω1|2
2

+|ω2|2
)

.

We now consider two cases.
Case (a). |ω2| > |ω1|

2 and 1 = ‖(ω1, ω2)‖∗A = |ω1|2+4|ω2|2
4|ω2|

from Lemma 5.1.
These two constraints together can be seen to be equivalent to the con-

straints 1
2 6 |ω2| 6 1 and |ω1|2 = 4|ω2|(1− |ω2|).

Hence the supremum above for this range of (ω1, ω2) is given by

sup
1/26|ω2|61

|ω2|(2− |ω2|) = 1.

Case (b). |ω2| 6 |ω1|
2 and 1 = ‖(ω1, ω2)‖∗A = |ω1| from Lemma 5.1.

The supremum for this range of (ω1, ω2) is given by

sup
|ω2|61/2

(1
2
+ |ω2|2

)
=

3
4

.

Taking the larger of the supremums in Case (a) and Case (b) we get that
‖LV‖ = 1.
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(ii) We have:

‖L(2)
V (PA)‖2 = ‖A1 ⊗V1 + A2 ⊗V2‖2 =

∥∥∥ ( 1√
2

A1 A2

) ∥∥∥2

=
∥∥∥ ( 1√

2
A1 A2

) 1√
2

A∗1

A∗2

∥∥∥
=
∥∥∥( 3

2 0
0 1

2

)∥∥∥ using the form of A1, A2

=
3
2

.

REMARK 5.3. The referee points out that some of the six cases described in
Table 3 can be eliminated using Remark 2.15 of [15], namely, if a normed space X
of dimension n has the property that every contractive linear map is completely
contractive, then its Banach–Mazur distance from the Hilbert space `2

n must be
maximal. It means that d(X, `2

2) =
√

2 when dim X = 2. In the case of the
unit ball ΩA = {(z1, z2) : |z1|2 + |z2| < 1}, for instance, the identity map T
from X → `2

2 is contractive. The norm of its inverse is 2√
3

using (5.1). Hence

d(X, `2
2) 6 ‖T‖‖T−1‖ = 2√

3
<
√

2.
The referee also says that in each of the six cases in Table 3, the Banach–

Mazur distance from the normed space (C2, ‖ · ‖A) to `2
2 may be less than

√
2. For

this reason it would be nice to know when the normed space induced by a pair
of 2× 2 matrices is of maximal distance.

5.2. GENERAL CASES NOT AMENABLE TO THE OPERATOR SPACE METHOD. The
various families of (A1, A2) listed in Table 3 require a case by case analysis to
show that there is a contractive homomorpism which is not completely contrac-
tive. We first present a general outline of the method used.

We choose the pair V = (V1, V2) to be of the form V1 =
(
u 0

)
, V2 =(

0 v
)

, u, v ∈ R+. LV : (C2, ‖ · ‖∗A) → (C2, ‖ · ‖2) then becomes the linear
map (z1, z2) 7→ (z1u, z2v).

We show, in each case, that by a suitable choice of u and v we can ensure
that LV is contractive while ‖L(2)

V (PA)‖ > 1 although ‖PA‖ = 1 by definition.
We list the contractivity conditions (see Propositions 1.3 and 1.4 for details):

(a) LV is contractive if and only if the following two conditions are satisfied:

u 6
1
‖A∗1‖

or v 6
1
‖A∗2‖

and

inf
β∈C2,‖β‖=1

{1− u2‖A∗1 β‖2 − v2‖A∗2 β‖2+

u2v2(‖A∗1 β‖2‖A∗2 β‖2 − |〈A1 A∗2 β, β〉|2)} > 0.(5.2)
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(b) ‖L(2)
V (PA)‖ 6 1 if and only if

(5.3) inf
β∈C2,‖β‖=1

{1− u2‖A∗1 β‖2 − v2‖A∗2 β‖2} > 0.

Note that the term in parenthesis in (5.2) is non-negative by the Schwarz
inequality and that the expression (5.3) is the same as the first three terms in (5.2).

We show that, in each case, we can choose (u, v) such that the infimum in
(5.2) is exactly 0. Also that this infimum is attained at β = β0 such that the term
in parenthesis in (5.2) is positive (that is, the Schwarz inequality referred to above
is a strict inequality at β0). It then follows that the expression in braces in (5.3) is
negative when β = β0 and, consequently, the infimum in (5.3) is negative. Taken
together it follows that LV (and consequently ρV) is contractive but ‖L(2)

V (PA)‖ >
1 and, as a result, ρ

(2)
V is not contractive.

