J. OPERATOR THEORY © Copyright by INCREST, 1979
1(1979), 3-25

A LIFTING THEOREM FOR OPERATOR MODELS OF
FINITE RANK ON MULTIPLY-CONNECTED DOMAINS

JOSEPH A. BALL

INTRODUCTION

The purpose of this paper is to prove a version of the Sz.-Nagy-Foias lifting
theorem in the context of an operator model on a multiply connected domain R.
When R is assumed to be the unit disk D, various complications arising from the
multiple connectedness of the underlying domain disappear; there results a new
duality proof of the general Sz.-Nagy-Foiag lifting theorem [15] which specializes
to that of Sarason [14] for the scalar Cy, case. We also obtain a version for multiply
connected domains of the characterization of the compact operators in the commu-
tant of a Cyy contraction operator due to Muhly [12].

Here R is a bounded domain in the complex plane bounded by n -+ 1 analytic
nonintersecting Jordan curves, and Rat(R) is the uniform closure on R of the algebra
of rational function with poles off of R. Let C(OR) be the C*-algebra of functions
continuous on dR. For 5 a separable Hilbert space, Z(s#) is the algebra of (bound-
ed, linear) operators on . Let p: C(OR) — L (X') be a =-representation of C(OR),
let .# and A" subspaces of the Hilbertspace ¢ invariant under p(f) for all f in Rat(R)
suchthatA < ,andlet #= .4 O A" Define 6: Rat(R)— L(H#) by o(f)=Pxp(f)H#.
Then ¢ defines a completely contractive unital (c.c.u.) representation of Rat(R),
and, by a result of Arveson [6], any c.c.u. representation arises in this way. The
operator model discussed here, first introduced by Abrahamse and Douglas [4]
and studied further by Abrahamse [1] and the author [8], is a canonical model for
such a c.c.u. representation. A precise statement and sketch of the proof of this
fact, known to experts in the area but only hinted at in the literature (see ref. [4]),
is given in Section 2 of this paper. When R is the unit disk D, the model coin-
cides with the canonical model of Sz.-Nagy and Foias for a completely nonunitary
contraction operator [16].

Let o be a c.c.u. representation of Rat(R) arising as o(f)= Pxo(f)|oF as
above. Given a T e Z(#°) commuting with a(f) for all fe Rat(ﬁ),flthe lifting question
asks whether there is a X e £(A") such that X commutes with all p(f), X leaves .#
and A invariant, and T arises as P»X|3#. For the case R=D, the scalar Cy, case is
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due to Sarason [14], the general case to Sz.-Nagy and Foias [15], where in each

instance it is shown in addition that one can choose X with || X|j = || T|. For the
scalar Cy, case with a general R, the result is due to Abrahamse [1], who also shows
that it is not possible in general to choose X with || X || = ||T}]. In the analogous

situation on the polydisk DM(N > 1), Clark [9] has shown that the answer is no;
however, if one permits certain types of unbounded X, the answer is yes [10].

In Section 3 of this paper, we recover the positive part of Clark’s result by
adapting his argument to our situation. In Section 4 we use duality techniques to
show that if the operator model is of finite rank (or, equivalently, the normal
operator p(z) has a bounded spectral multiplicity function), then the lift X can
be arranged to be bounded. The key ingredients of the proof are a generalization
of Sarason’s version of the Riesz factorization lemma [14, p. 198] and a result of
the author [7] on the finiteness of a supremum of a collection of operator valued
outer functions. The generalization of the Riesz factorization lemma needed is
derived in Section 1; the analysis hinges on results of Moore, Rosenblum and Rovn-
yak [13] on factorization of Toeplitz operators associated with isometries. Finally,
in Section 5, we show that the compact operators in the commutant of a Cy c.c.u.
representation of finite rank arise from an appropriate analogue of H* + C, and
thus generalize the result of Muhly [12].

Definitions and notation from [7] will be used here with limited explanation.
All Hilbert spaces are assumed to be complex, separable.

