GEOMETRY OF JOINT SPECTRA AND DECOMPOSABLE OPERATOR TUPLES

M.I. STESSIN and A.B. TCHERNEV

Communicated by Hari Bercovici

Abstract

Joint spectra of tuples of operators are subsets in complex projective space. We investigate the relationship between the geometry of the spectrum and the properties of the operators in the tuple when these operators are self-adjoint. In the case when the spectrum contains an algebraic hypersurface passing through an isolated spectral point of one of the operators we give necessary and sufficient geometric conditions for the operators in the tuple to have a common reducing subspace. We also address spectral continuity and obtain a norm estimate for the commutant of a pair of self-adjoint matrices in terms of the Hausdorff distance of their joint spectrum to a family of lines.

Keywords: Joint spectrum, algebraic curves.
MSC (2010): Primary 47A25, 14P15, 14J70; Secondary 47A80, 47A30.

1. INTRODUCTION

When A_{1}, \ldots, A_{n} are $N \times N$ complex matrices, the determinant

$$
\begin{equation*}
\mathcal{S}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right) \tag{1.1}
\end{equation*}
$$

is a homogeneous polynomial of degree N in the variables x_{1}, \ldots, x_{n}, and zeros of this polynomial determine a hypersurface in the projective space $\mathbb{C P}^{n-1}$. Conversely, given a hypersurface Γ of degree N in $\mathbb{C} \mathbb{P}^{n-1}$, if there are $N \times N$ matrices A_{1}, \ldots, A_{n} such that

$$
\Gamma=\left\{\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

then the tuple $\left(A_{1}, \ldots, A_{n}\right)$ is called a determinantal representation of Γ. A classical avenue of research in algebraic geometry with a long history, see e.g. [4], [9], [10], [18], [25], [31], is determining when a given hypersurface admits a determinantal representation, and classifying all such representations. We would like to mention specifically self-adjoint determinantal representations of real curves, and decomposable representations of reducible curves, since they are close to the subject of this paper. The former produce hyperbolic polynomials are important
in relation to the Lax conjecture, cf. [16], [20], [21]. The latter have special meaning in operator theory, see [18].

The point of view from operator theory leads us to a second natural avenue of research, that seems to have attracted less attention in algebraic geometry: given that a hypersurface has a determinantal representation (or self-adjoint representation), what does the geometry of the hypersurface say about mutual relationships between the matrices A_{1}, \ldots, A_{n} ? In this direction we would like to mention the result of Motzkin and Taussky [24], which states that a real curve in $\mathbb{C P}^{2}$ with a self-adjoint determinantal representation satisfies the condition: the matrices of the corresponding tuple commute if and only if this curve is a union of projective lines (in [24] the result is stated in equivalent but different terms).

In 2009 R. Yang [32] started an investigation of what can be called infinite dimensional determinantal representations. Since well-known definitions of spectra of a tuple of operators such as Taylor spectrum, cf. [12], [29], exist for commuting tuples, Yang was looking for a good definition of joint spectrum for non-commuting operators and introduced the notion of joint spectrum of a tuple $\left(A_{1}, \ldots, A_{n}\right)$ of operators acting on a Hilbert space H.

DEFINITION 1.1. The joint spectrum $\sigma\left(A_{1}, \ldots, A_{n}\right)$ of A_{1}, \ldots, A_{n} consists of all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ such that $x_{1} A_{1}+\cdots+x_{n} A_{n}$ is not invertible on H. If $A_{n}=$ I, the identity operator, the proper part of the joint spectrum of A_{1}, \ldots, A_{n-1} is $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n-1}\right)=\sigma\left(A_{1}, \ldots, A_{n-1}, I\right) \cap\left\{x_{n}=-1\right\}$.

Joint spectra were further investigated in [1], [3], [27]. It is easily seen that if $\left(x_{1}, \ldots, x_{n}\right) \in \sigma\left(A_{1}, \ldots, A_{n}\right)$, then the whole complex line $\left\{\left(c x_{1}, \ldots, c x_{n}\right): c \in\right.$ $\mathbb{C}\}$ lies in $\sigma\left(A_{1}, \ldots, A_{n}\right)$, and, therefore, $\sigma\left(A_{1}, \ldots, A_{n}\right)$ determines a set in $\mathbb{C P}^{n-1}$. By analogy with the finite dimensional case, given a set Γ in $\mathbb{C P}^{n-1}$, if there are operators A_{1}, \ldots, A_{n} acting on a Hilbert space H such that

$$
\Gamma=\left\{\left[x_{1}: \cdots: x_{n}\right] \in \mathbb{C P}^{n-1}: x_{1} A_{1}+\cdots+x_{n} A_{n} \text { is not invertible }\right\}
$$

then it is natural to call the tuple $\left(A_{1}, \ldots, A_{n}\right)$ a spectral representation of Γ. The main difference compared to the classical matrix case is that this set is not necessarily an analytic set. For example, if A_{1} and A_{2} are compact and of infinite rank, and A_{3} is invertible, the whole line $\left\{\left[x_{1}: x_{2}: 0\right]\right\}$ in $\mathbb{C P}^{2}$ is contained in the joint spectrum and the spectrum is not an analytic set near each point of this line. It was shown in [27] that if A_{1}, \ldots, A_{n-1} are compact and A_{n} is invertible (and, therefore, can be considered to be identity) the part of the joint spectrum that lies in the chart $\left\{x_{n} \neq 0\right\}$ is an analytic set. When the operators A_{1}, \ldots, A_{n-1} are trace class, that part of the joint spectrum is given by the equation

$$
S\left(x_{1}, \ldots, x_{n-1}\right)=\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n-1} A_{n-1}-I\right)=0
$$

and we obtain that in this case the spectral representation is a "true" determinantal representation. In particular, when all the operators are of finite rank, the joint spectrum is a classical determinantal hypersurface in $\mathbb{C P}^{n-1}$. Of course, for
infinite rank operators the analyticity holds only on an open subset of $\mathbb{C P}^{n-1}$ and that moves the problem of describing properties of the joint spectrum from the area of projective geometry to analytic geometry.

The main goal of our paper is to investigate the relationship between the geometry of the spectrum and the mutual behavior of the operators. There is a recent result [5] which generalizes to the infinite dimensional case the MotzkinTaussky theorem mentioned above. It states that a tuple $\left(A_{1}, \ldots, A_{n}\right)$ of selfadjoint compact operators acting on a separable Hilbert space commute pairwise if and only if their proper joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right)$ is a locally finite union of affine hyperplanes (of course, local finiteness is not a condition but just a property coming from compactness). This suggests one needs to understand further the role that the degrees of the algebraic components of the joint spectrum play. Clearly, if the operators A_{1}, \ldots, A_{n} have a common eigenvector with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the proper joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right)$ contains a hyperplane $\left\{\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}=1\right\}$. More generally, if these operators have a common invariant subspace L of dimension k (so the corresponding tuple is decomposable with one block having dimension k), then the proper spectrum contains an algebraic hypersurface of degree k given by

$$
\operatorname{det}\left(x_{1}\left(\left.A_{1}\right|_{L}\right)+\cdots+x_{n}\left(\left.A_{n}\right|_{L}\right)-I\right)=0
$$

It is natural to ask when the converse holds (especially since in general it fails: taking for example

$$
A_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 7 & 1 \\
1 & 1 & \frac{1}{2}
\end{array}\right]
$$

yields

$$
\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)=\left\{(x+y-1)\left(5 x y+5 y^{2}-15 y-10 x+2\right)=0\right\}
$$

but A_{1} and A_{2} have neither a common eigenvector nor a common two-dimensional invariant subspace). Our first main task is to give necessary and sufficient geometric conditions for the presence of an algebraic hypersurface in the proper joint spectrum to indicate decomposability, that is, the existence of a common invariant subspace of dimension equal to the degree of the hypersurface. The case of hypersurface of degree one turns out to be of fundamental importance and we address it in Theorem 2.1. The general case can then be derived from the degree one case and is addressed in Theorem 2.2 and Theorem 2.3. These results establish that the geometry of joint spectra plays a fundamental role in operator theory, and they have already found a very interesting application also to representation theory, see [8].

In the last part of the paper we address another important aspect of the geometry of joint spectra: the issue of spectral continuity, that is, if two hypersurfaces are close in a neighborhood of a point, and both have self-adjoint spectral
representation of which one is decomposable, how far from being decomposable is the other? The specific question we are considering is: given that the proper joint spectrum of two operators is close to a line in a neighborhood of one of its points, does this mean that the operators have a common "almost eigenvector" (common "almost invariant" subspace)? Results in Sections 7 and 8 present conditions that guarantee that this is true, and give some norm estimates, see Theorem 2.4.

The structure of this paper is as follows. In Section 2 we give precise statements of our main results. Section 3 is devoted to determining functions. In Section 4 we derive key necessary conditions for an algebraic curve to be a component of the proper joint spectrum of two operators. These conditions are expressed in terms of holomorphy of a sequence of certain operator-valued functions. In Section 5 we prove Theorem 2.1. Theorems 2.2 and 2.3 are proved in Section 6 Section 7 is devoted to spectral continuity. Theorem 2.4 is proved in Section 8 Finally, Section 9 contains several concluding remarks and open questions.

2. STATEMENTS OF THE MAIN RESULTS

The first important case of the problem when an algebraic hypersurface in the proper joint spectrum is associated with a common invariant subspace is the case of a spectral affine hyperplane. This case turns out to be crucial for higher order spectral algebraic hypersurfaces. The following result is proved in Section 5 (here, as well as in the rest of the paper, we denote by $\Delta_{\rho}(x)$ the polydisk of radius ρ centered at $x \in \mathbb{C}^{n}$).

THEOREM 2.1. Let A_{1}, \ldots, A_{n} be self-adjoint, $\lambda \neq 0$ be an isolated point of $\sigma\left(A_{1}\right)$, and suppose there exists $\rho>0$ such that, up to multiplicity,

$$
\begin{aligned}
\Delta_{\rho}\left(\frac{1}{\lambda}, 0, \ldots, 0\right) & \cap\left\{\lambda x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\} \\
& =\Delta_{\rho}\left(\frac{1}{\lambda}, 0, \ldots, 0\right) \cap \sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right) .
\end{aligned}
$$

The following are equivalent:
(i) the eigensubspace of A_{1} corresponding to eigenvalue λ is an eigensubspace for each of the operators A_{2}, \ldots, A_{n};
(ii) there exist an $\varepsilon \in \mathbb{R}, \varepsilon \neq 1$, and $\rho^{\prime}>0$ such that $A_{1}(\varepsilon, \lambda)$ is invertible and, up to multiplicity,

$$
\begin{aligned}
\Delta_{\rho^{\prime}}(\lambda, 0, \ldots, 0) & \cap\left\{\frac{1}{\lambda} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\} \\
& =\Delta_{\rho^{\prime}}(\lambda, 0, \ldots, 0) \cap \sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda)^{-1}, A_{2}\left(\varepsilon, a_{2}\right), \ldots, A_{n}\left(\varepsilon, a_{n}\right)\right),
\end{aligned}
$$

where $A(\varepsilon, b)=(1+\varepsilon) A-b \varepsilon I$.
The most important case here is the one of two operators. Theorem 2.2 below is obtained from this case by passing to tensor powers of operators and
considering their action on the exterior power of the corresponding Hilbert space. Here for an operator A acting on a Hilbert space H we write $\Lambda^{n} A$ to indicate that we consider the action of $\bigotimes^{n} A$ on $\bigwedge^{n} H$. We say that a self-adjoint operator A on a separable Hilbert space H belongs to the class $\mathcal{E}(H)$ if $A=K+a I$ for some compact self-adjoint operator K and some $a \in \mathbb{R}$. It is shown in Section 6 that for operators A and B in $\mathcal{E}(H)$ one can always use an appropriate change of coordinates to reduce the search for common invariant subspaces to the "general position" setting considered in our next main result.

THEOREM 2.2. Let $A=K_{1}+a I$ and $B=K_{2}+b I$ be self-adjoint operators in the class $\mathcal{E}(H)$, with A invertible. Let Γ be an algebraic curve of degree k which is a union of components of the proper joint spectrum $\sigma_{\mathrm{p}}(A, B)$, and which does not have the line $\{a x+b y=1\}$ as a reduced component. Suppose that the x-axis (respectively the y-axis) intersects Γ in the k points (counted with multiplicity) $\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}$ (respectively $\left.\frac{1}{\mu_{1}}, \ldots, \frac{1}{\mu_{k}}\right)$ such that each point $\left(\frac{1}{\lambda_{i}}, 0\right)$ belongs only to components of $\sigma_{\mathrm{p}}(A, B)$ contained in Γ. Set $\lambda=\lambda_{1} \cdots \lambda_{k}$ and $\mu=\mu_{1} \cdots \mu_{k}$, and suppose that λ is an isolated eigenvalue of multiplicity 1 in the spectrum of ${ }_{\wedge}^{k}$. The following are equivalent:
(i) the eigenspace for A corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ is invariant for B;
(ii) there exists $\rho>0$ such that the line segments

$$
\{\lambda x+\mu y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right) \quad \text { and } \quad\left\{\frac{1}{\lambda} x+\mu y=1\right\} \cap \Delta_{\rho}(\lambda, 0)
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \Lambda^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A^{-1}, \Lambda^{k} B\right)$, respectively;
(iii) the lines

$$
\{\lambda x+\mu y=1\} \quad \text { and } \quad\left\{\frac{1}{\lambda} x+\mu y=1\right\}
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \Lambda^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A^{-1}, \Lambda^{k} B\right)$, respectively.
An extension of this result to a tuple of arbitrary length holds here as well, and is derived from Theorem 2.2 exactly the same way as the result of Theorem 2.1 is derived from the coresponding result for two operators. For this reason its precise statement is omitted. Application to the classical setting when A_{1}, \ldots, A_{n} are self-adjoint operators on \mathbb{C}^{N} yields the following theorem (here, as explained in Section 6, for an invertible self-adjoint operator A we consider $\bigwedge^{N-k} A$ in a natural way as an operator on $\bigwedge^{k} \mathbb{C}^{N}$, and again, we can always reduce to the "general position" situation considered below).

THEOREM 2.3. Let C be a reducible real algebraic hypersurface of degree N in \mathbb{C}^{n}, and let Γ be a degree k hypersurface that is a union of components of C, such that for each i the x_{i}-axis intersects Γ in the k points $\frac{1}{\alpha_{i 1}}, \ldots, \frac{1}{\alpha_{i k}}$, counted with multiplicities. Let $a_{i}=\alpha_{i 1} \cdots \alpha_{i k}$ and suppose also that each point $\frac{1}{\alpha_{1 j}}$ belongs only to components of C contained in Γ. Let a tuple $\left(A_{1}, \ldots, A_{n}\right)$ consisting of self-adjoint operators on \mathbb{C}^{N},
with A_{1} invertible, be a determinantal representation of C, and suppose that a_{1} is an eigenvalue of multiplicity 1 for $\stackrel{k}{\wedge} A_{1}$.