Let η(i), i = 1, 2, be the vectors such that A∗1η(i) and A∗2η(i) are linearly de-
pendent. That is, the term in parenthesis in (5.2) vanishes when β = η(i).

We now provide the details of the argument which proceeds in two steps.
Step 1. Show that there are certain ranges of the parameters (u, v) such that

the infimum in (5.2) is not attained at η(1) or η(2) for those values of (u, v). Let

gu,v(β) = 1− u2‖A∗1 β‖2 − v2‖A∗2 β‖2 + u2v2(‖A∗1 β‖2‖A∗2 β‖2 − |〈A1 A∗2 β, β〉|2).

We need to show that there exists β such that

gu,v(β) < gu,v(η
(i)), i = 1, 2,

when (u, v) take values in a range of interest. That is, we need to find β such that

(5.4) gu,v(η
(i))− gu,v(β) = ai(β)u2 + bi(β)v2 − c(β)u2v2 > 0.

Here

ai(β) = ‖A∗1 β‖2 − ‖A∗1η(i)‖2,(5.5)

bi(β) = ‖A∗2 β‖2 − ‖A∗2η(i)‖2,

c(β) = ‖A∗1 β‖2‖A∗2 β‖2 − |〈A1 A∗2 β, β〉|2 > 0.

Consider the functions

fi(u, v, β) = ai(β)u2 + bi(β)v2 − c(β)u2v2 with c(β) > 0, i = 1, 2.

The following result is evident from the nature of the functions fi(u, v, β).

LEMMA 5.4. (i) Assume ai(β) > 0 for some fixed β and i = 1, 2. Then, given any
u0 > 0, there exists v0 > 0 (depending on u0) such that fi(u, v, β) > 0 in the region
u < u0, v < v0

u0
u, that is, inside the triangle with vertices (0, 0), (u0, 0) and (u0, v0).

(ii) Assume bi(β) > 0 for some fixed β and i = 1, 2. Then, given any v0 > 0, there
exists u0 > 0 (depending on v0) such that fi(u, v, β) > 0 in the region v < v0, u < u0

v0
v,

that is, inside the triangle with vertices (0, 0), (0, v0) and (u0, v0).
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(iii) If fi(u0, v0, β) > 0 then fi(tu0, tv0, β) > 0 for 0 < t < 1.

We will show below that, in each of the six cases in Table 3, it is possible
to ensure the positivity of ai(β), i = 1, 2 or bi(β), i = 1, 2 for some choice of β.
Consequently, it will follow that the inequality (5.2) will be true for that vector β
with (u, v) in the region characterized in Lemma 5.4 above. Hence, for (u, v) in
this range, the infimum is not attained at η(i), i = 1, 2.

Consider first the cases (i), (ii) and (iii).

A1 A2

(i)
(

1 0
0 eiθ

)
θ ∈ R

(
1 b
c 0

)
c ∈ C, b ∈ R+

(ii)
(

1 0
0 eiθ

)
θ ∈ R

(
0 b
c 0

)
c ∈ C, b ∈ R+

(iii)
(

eiθ 0
0 1

)
θ ∈ R

(
1 b
c 0

)
c ∈ C, b ∈ R+

We use the unitary equivalence described in Section 3. In cases (i) and (ii)

multiply A1 and A2 on the left by the unitary matrix
(

1 0
0 e−iθ

)
so that A1 be-

comes the identity matrix. In case (iii) multiply A1 and A2 on the left by the

unitary matrix
(

e−iθ 0
0 1

)
so that A1 becomes the identity matrix.

Now conjugate A1 and A2 by the unitary which makes A2 upper triangular
so that cases (i), (ii) and (iii) reduce to the situation

A1 =

(
1 0
0 1

)
and A2 =

(
µ σ
0 ν

)
with |µ| > |ν|, σ 6= 0.

In this case ai(β) = 0 for all β but it is possible to choose β such that bi(β) > 0.
η(i) satisfies the equation (A∗2 − λi A∗1)η

(i) = 0. So in this case η(i) is a (unit)
eigenvector of A∗2 with eigenvalue λi. Since the eigenvalues of A∗2 are µ and ν

it follows that ‖A∗2η(i)‖2 = |µ|2 or |ν|2. Hence we can take β =

(
1
0

)
so that

bi(β) > |σ|2 > 0.
Now consider cases (iv) and (v).