1. THE RIESZ FACTORIZATION LEMMA FOR ISOMETRIES

Let V; and ¥, be isometries acting on separable Hilbert spaces 5, and ¢,
respectively. Following Moore, Rosenblum and Rovnyak [13], let V,=S; @ U;
(! = 1, 2) be the Wold decomposition of V; into its shift part S; and its unitary
part U, We say that S| < S, if dim Ker S¥ < dim Ker S§. For 4 € L(#,, #),
TeL(H)), A is called

(i) (Vy, Vy)-analytic if AV, = V,A.

(ii) (Vy, Vy)-inner if A is partially isometric and (V;, Vy)-analytic, and

(iii) (Vy, Vy)-outer if A is (Vy, Vy)-analytic and (45#,)~ (the closure of the
range of A) reduces V.

The operator T is said to be Vi-Toeplitz if VFTV, = T.

The following generalization of the Riesz factorization lemma will be needed
in the sequel.

THEOREM 1.1. Let Fe¥(H#,, #,y) be (Vy, Vo)-analytic and suppose S; < S..
Then F = GH where G €L (#,) is (V,, Vy)-analytic, H e L(H 1, # ) is (V, Vy)-outer
(F*F)V? = H*H and G*G = HH*.
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If F = G.H, is another factorization of F having all the properties stated above,
then there is a unique B € ¥ (#y) such that both B and B* are (V,, V,)-inner, B has
initial space equal to (H#,)~ and final space equal to [Ker G}+, H,=BH and G,= GB*.

Proof. We follow the proof of Sarason [14, Theorem 4], using the results of
ref. [13] to make the necessary modifications. Consider T = F*F. By i) = ii) of
Theorem 4 of [13], there is an operator Ce#(#,, #,) such that C|(TY2:#,)~ is one-to-
one and CT'2 is (V,, V,)-analytic. Set C’' = CT"4 Then we also have C’[(TYV25¢,)~
is one-to-one and C'TY* is (V;, V,)-analytic. Hence, by ii) = i) of Theorem 4 of
[13], T2 = H*H where H is (V,, V,)-outer. Now let F = JTV2 be the polar de-
composition of F, where J is a partial isometry whose initial space is (TY25¢;)~
and whose final space is (F#,)~. If we set G = JH*, then F = GH. It remains to
show that G is (V,, V)-analytic and that G*G = HH*.

We first prove the latter fact. By definition of G,

(%) G*G — HJ*JH™.

Now J*J is the orthogonal projection of #, onto J*3#,. But J*H#, is the initial
space of J, or (T125#,)~. But the equality 772 = H*H shows that the ranges of T7/2
and of H* have the same closures, and hence J*JH* = H*, From this and (),
it follows that G*G = HH*.

To prove that G is (V,, V,)-analytic, we note that, since H is (V;, V,)-outer,
(H#,)~ is a reducing subspace .% for V,. The equality G= JH* shows that the null
space of G is equal to #*. Thus it suffices to show that GVyx = V,Gx for all x
in #. Any such x can be approximated by a y of the form y = Hz with z in ;.
For any such y, we have

GV,y = GV,Hz = GHV,z = FV,z = V,Fz = V,GHz = V,Gy

as desired. The existence assertion follows.

If F= G H, is another such factorization, then TV2 = H*H and H}H,.
Then we must have H; = BH where both B and B* are (V,, V;)-inner, B has initial
space equal to (Hs#,)~ and final space equal to (ker H,)* ([13], Theorem 3). From
this it follows also that G; = GB*. The theorem follows.

To make use of this, we wish to put it in a more functional form. Let
and X, be separable Hilbert spaces such that dim " <dim # . Let C?(A ., #")
be the class of operators from ", into A of Schatten p-class (1 < p € o0). The
space of operator-valued functions Héwx,, #)(1 < p,q < o) and of vector-valued
functions Hj defined on the unit disk is defined as in Section 1 of ref. [7]. Func-
tions in these spaces will also be considered defined on dD via nontangential
boundary values when convenient. Let @ be a fixed clement of Hgx, x,) Wwith
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1@]| <1 and let 4 € Ly be defined by
4(z) = [I—O(2)* O(z)]'*

for |z] = 1. We wish to apply Theorem 1.1 to the case where V; is multiplication
by z on #, — Hy and ¥V, is multiplication by z on H#, = H;_ @ (ALY)~. Since
we are assuming dim & < dim 2',,, we have that S, <.S, as required. If we write
elements of Hf«‘ ®(4L%)~ as column vectors, an operator FeL(H(, H'y) is (Vy, Vo)-
analytic if and only if F is multiplication by an operator-valued function of the form