This representation induces a determinantal representation of Γ if and only if the hypersurface

$$
\left\{\operatorname{det}\left(x_{1} \bigwedge^{k} A_{1}+\cdots+x_{n} \bigwedge^{k} A_{n}-I\right)=0\right\}
$$

contains the hyperplane $\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=1\right\}$, and the hypersurface

$$
\left\{\operatorname{det}\left(x_{1} \bigwedge^{N-k} A_{1}+x_{2} \bigwedge^{k} A_{2}+\cdots+x_{n} \bigwedge^{k} A_{n}-I\right)=0\right\}
$$

contains the hyperplane $\left\{\left(\operatorname{det} \frac{A_{1}}{a_{1}}\right) x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\}$.
Finally, we turn to spectral continuity. For a positive ε we say that a vector ξ is an ε-eigenvector of an operator A (almost eigenvector) if there exists λ such that

$$
\|A \xi-\lambda \xi\|<\varepsilon\|\xi\|
$$

Our first result regarding spectral continuity, Theorem7.2, states that, under some natural assumptions, if the joint spectrum of a pair $\left(A_{1}, A_{2}\right)$ of self-adjoint operators, with A_{1} invertible, is ε-close in the Hausdorff metric to a line $\{\alpha x+\beta y=1\}$ in a neighborhood of an isolated spectral point of A_{1}, and the same is true for the joint spectrum of the pair $\left(A_{1}^{-1}, A_{2}\right)$, then they have a common almost eigenvector of order $\sqrt{\varepsilon}$. If $|\beta|=\left\|A_{2}\right\|$, the condition on the joint spectrum of A_{1}^{-1} and A_{2} can be omitted. As a corollary to this result we obtain the following estimate for the commutant of two self-adjoint matrices.

THEOREM 2.4. Let A_{1} and A_{2} be two self-adjoint $N \times N$ matrices with eigenvalues $\alpha_{1}, \ldots, \alpha_{N}$ and $\beta_{1}, \ldots, \beta_{N}$ respectively, satisfying $\left|\alpha_{1}\right|>\cdots>\left|\alpha_{N}\right|>0$ and $\left|\beta_{1}\right|>\cdots>\left|\beta_{N}\right|>0$. Suppose that $\ell_{1}, \ldots, \ell_{N}$ is a family of lines,

$$
\ell_{j}=\left\{\alpha_{n(j)} x+\beta_{j} y=1\right\}, \quad 1 \leqslant j, n(j) \leqslant N
$$

such that:
(i) each of the points $\left(\frac{1}{\alpha_{k}}, 0\right), 1 \leqslant k \leqslant N$ belongs to one of these lines;
(ii) there exist $0<\rho<1$ and $0<\varepsilon \ll \rho$ such that conditions (i) and (ii) of Theorem 7.4 are true for $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ and each ℓ_{j}.

Then if ε is small enough, the norm of the commutant of A_{1} and A_{2} is at most of $\operatorname{order} \varepsilon^{1 / 2^{N}}$.

3. DETERMINING FUNCTIONS

Let A_{1} and A_{2} be bounded operators on a Hilbert space H. Recall that the proper part of the projective joint spectrum $\sigma\left(A_{1}, A_{2}, I\right)$, or just the proper joint
spectrum $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is the following set:

$$
\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)=\left\{(x, y) \in \mathbb{C}^{2}:(x, y,-1) \in \sigma\left(A_{1}, A_{2}, I\right)\right\}
$$

It was shown in [27] that if A_{1} and A_{2} are compact, then $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is an analytic set of codimension one in \mathbb{C}^{2}. The following explicit construction of the analytic function locally determining this set was given there. We present it for tuples of self-adjoint operators: the setting we consider in this paper.

Suppose that A_{1}, \ldots, A_{m} is a tuple of compact self-adjoint operators on a Hilbert space H. Choose a small $\varepsilon>0$ and finite rank self-adjoint operators K_{1}, \ldots, K_{m} such that $\left\|A_{j}-K_{j}\right\|<\varepsilon$. If $\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{C}^{m}$ satisfy $\sum_{j=1}^{m}\left|w_{j}\right|<\frac{1}{\varepsilon}$, then the operator $I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)$ is invertible and we have

$$
\begin{aligned}
\sum_{j=1}^{m} w_{j} A_{j}-I & =\sum_{j=1}^{m} w_{j} K_{j}-I+\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right) \\
& =\left(I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)\right)\left(\sum_{l=1}^{m} w_{l}\left(I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)\right)^{-1} K_{l}-I\right)
\end{aligned}
$$

Thus, $\left(w_{1}, \ldots, w_{m}\right) \in \sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{m}\right)$ if and only if the operator

$$
\sum_{l=1}^{m} w_{l}\left(I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)\right)^{-1} K_{l}-I
$$

is not invertible. Since $\sum_{l=1}^{m} w_{l}\left(I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)\right)^{-1} K_{l}$ is of finite rank, there is a finite dimensional subspace L of H such that this operator vanishes on the complement to this subspace and is represented by an $n \times n$ matrix on this subspace. Therefore, this operator is not invertible if and only if

$$
\begin{equation*}
\operatorname{det}\left(\sum_{l=1}^{m} w_{l}\left(I-\sum_{j=1}^{m} w_{j}\left(A_{j}-K_{j}\right)\right)^{-1} K_{l}-I\right)=0 \tag{3.1}
\end{equation*}
$$

The left-hand side of (3.1) is clearly an analytic function of w_{1}, \ldots, w_{m} in the domain $\left\{\sum_{j=1}^{m}\left|w_{j}\right|<\frac{1}{\varepsilon}\right\}$ and (3.1) determines $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{m}\right)$ in this domain. We call this function a determining function of the proper projective spectrum. Thus a different choice of the finite rank approximations leads to a determining function with the same divisor of zeros in $\left\{\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{C}^{m}: \sum_{j=1}^{m}\left|w_{j}\right|<\frac{1}{\varepsilon}\right\}$.

If A_{1} and A_{2} are not compact, the joint spectrum is not necessarily an analytic set. For example, if $A_{1}=I$ is the identity operator, the joint spectrum is a cone with vertex at $(1,0)$ that consists of lines $\{x+\lambda y=1\}, \lambda \in \sigma\left(A_{2}\right)$. Thus, if
the cardinality of $\sigma\left(A_{2}\right)$ is infinite, the joint spectrum is not analytic at $(1,0)$. Nevertheless, essentially the same argument we used above to show the analyticity of the joint spectrum in the compact case, establishes the following local result.

Let A be a bounded operator acting on H, and let λ be an isolated spectral point of A. Recall that λ is said to have multiplicity k if for a contour γ in the resolvent set that contains λ as the only spectral point of A

$$
\begin{equation*}
P_{\lambda}=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w I-A)^{-1} \mathrm{~d} w \tag{3.2}
\end{equation*}
$$

is a rank k projection (not necessarily orthogonal).
THEOREM 3.1. Let A_{1} and A_{2} be bounded operators on H, with A_{1} normal, and $\lambda \neq 0$ be an isolated point of $\sigma\left(A_{1}\right)$ of finite multiplicity. Then $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is an analytic set in a neighborhood of $\left(\frac{1}{\lambda}, 0\right)$.

Proof. The spectral decomposition of A_{1} is in the form

$$
A_{1}=\lambda P_{1}+\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}} z \mathrm{~d} E(z)
$$

where the operator P_{1} is the finite rank orthogonal projection of H onto the eigenspace of A_{1} with eigenvalue λ and $\mathrm{d} E$ is the spectral measure on the rest of $\sigma\left(A_{1}\right)$. Since λ is an isolated spectral point of A_{1}, if (x, y) is close to $\left(\frac{1}{\lambda}, 0\right)$, the operator

$$
\widetilde{A}(x, y)=x \int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}} z \mathrm{~d} E(z)+y A_{2}-I
$$

is inverible. Therefore, such a point (x, y) belongs to the joint spectrum if and only if the operator

$$
B(x, y)=x P_{1} \widetilde{A}(x, y)^{-1}-I
$$

is not invertible. Since $x P_{1} \widetilde{A}(x, y)$ has finite rank n which is equal to the rank of P_{1}, the pairs (x, y) for which $B(x, y)$ is not invertible are zeros of a determinant of an $n \times n$ matrix, whose coefficients are analytic functions of (x, y), and the result follows.

If the multiplicity of an isolated spectral point $\lambda \in \sigma\left(A_{1}\right)$ is equal to one, the local analyticity of the joint spectrum holds even without A_{1} being normal.

THEOREM 3.2. Let A_{1} and A_{2} be operators on H and $\lambda \neq 0$ be an isolated spectral point of A_{1} of multiplicity one. Then there exists $\rho>0$ such that in $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ the proper joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is a nonsingular analytic set.

Proof. If ρ is small enough and $(x, y) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$, the operator $A(x, y)=$ $x A_{1}+y A_{2}$ has an isolated spectral point $\lambda(x, y)$ close to 1 that also has multiplicity one, so the projection

$$
P(x, y)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w I-A(x, y))^{-1} \mathrm{~d} w
$$

has rank one, cf. p. 13 of [14], and the range of $P(x, y)$ consists of eigenvectors of $A(x, y)$ with eigenvalue $\lambda(x, y)$. The joint spectrum of A_{1} and A_{2} consists of those pairs (x, y) for which $\lambda(x, y)=1$. Let e be the unit eigenvector of A_{1} with eigenvalue λ. Then for $(x, y) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ we have that $P(x, y) e$ is close to e, and, therefore, $P(x, y) e \neq 0$. Now, $\lambda(x, y)=1$ if and only if $A(x, y) P(x, y) e=P(x, y) e$ and that happens if and only if

$$
\begin{equation*}
\langle(A(x, y) P(x, y)-P(x, y)) e, e\rangle=0 \tag{3.3}
\end{equation*}
$$

Equation (3.3) determines $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ near the point $\left(\frac{1}{\lambda}, 0\right)$ and it is easily seen that the left-hand side is analytic in x and y. Now we write down explicitly the Taylor decomposition of this function in terms of $\Delta x=x-\frac{1}{\lambda}$ and y. We have

$$
\begin{aligned}
& A(x, y) P(x, y)-P(x, y) \\
&=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)(w I-A(x, y))^{-1} \mathrm{~d} w \\
&=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\left(I-\left(\Delta x A_{1}+y A_{2}\right)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right)^{-1} \mathrm{~d} w \\
&=\sum_{j=0}^{\infty} \frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\left[\left(\Delta x A_{1}+y A_{2}\right)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{j} \mathrm{~d} w \\
&=\sum_{k, m=0}^{\infty}(\Delta x)^{k} y^{m}\left(\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \mathcal{D}_{k, m}(w) \mathrm{d} w\right)
\end{aligned}
$$

where

$$
\mathcal{D}_{k, m}(w)=\sum_{\alpha} \prod_{l=1}^{k+m} \mathcal{S}_{\alpha_{l}}(w)
$$

with summation taken over all sequences $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k+m}\right)$ of zeros and ones of length $(k+m)$ having k zeros and m ones, and

$$
\mathcal{S}_{0}=A_{1}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}, \quad \mathcal{S}_{1}=A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}
$$

Thus we have

$$
\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)=\left\{(x, y) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right): \mathcal{F}(x, y)=0\right\}
$$

where

$$
\mathcal{F}(x, y)=\sum_{k, m=0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{k} y^{m}\left(\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)\left\langle\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \mathcal{D}_{k, m}(w) e, e\right\rangle \mathrm{d} w\right) .
$$

Obviously, $\mathcal{F}(x, y)$ is a nontrivial analytic function, so the joint spectrum is an analytic set in $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$. Further, it follows directly from the Taylor decomposition above that

$$
\begin{aligned}
\left.\frac{\partial \mathcal{F}}{\partial x}\right|_{x=1 / \lambda, y=0} & =\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(w-1)\left\langle\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} A_{1}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} e, e\right\rangle \mathrm{d} w \\
& =\frac{\lambda}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathrm{d} w}{w-1}=\lambda \neq 0
\end{aligned}
$$

and, therefore, the zero set of \mathcal{F} is nonsingular near $\left(\frac{1}{\lambda}, 0\right)$.

4. NECESSARY CONDITIONS FOR AN ALGEBRAIC CURVE IN THE JOINT SPECTRUM

Let A_{1} and A_{2} be self-adjoint operators and $\lambda \neq 0$ be an isolated point of $\sigma\left(A_{1}\right)$ such that:
(a) $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ in a neighborhood $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ of $\left(\frac{1}{\lambda}, 0\right)$ is an algebraic curve given by a polynomial equation $\mathcal{R}(x, y)=0$ of degree k, where \mathcal{R} is a polynomial with real coefficients, that is

$$
\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)=\left\{(x, y) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right): \mathcal{R}(x, y)=0\right\} ;
$$

(b) $\left(\frac{1}{\lambda}, 0\right)$ belongs to only one reduced component of this curve and is a nonsingular point on this reduced component;
(c) the axis $\{y=0\}$ is not tangent to this reduced component of the curve at $\left(\frac{1}{\lambda}, 0\right)$.

Here for a curve, or more generally, for a hypersurface defined by a polynomial $G=G_{1}^{r_{1}} \cdots G_{m}^{r_{m}}$ (with each polynomial G_{i} irreducible and G_{i} not associate with G_{j} for $i \neq j$), the components of that hypersurface are defined by the polynomials $G_{i}^{r_{i}}$ (thus they are irreducible but not necessarily reduced), the reduced components are defined by the polynomials G_{i}, and the exponent r_{i} is called the multiplicity of the reduced component defined by G_{i}.

REMARK 4.1. It is a standard exercise that when A_{1} and A_{2} are matrices and Γ is a reduced component of $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ of multiplicity r, then at each nonsingular point (x, y) of Γ the matrix $x A_{1}+y A_{2}$ has eigenvalue 1 of multiplicity exactly r.

Now, we write

$$
\begin{equation*}
\mathcal{R}(x, y)=\sum_{j=0}^{k} R_{j}(x, y), \quad \text { where } R_{j}=\sum_{m=0}^{j} r_{m}^{j} x^{m} y^{j-m}, \text { and } R_{0}=-1 \tag{4.1}
\end{equation*}
$$

Passing to a smaller neighborhood if necessary, we may assume that:
(i) the reduced component containing $\left(\frac{1}{\lambda}, 0\right)$ of the curve $\{\mathcal{R}(x, y)=0\}$ has no singular points in $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$;
(ii) there is $0<\rho^{\prime}<\rho$ such that for $(x, y) \in \Delta_{\rho^{\prime}}\left(\frac{1}{\lambda}, 0\right)$ the complex line $\{(\tau x, \tau y): \tau \in \mathbb{C}\}$ has (up to multiplicity) exactly one point of intersection with $\{\mathcal{R}(x, y)=0\}$ that lies in $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$.

