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INTRODUCTION

Assume that A is a nonnegative bounded linear operator in a real or a com-
plex Hilbert space H. Then there exists a unique nonnegative bounded linear
operator S in the same Hilbert space H such that S2 = A. It is called the square
root of A; it is denoted by A1/2 and it commutes with every bounded operator
that commutes with A, cf. [9].

S.J. Bernau presented in [2] a way to define the square root of an unbounded
nonnegative selfadjoint linear operator in the setting of Hilbert spaces. Another
proof of the existence of the square root of a nonnegative operator was given by
Wouk in [13]. Also, an elegant factorization of the square root of unbounded
nonnegative selfadjoint linear operators was recently proposed by Z. Sebestyén
and Zs. Tarcsay in [12].

The concept of the square root of an operator was generalized to the case
of multivalued linear operators (linear relations) and it was systematically used
to solve specific problems in the operator theory and its applications, cf. [4], [5],
[6], [7] and the references therein. The classical way of defining the square root of
a nonnegative selfadjoint linear relation is to reduce it to the case of its operator
part, cf. [4]. It is the main goal of this note to present a construction of the square
root of a nonnegative selfadjoint linear relation in the setting of real or complex
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Hilbert spaces. The method is rather algebraic, it is motivated by the following
elementary factorization

√
x =

√
1− (1 + x)−1

(√
(1 + x)−1

)−1
,

and it is quite closed to the ones used in [12], [13]. However, the techniques
used for the proofs are specific to the case of multivalued linear operators. More
precisely, for a nonnegative selfadjoint linear relation A in a real or a complex
Hilbert space one shows that its square root exists, it is unique and it can be
factorized by

A1/2 = UV−1,

where U and V stand for the square roots of the nonnegative bounded linear
operators I − (I + A)−1 and (I + A)−1, respectively.

The note is organized as follows. Section 1 contains basic facts concerning
linear relations in Hilbert spaces. In Section 2 nonnegative linear relations are
studied. The main result of this note is proven in Section 3.

1. LINEAR RELATIONS IN HILBERT SPACES

Following [1] some preparatory ingredients are presented in this section.
More details concerning the theory of linear relations in Hilbert spaces can be
found for instance in [3], [4], [7], [8].

Throughout the paper H stands for a real or a complex Hilbert space whose
inner product is denoted by 〈·, ·〉. A linear relation T in H is a linear subspace of
the Hilbert space Cartesian product H×H. The elements of T will be denoted by
{ f , g}with f , g ∈ H. For a linear relation T the following self-explanatory notions
domain, range, kernel, and multi-valued part of T will be used from now on:

dom T = { f ∈ H : { f , f ′} ∈ T}, ran T = { f ′ ∈ H : { f , f ′} ∈ T},
ker T = { f ∈ H : { f , 0} ∈ T}, mul T = { f ′ ∈ H : {0, f ′} ∈ T}.

One says that the linear relation T is closed if it is closed as a subspace of
H× H. Furthermore, it is easily seen that if T is closed then the subspaces ker T
and mul T are closed. The graph of an operator T is a linear relation; in this case
mul T = {0}. The notation I stands for the identity operator in H. In what follows
a linear operator T in H is identified with its graph. It is said to be closable if its
closure is again the graph of an operator. The formal inverse T−1 of T is defined as
T−1 = {{ f ′, f } : { f , f ′} ∈ T}; it is a linear relation in H. The following identities

(1.1) dom T−1 = ran T, ker T−1 = mul T

express the formal “duality” between T and its inverse. It is not difficult to see
that

TT−1 = I �ran T +̂ ({0} ×mul T), T−1T = I �dom T +̂ ({0} × ker T).
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If λ is a real or a complex number then λT is a linear relation in H given by

λT = {{ f , λ f ′} : { f , f ′} ∈ T}.
The adjoint of a linear relation T in H is the closed linear relation T∗ in H

defined by

T∗ = {{ f , f ′} ∈ H×H : 〈 f ′, h〉 = 〈 f , h′〉 for all {h, h′} ∈ T}.
Geometrically the adjoint T∗ is given by

(1.2) T∗ = JT⊥ = (JT)⊥,

where the operator J from H×H onto H×H is defined by

(1.3) J{ f , g} = {g,− f }, { f , g} ∈ H×H.

Moreover,

(1.4) (T−1)∗ = (T∗)−1,

so that

(1.5) (dom T)⊥ = mul T∗, (ran T)⊥ = ker T∗.