F\()

&= [Fz(z)

}(m:l),

where Fye Hgur,x,), FoeALZyry (by this is meant that F,eL$ and
(Fo(2)X)~ < (A(z)#')~ for a.e. z on OD). We write

H?(ff,f.)
Fe

ALZ 0y

for such an F. Using similar notation and the analysis in ref. [14], one concludes
that G e Z(s#,) is (V,, Vy)-analytic if and only if

Hzpx, 0
Ge
ALgr, x) AL 4

and that BeS(#) is (Vs, V,)-inner with adjoint also (¥, V,)-inner if and only if
B is multiplication by an operator-valued function of the form

U 0
B(z)—[0 o ] 2l =1

where U is a partial-isometry on J¢",, and ¥ is a measurable function on 6D whose
values are partial isometries on 2¢. Finally, in Theorem 1.1, if in addition F is
trace-class, then the factors G and H are Hilbert-Schmidt class. Thus we obtain
the following

THEOREM 1.2. Let A" and A", be separable Hilbert spaces with dim 4 <dim 5 .
Then any operator-valued function F in

Hewar, )

ALS ary
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factors as F = GH with

Hex, 0 Héwx, x,)
Ge , He )

ALSx,, ) ALSy) 4 ALcar)

H is (Vy, Vy)-outer, and also (F*F)'? = H*H, G*G = HH*.
If F = G,H, is another such factorization, then there is a parital-isometry-
valued function B of the form

BE) =[ " Tf(z) ] (2l = 1)

such that H, = BH and G, = GB*.

2. THE FUNCTIONAL MODEL

Let R be a bounded domain in the complex plane whose boundary consists
of n -+ 1 analytic nonintersecting Jordan curves, let C,, ..., C, be n cuts in R such

Vi=1

that R \ \UJ C: is simply-connected, and let ¢ be an arbitrary but fixed point in R. We

borrow definitions and notation from ref. [7] without explanation. For 2" a Hilbert
space, and « € Hom (7o(R), % (")), harmonic measure m on OR for the point 7 is
used to define the norm of the spaces Hy(o) and L¥(OR).

It is well-known that there is function v(z) meromorphic on R with only
pole a simple pole at ¢ and # zeroes in R and no zeroes on dR such that

1—_ v(z)dz = dm(z) for z on OR.
2nm1

Let o, be another Hilbert space, and let @ € HZr, ,)(¢, f) for some « e Hom(n(R),
A(A)) and P e Hom (ne(R), %(HA «)) have ||O|, < 1. We show how such a @
gives rise to a c.c.u. representation of Rat(R).

Let A(z) = [I— @(2)*O(z)]¥* for zedR and let ﬂsz«,(a)(B(AL}(aR))-,
N ={Of ® Af: fe H¥()} = M, and @ = L5 (IR) ® (AL:(OR))y". Then both .«
and A" are closed subspaces of D invariant under the operator M, of multiplication
by f(z) for any fin Rat(R). If we set # =4O and define o4: Rat(R) > L(:#) by

co(f) = PwMy | H,

then og is a c.c.u. representation of Rat (R). Furthermore, oo is dR-pure in the
sense that there is no non-zero subspace #, <2 such that ¢% defined by ¢%(f) =
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= go(f)| #, is OR-normal (i.e. the restriction to Rat (R) of a =representation
of C(OR)). That these properties characterize representations of the form og is
the content of the following

THEOREM 2.1. Let ¢ be any OR-pure c.c.u. represeniation of Rat(l?). Then
there are Hilbert spaces A" and A, group representations o and B in Hom(my(R),
U(A ) and Hom(ny(R), U(HA')) respectively, and an element ©@ in the unit ball of
HZxr, ), B), such that o is unitarily equivalent to 6 ¢.