Let $(x, y) \in \Delta_{\rho^{\prime}}\left(\frac{1}{\lambda}, 0\right)$ and $(\tau x, \tau y) \in\{\mathcal{R}(x, y)=0\}$. Then $\mathcal{R}(\tau x, \tau y)=0$, and the equation in τ

$$
\tau^{k} R_{k}(x, y)+\tau^{k-1} R_{k-1}(x, y)+\cdots+\tau R_{1}(x, y)-1=0
$$

has exactly one root, $\tau(x, y)$, in a neighborhood of 1 . The corresponding eigenvalue $\mu(x, y)=\frac{1}{\tau(x, y)}$ of the operator $x A_{1}+y A_{2}$ satisfies the equation

$$
\begin{equation*}
\mu^{k}-\mu^{k-1} R_{1}(x, y)-\cdots-R_{k}(x, y)=0 \tag{4.2}
\end{equation*}
$$

Of course, $\mu(x, y)$ is the only eigenvalue of $x A_{1}+y A_{2}$ which lies at distance of or$\operatorname{der} \rho$ from 1 and is an isolated point of the spectrum $\sigma\left(x A_{1}+y A_{2}\right)$. It is also clear that if λ is a multiple spectral point of A_{1}, then $\mu(x, y)$ has the same multiplicity.

If both x and y are real, $x A_{1}+y A_{2}$ is self-adjoint. Let $\zeta(x, y)$ be an eigenvector of $x A_{1}+y A_{2}$ with eigenvalue $\mu(x, y)$. Then equation (4.2) implies

$$
\begin{equation*}
\left[\left(x A_{1}+y A_{2}\right)^{k}-R_{1}(x, y)\left(x A_{1}+y A_{2}\right)^{k-1}-\cdots-R_{k}(x, y)\right] \zeta(x, y)=0 \tag{4.3}
\end{equation*}
$$

Let $L(x, y) \subset H$ be the eigensubspace of $x A_{1}+y A_{2}$ corresponding to $\mu(x, y)$, and let $P(x, y): H \rightarrow L(x, y)$ be the orthogonal projection. For $0<\delta<\tau$ write $\gamma=\{z \in \mathbb{C}:|z-1|<\delta\}$. We have

$$
\begin{equation*}
P(x, y)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left(w I-\left(x A_{1}+y A_{2}\right)\right)^{-1} \mathrm{~d} w . \tag{4.4}
\end{equation*}
$$

It is readily seen that for $m=0,1,2, \ldots$

$$
\begin{equation*}
\left(x A_{1}+y A_{2}\right)^{m} P(x, y)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} w^{m}\left(w I-\left(x A_{1}+y A_{2}\right)\right)^{-1} \mathrm{~d} w \tag{4.5}
\end{equation*}
$$

Equations (4.3) and (4.5) imply that for every (x, y) sufficiently close to $\left(\frac{1}{\lambda}, 0\right)$ the following identity holds:

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left[w^{k}-\sum_{j=1}^{k} R_{j}(x, y) w^{k-j}\right]\left(w I-\left(x A_{1}+y A_{2}\right)\right)^{-1} \mathrm{~d} w=0
$$

Write $\Delta x=x-\frac{1}{\lambda}$. If Δx and y are sufficiently small, the last relation implies

$$
\begin{align*}
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left[w^{k}\right. & \left.-\sum_{j=1}^{k} R_{j}(x, y) w^{k-j}\right]\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \\
& \times \sum_{m=0}^{\infty}\left[\left(\Delta x A_{1}+y A_{2}\right)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m} \mathrm{~d} w=0 \tag{4.6}
\end{align*}
$$

If $\Delta x=0$, the last relation turns into the following:

$$
\begin{aligned}
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left[w^{k}-\sum_{j=1}^{k} w^{k-j}\right. & \left.\sum_{n=0}^{j} r_{j-n}^{j} y^{n} x_{1}^{j-n}\right]\left(w I-x_{1} A_{1}\right)^{-1} \\
& \times \sum_{m=0}^{\infty} y^{m}\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m} \mathrm{~d} w=0
\end{aligned}
$$

Rearranging terms in the last equation, we obtain:

$$
\begin{align*}
& \begin{aligned}
& \sum_{m=0}^{k-1} \frac{y^{m}}{2 \pi \mathrm{i}} \int_{\gamma}\left\{\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \times\left(\left(w^{k} \sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda^{j}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m}\right.\right. \\
&\left.\left.-\sum_{n=1}^{m}\left(\sum_{j=n}^{k} w^{k-j} \frac{r_{j-n}^{j}}{\lambda^{j-n}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m-n}\right)\right\} \mathrm{d} w \\
&+\sum_{m=k}^{\infty} \frac{y^{m}}{2 \pi \mathrm{i}} \int_{\gamma}^{m}\left\{\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \times\left(\left(w^{k}-\sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda^{j}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{k}\right.\right. \\
&\left.-\sum_{n=1}^{k}\left(\sum_{j=n}^{k} w^{k-j} \frac{r_{j-n}^{j}}{\lambda^{j-n}}\right)\left[A_{2}\left(w I-x_{1} A_{1}\right)^{-1}\right]^{k-n}\right) \\
&\text { (4.7) } \left.\quad \times\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m-k}\right\} \mathrm{d} w=0 .
\end{aligned} .
\end{align*}
$$

Since 4.7 holds for every y in a neighborhood of the origin, it implies

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left\{(w I - x _ { 1 } A _ { 1 }) ^ { - 1 } \left(\left(w^{k}-\sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda^{j}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m}\right.\right.
$$

$$
\begin{equation*}
\left.\left.-\sum_{n=1}^{m}\left(\sum_{j=n}^{k} w^{k-j} \frac{r_{j-n}^{j}}{\lambda^{j-n}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m-n}\right)\right\} \mathrm{d} w=0 \tag{4.8}
\end{equation*}
$$

for $1 \leqslant m \leqslant k-1$, and

$$
\begin{align*}
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left\{\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right. & \times\left(\left(w^{k}-\sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda^{j}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{k}\right. \\
& \left.-\sum_{n=1}^{k}\left(\sum_{j=n}^{k} w^{k-j} \frac{r_{j-n}^{j}}{\lambda^{j-n}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{k-n}\right) \\
& \left.\times\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]^{m-k}\right\} \mathrm{d} w=0 \tag{4.9}
\end{align*}
$$

for $m \geqslant k$. The integrands in (4.8) and (4.9) are operator-valued holomorphic functions in the punctured disk $\{w \in \mathbb{C}: 0<|w-1|<\delta\}$ with poles at one. We denote these integrands by $\Psi_{m}(w), m \geqslant 1$. Thus, 4.8 and 4.9 imply the following result.

THEOREM 4.2. Suppose that A_{1} and A_{2} are self-adjoint operators acting on a separable Hilbert space H, with $\lambda \in \sigma\left(A_{1}\right)$ an isolated point, and an algebraic curve determined by a polynomial equation (4.1) lies in $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ and satisfies conditions (a)-(c) above. Then the integrands $\Psi_{m}(w)$ of (4.8) and (4.9) satisfy the equation

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \Psi_{m}(w) \mathrm{d} w=0, \quad m \geqslant 1
$$

which is equivalent to

$$
\begin{equation*}
\mathcal{R e s}_{w=1}\left(\Psi_{m}\right)=0, \quad m \geqslant 1 \tag{4.10}
\end{equation*}
$$

REMARK 4.3. If the operators A_{1} and A_{2} are not self-adjoint, in general, the result of Theorem 4.2 does not hold since the range of the operator (4.4 does not necessarily consist of eigenvectors of $x A_{1}+y A_{2}$. However, if λ is an isolated spectral point of A_{1} of multiplicity one, then for (x, y) sufficiently close to $\left(\frac{1}{\lambda}, 0\right)$, the operator $P(x, y)$ is a rank one projection (not necessarily orthogonal), and its range is an eigensubspace of $x A_{1}+y A_{2}$, so the result of Theorem 4.2 is valid in this case too.

It follows directly from (4.8) and (4.9) that Ψ_{m} has a pole of order at most $m+1$ at $w=1$. We will now obtain the expression of the residue of Ψ_{m} at 1 . Let

$$
\begin{equation*}
A_{1}=\lambda P_{1}+\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}} z \mathrm{~d} E(z) \tag{4.11}
\end{equation*}
$$

be the spectral decomposition of A_{1} with P_{1} being the orthogonal projection on the eigenspace of A_{1} corresponding to eigenvalues λ. If δ is small enough, we have

$$
\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}=\frac{1}{w-1} P_{1}+\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}} \frac{\mathrm{d} E(z)}{w-(z / \lambda)}
$$

$$
\begin{align*}
& =\frac{1}{w-1} P_{1}-\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}}\left(\sum_{m=0}^{\infty}\left(\frac{\lambda}{z-\lambda}\right)^{m+1}(w-1)^{m}\right) \mathrm{d} E(z) \\
& =\frac{1}{w-1} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m}\left(\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}}\left(\frac{\lambda}{z-\lambda}\right)^{m+1} \mathrm{~d} E(z)\right) . \tag{4.12}
\end{align*}
$$

Write

$$
\begin{equation*}
T\left(A_{1}\right)=T=\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}} \frac{\lambda}{z-\lambda} \mathrm{d} E(z), \tag{4.13}
\end{equation*}
$$

then

$$
\int_{\sigma\left(A_{1}\right) \backslash\{\lambda\}}\left(\frac{\lambda}{z-\lambda}\right)^{m+1} \mathrm{~d} E(z)=T^{m+1}
$$

so (4.12) can be written as

$$
\begin{align*}
& \left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}=\frac{1}{w-1} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m} T^{m+1}, \quad \text { and } \tag{4.14}\\
& A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}=\frac{1}{w-1} A_{2} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m} A_{2} T^{m+1} \tag{4.15}
\end{align*}
$$

The following result follows from Theorem 4.2 and equations (4.14) and (4.15).

THEOREM 4.4. Under the conditions of Theorem 4.2 the associated integrands $\Psi_{m}(\lambda)$ determined by (4.8) and 4.9) are holomorphic in $\{w \in \mathbb{C}:|w-1|<\delta\}$.

Proof. It follows from (4.8) and 4.9) that

$$
\begin{gathered}
\Psi_{m}(w)=\Psi_{m-1}(w)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right]-\left(\sum_{j=m}^{k} w^{k-j} \frac{r_{j-m}^{j}}{\lambda^{j-m}}\right)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1} \\
2 \leqslant m \leqslant k
\end{gathered}
$$

$$
\begin{equation*}
\Psi_{m}(w)=\Psi_{m-1}(w)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right], \quad m \geqslant k+1 \tag{4.16}
\end{equation*}
$$

Relations (4.14), 4.15, and 4.16) imply that if Ψ_{m-1} is holomorphic, then Ψ_{m} has pole of order at most one at $\lambda=1$, and, therefore, by (4.10) Ψ_{m} is holomorphic. Thus, it suffices to show that $\Psi_{1}(w)$ is holomorphic at $w=1$. We have

$$
\begin{align*}
& \Psi_{1}(w)=\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\left(w^{k}-\sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda^{j}}\right)\left[A_{2}\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}\right] \\
& (4.17) \tag{4.17}\\
& -\left(\sum_{j=1}^{k} w^{k-j} \frac{r_{j-1}^{j}}{\lambda^{j-1}}\right)\left(w I-\frac{1}{\lambda} A_{1}\right)^{-1}=\widetilde{\Psi}_{1}(w)+\widetilde{\Psi}_{1}(w) .
\end{align*}
$$

Observe that $\mathcal{P}(w)=w^{k}-\sum_{j=1}^{k} w^{k-j} \frac{r_{j}^{j}}{\lambda}$ satisfies $\mathcal{P}(1)=-\mathcal{R}\left(\frac{1}{\lambda}, 0\right)=0$, and, therefore, $\mathcal{P}(w)=(w-1) \mathcal{Q}(w)$, where \mathcal{Q} is a polynomial of degree $k-1$. Now relations (4.14) and 4.15 show that both $\widetilde{\Psi}_{1}$ and $\widetilde{\Psi}_{2}$ have poles of order at most one at $w=1$, and relation (4.10) implies that Ψ_{1} is holomorphic at $w=1$.

5. LINE IN THE SPECTRUM

Now, suppose that, as in the previous section, A_{1} and A_{2} are self-adjoint, that $\lambda \neq 0$ is an isolated spectral point of A_{1}, and that $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta\left(\frac{1}{\lambda}, 0\right)$ coincides, up to multiplicity, with a line segment $\left\{(x, y) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right): \lambda x+a y=1\right\}$ where $a \neq 0$. Passing to $\frac{A_{1}}{\lambda}$ and $\frac{A_{2}}{a}$ if necessary, we may assume that $\lambda=a=1$, that is,

$$
\{x+y=1\} \cap \Delta_{\rho}(1,0)=\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}(1,0)
$$

up to multiplicity. Coming back to relation (4.1), here we have $k=1, r_{1}^{0}=r_{1}^{1}=$ $1, \mu_{1}=1, x_{1}=1$. Let us write down the functions Ψ_{1} and Ψ_{2} in this particular case. Equations (4.9), 4.14, and 4.15 imply

$$
\begin{align*}
\Psi_{1}(w)= & \left(\frac{1}{w-1} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m} T^{m+1}\right)\left((w - 1) \left[\frac{1}{w-1} A_{2} P_{1}\right.\right. \\
& \left.\left.\quad-\sum_{m=0}^{\infty}(w-1)^{m} A_{2} T^{m+1}\right]-I\right) \tag{5.1}\\
\Psi_{2}(w)= & \Psi_{1}(w)\left[A_{2}\left(w I-A_{1}\right)^{-1}\right] \\
= & \left(\frac{1}{w-1} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m} T^{m+1}\right)\left((w - 1) \left[\frac{1}{w-1} A_{2} P_{1}\right.\right. \\
(5.2) \quad & \left.\left.-\sum_{m=0}^{\infty}(w-1)^{m} A_{2} T^{m+1}\right]-I\right)\left[\frac{1}{w-1} A_{2} P_{1}-\sum_{m=0}^{\infty}(w-1)^{m} A_{2} T^{m+1}\right] . \tag{5.2}
\end{align*}
$$

It follows from (4.10), (5.1), and (5.2) that

$$
\begin{align*}
& \mathcal{R e s}_{\lambda=1}\left(\Psi_{1}\right)=P_{1} A_{2} P_{1}-P_{1}=0 \tag{5.3}\\
& \operatorname{Res}_{\lambda=1}\left(\Psi_{2}\right)=P_{1} A_{2} T A_{2} P_{1}-P_{1}\left(A_{2} P_{1}-I\right) A_{2} T-T\left(A_{2} P_{1}-I\right) A_{2} P_{1}=0 \tag{5.4}
\end{align*}
$$

The last two equations imply

$$
\begin{equation*}
P_{1} A_{2} T A_{2} P_{1}=0 \tag{5.5}
\end{equation*}
$$

REMARK 5.1. Coming back to the beginning of this section, suppose that

$$
\{\lambda x+a y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)=\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)
$$

up to multiplicity. Then the operators $\frac{A_{1}}{\lambda}$ and $\frac{A_{2}}{a}$ satisfy (5.3) and (5.4). Since the projections P_{j} and the operator T for A_{1} and $\frac{A_{1}}{a}$ are the same, we obtain

$$
\begin{equation*}
P_{1} A_{2} P_{1}=a P_{1} \tag{5.6}
\end{equation*}
$$

Equation (5.5) stays the same.
Now we use (5.5) to establish necessary and sufficient conditions for a common eigenvector in the case when at least one of the operators A_{1}, A_{2} is invertible.