It is clear that the double adjoint T∗∗ is the closure of the relation T.
A linear relation T in a Hilbert space H is said to be symmetric if T ⊂ T∗.

A symmetric linear relation T in a Hilbert space H is said to be nonnegative if
〈 f ′, f 〉 > 0 for all { f , f ′} ∈ T. A linear relation T in a Hilbert space H is said to be
selfadjoint if T∗ = T, so that it is automatically closed.

The sum of two linear relations T1 and T2 in H is a linear relation defined by

(1.6) T1 + T2 = {{ f , f ′ + f ′′} : { f , f ′} ∈ T1, { f , f ′′} ∈ T2}.
The adjoint of the sum of linear relations in (1.6) satisfies

(1.7) T∗1 + T∗2 ⊂ (T1 + T2)
∗.

Moreover, if T2 is a bounded linear operator in H then there is actually equality:

(1.8) T∗1 + T∗2 = (T1 + T2)
∗.

If T1 and T2 are two linear relations in a Hilbert space H then their product
T2T1 is a linear relation in H defined by

(1.9) T2T1 = {{ f , f ′} : { f , ϕ} ∈ T1, {ϕ, f ′} ∈ T2 for some ϕ ∈ H},
and further one has

(1.10) (T2T1)
−1 = (T1)

−1(T2)
−1.

The adjoint of the product of linear relations in (1.9) satisfies

(1.11) T∗1 T∗2 ⊂ (T2T1)
∗.

Moreover, if T2 is a bounded linear operator in H then there is actually equality:

(1.12) T∗1 T∗2 = (T2T1)
∗.
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2. NONNEGATIVE LINEAR RELATIONS IN HILBERT SPACES

The following two preparatory results can be found with their proofs in [10].

LEMMA 2.1. Let S be a symmetric linear relation in a Hilbert space H and assume
that dom S = H. Then S is a selfadjoint linear relation in H.

COROLLARY 2.2. Let S be a symmetric linear relation in a Hilbert space H and
assume that ran S = H. Then S is a selfadjoint linear relation in H.

The next result offers a range characterization for the selfadjointness of non-
negative linear relations. The proof is valid for both real and complex Hilbert
spaces. The operator case version of this result can be found in Theorem 2.5
of [11].

THEOREM 2.3. Let H be a real or a complex Hilbert space and let S be a nonnega-
tive linear relation in H. The following statements are equivalent:

(i) S is a nonnegative selfadjoint linear relation in H;
(ii) I + S is of full range, i.e. ran (I + S) = H.

Proof. In order to see that (i) implies (ii) it will be shown that (I + S)−1 is
a bounded selfadjoint linear operator in H. Let {e, f } ∈ (I + S)−1 so that { f , e−
f } ∈ S. Since S is nonnegative it follows that 〈e− f , f 〉 > 0, so that 〈e, f 〉 > ‖ f ‖2.
This inequality further implies that ‖ f ‖ 6 ‖e‖ on the basis of Cauchy’s inequality.
Consequently, if e = 0 then f = 0 which shows that mul (I + S)−1 = 0 so that
(I + S)−1 is the graph of an operator. Furthermore, the inequality ‖ f ‖ 6 ‖e‖ for
all {e, f } ∈ (I + S)−1 shows that the operator (I + S)−1 is bounded. Using (1.4)
and (1.8) one has

((I + S)−1)∗ = ((I + S)∗)−1 = (I∗ + S∗)−1 = (I + S)−1,

which shows that (I + S)−1 is selfadjoint. Since it is also bounded it follows that
(I + S)−1 is an everywhere defined selfadjoint bounded operator. Consequently,
H = dom (I + S)−1 = ran (I + S) which implies that I + S is a full range linear
relation, as claimed.

For the converse implication assume that ran (I + S) = H. It follows from
Corollary 2.2 that I + S is a selfadjoint linear relation. Using (1.8) one succes-
sively has

S∗ = (I + S + (−I))∗ = (I + S)∗ + (−I)∗ = I + S + (−I) = S,

which shows that S is a nonnegative selfadjoint linear relation. This argument
completes the proof.

A direct consequence of the proof of Theorem 2.3 follows.

COROLLARY 2.4. Let H be a real or a complex Hilbert space and let A be a non-
negative selfadjoint linear relation in H. Then both (I + A)−1 and I − (I + A)−1 are
bounded nonnegative selfadjoint contractions in H.
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A range criteria for the self–adjointness of symmetric linear relations in real
or complex Hilbert spaces will be next provided. Some preparatory results are
firstly proven or presented.

The useful result of algebraic nature in the following lemma can be found
in [1].