Sketch of the Proof. Let ¢ be a c.c.u. £(3#)-valued representation of Rat(ﬁ).
By the result of Arveson [6], there is a 8 R-normal representation t: Rat(R_) - Z(D)
and t(Rat(I?)-invariant subspaces A < .# <@ such that# = #ON and o(f) =
= Py 1(f)| # forall fin Rat (1—3). Since o is 0 R-pure, if 7 is chosen to be minimal,
then o defined by o4(f)=1(f)| A" is necessarily a pure subnormal representation
of Rat(R). By results of Abrahamse and Douglas (see refs. [3, 4]), up to unitary
equivalence o4 has the form ou(f) = f, = M| Hj(A) for a Hilbert space X’
and some B e Hom(ny(R), %(A')). The representation .« (defined by o ,(f)=1(f) |.#
need not be pure in general.

Nevertheless, by the generalized Wold decomposition of [3, Theorem 11],
up to unitary equivalence ¢4 has the form

ou(f) = M;|H¥ (0) ® A,

where X, is some other Hilbert space, o is some group representation in
Hom(mo(R), %(A ,)) and f— M, | #Z is a OR-normal representation. That it may
now be assumed that .# has the form Hyx () ® (AL%(OR))", and that & = H3(f)
sits inside ./# as {@f®A4f: fe H;(ﬂ)} for some @ in the unit ball of Hg(x, »,) (2, B)
follows by making the appropriate modifications to the argument of Douglas [11,
pp. 191— 193], where the case R= D is worked out with the generalization to a
general R in mind.

3. UNBOUNDED LIFTINGS

The purpose of this Section is to show that the lifting problem discussed in
the introduction always has a solution, if we allow certain types of unbounded
operators. The basic idea again comes from Clark’s discussion of the lifting theo-
rem for the polydisk [10].

Now consider Hilbert spaces % and 2 ,, group representations o€
€ Hom(ny(R), %#(A ,)) and f e Hom (ny(R), %(#)) and a fixed element @ of
the unit ball of Hgur, x (2, B). It will be convenient to represent the elements of
the Hilbert spaces mentioned in the previous section as column vectors rather than



A LIFTING THEOREM FOR OPERATOR MODELS 9

in the notation of direct sums. Thus we have

[ L?{_ T
@ et

| (aL%) |

[ Hix () ]
.ﬂ ==

| (ALy) |

/Vz[j]Hﬁf(ﬂ)

and # = 4 © N.
In addition set

92:[ 0 ]
(ALx)"

Then operators on any of these spaces can be represented by 2 x 2 operator matri-
ces, and this convention we follow in this Section and the next.
Next consider the class

o How (o) 0
AL:;’(;{,, ) AL?(;«/)A

of operator matrices ¥ of the form
Y/ — [ lp21 O ]
l/’?.l lpZZ
where Y, € Hiﬂ(,m‘ (a,a), Yy € Lzz’(xf., ) With (Y(2)H ) < (4(2)H#) for a.e
z on OR, and Y, € LS with Ker A(z)cKer ypy(z) and (Yau(2)) < (A(2)4).
for a.e. zin dR. A ¥ e #2 s said to be O-compatible if ¥ A" = A; by this we mean
that, if f'is any element of A" such that ¥f'is in .#, then in fact ¥fis in A", If D is any

subspace of .#, let Dy be the manifold of all functions in D of the form P,g
where g ranges over

Hy, ()

(4L%)"
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and Pj is the orthogonal projection of .4 onto D. We note that by the definition
of 42, and ¥ in 42 maps

Hi, (=)

(ALY

into .. In particular, for D= < 4, # p is dense in . Finally, if ¥ is a @-com-
patible element of J2, define Ty on #y by Ty f= Py Wg where f = Py g and

Hy (%)
ge

(AL%)"

It is easy to check that the @-compatibility of ¥ implies that Ty is well-defined on
H# g, and thus Ty is defined from a dense subset of 2 into #. In the case where
Ty has a (necessarily unique) bounded extension to all of #, we will say that
¥ e #(0). This however does not preclude the possibility that W itself is unbound-
ed as an operator on ./#.

THEOREM 3.1. Any operator T on  commuting with ¢ o(Rat(R)) has the Jorm
T = Ty for some ¥ in B(O). Conversely, every such Ty commutes with oo(Rat (R)).

Proof. If ¥ is in #(0), the check that T\, commutes with ¢ o(Rat(R)) proceeds
as in the polydisc setting [9].