Lemma 5.2. Let A_{1}, A_{2} be self-adjoint, 1 be an isolated spectral point of A_{1}, and assume that A_{1} is invertible. If there is $\rho>0$ such that

$$
\{x+y=1\} \cap \Delta_{\rho}(1,0)=\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}(1,0)
$$

up to multiplicity, then the following are equivalent:
(i) A_{1} and A_{2} have an n-dimensional common eigensubspace, where $n=\operatorname{rank}\left(P_{1}\right)$, and the whole line $\{x+y=1\}$ is in $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$;
(ii) there is $\rho^{\prime}>0$ such that the line segment $\{x+y=1\} \cap \Delta_{\rho^{\prime}}(1,0)$ agrees with $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right) \cap \Delta_{\rho^{\prime}}(1,0)$ up to multiplicity;
(iii) there is $\rho^{\prime \prime}$ such that the plane segment $\{x+y+z=1\} \cap \Delta_{\rho^{\prime \prime}}(1,1,0)$ agrees with $\sigma_{\mathrm{p}}\left(A_{1}, A_{1}^{-1}, A_{2}\right) \cap \Delta_{\rho^{\prime \prime}}(1,1,0)$ up to multiplicity.

Proof. The implications (i) \Rightarrow (ii), (i) \Rightarrow (iii), and (iii) \Rightarrow (ii) are obvious. Thus, it suffices to prove (ii) \Rightarrow (i).

Suppose that (ii) holds. Let L_{1} be the eigensubspace of A_{1} with eigenvalue one. Choose an orthonormal basis of $L_{1}: e_{1}, \ldots$ Equation (4.13) implies that in our case for every $\xi \in H$

$$
T\left(A_{1}\right) \xi=T \xi=\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z-1} \mathrm{~d} E(z)(\xi)
$$

Therefore, using that A_{2} is self-adjoint we have for every j

$$
\begin{aligned}
P_{1} A_{2} T A_{2} P_{1} e_{j} & =\sum_{m}\left(\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z-1}\left\langle\mathrm{~d} E(z) A_{2} e_{j}, A_{2} e_{m}\right\rangle\right) e_{m} \\
& =\sum_{m}\left(\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z-1}\left\langle\mathrm{~d} E(z) A_{2} e_{j}, \mathrm{~d} E(z) A_{2} e_{m}\right\rangle\right) e_{m}
\end{aligned}
$$

Equation (5.5) implies that for every pair j, m

$$
\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z-1}\left\langle\mathrm{~d} E(z) A_{2} e_{j}, \mathrm{~d} E(z) A_{2} e_{m}\right\rangle=0 .
$$

In particular, when $j=m$ we obtain

$$
\begin{equation*}
\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z-1}\left\|\mathrm{~d} E(z) A_{2} e_{j}\right\|^{2}=0 \tag{5.7}
\end{equation*}
$$

We now apply all preceding considerations to the pair $\left(A_{1}^{-1}, A_{2}\right)$. First we observe that

$$
A_{1}^{-1}=P_{1}+\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{1}{z} \mathrm{~d} E(z) .
$$

Hence,

$$
P_{1} A_{2} \widetilde{T} A_{2} P_{1}=0
$$

where

$$
\begin{equation*}
\widetilde{T}=T\left(A_{1}^{-1}\right)=\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{z}{1-z} \mathrm{~d} E(z) . \tag{5.8}
\end{equation*}
$$

In a similar way the last two relations yield

$$
\begin{equation*}
\int_{\sigma\left(A_{1}\right) \backslash\{1\}} \frac{z}{1-z}\left\|\mathrm{~d} E(z) A_{2} e_{j}\right\|^{2}=0 . \tag{5.9}
\end{equation*}
$$

Adding (5.7) and (5.9) we obtain

$$
\int_{\sigma\left(A_{1}\right) \backslash\{1\}}\left\|\mathrm{d} E(z) A_{2} e_{j}\right\|^{2}=0
$$

This means that $A_{2} e_{j} \in L_{1}$ for every j. Thus, L_{1} is invariant under A_{2}. Since the restriction of A_{1} to L_{1} is the identity operator, the joint spectrum of $\left.A_{2}\right|_{L_{1}}$ and the identity of L_{1} contains a cone with vertex at $(1,0)$ that contains every line of the family $\left\{x+\frac{y}{a}=1: a \in \sigma\left(\left.A_{2}\right|_{L_{1}}\right)\right\}$, and, of course, this cone lies in $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$. Since the intersection of $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ with a neighborhood of $(1,0)$ is a line segment, we conclude that the spectrum of $\left.A_{2}\right|_{L_{1}}$ consists of a single point, and, since A_{2} is self-adjoint, this means that L_{1} is an eigenspace for A_{2}.

Since eigenvectors of an operator A and its scalar multiple are the same, the following result is a straightforward corollary to Lemma 5.2 .

LEMMA 5.3. Let A_{1}, A_{2} be self-adjoint, $\lambda \neq 0$ be an isolated point of $\sigma\left(A_{1}\right)$, and A_{1} be invertible. If there exist $a \neq 0$ and $\rho>0$ such that, up to multiplicity, $\{\lambda x+a y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)=\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right) \cap \Delta_{\rho}(1,0)$, then the following are equivalent:
(i) A_{1} and A_{2} have a common eigensubspace of dimension equal to the rank of P_{1};
(ii) there is ρ^{\prime} such that, up to multiplicity,

$$
\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right) \cap \Delta_{\rho^{\prime}}(\lambda, 0)=\left\{\frac{x}{\lambda}+a y=1\right\} \cap \Delta_{\rho^{\prime}}(\lambda, 0)
$$

(iii) there is $\rho^{\prime \prime}>0$ such that, up to multiplicity,

$$
\left\{\lambda x+\frac{y}{\lambda}+a z=1\right\} \cap \Delta_{\rho^{\prime \prime}}\left(\lambda, \frac{1}{\lambda}, 0\right)=\sigma_{\mathrm{p}}\left(A_{1}, A_{1}^{-1}, A_{2}\right) \cap \Delta_{\rho^{\prime \prime}}\left(\lambda, \frac{1}{\lambda}, 0\right)
$$

We will use the result of Lemma 5.3 to give a necessary and sufficient condition for a common eigenvector for an arbitrary pair of self-adjoint operators.

To this end, for any self-adjoint operator A we consider the following family of perturbations:

$$
\begin{equation*}
A(\varepsilon, \lambda)=(1+\varepsilon) A-\lambda \varepsilon I, \quad \varepsilon \in \mathbb{R}, \varepsilon \neq-1 \tag{5.10}
\end{equation*}
$$

REMARK 5.4. It is easily seen that for every $\varepsilon, \lambda \in \mathbb{R}$ the operator $A(\varepsilon, \lambda)$ is self-adjoint. Furthermore, if λ is an isolated spectral point of A, then it is an isolated spectral point of $A(\varepsilon, \lambda)$ for every $\varepsilon \neq-1$; and the line segment $\{\lambda x+a y=$ $1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ is in $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ if and only if it is in $\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda), A_{2}(\varepsilon, a)\right)$. It is also straightforward that the eigensubspace of $A(\varepsilon, \lambda)$ corresponding to eigenvalue λ is either empty or is the same for all $\varepsilon \neq-1$. We further remark that if $\lambda \neq 0$, then there exists ε such that $A(\varepsilon, \lambda)$ is invertible. Indeed, the spectral mapping theorem, cf. Chapter 7, Section 3, Theorem 11 of [11], implies that $\sigma(A(\varepsilon, \lambda))=(1+\varepsilon) \sigma(A)-\lambda \varepsilon$. Thus $0 \in \sigma(A(\varepsilon, \lambda))$ if and only if $\frac{\lambda \varepsilon}{1+\varepsilon} \in \sigma(A)$. Since λ is an isolated point of $\sigma(A)$, if $\varepsilon \in \mathbb{R}$ and $|\varepsilon|$ is big enough, zero is not in the spectrum of $A(\varepsilon, \lambda)$, that is $A(\varepsilon, \lambda)$ is invertible.

Before we proceed further, we pause to observe an elementary result about the general behavior of joint spectra under linear change of coordinates. Let

$$
\mathbf{C}=\left[\begin{array}{lll}
c_{11} & \cdots & c_{1 n} \\
\vdots & & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]
$$

be a complex-valued matrix. For operators A_{1}, \ldots, A_{n} write

$$
\begin{equation*}
B_{k}=c_{k 1} A_{1}+\cdots+c_{k n} A_{n}, \quad k=1, \ldots, n \tag{5.11}
\end{equation*}
$$

We have the following proposition.
PROPOSITION 5.5. $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right) \supseteq \mathbf{C}^{\mathrm{T}} \sigma_{\mathrm{p}}\left(B_{1}, \ldots, B_{n}\right)$.
The proof is straightforward.
Corollary 5.6. If \mathbf{C} is invertible, then

$$
\begin{equation*}
\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right)=\mathbf{C}^{\mathrm{T}} \sigma_{\mathrm{p}}\left(B_{1}, \ldots, B_{n}\right) \tag{5.12}
\end{equation*}
$$

Thus, coming back to our pair of self-adjoint operators A_{1} and A_{2} from the beginning of this section, by making a linear change of coordinates (which amounts to replacing A_{2} by $A_{2}+\delta A_{1}$ for a sufficiently small real δ) we can always reduce to the case when $a \neq 0$, hence the following result is an immediate corollary to Lemma 5.3 .

THEOREM 5.7. Let A_{1}, A_{2} be self-adjoint operators on H, let λ be an isolated spectral point of $\sigma\left(A_{1}\right)$, and suppose that in some neighborhood $\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ of $\left(\frac{1}{\lambda}, 0\right)$ the joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ coincides up to multiplicity with a line segment $\{(x, y) \in$ $\left.\Delta_{\rho}\left(\frac{1}{\lambda}, 0\right): \lambda x+a y=1\right\}$. The following are equivalent:
(i) the eigenspace of A_{1} corresponding to the eigenvalue λ is also an eigensubspace for A_{2};
(ii) there exist $\varepsilon \in \mathbb{R}, \varepsilon \neq-1$ and $\rho^{\prime}>0$ such that $A_{1}(\varepsilon, \lambda)$ is invertible and the line segment $\left\{(x, y) \in \Delta_{\rho^{\prime}}(\lambda, 0): \frac{x}{\lambda}+a y=1\right\}$ coincides up to multiplicity with $\sigma_{\mathrm{p}}\left(\left(A_{1}(\varepsilon, \lambda)\right)^{-1}, A_{2}(\varepsilon, a)\right) \cap \Delta_{\rho^{\prime}}(\lambda, 0)$;
(iii) there exist $\varepsilon \in \mathbb{R}, \varepsilon \neq-1$ and $\rho^{\prime \prime}>0$ such that $A_{1}(\varepsilon, \lambda)$ is invertible and the plane segment $\left\{(x, y, z) \in \Delta_{\rho^{\prime \prime}}\left(\frac{1}{\lambda}, \lambda, 0\right): \lambda x+\frac{1}{\lambda} y+a z=1\right\}$ coincides with $\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda), A_{1}(\varepsilon, \lambda)^{-1}, A_{2}(\varepsilon, a)\right) \cap \Delta_{\rho^{\prime \prime}}\left(\frac{1}{\lambda}, \lambda, 0\right)$ up to multiplicity.

As a direct corollary to Theorem 5.7 we obtain the following result for an n-tuple of self-adjoint operators.

THEOREM 5.8. Let A_{1}, \ldots, A_{n} be self-adjoint, let $\lambda \neq 0$ be an isolated point of $\sigma\left(A_{1}\right)$, and suppose there exists $\rho>0$ such that, up to multiplicity,

$$
\begin{aligned}
\left\{\lambda x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\} & \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0, \ldots, 0\right) \\
& =\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right) \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0, \ldots, 0\right) .
\end{aligned}
$$

The following are equivalent:
(i) the eigensubspace of A_{1} corresponding to eigenvalue λ is an eigensubspace for each of the operators A_{2}, \ldots, A_{n};
(ii) there exist an $\varepsilon \in \mathbb{R}, \varepsilon \neq 1$ and $\rho^{\prime}>0$ such that $A_{1}(\varepsilon, \lambda)$ is invertible and

$$
\begin{aligned}
\left\{\frac{1}{\lambda} x_{1}\right. & \left.+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\} \cap \Delta_{\rho}(\lambda, 0, \ldots, 0) \\
& =\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda)^{-1}, A_{2}\left(\varepsilon, a_{2}\right), \ldots, A_{n}\left(\varepsilon, a_{n}\right)\right) \cap \Delta_{\rho^{\prime}}(\lambda, 0, \ldots, 0)
\end{aligned}
$$

up to multiplicity.
Proof. Obviously (i) implies (ii).
Suppose that (ii) holds. Since the line segments $\left\{\left(x_{1}, x_{j}\right) \in \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right): \lambda x_{1}+\right.$ $\left.a_{j} x_{j}=1\right\}$ and $\left\{\left(x_{1}, x_{j}\right) \in \Delta_{\rho}(\lambda, 0): \frac{1}{\lambda} x_{1}+a_{j} x_{j}=1\right\}$ coincide with the sets $\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda), A_{j}\left(\varepsilon, a_{j}\right)\right) \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right)$ and $\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon, \lambda)^{-1}, A_{j}\left(\varepsilon, a_{j}\right)\right) \cap \Delta_{\rho^{\prime}}(\lambda, 0)$ respectively for all $j=2, \ldots, n$, it follows from Theorem 5.7 that the eigenspace of A_{1} that corresponds to the eigenvalue λ is an eigenspace of A_{j} for all $j=2, \ldots, n$, and (i) holds.

6. SPECTRAL ALGEBRAIC CURVES, EXTERIOR POWERS, COMMON REDUCING SUBSPACES

It is clear that if operators A_{1} and A_{2} have a common reducing subspace of dimension n, the joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ contains an algebraic curve of order n. Our example from the Introduction shows that in general the converse is not true. In this section we use results of the previous section to establish necessary and sufficient conditions under which the presence of an algebraic curve in the joint spectrum implies the existence of a common reducing subspace. As our conditions are expressed in terms of joint spectra of exterior products, we begin
by recalling some basic facts about exterior products of Hilbert spaces. For more details we refer the reader to Chapter V. 1 of [30] and Chapter X. 7 of [28].