A1 A2

(iv)
(

1 0
0 d

)
d ∈ C, |d| 6= 1

(
1 |c|
c 0

)
c ∈ C

(v)
(

1 0
0 d

)
d ∈ C, |d| 6= 1

(
0 |c|
c 0

)
c ∈ C
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In cases (iv) and (v) we have, in equation (5.5),

ai(β) = |β1|2 + |d|2|β2|2 − |η
(i)
1 |

2 − |d|2|η(i)
2 |

2

= (|β1|2 − |η
(i)
1 |

2) + |d|2(|β2|2 − |η
(i)
2 |

2) = (1− |d|2)(|η(i)
2 |

2 − |β2|2).

If |η(i)
2 | = 0 or 1 then c = 0 and it reduces to the simultaneously diagonalizable

case. If |η(i)
2 | 6= 0, 1 we can choose β such that |β2| < |η

(i)
2 | (respectively |β2| >

|η(i)
2 |) if |d| < 1 (respectively |d| > 1) to ensure that ai(β) > 0 for i = 1, 2.

The methods used in cases (iv) and (v) can be adapted to the last case (vi):

A1 A2

(vi)
(

d 0
0 1

)
d ∈ C, |d| 6= 1

(
1 |c|
c 0

)
c ∈ C

Step 2. Show that, in each case, there is a choice of (u, v) in the region char-
acterized in Lemma 5.4 for which the infimum in (5.2) is, in fact, zero.

We choose β̂ to ensure that ai(β̂) or bi(β̂) is positive as described in Step 1.

Note that gu,v(β̂) vanishes at the two points (u, v) =
(

1
‖A∗1(β̂)‖

, 0
)

, (u, v) =(
0, 1
‖A∗2(β̂)‖

)
and also along a curve joining these two points. We now consider

two cases:
Case (i). ai(β̂) > 0.
Choose (u0, v0) such that 0 < v0 < 1

‖A∗2‖
, fi(u0, v0, β̂) > 0 and gu0,v0(β̂) =

0. This is possible using Lemma 5.4 and the above note about the vanishing of
gu,v(β̂).

Let

x0 = inf
{

u : inf
β

gu,λ0u(β) 6 0
}

where λ0 =
v0

u0
.

Note that

x2
0 >

1
‖A∗1‖2 + λ2

0‖A∗2‖2
.

Also, from Lemma 5.4, it is clear that fi(x0, λ0x0, β̂) > 0.
We now show that inf

β
gx0,λ0x0(β) = 0.

To prove this we first show that g(x0, λ0x0)
(β) > 0 for all β (with ‖β‖2 = 1) as

follows. Assume there exists β = µ such that g(x0,λ0x0)
(µ) < 0. Then there exists

a neighborhood U of x0 such that gu,λ0u(µ) < 0 for all u ∈ U. For any u ∈ U,
inf

β
gu,λ0u(β) < 0, since gu,λ0u(µ) < 0 for all u ∈ U. Since U is a neighbourhood of

x0 there exists a u ∈ U such that u < x0. By the previous assertion, inf
β

gu,λ0u(β) 6

0 for this smaller value of u, which is a contradiction.
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Since inf
β

gx0,λ0x0(β) 6 0 by the definition of x0 it follows that

inf
β

gx0,λ0x0(β) = 0.

Case (ii). bi(β̂) > 0.
The arguments in this case are similar to Case (i). This time choose (u0, v0)

such that 0 < u0 < 1
‖A∗1‖

, fi(u0, v0, β̂) > 0 and gu0,v0(β̂) = 0.
Let

y0 = inf
{

v : inf
β

gλ0v,v(β) 6 0
}

where λ0 =
u0

v0
.

As in Case (i) we can see that y2
0 > 1

λ2
0‖A∗1‖2+|A∗2‖2 and (from Lemma 5.4) that

fi(λ0y0, y0, β̂) > 0.
Using a procedure similar to that used in Case (i) it follows that

inf
β

gλ0y0,y0(β) = 0.

We have therefore shown that for all the cases in Table 3 which were not
covered by the operator space approach it is possible to choose (u, v) such that
the infimum in (5.2) is zero and this infimum is attained at a vector β not equal to
η(1) or η(2), so that the last term in parenthesis in (5.2) is positive at β.

It follows that, in each of these cases, there exists a contractive homomor-
phism which is not completely contractive.

From Theorem 4.1 of [10], it follows that, except in the case where A is simul-
taneously diagonalizable, there must exist a contractive linear map on the dual
space (C2, ‖ · ‖A)

∗ which is not completely contractive. Thus we have proved the
following theorem.

THEOREM 5.5. Suppose that A = (A1, A2) and the matrices A1, A2 are not si-
multaneously diagonalizable. Then there exists a contractive linear map on (C2, ‖ · ‖A)
which is not completely contractive. Also, there exists a contractive linear map on the
dual space (C2, ‖ · ‖A)

∗ which is not completely contractive.