Conversely, suppose that Te#(#) commutes with og(Rat(R)). We wish
to define

Y1(2) 0

Y(z) =
® [ml(z) Yasl)

:l, (zedR)

so that ¥ e #(@) and T = Ty . We first define the components yr; and s, as follows.
Let E, be a fixed element of Hgr,y(a, €) N (Hzx (e, o)) (e the identity
element of Hom (ng(R), #(A ). For k,eX, and zeOR, set

Y2k, . EE (2 ky
[ Yar(2) ey ] = (TP ”[ o ” @).

Letting z vary now, we verify that

[‘”H] Ek,.— TPy [ E "f ] € M.

21 g
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Hence y,E, is an operator-valued function mapping &, into Hir‘(oc) and Y5, E,
is an operator-valued function mapping 4", into (4L%)". It follows that Y, E,
and y,, E, are square-integrable in operator norm and that (s,(2)# )" =(4(z)")”
for a.e. z Then also Yy; = (W EDE; " and ¥sy = (¥, E,)E;* are square-integrable
in operator norm.

To show that ¥ e .2, it remains only to define /., appropriately. By iden-
tifying (4L3)~ with %, we see that it suffices to define a Voo €% (R) which com-
mutes with M|# for all f in Rat(R). To do this we first need some information
regarding the geometry of our model space. Analogous facts for the Sz.-Nagy-
Foias model (i.e. the case R = D) are discussed in ref. [16, Chapter II].

LemmMa 3.2, Let

& ={keid: Ok =0 for a.e. zeIR}

and let Py be the orthogonal projection of A" onto . Then
(i) P2A(z) = A(z) Po= Py for a.e. z€OR
(ii) Pz B(A) = B(A)Pgs for all A€ my(R)

‘and
i) B O (Pa #) = {[2 ] heH@(ﬁ)} .

Proof. Since A(z)=(I —B(2)*O(z))"* by definition, (i) is clear. If k €%, then
for any A in n(R), © o A7 (2)k = 0 for ae. z, or a(4™)) OC)B(A ) k = a(A)*
O(2)(A)k = 0, which shows that f(4)k €#. This proves (@). If ke ZO(Pai),

then k is orthogonal to 5# and hence is in A", Since k € £, k has the form [2 ], and

since k € A, k has the form [i}h
1

] for some /i € Hﬁf(ﬁ). Hence we must have &4= 0

which implies h(z) e# a.e. Then by (i), A(z2)h(z) = h(z), and hence k = ?] The
1

argument is reversible and hence any such k is in # © (Pa25#)", and (jii) follows.
Lemma 3.3, For any f in i,

| Pafll = lim [loo(e")* f1,

FAud® o]

where @ is any inner function in Rat(R) ( for example, the Ahlfors function associated
with a point t in R [5]).

Proof. The proof is a straightforward computation. The corresponding fact
for the disk is Proposition I1.3.2. of ref. [16].
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For ke # of the form k = Pgh for some he #, we define Yhk= PaT*h.
The computation, using Lemma 3.3,

1Ykl = limlog(@™)* T*h || = lim || T*o6(¢")* || < || T* || lim |lo o(@")*h|| =

H=CO n-+0oo n->00

= 1T* %

shows that y¥ is well-defined and has a unique bounded extension to (Pgi)”
with norm bounded by ||7*#||. Now by Lemma 3.2,

RO (Pak) = {[Z ]: he pr(’ﬂ)} .
Hence the representation 3 : =My |(Pas#)" is 0 R-subnormal with dR-normal
extension t*:f — M7|%, fe Rat(R). Furthermore the computation

M y#,Pah = M7PaT*h = Pao o(f)* T*h = PaT* 0 o(f)* h =
= ‘/’Zfzpﬂo'e(f)* h= ‘//giszP.%h

shows that ¥ commutes with t¥(Rat(R)) on (Pz #) . To extend Y, to all of
2 in such a way that

(i) YEMz = M7y% on & for feRat (R),
(ii) Y§PaPx = PaT*Px
and
i) Y& < || T*||, it suffices to invoke the following general fact.

LEMMA 3.4. If mo: Rat(R) > L(#) is a OR-subnormal representation with

dR-normal extension t: Rat(R) - L(A) and T € L(H) commutes with 1o(Rat(R)),
then there is an X e L(X') such that XH < #, X |# =T, and || X|| = ||T|.