For any $n \geqslant 1$ the nth tensor power $\stackrel{n}{\otimes} H$ of a Hilbert space H has inner product given by

$$
\left\langle x_{1} \otimes \cdots \otimes x_{n}, y_{1} \otimes \cdots \otimes y_{n}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle \cdots\left\langle x_{n}, y_{n}\right\rangle .
$$

The nth exterior power $\stackrel{n}{\wedge} H$ of H is defined as the quotient of $\stackrel{n}{\otimes} H$ modulo the subspace generated by all elements of the form

$$
x_{1} \otimes \cdots \otimes x \otimes x \otimes \cdots \otimes x_{n}
$$

The image of a simple tensor $x_{1} \otimes \cdots \otimes x_{n}$ in $\wedge^{n} H$ is denoted by $x_{1} \wedge \cdots \wedge x_{n}$. We consider ${ }^{n} \wedge H$ as a subspace of $\stackrel{n}{\otimes} H$ via the canonical "antisymmetrizing map"

$$
x_{1} \wedge \cdots \wedge x_{n} \longmapsto \frac{1}{\sqrt{n!}} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)} .
$$

In particular, $\stackrel{n}{\Lambda} H$ inherits via this map a Hilbert space structure from $\stackrel{n}{\otimes} H$, and it is straightforward to compute that its inner product satisfies

$$
\left\langle x_{1} \wedge \cdots \wedge x_{n}, y_{1} \wedge \cdots \wedge y_{n}\right\rangle=\operatorname{det}\left[\begin{array}{ccc}
\left\langle x_{1}, y_{1}\right\rangle & \cdots & \left\langle x_{1}, y_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle x_{n}, y_{1}\right\rangle & \cdots & \left\langle x_{n}, y_{n}\right\rangle
\end{array}\right] .
$$

Therefore if $\left\{e_{1}, \ldots, e_{n}, \ldots\right\}$ is an orthonormal basis of H we obtain that the set $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{n}}: 1 \leqslant i_{1}<\cdots<i_{n}\right\}$ is an orthonormal basis of ${ }^{n} \wedge H$.

When A is a linear operator on H it induces a linear operator $\wedge^{n} A$ on ${ }_{\wedge}^{n} H$ via the formula $\left[\wedge^{n} A\right]\left(v_{1} \wedge \cdots \wedge v_{n}\right)=A v_{1} \wedge \cdots \wedge A v_{n}$. Thus $\wedge^{n} A$ is just the restriction of $\stackrel{n}{\otimes} A$ to $\wedge_{\Lambda}^{n} H$ considered as a subspace of $\stackrel{n}{\otimes} H$. It is immediate that if A is of finite rank or self-adjoint then so is $\bigwedge^{n} A$; and when A is a bounded we get $\|n A\| \leqslant\|A\|^{n}$. In particular, compactness of A implies compactness of ${ }_{\wedge}^{n} A$.

When A is self-adjoint and compact and λ_{1}, \ldots are the eigenvalues of A, with e_{1}, \ldots being a corresponding eigenbasis, then the orthogonal set $\left\{e_{i_{1}} \wedge \cdots \wedge\right.$ $\left.e_{i_{n}}: 1 \leqslant i_{1}<\cdots<i_{n}\right\}$ is an eigenbasis with $\left\{\lambda_{i_{1}} \cdots \lambda_{i_{n}}\right\}$ as the corresponding multiset of eigenvalues for the compact self-adjoint $\xlongequal{n} A$.

Definition 6.1. Let A be a self-adjoint operator. We say that a finite multiset $L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a spectral multiset for A if each λ_{i} is an isolated point in the spectrum of A of finite multiplicity, and the number of times it occurs in L is at most its multiplicity as an eigenvalue of A. We say that a spectral multiset for A is generic if $\lambda=\lambda_{1} \cdots \lambda_{n}$ is isolated and of multiplicity 1 in the spectrum of ${ }_{\wedge}^{n} A$.

REMARK 6.2. A straightforward consequence of the definition is that if $L=$ $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a generic spectral multiset for a self-adjoint operator A, then each eigenvalue λ_{i} of A has multiplicity equal to the number of times it occurs in L.

REMARK 6.3. Suppose A is a self-adjoint operator with countable spectrum, and $L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a spectral multiset for A such that each eigenvalue λ_{i} of A has multiplicity equal to the number of times it occurs in L. Then there is an open subset $U \subset \mathbb{R}$ such that $\mathbb{R} \backslash U$ is countable, and such that for every $\delta \in U$ the operator $A+\delta I$ is invertible and has $L+\delta=\left\{\lambda_{1}+\delta, \ldots, \lambda_{n}+\delta\right\}$ as a generic spectral multiset. Indeed, since $A+\delta I$ is invertible for $\delta \in \mathbb{R} \backslash-\sigma(A)$, and since the spectrum of $\bigwedge^{n}(A+\delta I)$ is a subset of the spectrum of ${ }^{n}(A+\delta I)$, it suffices to show that for every δ in the set

$$
\begin{aligned}
\left\{\delta \in \mathbb{R}:\left(\lambda_{1}+\delta\right) \cdots\right. & \left(\lambda_{n}+\delta\right) \neq\left(\mu_{1}+\delta\right) \cdots\left(\mu_{n}+\delta\right) \\
& \text { for } \left.\mu_{i} \in \sigma(A) \text { such that }\left\{\mu_{1}, \ldots, \mu_{n}\right\} \neq L \text { as multisets }\right\}
\end{aligned}
$$

the point $\left(\lambda_{1}+\delta\right) \cdots\left(\lambda_{n}+\delta\right)$ is isolated in the spectrum of $\stackrel{n}{\bigotimes}(A+\delta I)$. But, as the spectrum of a tensor product of operators is the product of their spectra, cf. [2], and each $\lambda_{i}+\delta$ is isolated in the spectrum of $A+\delta I$, this follows from the compactness of spectra by a standard argument.

The assumptions in the following theorem describe what we consider to be a "general position" setting.

THEOREM 6.4. Let A_{1}, A_{2} be self-adjoint operators with A_{1} invertible. Consider a generic spectral multiset $L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ for A_{1}, and let $\lambda=\lambda_{1} \cdots \lambda_{n}$. Suppose also that for some $a \neq 0$ and $\rho>0$ the line segments

$$
\{\lambda x+a y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right) \quad \text { and } \quad\left\{\frac{1}{\lambda} x+a y=1\right\} \cap \Delta_{\rho}(\lambda, 0)
$$

are inside $\sigma_{\mathrm{p}}\left(\bigwedge^{n} A_{1}, \bigwedge^{n} A_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{n} A_{1}^{-1}, \bigwedge^{n} A_{2}\right)$, respectively.
Then the eigenspace of A_{1} corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ is invariant under A_{2}.

Proof. Since λ is isolated and simple in the spectrum of $\bigwedge^{n} A_{1}$ it follows that the joint spectrum $\sigma_{\mathrm{p}}\left(\bigwedge^{n} A_{1}, \bigwedge^{n} A_{2}\right)$ is nonsingular at the point $\left(\frac{1}{\lambda}, 0\right)$, in particular this point belongs to no component other than the line $\lambda x+a y=1$. By Lemma 5.3 the operators $\bigwedge^{n} A_{1}$ and $\bigwedge^{n} A_{2}$ have a common unit eigenvector v (of eigenvalue λ for ${ }_{\wedge}^{n} A_{1}$ and eigenvalue a for ${ }^{n} \bigwedge A_{2}$). Since L is generic v must be of the form $v=e_{1} \wedge \cdots \wedge e_{n}$, where each e_{i} is a unit eigenvector for A_{1} of eigenvalue λ_{i}. Now we show that $\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$ is invariant under A_{2}. Indeed, let e be any
other eigenvector for A_{1}, and consider the column vector

$$
w=\left[\begin{array}{c}
\left\langle A_{2} e_{1}, e\right\rangle \\
\vdots \\
\left\langle A_{2} e_{n}, e\right\rangle
\end{array}\right]
$$

For $i=1, \ldots, n$ set $v_{i}=e_{1} \wedge \cdots \wedge e_{i-1} \wedge e \wedge e_{i+1} \wedge \cdots \wedge e_{n}$ and note that each v_{i} is orthogonal to v. As $\bigwedge_{n}^{n} A_{2}(v)=a v$, it follows that

$$
a=\left\langle\bigwedge^{n} A_{2}(v), v\right\rangle=\left\langle A_{2} e_{1} \wedge \cdots \wedge A_{2} e_{n}, e_{1} \wedge \cdots \wedge e_{n}\right\rangle
$$

and therefore $\operatorname{det} Y=a \neq 0$, where Y is the matrix

$$
Y=\left[\begin{array}{ccc}
\left\langle A_{2} e_{1}, e_{1}\right\rangle & \cdots & \left\langle A_{2} e_{1}, e_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle A_{2} e_{n}, e_{1}\right\rangle & \cdots & \left\langle A_{2} e_{n}, e_{n}\right\rangle
\end{array}\right] .
$$

In particular the linear system of equations

$$
Y\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=w
$$

has a unique solution given, according to Cramer's rule, by the formula

$$
x_{i}=\frac{\operatorname{det} Y_{i}(w)}{a}
$$

for each $i=1, \ldots, n$, where $Y_{i}(w)$ is obtained by replacing with w the i th column of the matrix Y. But since

$$
\operatorname{det} Y_{i}(w)=\left\langle\bigwedge^{n} A_{2}(v), e_{1} \wedge \cdots \wedge e \wedge \cdots \wedge e_{n}\right\rangle=a\left\langle v, v_{i}\right\rangle=0
$$

we see that $x_{i}=0$ for each i, and therefore $w=0$.
Recall that a self-adjoint operator A on an infinite dimensional separable Hilbert space H belongs to the class $\mathcal{E}(H)$ when $A=K+a I$ with K a compact self-adjoint operator on H. In this case every point in $\sigma(A) \backslash a$ is isolated of finite multiplicity, and the point a is either an accumulation point, or isolated of infinite multiplicity.

For operators in the class $\mathcal{E}(H)$ we are now ready to address the question of when the presence of an algebraic curve in the proper joint spectrum indicates the existence of a common reducing subspace. Consider two self-adjoint operators $A=K_{1}+a I$ and $B=K_{2}+b I$ in $\mathcal{E}(H)$, and suppose that Γ is an algebraic curve of degree k which is a union of components of the proper joint spectrum $\sigma_{\mathrm{p}}(A, B)$. Note that the line $\{a x+b y=1\}$ is always in $\sigma_{\mathrm{p}}(A, B)$ and therefore carries no information about common reducing subspaces. We will refer to this line as the accumulation line of the joint spectrum. Thus, without loss of generality
we can assume that it is not a reduced component of Γ. Therefore, by making a linear change of coordinates if necessary (which amounts to replacing A and B by appropriate linear combinations of A and B with real coefficients, hence does not affect the presence and degrees of algebraic curves or common reducing subspaces and their dimensions) we may also assume that Γ intersects the x-axis in k points (counted with multiplicities) $\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}$ and the y-axis in k points $\frac{1}{\mu_{1}}, \ldots, \frac{1}{\mu_{k}}$, and that each point $\left(\frac{1}{\lambda_{i}}, 0\right)$ belongs only to components of $\sigma_{\mathrm{p}}(A, B)$ contained in Γ; in particular, the multiset $L=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ is a spectral mutiset for A and each eigenvalue λ_{i} of A has multiplicity equal to the number of times it occurs in L. Therefore, by Remark 6.3. if needed, we can make an additional suitable linear fractional change of coordinates of the form

$$
u=\frac{x}{1+\delta x}, \quad v=\frac{y}{1+\delta x}
$$

(which amounts to replacing A by $A+\delta I$) and also assume that A is invertible, and that L is a generic spectral multiset for A. Thus, for operators in the class $\mathcal{E}(H)$ we can always reduce the search for a common invariant subspace to the "general position" case considered in the following theorem, which is one of the main results in this paper.

THEOREM 6.5. Let $A=K_{1}+a I$ and $B=K_{2}+b I$ be self-adjoint operators in the class $\mathcal{E}(H)$, with A invertible. Let Γ be an algebraic curve of degree k which is a union of components of the proper joint spectrum $\sigma_{\mathrm{p}}(A, B)$, and which does not have the accumulation line $\{a x+b y=1\}$ as a reduced component. Suppose that the x-axis (respectively the y-axis) intersects Γ in the k points (counted with multiplicity) $\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}$ (respectively $\left.\frac{1}{\mu_{1}}, \ldots, \frac{1}{\mu_{k}}\right)$ such that each point $\left(\frac{1}{\lambda_{i}}, 0\right)$ belongs only to components of $\sigma_{\mathrm{p}}(A, B)$ contained in Γ, and the multiset $L=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ is a generic spectral multiset for A. Set $\lambda=\lambda_{1} \cdots \lambda_{k}$ and $\mu=\mu_{1} \cdots \mu_{k}$. The following are equivalent:
(i) the eigenspace for A corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ is invariant for B.
(ii) there exists $\rho>0$ such that the line segments

$$
\{\lambda x+\mu y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right) \quad \text { and } \quad\left\{\frac{1}{\lambda} x+\mu y=1\right\} \cap \Delta_{\rho}(\lambda, 0)
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \Lambda^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\Lambda^{k} A^{-1}, \Lambda^{k} B\right)$, respectively.
(iii) the lines

$$
\{\lambda x+\mu y=1\} \text { and }\left\{\frac{1}{\lambda} x+\mu y=1\right\}
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \Lambda^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A^{-1}, \Lambda^{k} B\right)$, respectively.
Proof. The implications (i) \Rightarrow (iii) \Rightarrow (ii) are straightforward, and (ii) implies (i) by Theorem 6.4

The case when H is a finite-dimensional Hilbert space is of classical interest in algebraic geometry. In that setting every linear operator is bounded and of finite rank, hence we can take $\mathcal{E}(H)$ to be the space of all linear operators on H.

Now the statement of our last theorem can be somewhat simplified and slightly expanded as follows.

Suppose that $\operatorname{dim}_{\mathbb{C}} H=N$, and let H^{*} denote the space dual to H. Then we have the canonical isomorphism

$$
\bigwedge^{k} H^{*} \longrightarrow \bigwedge^{N-k} H \otimes \bigwedge^{N} H^{*}
$$

which, together with the inner product induced isomorphism $\bigwedge^{k} H \rightarrow \bigwedge^{k} H^{*}$, allows us to consider in a natural way $\bigwedge^{N-k} A$ as acting on the space $\bigwedge^{k} H$ for any linear operator A on H. In particular, we can consider the proper joint spectrum $\sigma_{\mathrm{p}}\left(\bigwedge^{N-k} A, \bigwedge^{k} B\right)$. When A is self-adjoint, a standard exercise in multilinear algebra shows that the Sylvester expansion formula for the determinant transforms into the equality $\left({ }^{N-k} A\right)(\stackrel{k}{\Lambda} A)=(\operatorname{det} A) I$. Thus, for an invertible self-adjoint A we have $\Lambda^{N-k} A=\operatorname{det}(A) \stackrel{k}{\bigwedge} A^{-1}$, and therefore Theorem 6.5 implies immediately the following result.