6. AN INTERESTING OPERATOR SPACE COMPUTATION

In Section 4 the existence of contractive homomorphisms which are not
completely contractive was shown in many cases by studying different isometric
embeddings of the space (C2, ‖ · ‖A) into (M2, ‖ · ‖Op) which led to distinct op-
erator space structures. The two embeddings considered there were (z1, z2) 7→
z1 A1 + z2 A2 and (z1, z2) 7→ z1 At

1 + z2 At
2. In this section we show that we can, for

some choices of (A1, A2), construct large collections of isometric embeddings of
the space (C2, ‖ · ‖A) into various matrix spaces. Although the embeddings are
into very distinct matrix spaces, we show that the operator space structures thus
obtained are equivalent.
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A result which is very useful in this context is the following proposition due
to Douglas, Muhly and Pearcy (cf. Proposition 2.2 of [7]).

PROPOSITION 6.1. For i = 1, 2, let Ti be a contraction on a Hilbert space Hi and
let X be an operator mapping H2 into H1. A necessary and sufficient condition that the

operator onH1⊕H2 defined by the matrix
(

T1 X
0 T2

)
be a contraction is that there exist

a contraction C mappingH2 intoH1 such that

X =
√

1H1 − T1T∗1 C
√

1H2 − T∗2 T2.

The operator norm of the block matrix
(

αIm B
0 αIn

)
, where B is an m × n

matrix and α ∈ C, is not hard to compute (cf. Lemma 2.1 of [10]). The result can

be easily extended to a matrix of the form
(

α1 Im B
0 α2 In

)
, for arbitrary α1, α2 ∈ C.

LEMMA 6.2. If B is an m× n matrix and α1, α2 ∈ C then∥∥∥(α1 Im B
0 α2 In

)∥∥∥ =
∥∥∥(α1 ‖B‖

0 α2

)∥∥∥.

Proof. Consider the following two sets

S1 =
{
((α1, α2); B) :

∥∥∥(α1 Im B
0 α2 In

)∥∥∥ 6 1
}

and

S2 =
{
((α1, α2); B) :

∥∥∥(α1 ‖B‖
0 α2

)∥∥∥ 6 1
}

.

To prove the lemma, it is sufficient to show that these unit balls are the same.
From Proposition 6.1 the condition for the contractivity of the elements of

S1 and S2 is the same, that is,

‖B‖2 6 (1− |α1|2)(1− |α2|2).

The important observation from the lemma above is that, for fixed α1, α2,

the norm of the matrix
(

α1 Im B
0 α2 In

)
depends only on ‖B‖.

Now consider the pair A = (A1, A2) with A1 =

(
α1 0
0 α2

)
, A2 =

(
0 β
0 0

)
.

Given any m× n matrix B with ‖B‖ = |β| we have the following isometric em-
bedding of (C2, ‖ · ‖A) into (Mm+n, ‖ · ‖Op)

(z1, z2) 7→
(

z1α1 Im z2B
0 z1α2 In

)
.

For various choices of the dimensions m, n and the matrix B, this represents a
large collection of isometric embeddings.
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For fixed α1, α2, we let XB represent the above embedding of (C2, ‖ · ‖A) into
(Mm+n, ‖ · ‖Op). We now show that the operator space structures determined
by these embeddings depend only on ‖B‖. If VA is the space (C2, ‖ · ‖A), then
(XB ⊗ Ik) gives the embedding of Mk(VA) into Mk(Mm+n(C)). An element
of Mk(VA) is defined by a pair of k × k matrices Z1, Z2, and the corresponding
embedding intoMk(Mm+n(C)) has the form(

α1Z1 ⊗ Im Z2 ⊗ B
0 α2Z1 ⊗ In

)
.

It now remains to show that the operator norm of this matrix depends only
on ‖B‖. Using Proposition 6.1 it can be shown that∥∥∥(α1Z1 ⊗ Im Z2 ⊗ B

0 α2Z1 ⊗ In

)∥∥∥ 6 1 if and only if
∥∥∥(α1Z1 Z2‖B‖

0 α2Z1

)∥∥∥ 6 1.

Hence it follows that these two norms are in fact equal. We have therefore proved
the following theorem.

THEOREM 6.3. For all m× n matrices B with the same (operator) norm, the oper-
ator space structures on C2, determined by the different embeddings

(z1, z2) 7→ z1

(
α1 Im 0

0 α2 In

)
+ z2

(
0 B
0 0

)
, α1, α2 ∈ C,

are completely isometric irrespective of the particular choice of B.
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