Proof . The class of d R-subnormal representations is characterized by Theorem
11 of ref. [3]. For the case where 7, is in addition d R-pure, the above Lemma fol-
Tows from the results of Section 1.6 of ref. [3]. The general case follows by making
appropriate modifications.

We now have %, defined on R and satisfying (i), (@) and (iii). We let
be the adjoint of ¥¥;, and now consider y,, as defined on (ALgy)‘. By (i), {rgp com-
mutes with all scalar multiplication operators on (AL%)", and hence must itself be
multiplication by an operator-valued function y,,(z) with Ker ,.(z) = Ker 4(z)
and (You(2) ) < (A(2)4y for a.e.z Set

Yu(2) 0 ]

b4 —
@ [wm(z) Yaul2)
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Then ¥e 2 It remains to show that ¥ e #(0) and that T = Ty.
We note that the operator ¥ of multiplication by ¥(z) is defined on the dense
subset

H}O.(a)
@l{l =

(ALY

of /4. We next show that for fe @y, (iv) P»¥ [ = TP#f. This equation readily
implies that ¥ is @-compatible and that 7 = T, and hence the theorem,
First, if

N
= Z riEk;
i=1

0

for r; & Rat(R) and k; €A, then

TPef=T ¥ 06r) Pe[ 5]

¢

- f;o'e(".') TP#[E:)ki] :

N
=Px' Z r,~ T[Eaki]
i=1 0

N )
—Ps S ‘I’r,-[ Egk']
i=1

= Pe¥ f.

Next we note from (ii) that P\l Pa=TPxPg, and, since ¥ is lower-triangular,
V9oPa2 = WPz Hence Pp¥PPz = TPx Pg, and (iv) follows for fe # as well,

4. BOUNDED LIFTINGS

The purpose of this Section is to show that, if in addition it is assumed that
both dim /" <oo and dim 4", < oo, then the ¥ e #(O) of the previous Section
may actually be chosen to lie in

H-c:;(-’r.)(a’ Ot) 0
S e

ALgwr,, x) ALZ )4
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and thus to define a bounded multiplication operator on

Hy (2)
M=

(AL%)"

We first need to establish some duality relations among #* and other related
spaces. For the Cy case (4 = 0), these relations are indicated by Muhly [12] for
the case R = D, and by Abrahamse [I] for a general R but with scalar valued
functions.

The space #* defined above is a Banach space when given the operator norm
inherited from £(.#) (or equivalently, the essential supremum of the pointwise
operator norm). One can also view J* isometrically as a space of multiplication
operators on the space

Ly,
EZ —
(AL%)"
Then #* is a subalgebra of the commutant of {M,| Z:fe Rat(l_i—)}. This latter
commutant in turn consists of multiplication operators whose multipliers belong to

7 LZx,, L3, x,4
0 __

ALZ ., 5y ALG x4

J* is a Banach space when given the operator norm inherited from .#(2), or equi-
valently, the essential supremum of the pointwise operator norms. It also happens
that £ can be viewed as the dual of a Banach space of trace-class multiplication
operators

1 1
~ | Loy Loy, #,) 4
T =

ALeyw,, 7y ALgye A
For Fe ° and fe 7, we define the duality by the bilinear form

1

[F,f]1= te(Ff) = S t1(F(z) /(2)) v(z) dz
2ni Jor

e

where the appropriate definition of ||f]] is

Ifll = Tef= — [ o) o)z,
2ni OR
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For group representations «e Hom(no(R), %(#4",)) and B e Hom(ny(R),
U(A)), and 1 < p,q < oo, define the space

Kocawr, #0000 B) = v HEqwr, x ), ).
Then one can check that F* is the annihilator of
Klocl(f’ f.)(“’ ) 0
ALél(x“, x/') 0

in the above pairing between F*and 7,
Next, the set of operator matrices [LZ.x,, x) Lo 4] maps

2

L.
(ALyy
into Ly via multiplication, and is the dual, via the bilinear form above, of
Lél(w, x,)
AL,
the space of trace-class multiplication operators mapping Ly into
(L%,
(ary
The subspace [Hgx,, (B, @) 0] of [L?(,f‘, x)L°_§(xo) Alis precisely the annihilator of
Ktl)cl(f, x (@, B)
ALEx
Furthermore the operator [A@ ]gives an isometric injection of [Her,, ) (B,2) 0]

into
H.;?(Jf.) (OC’ OC) 0

ALZx,, ) ALgx4
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The following lemma follows from the discussion above and general Banach space
facts.