THEOREM 6.6. With assumptions and notation as in Theorem 6.5. suppose in addition that $a=b=0$ and $\operatorname{dim}_{\mathbb{C}} H=N$. The following are equivalent:
(i) the eigenspace for A corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ is invariant for B;
(ii) for some $\rho>0$ the line segments

$$
\{\lambda x+\mu y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right) \quad \text { and } \quad\left\{\frac{1}{\lambda} x+\mu y=1\right\} \cap \Delta_{\rho}(\lambda, 0)
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \bigwedge^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A^{-1}, \Lambda^{k} B\right)$, respectively;
(iii) for some $\rho>0$ the line segments

$$
\{\lambda x+\mu y=1\} \cap \Delta_{\rho}\left(\frac{1}{\lambda}, 0\right) \quad \text { and } \quad\left\{\frac{\operatorname{det} A}{\lambda} x+\mu y=1\right\} \cap \Delta_{\rho}\left(\frac{\lambda}{\operatorname{det} A}, 0\right)
$$

are contained in $\sigma_{\mathrm{p}}\left(\bigwedge^{k} A, \bigwedge^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{N-k} A, \bigwedge^{k} B\right)$, respectively;
(iv) the lines

$$
\{\lambda x+\mu y=1\} \quad \text { and } \quad\left\{\frac{\operatorname{det} A}{\lambda} x+\mu y=1\right\}
$$

are contained in $\sigma_{\mathrm{p}}\left(\Lambda^{k} A, \Lambda^{k} B\right)$ and $\sigma_{\mathrm{p}}\left(\bigwedge^{N-k} A, \Lambda^{k} B\right)$, respectively.
Finally, we note that Theorem 2.3 from Section 2 is obtained from the result above in the same way that Theorem 5.8 is obtained from Theorem5.7.

7. SPECTRAL CONTINUITY AND COMMON "ALMOST EIGENVECTORS"

Spectral continuity is well-known in the classical spectral theory, see [7]. In our case it implies that if $A_{1, n} \rightarrow A_{1}$ and $A_{2, n} \rightarrow A_{2}$ in operator norm topology as $n \rightarrow \infty$, where all $A_{1, n}, A_{2, n}, A_{1}, A_{2}$ are in $\mathcal{E}(H)$, then $\sigma_{\mathrm{p}}\left(A_{1, n}, A_{2, n}\right)$ converges
to $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ in Hausdorff topology uniformly on compact subsets of \mathbb{C}^{2}. In particular, this implies that if A_{1} and A_{2} have a common eigenvector, $A_{1, n}$ and $A_{2, n}$ have a common "almost eigenvector" (we define it below) and $\sigma_{\mathrm{p}}\left(A_{1, n}, A_{2, n}\right)$ contains an irreducible component that converges to a line in Hausdorff topology uniformly on compacts as $n \rightarrow \infty$. In this section we prove results that establish the converse: under certain natural assumptions local closeness of $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ to a line implies existence of a common almost eigenvector.

Definition 7.1. We say that a non-zero vector ξ is an ε-eigenvector (almost eigenvector) of an operator A if there is $\lambda \in \mathbb{C}$ such that $\|A \xi-\lambda \xi\| \leqslant \varepsilon\|\xi\|$.

Since the distance from the vector $A \xi$ to the line $\{\lambda \xi: \lambda \in \mathbb{C}\}$ is equal to $\left\|A \xi-\frac{\langle A \xi, \xi\rangle}{\|\xi\|^{2}} \xi\right\|$, we come to an equivalent definition of an ε-eigenvector: ξ is an ε-eigenvector of A if

$$
\begin{equation*}
\left\|A \xi-\frac{\langle A \xi, \xi\rangle}{\|\xi\|^{2}} \xi\right\| \leqslant \varepsilon\|\xi\| . \tag{7.1}
\end{equation*}
$$

It immediately follows from (7.1) that ξ is an eigenvector of A in the traditional sense, if and only if it is an ε-eigenvector for all $\varepsilon>0$. More generally, if $\lambda \in \sigma(A)$, then for every $\varepsilon>0$ there exists an ε-eigenvector ξ such that $\|A \xi-\lambda \xi\| \leqslant \varepsilon\|\xi\|$.

Of course, every vector ξ is an ε-eigenvector with the appropriate choice of ε to be equal to the lefthand side of 7.1 , but this is quite meaningless. The notion of an ε-eigenvector is meaningful when ε is small. In this case being an ε-eigenvector means that $A \xi$ lies in a small aperture cone that has the line $\{\lambda \xi: \lambda \in \mathbb{C}\}$ as the symmetry axis.

Our next result is a generalization of Theorem 5.7 to the case of common almost eigenvectors for compact operators. Let Γ be an analytic curve that passes through $(x, y) \in \mathbb{C}^{2}$ and let $\rho>0$. We will use the following notation:

$$
\Gamma_{\rho}(x, y)=\Gamma \cap \Delta_{\rho}(x, y)
$$

If ε is close to zero and $A_{1}(\varepsilon)$ and $A_{2}(\varepsilon)$ are close to A_{1} and A_{2} respectively, then spectral continuity implies that locally $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is close to $\sigma_{\mathrm{p}}\left(A_{1}(\varepsilon), A_{2}(\varepsilon)\right)$. For this reason in the next theorem without loss of generality we may assume that A_{1} is invertible. To simplify the notation we will also use rescaling, if necessary, so that the point $(1,0)$ is in the joint spectrum, of A_{1} and A_{2} and A_{1} is invertible. Finally, recall that the operator A belongs to the class $\mathcal{E}(H)$, if it is represented as $A=K+\alpha I$ where K is compact and $\alpha \in \mathbb{R}$.

THEOREM 7.2. Let $A_{1}, A_{2} \in \mathcal{E}(H)$ such that $1 \in \sigma\left(A_{1}\right)$, and, therefore, the point $(1,0)$ belongs to $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ and to $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right)$. Suppose that 1 is not an accumulation point of $\sigma\left(A_{1}\right)$ and $(1,0)$ is not a singular point of either $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$, or $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right)$. Let $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ and $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right)$ near $(1,0)$ be zeros of analytic functions $f_{1}(x, y)$ and $f_{2}(x, y)$, respectively. If there exist $0<\rho<1$ and $0<\varepsilon \ll \rho$ such that:
(i) $d=1-(1-\rho)\left\|A_{1}\right\|-\varepsilon \sqrt{2}\left\|A_{2}\right\|>0$;
(ii) the Hausdorff distances from $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)_{\rho}(1,0)$ and $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right)_{\rho}(1,0)$ to the line $\{x+\beta y=1\}$ are less than ε (β is a real number);
(iii) $\frac{\partial f_{j}}{\partial x}+\beta \frac{\partial f_{j}}{\partial y} \neq 0$ in $\Delta_{\rho}(1,0), j=1,2 ;$
then A_{1} and A_{2} have a common δ-eigenvector, where $\delta=D \sqrt{\varepsilon}$, and D is a constant independent of β.

Proof. First we observe that conditions (i) and (ii) imply that $|\beta|$ has an upper bound expressed in terms of ρ, ε and the norms of A_{1} and A_{2}. Indeed, suppose that $|\beta|>1$. Without loss of generality we may assume that $\beta>0$. It is shown below that there is a point $(1-\rho, \tau) \in \sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$. The distance from this point to $\{x+\beta y=1\}$ is equal to $\frac{|\beta \tau-\rho|}{\sqrt{1+\beta^{2}}}$. Condition (ii) implies

$$
\frac{\rho}{\beta}-\varepsilon \sqrt{1+\frac{1}{\beta^{2}}} \leqslant \tau \leqslant \frac{\rho}{\beta}+\varepsilon \sqrt{1+\frac{1}{\beta^{2}}}
$$

so that

$$
|\tau| \leqslant \frac{\rho}{\beta}+\varepsilon \sqrt{2}
$$

Since the operator $(1-\rho) A_{1}+\tau A_{2}-I$ is not invertible, we have

$$
\begin{aligned}
1 & \leqslant\left\|(1-\rho) A_{1}+\tau A_{2}\right\| \leqslant(1-\rho)\left\|A_{1}\right\|+|\tau|\left\|A_{2}\right\| \\
& \leqslant(1-\rho)\left\|A_{1}\right\|+\left(\frac{\rho}{\beta}+\varepsilon \sqrt{2}\right)\left\|A_{2}\right\|
\end{aligned}
$$

This implies

$$
\begin{equation*}
\beta \leqslant \frac{\rho\left\|A_{2}\right\|}{1-(1-\rho)\left\|A_{1}\right\|-\varepsilon \sqrt{2}\left\|A_{2}\right\|}=\frac{\rho\left\|A_{2}\right\|}{d} \tag{7.2}
\end{equation*}
$$

Now we approximate the compact parts of A_{1} and A_{2} by finite rank operators with simple spectra (that is every non-zero eigenvector has multiplicity one) resulting in operators \widetilde{A}_{1} and \widetilde{A}_{2}. We can find $\tau \in \mathbb{R}$ as close to zero as we want, such that $\widehat{A}_{1}=\widetilde{A}_{1}+\tau I$ is invertible. Since \widehat{A}_{1} and \widetilde{A}_{2} are close to A_{1} and A_{2} respectively, the spectral continuity implies that $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ is close to $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ in the bidisk $\{|x-1| \leqslant \rho,|y| \leqslant \rho\}$. Also if \widehat{A}_{1} and \widetilde{A}_{2} are close enough to A_{1} and A_{2} respectively, then δ-eigenvectors for \widehat{A}_{1} and \widetilde{A}_{2} are 2δ-eigenvectors for A_{1} and A_{2}. It is clear that $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ are algebraic sets. Finally, the points of intersection of $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ with the x-axis that are close to one, are regular points, and the distances between the line $\{x+\beta y=1\}$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ is less than 2ε. We denote the polynomials that determine $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ by $\mathcal{R}(x, y)$ and $\mathcal{S}(x, y)$. As the rank of the approximating operators increases and τ approaches zero, the polynomials \mathcal{R} and \mathcal{S} approach f_{1} and f_{2}, respectively; this follows from the direct expression of the defining function given by equation (3.1). Thus, the condition (ii) holds for
these polynomials with $\varepsilon_{1}=2 \varepsilon$. Again rescaling with a coefficient close to one we may assume that both $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ pass through $(1,0)$.

Next we note that since $\varepsilon \ll \rho$, the orthogonal projection in \mathbb{C}^{2} onto $\{x+$ $\beta y=1\}$ of each curve $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ contains the disk of radius $\frac{\rho}{\sqrt{2}}$ centered at $(1,0)$. Indeed, again we may assume $\beta \geqslant 0$. Let us change the coordinates to

$$
\begin{equation*}
u=\frac{x-1}{\sqrt{1+\beta^{2}}}+\frac{\beta y}{\sqrt{1+\beta^{2}}}, \quad v=\frac{\beta(x-1)}{\sqrt{1+\beta^{2}}}-\frac{y}{\sqrt{1+\beta^{2}}} . \tag{7.3}
\end{equation*}
$$

It is easily seen that the bidisk $\{|x-1| \leqslant \rho,|y| \leqslant \rho\}$ contains the bidisk $\Delta_{\rho}(\beta)=$ $\left\{|u| \leqslant \frac{\rho \sqrt{1+\beta^{2}}}{1+\beta},|v| \leqslant \frac{\rho \sqrt{1+\beta^{2}}}{1+\beta}\right\}$. Since $\frac{\sqrt{1+\beta^{2}}}{1+\beta} \geqslant \frac{1}{\sqrt{2}}$, the bidisk $\Delta_{\rho}=\{|u| \leqslant$ $\left.\frac{\rho}{\sqrt{2}},|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$ is in $\{|x-1| \leqslant \rho,|y| \leqslant \rho\}$. In the (u, v)-coordinates $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ are zeros of the polynomials $\widetilde{\mathcal{R}}(u, v)=\mathcal{R}\left(\frac{u+\beta v}{\sqrt{1+\beta^{2}}}+1, \frac{\beta u-v}{\sqrt{1+\beta^{2}}}\right)$ and $\widetilde{\mathcal{S}}(u, v)=\mathcal{S}\left(\frac{u+\beta v}{\sqrt{1+\beta^{2}}}+1, \frac{\beta u-v}{\sqrt{1+\beta^{2}}}\right)$, respectively. Suppose $\left(u_{0}, v_{0}\right) \in \Delta_{\rho}$ and $\widetilde{\mathcal{R}}\left(u_{0}, v_{0}\right)=0$, that is $\left(u_{0}, v_{0}\right) \in \sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$. The distance from this point to the line $\{x+\beta y=1\}=\{u=0\}$ is equal to $\left|u_{0}\right|$. Hence, $\left|u_{0}\right| \leqslant 2 \varepsilon$. Consider the functions $\phi_{v}(u)=\widetilde{\mathcal{R}}(u, v)$. Since $\phi_{v_{0}}\left(u_{0}\right)=0$, Hurwitz's theorem (see, for example, p. 231 of [13]) implies that if v_{1} is close to $v_{0}, \phi_{v_{1}}$ has zero u_{1} close to u_{0}. Since $\left|u_{0}\right| \leqslant 2 \varepsilon \ll \frac{\rho}{\sqrt{2}}$, we conclude that $\left|u_{1}\right|<\frac{\rho}{\sqrt{2}}$, and, therefore, $\left(u_{1}, v_{1}\right) \in$ Δ_{ρ}, and $\left(0, v_{1}\right)$ belongs to the projection of $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ onto $\{u=0\}$. A similar argument applied to $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}^{-1}, \widetilde{A}_{2}\right)$ finishes the proof of the claim.

We now return to relations (4.16) and 4.17) to express residues of Ψ_{1} and Ψ_{2} explicitedly in terms of derivatives of the determining polynomial. It is easy to check that in our case these relations for $\sigma_{\mathrm{p}}\left(\widehat{A}_{1}, \widetilde{A}_{2}\right)$ yield

$$
\begin{align*}
\left.\mathcal{R e s} \Psi_{1}(\lambda)\right|_{\lambda=1}= & \left.\frac{\partial \mathcal{R}}{\partial x}\right|_{(1,0)} P_{1} \widetilde{A}_{2} P_{1}-\left.\frac{\partial \mathcal{R}}{\partial y}\right|_{(1,0)} P_{1}=0 \tag{7.4}\\
\left.\mathcal{R} \operatorname{es} \Psi_{2}(\lambda)\right|_{\lambda=1}=- & \left.\frac{\partial \mathcal{R}}{\partial x}\right|_{(1,0)} P_{1} \widetilde{A}_{2} T \widetilde{A}_{2} P_{1}-\frac{1}{2}\left(\frac{\partial^{2} \mathcal{R}}{\partial x^{2}}\left(\frac{\frac{\partial \mathcal{R}}{\partial y}}{\frac{\partial \mathcal{R}}{\partial x}}\right)^{2}\right. \tag{7.5}\\
& \left.-2 \frac{\partial^{2} \mathcal{R}}{\partial x \partial y}\left(\frac{\frac{\partial \mathcal{R}}{\partial y}}{\frac{\partial \mathcal{R}}{\partial x}}\right)^{2}+\frac{\partial^{2} \mathcal{R}}{\partial y^{2}}\right)\left.\right|_{(1,0)} P_{1}=0
\end{align*}
$$

where, as in Section 3, P_{1} is the orthogonal projection on the eigenspace of \widehat{A}_{1} corresponding to the eigenvalue one, and T is defined by (4.13).