LEMMA 2.5. Let S1 and S2 be linear relations in a Hilbert space H and assume
that S1 ⊂ S2. Then the following statements are equivalent:

(i) S1 = S2;
(ii) dom S1 = dom S2 and mul S1 = mul S2.

The next result is a particular case of Theorem 3.3 in [10].

LEMMA 2.6. Let S be a closed linear relation in a real or a complex Hilbert space
H. Then the product S∗S is a nonnegative selfadjoint linear relation in H.

The square of a symmetric linear relation in a Hilbert space is analyzed in
the next result.

LEMMA 2.7. Assume that S is a symmetric linear relation in a real or a complex
Hilbert space H. Then S2 is a nonnegative linear relations in H. Furthermore:

(2.1) mul S2 = mul S.

Proof. Clearly,

S2 = SS ⊂ S∗S∗ ⊂ (SS)∗ = (S2)∗,

so that S2 is a symmetric linear relation in H. Let {x, y} ∈ S2, so that {x, z} ∈ S
and {z, y} ∈ S for some z ∈ ran S ∩ dom S. This implies that 〈y, x〉 = 〈z, z〉 =
‖z‖2 > 0 which shows that S2 is a nonnegative linear relation in H, as claimed.

In order to prove the equality mul S2 = mul S assume that m ∈ mul S2 so
that {0, m} ∈ S2. This further implies that {0, q} ∈ S and {q, m} ∈ S so that
〈q, q〉 = 〈m, 0〉 = 0. Thus q = 0 which leads to {0, m} ∈ S. Then mul S2 ⊂ mul S.
Conversely, let m ∈ mul S so that {0, m} ∈ S. Since {0, 0} ∈ S and {0, m} ∈ S
it follows that {0, m} ∈ S2 which shows that mul S ⊂ mul S2. Consequently the
equality in (2.1) has been proved.

The next result offers a criterion for the self–adjointness of symmetric linear
relations in Hilbert spaces using their squares. The operator case can be found in
Theorem 2.2 of [11]. The proof uses specific techniques from the theory of linear
relations and it works for both real and complex Hilbert spaces.

THEOREM 2.8. Let H be a real or a complex Hilbert space and let S be a symmetric
linear relation in H. Then the following are equivalent:

(i) S is a selfadjoint linear relation in H;
(ii) S2 is a nonnegative selfadjoint linear relation in H;

(iii) I + S2 is of full range, i.e. ran (I + S2) = H.
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Proof. It will be proven next that (i) implies (ii). Since S is selfadjoint it
follows that S is closed. Using Lemma 2.6 one has that S∗S is a nonnegative self-
adjoint linear relation in H. Therefore, S2 = SS = S∗S is a nonnegative selfadjoint
linear relation in H, as claimed.

The equivalence between (ii) and (iii) is a direct consequence of Lemma 2.7
and Theorem 2.3. It only remains to show that (iii) implies (i). Assume that
ran (I + S2) = H. Since S ⊂ S∗ it follows that

(2.2) dom S ⊂ dom S∗.

It will be proven that

(2.3) dom S∗ ⊂ dom S.

To see this, let w ∈ dom S∗ so that {w, t} ∈ S∗ for some t ∈ ran S∗. Then for
some x, y ∈ H one has {x, t} ∈ I + S2 and {y,−w} ∈ I + S2. This implies that
{x, t− x} ∈ S2 and {y,−w− y} ∈ S2 which further leads to

(2.4) {x, a} ∈ S, {a, t− x} ∈ S, and

(2.5) {y, b} ∈ S, {b,−w− y} ∈ S,

for some a, b ∈ dom S ∩ ran S. Then

(2.6) {a− y, t− x− b} = {a, t− x} − {y, b} ∈ S ⊂ S∗.

Since {w, t} ∈ S∗, it follows from (2.6) that

(2.7) {w− a + y, x + b} = {w, t} − {a− y, t− x− b} ⊂ S∗.

Furthermore, it follows from (2.4) and (2.5) that

(2.8) {x + b, a− w− y} = {x, a}+ {b,−w− y} ∈ S.

A combination of (2.7) and (2.8) leads to

(x + b, x + b) = (w− a + y,−(w− a + y)),

which is equivalent to

‖x + b‖2 + ‖w− a + y‖2 = 0,

so that x + b = w − a + y = 0. This implies that w = a − y ∈ dom S. Conse-
quently, (2.3) has been proved. A combination of (2.2) and (2.3) leads to

(2.9) dom S∗ = dom S.