Equation (7.4) together with condition (iii) of this theorem give $\left.\frac{\partial \mathcal{R}}{\partial x}\right|_{(1,0)} \neq 0$, and, hence, this derivative does not vanish in a neighborhood of $(1,0)$. By the implicit function theorem the relation $\mathcal{R}(x, y)=0$ determines x as an anatic function of y in a neighborhood of $(1,0)$. In terms of this function $x(y)$ equations
(7.4) and (7.5) can be written as

$$
\begin{gather*}
P_{1} \widetilde{A}_{2} P_{1}=-x^{\prime}(0) P_{1}, \tag{7.6}\\
P_{1} \widetilde{A}_{2} T \widetilde{A}_{2} P_{1}=-\frac{x^{\prime \prime}(0)}{2} P_{1} . \tag{7.7}
\end{gather*}
$$

As it was done before, we denote by e_{1}, e_{2}, \ldots an orthonormal eigenbasis for \widehat{A}_{1} with $\widehat{A}_{1}\left(e_{1}\right)=e_{1}, \widehat{A}_{1}\left(e_{j}\right)=\mu_{j} e_{j}, \mu_{j} \neq 1, j=2, \ldots$ and P_{j} being the orthogonal projection onto a subspace spanned by e_{j}. In this basis relation (7.7) can be written as

$$
\begin{equation*}
\sum_{j=2}^{\infty} \frac{\left|\left\langle\widetilde{A}_{2} e_{1}, e_{j}\right\rangle\right|^{2}}{\mu_{j}-1}=-\frac{x^{\prime \prime}(0)}{2} \tag{7.8}
\end{equation*}
$$

Our next step is to show that $x^{\prime \prime}(0)$ is small. Let us once again pass to the coordinates (7.3). We have $\frac{\partial \widetilde{\mathcal{R}}}{\partial u}=\frac{1}{\sqrt{1+\beta^{2}}} \frac{\partial \mathcal{R}}{\partial x}+\frac{\beta}{\sqrt{1+\beta^{2}}} \frac{\partial \mathcal{R}}{\partial y} \neq 0$ for every $(u, v) \in$ $\left\{|u| \leqslant \frac{\rho}{\sqrt{2}},|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$. Applying the implicit function theorem we see that equation $\widetilde{\mathcal{R}}(u, v)=0$ determines u as an analytic function of v in a neighborhood of every point $v \in\left\{|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$. Since this function is globally continuous in $\left\{|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$, by the monodromy theorem, see p. 161 of [13], u is holomorphic in the whole disk $\left\{|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$. The above argument showed that $|u(v)| \leqslant 2 \varepsilon$ for every $v \in\left\{|v| \leqslant \frac{\rho}{\sqrt{2}}\right\}$. Now the Cauchy theorem implies that

$$
\begin{align*}
\left|u^{\prime}(0)\right| & \leqslant \frac{4 \varepsilon}{\rho} \tag{7.9}\\
\left|u^{\prime \prime}(0)\right| & \leqslant \frac{4 \sqrt{2} \varepsilon}{\rho^{2}} \tag{7.10}
\end{align*}
$$

A straightforward computation shows that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} y^{2}}=\frac{\left(1+\beta^{2}\right)^{3 / 2} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} v^{2}}}{\left(1-\beta \frac{\mathrm{d} u}{\mathrm{~d} v}\right)^{3}} \tag{7.11}
\end{equation*}
$$

Equations (7.2), (7.9), 7.10, and (7.11) yield

$$
\begin{equation*}
\left|x^{\prime \prime}(0)\right| \leqslant C \varepsilon \tag{7.12}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\frac{4 \sqrt{2}\left(1+\left(\frac{\rho\left\|A_{2}\right\|}{d}\right)^{2}\right)^{3 / 2} \rho}{\left(\rho-\frac{4 \rho\left\|A_{2}\right\|}{d} \varepsilon\right)^{3}} \tag{7.13}
\end{equation*}
$$

is a constant independent of β. Now equations (7.8) and (7.12) give

$$
\begin{equation*}
\left|\sum_{j=2}^{\infty} \frac{\left|\left\langle\widetilde{A}_{2} e_{1}, e_{j}\right\rangle\right|^{2}}{\mu_{j}-1}\right| \leqslant \frac{C}{2} \varepsilon . \tag{7.14}
\end{equation*}
$$

Applying a similar argument to the pair $\widehat{A}_{1}^{-1}, \widetilde{A}_{2}$ and using 5.8 we obtain

$$
\begin{equation*}
\left|\sum_{j=2}^{\infty} \frac{\mu_{j}\left|\left\langle\widetilde{A}_{2} e_{1}, e_{j}\right\rangle\right|^{2}}{\mu_{j}-1}\right| \leqslant \frac{C}{2} \varepsilon . \tag{7.15}
\end{equation*}
$$

Equations (7.14) and (7.15) result in

$$
\sum_{j=2}^{\infty}\left|\left\langle\widetilde{A}_{2} e_{1}, e_{j}\right\rangle\right|^{2} \leqslant C \varepsilon
$$

Set $\lambda=\left\langle\widetilde{A}_{2} e_{1}, e_{1}\right\rangle$. The last relation implies

$$
\begin{equation*}
\left\|\widetilde{A}_{2} e_{1}-\lambda e_{1}\right\| \leqslant \sqrt{C \varepsilon} \tag{7.16}
\end{equation*}
$$

which means that e_{1} is $\widetilde{\delta}$-eigenvector of \widetilde{A}_{2}, where $\widetilde{\delta}=\sqrt{C \varepsilon}$. Thus, e_{1} is a common $\widetilde{\delta}$-eigenvector of \widehat{A}_{1} and \widetilde{A}_{2}. Therefore, as it was mention above, e_{1} is a δ-eigenvector of A_{1} and A_{2} with $\delta=2 \widetilde{\delta}$. We are done.

It was mentioned in the proof of Theorem 7.2 that the polynomial \mathcal{R} determining the spectrum of \widehat{A}_{1} and \widetilde{A}_{2} converges uniformly on compacts in a neighborhood of $(1,0)$ to the function f determining $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ as the finite rank approximations of compact parts converge to those of A_{1} and A_{2}. Thus, we have the following corollary to the proof of Theorem 7.2 .

Corollary 7.3. Suppose that $A_{1}, A_{2} \in \mathcal{E}(H)$, with $(1,0) \in \sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$. Suppose further that $f(x, y)$ is an analytic function that determines $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ near $(1,0)$ and $\left.\frac{\partial f}{\partial x}\right|_{(1,0)} \neq 0$. If P_{1} is the orthogonal projection onto the eigensubspace of A_{1} corresponding to $\lambda=1$ and T is given by (4.13, then

$$
\begin{align*}
P_{1} A_{2} P_{1} & =-x^{\prime}(0) P_{1}, \tag{7.17}\\
P_{1} A_{2} T A_{2} P_{1} & =-\frac{x^{\prime \prime}(0)}{2} P_{1}, \tag{7.18}
\end{align*}
$$

where $x(y)$ is the implicit function near $y=0$ determined by $f(x, y)=0, x(0)=1$.
If in Theorem 7.2 the norm of A_{2} is equal to $|\beta|$, then no condition on $\sigma_{\mathrm{p}}\left(A_{1}^{-1}, A_{2}\right)$ is necessary for the existence of a common almost eigenvector.

THEOREM 7.4. Let A_{1}, A_{2} be compact and $\left\|A_{2}\right\|=|\beta|$. Suppose that $\alpha \neq 0$ and $\left(\frac{1}{\alpha}, 0\right)$ belongs to $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$. If there exist $\rho>0$ and $0<\varepsilon \ll \rho$ such that:
(i) the Hausdorff distance from $\sigma\left(A_{1}, A_{2}\right)_{\rho}\left(\frac{1}{\alpha}, 0\right)$ to the line $\{\alpha x+\beta y=1\}$ does not exceed ε;
(ii) $\alpha \frac{\partial f}{\partial x}+\beta \frac{\partial f}{\partial y} \neq 0$ in the bidisk $\left\{\left|x-\frac{1}{\alpha}\right| \leqslant \rho:|y| \leqslant \rho\right\}$, where f is an analytic function that determines $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$;
then there is an eigenvector of A_{1} that is $\left(\sqrt{\frac{8|\beta|\left(1+\beta^{2}\right)}{\rho-4 \beta \varepsilon}} \sqrt{\varepsilon}\right)$-eigenvector of A_{2}.

Proof. As we mentioned before, we can replace A_{1} with $\frac{A_{1}}{\alpha}$, so that $\alpha=1$. Also, as in Theorem 7.2 using an arbitrary small perturbation we may assume that eigenvalue $\lambda=1$ of A_{1} has multiplicity one. Condition (ii) implies that in the bidisk $\{|x-1| \leqslant \rho:|y| \leqslant \rho\}$ the joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)$ is nonsingular and, therefore, is a smooth analytic curve Γ. Using condition (i) and the argument with passing to the coordinates (7.3) similar to the one that was used in the proof of Theorem 7.2 and the fact that $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{\frac{\mathrm{d} u}{\mathrm{~d} v}+\beta}{\beta \frac{\mathrm{d} u}{\mathrm{~d} v}-1}$ we show that $\left|-x^{\prime}(0)-\beta\right| \leqslant \frac{4\left(1+\beta^{2}\right) \varepsilon}{\rho-4 \beta \varepsilon}$. Thus, if e_{1} is a unit eigenvector of A_{1} with eigenvalue $\lambda=1$, the relation 7.17 implies

$$
\left|\left\langle A_{2} e_{1}, e_{1}\right\rangle\right|=\left|x^{\prime}(0)\right| \geqslant|\beta|-\frac{4\left(1+\beta^{2}\right) \varepsilon}{\rho-4 \beta \varepsilon}
$$

Hence,

$$
\begin{align*}
\left\|A_{2} e_{1}-\left\langle A_{2} e_{1}, e_{1}\right\rangle e_{1}\right\|^{2} & =\left\|A_{2} e_{1}\right\|^{2}-\left|\left\langle A_{2} e_{1}, e_{1}\right\rangle\right|^{2} \\
& \leqslant \beta^{2}-\left(|\beta|-\frac{4\left(1+\beta^{2}\right) \varepsilon}{\rho-4 \beta \varepsilon}\right)^{2} \leqslant \frac{8|\beta|\left(1+\beta^{2}\right) \varepsilon}{\rho-4 \beta \varepsilon} \tag{7.19}
\end{align*}
$$

REMARK 7.5. The condition $\left\|A_{2}\right\|=|\beta|$ can obviously be replaced with $\left|\left\|A_{2}\right\|-|\beta|\right|<\delta$. In this case there exists a common $\sqrt{2 \beta \delta+\delta^{2}+\frac{8 \beta\left(1+\beta^{2}\right) \varepsilon}{\rho-4 \beta \varepsilon}}-$ eigenvector.

8. NORM ESTIMATES FOR THE COMMUTANT OF A PAIR OF MATRICES

Under the assumptions of Theorem 7.4 we will now define a new operator close to A_{2} that has a common eigenvector with A_{1}. Let as above e_{1} be an eigenvector of A_{1} with $\lambda=1$. Write

$$
\widehat{A}_{2}=P_{1} A_{2} P_{1}+\left(I-P_{1}\right) A_{2}\left(I-P_{1}\right)
$$

Of course, e_{1} is a common eigenvector of A_{1} and \widehat{A}_{2}.
Let ξ be a unit vector orthogonal to e_{1}, that is $\|\xi\|=1,\left(I-P_{1}\right) \xi=\xi$. We have

$$
\left\|A_{2} \xi-\widehat{A}_{2} \xi\right\|=\left\|P_{1} A_{2} \xi\right\|=\left|\left\langle A_{2} e_{1}, \xi\right\rangle\right|=\left|\left\langle\left(A_{2} e_{1}-\left\langle A_{2} e_{1}, e_{1}\right\rangle e_{1}\right), \xi\right\rangle\right| \leqslant C \sqrt{\varepsilon}
$$

where $C=\sqrt{\frac{8\left\|A_{2}\right\|\left(1+\left\|A_{2}\right\|^{2}\right)}{\rho-4\left\|A_{2}\right\| \varepsilon}}$. For $\zeta=c e_{1}+\sqrt{1-|c|^{2}} \xi$ with $\|\xi\|=1,\left(I-P_{1}\right) \xi=$ ξ the last relation yields

$$
\begin{equation*}
\left.\left\|\left(A_{2}-\widehat{A}_{2}\right) \zeta\right\| \leqslant|c| \| A_{2} e_{1}-\left\langle A_{2} e_{1}, e_{1}\right\rangle e_{1}\right)\left\|+\sqrt{1-|c|^{2}}\right\| A_{2} \xi-\widehat{A}_{2} \xi \| \leqslant \sqrt{2} C \sqrt{\varepsilon} \tag{8.1}
\end{equation*}
$$ and, therefore,

$$
\left\|A_{2}-\widehat{A}_{2}\right\| \leqslant \sqrt{2} C \sqrt{\varepsilon}
$$

This gives us the following estimate for the norm of the commutant $\left[A_{1}, A_{2}\right]$:

$$
\begin{equation*}
\left\|\left[A_{1}, A_{2}\right]\right\| \leqslant \|\left[A_{1},\left(A_{2}-\widehat{A}_{2}\right]\|+\|\left[A_{1}, \widehat{A}_{2}\right]\|\leqslant \sqrt{2} C \sqrt{\varepsilon}\| A_{1}\|+\|\left[A_{1}^{(1)}, A_{2}^{(1)}\right] \|\right. \tag{8.2}
\end{equation*}
$$

where $A_{1}^{(1)}=\left(I-P_{1}\right) A_{1}\left(I-P_{1}\right), A_{2}^{(1)}=\left(I-P_{1}\right) A_{2}\left(I-P_{1}\right)$ are the compressions of A_{1} and A_{2} to the orthocomplement to e_{1}.

REMARK 8.1. If the the point $\left(\frac{1}{\alpha}, 0\right)$ is not a singular point of the proper joint spectrum of A_{1} and A_{2} with $\left\|A_{2}\right\|=|\beta|$, and $\sigma_{\mathrm{p}}\left(A_{1}, A_{2}\right)_{\rho}\left(\frac{1}{\alpha}, 0\right)$ is at less than ε Hausdorff distance from the line $\{\alpha x+\beta y=1\}$, the inequality (8.2) still holds. This follows from the fact that the pair $\left(\frac{A_{1}}{\alpha}, A_{2}\right)$ satisfies the conditions of Theorem 7.4

Now we will use the relation (8.2) to estimate in Theorem 2.4 the norm of the commutant of a pair of self-adjoint $N \times N$ matrices in terms of the Hausdorff distance from the joint spectrum to a set of lines that imitates a joint spectrum of a pair of commuting matrices. Since our result is stable with respect to small perturbations, we assume that both matrices have simple spectra and the absolute values of their eigenvalues are different. Since the commutant of A_{1} and A_{2} is the same as the commutant of $A_{1}+\alpha I$ and $A_{2}+\beta I$ for every α, β, we also assume that A_{1} and A_{2} are invertible, that is all their eigenvalues are nontrivial.

Let $f(z)$ be analytic in the closed disk $\overline{\Delta_{\rho}(a)}=\{|z-a| \leqslant \rho\}$ and its derivative does not vanish there. Then f is locally univalent in $\overline{\Delta_{\rho}(a)}$. Write
$\widetilde{\delta}(w)=\sup \left\{r: f\right.$ is univalent in $\left.\Delta_{r}(w)\right\}, \quad \delta(f, \rho, a)=\min \left\{\widetilde{\delta}(w): w \in \Delta_{\rho}(a)\right\}$.
REMARK 8.2. The above definition of $\delta(f, \rho, a)$ is slightly reminiscent of Bloch's constant B, cf [23], but, of course, they are very different.

We are now ready to give the proof of Theorem 2.4.
Proof of Theorem 2.4. By Theorem 7.4 the eigenvector $e_{n(1)}$ of A_{1} that corresponds to eigenvalues $\alpha_{n(1)}$ is a $\sqrt{\frac{8\left|\beta_{1}\right|\left(1+\left|\beta_{1}\right|^{2}\right)}{\rho-4\left|\beta_{1}\right| \varepsilon} \varepsilon}$-eigenvector of A_{2}, and relation (8.2) holds with P_{1} being replaced with $P_{n(1)}$. Write $\varepsilon_{1}=\varepsilon$. We want to estimate ε_{2} such that the compression of $A_{1}^{(1)}$ and $A_{2}^{(1)}$ to $\operatorname{span}\left\{e_{k}: k=1, \ldots, N, k \neq n(1)\right\}$ satisfy conditions (i) and (ii) of the present theorem with $\varepsilon_{2}, \frac{\rho}{2}$.

It follows from (7.19) that in the eigenbasis e_{1}, \ldots, e_{N} of the matrix A_{1} every entry of the $n(1)$-th row (and column) of the matrix A_{2} except for the one on the main diagonal has absolute value that does not exceed $C_{1} \sqrt{\varepsilon_{1}}$, where $C_{1}=$ $\sqrt{\frac{8\left|\beta_{1}\right|\left(1+\left|\beta_{1}\right|^{2}\right)}{\rho-4\left|\beta_{1}\right| \varepsilon_{1}}}$. Let

$$
\mathcal{P}(x, y)=\operatorname{det}\left[x A_{1}+y A_{2}-I\right], \quad \mathcal{P}_{1}(x, y)=\operatorname{det}\left[x A_{1}^{(1)}+y A_{2}^{(1)}-I\right]
$$

and let

$$
\begin{equation*}
d=\min \left\{\left|\alpha_{n(j)} \frac{\partial \mathcal{P}}{\partial x}+\beta_{j} \frac{\partial \mathcal{P}}{\partial y}\right|:\left|x-\frac{1}{\alpha_{n(j)}}\right| \leqslant \varepsilon,|y| \leqslant \varepsilon, 1 \leqslant j \leqslant N\right\} \tag{8.4}
\end{equation*}
$$

Of course, the determining polynomials \mathcal{P} and \mathcal{P}_{1} satisfy

$$
\begin{equation*}
\mathcal{P}(x, y)=\left(\alpha_{n(1)} x+\beta_{1} y-1\right) \mathcal{P}_{1}(x, y)+\mathcal{Q}(x, y) \tag{8.5}
\end{equation*}
$$

where \mathcal{Q} is a polynomial of degree N whose coefficients in absolute values do not exceed $N C_{1}\left|\beta_{1}\right|^{N-1} \sqrt{\varepsilon_{1}}$. Write

$$
M=\max \left\{\left|\frac{1}{\alpha_{j}}\right|+\rho+1\right\}
$$

We obviously have

$$
|\mathcal{P}(x, y)| \leqslant\left(\left|\alpha_{n\left(j_{1}\right)}\right|+\left|\beta_{1}\right|+1\right) M\left|\mathcal{P}_{1}(x, y)\right|+N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}
$$

Now, let $(x, y) \in \sigma_{\mathrm{p}}\left(A_{1}^{(1)}, A_{2}^{(1)}\right) \cap\left\{\left|x-\frac{1}{\alpha_{n(m)}}\right| \leqslant \frac{\rho}{2},|y| \leqslant \frac{\rho}{2}\right\}$ for some $2 \leqslant m \leqslant$ N. Then $|\mathcal{P}(x, y)| \leqslant N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}$. Write $f(t)=\mathcal{P}\left(x+t \alpha_{n(m)}, y+t \beta_{m}\right)$. Equation (8.4) implies that

$$
\begin{equation*}
\left|f^{\prime}(t)\right| \geqslant d>0 \tag{8.6}
\end{equation*}
$$

for $|t| \leqslant \frac{\rho}{2}$, and, therefore, $f(t)$ is locally univalent in the disk $\left\{|t| \leqslant \frac{\rho}{2}\right\}$. By 8.3 f is univalent in the disk of radius $\tau=\min \left\{\delta\left(F_{x, y}, \rho, 0\right):\left|x-\frac{1}{\alpha_{m}}\right| \leqslant \frac{\rho}{2},|y| \leqslant \frac{\rho}{2}\right\}$, where $F_{x, y}(w)=\mathcal{P}\left(x+w \alpha_{n(m)}, y+w \beta_{m}\right)$, so that this radius does not depend on the point (x, y). By (8.6) $\left|f^{\prime}(0)\right| \geqslant d$, so Koebe's $\frac{1}{4}$ theorem, cf. p. 150 of [19], implies that if ε_{1} is small enough so that $N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}<\frac{\mathrm{d} \tau}{4}$, the function f has a zero in $\left\{|t| \leqslant 4 N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}\right\}$, and, hence, the distance from

$$
\sigma_{\mathrm{p}}\left(A_{1}^{(1)}, A_{2}^{(1)}\right) \cap\left\{\left|x-\frac{1}{\alpha_{n(m)}}\right| \leqslant \frac{\rho}{2},|y| \leqslant \frac{\rho}{2}\right\}
$$

to $\sigma\left(A_{1}, A_{2}\right)$ does not exceed $4 N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}$, and, therefore, the distance from

$$
\sigma_{\mathrm{p}}\left(A_{1}^{(1)}, A_{2}^{(1)}\right) \cap\left\{\left|x-\frac{1}{\alpha_{m}}\right| \leqslant \frac{\rho}{2},|y| \leqslant \frac{\rho}{2}\right\}
$$

to the line $\left\{\alpha_{n(m)} x+\beta_{m} y=1\right\}$ does not exceed $\varepsilon_{2}=5 N C_{1}\left|\beta_{1}\right|^{N-1} M^{N} \sqrt{\varepsilon_{1}}$.
The fact that the eigenvalues of $A_{2}^{(1)}$ differ from those of A_{2} by a magnitude of order $\sqrt{\varepsilon_{1}}$ follows directly from 8.1 and the fact that for two compact normal operators the distance between their spectra does not exceed the distance between them in the operator norm topology, cf. Proposition 1 of [15].

Fanally, it follows from (8.5) that the difference between $\alpha_{n(k)} \frac{\partial \mathcal{P}_{1}}{\partial x}+\beta_{k} \frac{\partial \mathcal{P}_{1}}{\partial y}$, $k \neq 1$ and $\alpha_{n(k)} \frac{\partial \mathcal{P}}{\partial x}+\beta_{k} \frac{\partial \mathcal{P}}{\partial y}$ is of order of ε_{2}, and, therefore, the $(N-1) \times(N-1)$ dimensional matrices $A_{1}^{(1)}$ and $A_{2}^{(1)}$ satisfy the conditions of this theorem with ε_{2} and $\frac{\rho}{2}$. Continuing inductively we arrive at the claimed estimate.

Here we want to state and discuss three problems immediately related to the material of the preceding sections.

1. It was mentioned that, according to [27], if A_{1}, \ldots, A_{n} are compact, then on every compact subset of \mathbb{C}^{n} the joint spectrum $\sigma_{\mathrm{p}}\left(A_{1}, \ldots, A_{n}\right)$ has a global defining function. Our first problem is the following.

Problem 9.1. Describe those globally defined in \mathbb{C}^{n} analytic sets that have spectral representation. In particular, which real globally defined analytic sets (that is, zeros of entire functions with real Taylor coefficients) have self-adjoint spectral representation?

In the case of matrices the similar problem for general matrices was solved by Dickson [9] and for self-adjoint matrices by Helton and Vinnikov [17].
2. It is natural to ask whether a complete analog of Theorem 2.2 for algebraic curves of order higher than 1 is valid. More precisely, we are compelled to pose the following problem.

Problem 9.2. Suppose that A and B are self-adjoint, A is invertible, and the joint spectrum $\sigma_{\mathrm{p}}(A, B)$ contains a real algebraic curve Γ of order k that meets the x - and y axes at points $\left(\alpha_{1}, 0\right), \ldots,\left(\alpha_{k}, 0\right)$ and $\left(0, \beta_{1}\right), \ldots,\left(0, \beta_{k}\right)$, respectively. Also suppose that all these points of intersection of Γ with the coordinate axes are isolated spectral points of the corresponding operators. If $\sigma_{\mathrm{p}}\left(A^{-1}, B\right)$ contains an algebraic curve Γ_{1} of the same order k that meets the coordinate axes at points $\left(\frac{1}{\alpha_{1}}, 0\right), \ldots,\left(\frac{1}{\alpha_{k}}, 0\right)$ and $\left(0, \beta_{1}\right), \ldots,\left(0, \beta_{k}\right)$ respectively, does this imply that A and B have a common k-dimensional reducing subspace?
3. The last problem we would like to mention is related to the norm estimate of the commutant of two matrices, or more generally two compact operators. The estimate given by Theorem 2.4 seems to be rather rough. Besides, this estimate does not allow any extension of the result of Theorem 2.4 to an infinite dimensional case. One possible way of improving the estimate is to consider that the proper spectrum is close to a set of lines not locally, but on a big compact subset of \mathbb{C}^{2}. Alternatively, we might impose the condition that the joint projective spectrum in $\mathbb{C P}^{2}$ is close to the set of projective lines in Fubini study metric. This leads us to the following problem.

Problem 9.3. Let A and B be self-adjoint compact operators acting on a separable Hilbert space H. Suppose that the distance from $\sigma(A, B, I)$ to a set of projective lines that contains $\{[x: y: 0]\}$ and satisfies the following condition:
(C) the intersection of this set of lines with the lines $\{[0: y: z]\}$ and $\{[x: 0: z]\}$ coincides with the inverse spectra $\sigma(A)^{-1}$ and $\sigma(B)^{-1}$, counting multiplicities;
does not exceed ε in the Fubini study metric. Estimate the norm of the commutant $[A, B]$ in terms of ε.

Acknowledgements. We would like to thank R.Yang for useful comments.

REFERENCES

[1] J.P. BANNON, P. Cade, R. Yang, On the spectrum of Banach algebra-valued entire functions, Illinois J. Math. 55(2011), 1455-1465.
[2] A. Brown, C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17(1966), 162-166.
[3] P. Cade, R. Yang, Projective spectrum and cyclic cohomology, J. Funct. Anal. 265(2013), 1916-1933.
[4] F. Catanese, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math. 63(1981), 433-465.
[5] I. Chagouel, M. Stessin, K. Zhu, Geometric spectral theory for compact operators, Trans. Amer. Math. Soc., to appear.
[6] E.M. Chirka, Complex Analytic Sets, Springer, New York 1989.
[7] J. Conway, B. Morrell, Operators that are points of spectral continuity, Integral Equations Operator Theory 2(1979), 174-198.
[8] Z. Cuckovic, M. Stessin, A. Tchernev, Determinantal hypersurfaces and representations of Coxeter groups, arXiv:1810.12893 [math.RT].
[9] L.E. DICKSON, Determination of all general homogeneous polynomials expressible as determinants with linear elements, Trans. Amer. Math. Soc. 22(1921), 167-179.
[10] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge Univ. Press, Cambridge 2012.
[11] N. Dunford, J.T. Schwartz, Linear Operators, Vol. I, II, III, Interscience Publ., 1958, 1963, 1971.
[12] J. Eschmeier, M. Putinar, Spectral Decompositions and Analytic Sheaves, Calderon Press, Oxford 1996.
[13] T.W. Gamelin, Complex Analysis, Springer, Berlin 2001.
[14] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonself-adjoint Operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI 1969.
[15] P. GonZalez-Vera, M.I. Stessin, Joint spectra of Toeplitz operators and optimal recovery of analytic functions, Constructive Approx. 36(2012), 53-82.
[16] J.W. Helton, S.A. McCullough, V. Vinnikov, Non commutative convexity arises from linear matrix inequalities, J. Funct. Anal. 240(2006), 105-191.
[17] J.W. Helton, V. Vinnikov, Linear matrix inequality representation set, Comm. Pure Appl. Math. 60(2007), 654-674.
[18] D. Kerner, V. Vinnikov, Determinantal representations of singular hypersurfaces in \mathbb{P}^{n}, Adv. Math. 231(2012), 1619-1654.
[19] S.G. Krantz, Handbook of Complex Variables, Birkhauser, Boston, MA 1999.
[20] P. LAX, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math. 11(1958), 175-194.
[21] A.S. Lewis, P.A. Parrilo, M.V. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc. 133(2005), 2495-2499.
[22] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Stud., vol. 61, Princeton Univ. Press, Princeton, NJ 1968.
[23] C.D. Minda, Bloch constants, J. Anal. Math. 41(1982), 54-84.
[24] T.S. Motzkin, O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73(1952), 108-114.
[25] T.G. Room, Self-transformations of determinantal quadric surfaces. I, Proc. London Math. Soc. 51(1950), 348-361.
[26] H.L. Royden, Real Analysis, Prentice Hall, London 1988.
[27] M. Stessin, R. Yang, K. Zhu, Analyticity of a joint spectrum and a multivariable analytic Fredholm theorem, New York J. Math. 17(2011), 39-44.
[28] B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, Second edition, Universitext, Springer, New York 2010.
[29] J.L. TAYLOR, A joint spectrum for several commuting operators, J. Funct. Anal. 6(1970), 172-191.
[30] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., vol. 68, Springer-Verlag, New York 1988.
[31] V. Vinnikov, Complete description of determinantal representations of smooth irreducible curves, Linnear Algebra Appl. 125(1989), 103-140.
[32] R. YANG, Projective spectrum in Banach algebras, J. Topology Anal. 1(2009), 289-306.
M.I. STESSIN, Department of Mathematics and Statistics, University at Albany, SUNY, Albany, NY 12222, U.S.A.

E-mail address: mstessin@albany.edu
A.B. TCHERNEV, Department of Mathematics and Statistics, University at Albany, SUNY, Albany, NY 12222, U.S.A.

E-mail address: atchernev@albany.edu