Moreover, it follows from the equivalence between (ii) and (iii) that S2 is selfad-
joint. Also, using (1.11) one has

S2 = SS ⊂ S∗S∗ ⊂ (SS)∗ = (S2)∗ = S2,

which shows that S2 = S∗S. Similarly it can be proven that S2 = SS∗, so that

(2.10) S2 = S∗S = SS∗.



THE SQUARE ROOT OF NONNEGATIVE SELFADJOINT LINEAR RELATIONS IN HILBERT SPACES 363

It follows from (2.1) and (2.10) that

(2.11) mul S = mul S2 = mul S∗S.

It will be next shown that

(2.12) mul S∗S = mul S∗.

Assume that m ∈ mul S∗S so that {0, m} ∈ S∗S. This further implies that {0, q} ∈
S and {q, m} ∈ S∗ so that 〈q, q〉 = 〈m, 0〉 = 0. Thus q = 0 which leads to {0, m} ∈
S∗. Then mul S∗S ⊂ mul S∗. Conversely, let m ∈ mul S∗ so that {0, m} ∈ S∗.
Since {0, 0} ∈ S and {0, m} ∈ S∗ it follows that {0, m} ∈ S∗S which shows that
mul S∗ ⊂ mul S∗S. Consequently the equality in (2.12) has been proved. Using
(2.11) and (2.12) one has

(2.13) mul S∗ = mul S.

Finally, it follows from Lemma 2.5, (2.9) and (2.13) that S∗ = S, as claimed. This
completes the proof.

COROLLARY 2.9. Let H be a real or a complex Hilbert space, let S be a symmetric
linear relation in H and let A be a selfadjoint linear relation in H. Assume the S2 extends
A. Then A = S2 and S itself is a selfadjoint linear relation in H.

Proof. It follows from Lemma 2.7 that S2 is a nonnegative linear relation in
H, so that

(2.14) S2 ⊂ (S2)∗.

Using the hypothesis A ⊂ S2 one has

(2.15) (S2)∗ ⊂ A∗.

A combination of (2.14) and (2.15) leads to

S2 ⊂ (S2)∗ ⊂ A∗ = A ⊂ S2,

which shows that A = S2. Thus S2 is a nonnegative selfadjoint linear relation in
H and then it follows from Theorem 2.8 that S is a selfadjoint linear relation in H,
as claimed.

Following [4] and [7] some results concerning the decomposition of a non-
negative selfadjoint linear relation in a Hilbert space are presented in the next
lemma. They will be used for the proof of the main result within the next section.
Assume that A is a nonnegative selfadjoint linear relation in the Hilbert space H.
Define As = A ∩ (dom A× dom A). Then As is a nonnegative selfadjoint linear
operator in the Hilbert space dom A and, furthermore

A = As ⊕ ({0} ×mul A).
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LEMMA 2.10. Assume that S is a nonnegative selfadjoint linear relation in a real
or a complex Hilbert space H. Then

(i) A = S2 is also a nonnegative selfadjoint linear relation in H;
(ii) As = (Ss)2;

(iii) A = (Ss)2 ⊕ ({0} ×mul A).

3. THE MAIN RESULT

The main result of this note offers a factorization of the square root of a
nonnegative selfadjoint linear relation in a real or a complex Hilbert space.

THEOREM 3.1. Assume that A is a nonnegative selfadjoint linear relation in a real
or a complex Hilbert space H.

(i) There exists an unique nonnegative selfadjoint linear relation S such that S2 = A.
(ii) Moreover, if B is a bounded linear operator in H which commutes with A then it

commutes with S, namely, if BA ⊂ AB then BS ⊂ SB.

Proof. (i) Let U and V be the square roots of the nonnegative bounded linear
operators I − (I + A)−1 and (I + A)−1, respectively. Clearly, U2V2 = V2U2, so
that

U2/2n
V2/2t

= V2/2t
U2/2n

,

for all nonnegative integers n and t. Define the linear relation S = UV−1 in H.
It will be proven next that S is nonnegative. To see this let {x, y} ∈ S so that

{x, z} ∈ V−1 and {z, y} ∈ U for some z ∈ H. This implies that {z, x} ∈ V so that
x = Vz and y = Uz. Therefore,

〈y, x〉 = 〈Uz, Vz〉 = 〈Uz, V1/2V1/2z〉

= 〈V1/2Uz, V1/2z〉 = 〈UV1/2z, V1/2z〉 > 0.
(3.1)

The relation (3.1) shows that S is a nonnegative linear relation in H.
To see that S is symmetric let {x, y}, { f , g} ∈ S. Then using similar argu-

ments as above one has x = Vz, y = Uz, f = Vt and g = Ut, for some z, t ∈ H.
One successively has

〈y, f 〉 = 〈Uz, Vt〉 = 〈VUz, t〉 = 〈UVz, t〉 = 〈Vz, Ut〉 = 〈x, g〉,

which shows that S is a symmetric linear relation in H.
It will be shown that A ⊂ S2. One has

(3.2) VV−1 = I �ran V +̂ ({0} ×mul V) = I �ran V .

Also,
ker V = ker V2 = ker (I + A)−1 = mul (I + A) = mul A,

and then

(3.3) V−1V = I �domV +̂ ({0} × ker V) = I +̂ ({0} ×mul A).
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It follows from UV = VU that UVV−1 = VUV−1 and then by using (3.2) one has
UI �ran V= VUV−1. This identity further implies that VUV−1 ⊂ U, so that

(3.4) V−1VUV−1 ⊂ V−1U.

Using (3.3) and (3.4) one successively has

UV−1 ⊂ (I +̂ ({0} ×mul A))UV−1 = V−1VUV−1 ⊂ V−1U,

so that

(3.5) UV−1 ⊂ V−1U.

Let {x, y} ∈ A, so that {x, x + y} ∈ I + A. This implies that

{x + y, x} ∈ (I + A)−1 = V2,

which shows that

(3.6) {x, x + y} ∈ (V2)−1,

and also

(3.7) {x + y, y} ∈ I − (I + A)−1 = U2.

A combination of (3.6) and (3.7) leads to {x, y} ∈ U2(V2)−1, which shows that

(3.8) A ⊂ U2(V2)−1.

Using now (3.5) and (3.8) one successively has

(3.9) A ⊂ U2(V2)−1 = UUV−1V−1 ⊂ UV−1UV−1 = S2,

so that the inclusion A ⊂ S2 has been proved. Since A is selfadjoint and S2

is nonnegative it follows from Corollary 2.9 that S is a nonnegative selfadjoint
linear relation in H and

(3.10) A = S2.

Furthermore, a combination of (3.9) and (3.10) shows that in fact

(3.11) A = U2(V2)−1 = S2.

Next it will be shown the uniqueness of the square root. Assume that T is
also a nonnegative selfadjoint linear relation such that T2 = A. Then it follows
from Lemma 2.10 that

A = (Ss)
2 ⊕ ({0} ×mul A) = (Ts)

2 ⊕ ({0} ×mul A),

which implies that As = (Ss)2 = (Ts)2, where As, Ss and Ts are nonnegative
selfadjoint linear operators in the Hilbert space dom A. Using Theorem 2.3 of
[11] it follows that Ss = Ts, which further implies that

S = Ss ⊕ ({0} ×mul A) = Ts ⊕ ({0} ×mul A) = T,

as desired.
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(ii) Assume now that B is a bounded everywhere defined linear operator in
H which commutes with A, that is BA ⊂ AB. Then B(I + A) ⊂ (I + A)B, so that
B(I + A)(I + A)−1 ⊂ (I + A)B(I + A)−1. This implies that

B(I +̂ ({0} ×mul (I + A))) ⊂ (I + A)B(I + A)−1,

which shows that

(3.12) B ⊂ (I + A)B(I + A)−1.

Furthermore, it follows from (3.12) that

(I + A)−1B ⊂ (I + A)−1(I + A)B(I + A)−1,

so that

(3.13) (I + A)−1B ⊂ B(I + A)−1,

because (I + A)−1(I + A) is the identity operator in H restriced to the domain
of A. Since both (I + A)−1B and B(I + A)−1 are bounded everywhere defined
operators in H, it follows from (3.13) that

(3.14) (I + A)−1B = B(I + A)−1.

From (3.14) one has

(3.15) U2B = BU2, V2B = BV2,

which further implies that

(3.16) UB = BU, VB = BV.

It follows from (3.16) that V−1VB = V−1BV so that B ⊂ V−1VB = V−1BV,
which implies that BV−1 ⊂ V−1BVV−1 ⊂ V−1B. Thus

(3.17) BV−1 ⊂ V−1B.

Finally, if follows from (3.16) and (3.17) that

BS = BUV−1 = UBV−1 ⊂ UV−1B = SB,

so that the commutation property BS ⊂ SB has been proved.

The nonnegative selfadjoint linear relation S determined in Theorem 3.1 is
called the square root of A and it is denoted by A1/2.
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