LemMA 4.1. The quotient Banach space

Hewry (2,0) 0 o
|[HZx,, x)(B2) 0]
ALZ i, ) ALZx)4 1] 14

is the dual of the quotient Banach space

Kocyr, x ), B) Koo (o, a) 0
[6*4]
ALy | LALEvr, ) 0

The following generalization of the Riesz factorization lemma is a key ingre-
dient for the proof of the lifting theorem to follow.

LemMma 4.2, Assume that dimA" < dimA ', < oo. Then any element F of
Koo, x )@, B)
ALy
has a factorization F = F,F; where

H&x (0, e) 0
Fl € s

ALcyx,, ) ALga

Kocux, %) (e, B)
Fe

Léux,)

and max {|| F; |3, || Fz|3} < M?||F|, where M is a constant independent of F (2-
norms are Hilbert-Schmidt norms, 1-norms are trace norms).

Proof. We consider R as embedded as a fundamental polygon for a group G
of linear fractional transformation on the universal covering surface D for R (see
Section 3.1 of ref. [7]). The group G is isomorphic in a canonical way to the funda-
mental group me(R), and this isomorphism induces a correspondence o — @ of
Hom(n(R), %(Jf )) onto Hom (G, %(% ) (¢ any Hilbert space). For group homo-
morphisms & € Hom (G, 01/(1” .)) and /3 € Hom(G %)), spaces of operator-valued
functions Hc«w #,) (cx B) and HY P, (oz ﬂ) and of vector-valued function
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Hl (), all functions now defined on D (or 0D), ‘are defined as in [7, Section
3). Now the function

Kocwor, x,(% B)
Fe

AL?l(,;{)

defined on ORNAD extends to a function

A A
A | Kocrr, (@ B)
Fe

ALZ‘OI(X)
defined on 0D by demanding that

ﬁ,A:[“(A) 0 ]1?/3(/1)*
0 B(4)
for all 4eG. (Here Kooy, Jm(& [3) =7 1ch(xf f_)(a /3) Where p is the ana-

lytic continuation of v to all of D, and A(z) =(I _@(z)* @(z))l/2 where @ is
the analytic continuation of @ to D.) If we can produce an

o ng(x’.) (&9 2) 0 .
1 €

A A
ALSr, 4y ALcyr
and an

A A
A KSOC"*(.Z{", 4 ,)(es B)

26

L&xy

such that F— FF, and max {| £ II% | K|} < M2||F], the Lemma will follow
by restricting ﬁ, 1::1 and 1?2 to IR NJID.

Since for the rest of the proof all the action is on 0D, we now drop the *
notation. Since dim " < dim",, Theorem 1.2, applied to

[a»z/bl) 1 0] F
0 I

where b, is the Blaschke factor with zeroe at the pole of v and b, is the Blaschke
product with zeroes at the zeroes of v, implies that F can be factored as F = GH

2 ~ c. 1941
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with
gu O Hes @) 0
G = € >
821 822 ALSyw,, )  ALGwry .
hy v HGx, )
H = (S )
hy Léiory

where v H is (V1, Vy)-outer, (F*F)Y2= H*H and G*G=HH*. We next claim that there
is a y e Hom (G, %(A4"%) such that g,; € How (o, y)and by € v Her, 5 (Y, B) =
= Kocror, x)(7, B). To see this, note that for 4 in G, on the one hand

(Fo A(2)*F o AQ)M2 = H o A(Zy*H o A(2),

while on the other,
(F o AQ2)*F o A(2))¥ 2 = (A F(2)* F(2))V? p(A)* = B(4) H(z)*H(z) f(4A)*.

Since (b,/by) HB(A)* and (by/b)H ° A are both (V;, Vy)-outer, the uniqueness assertion
of Theorem 1.2 implies that there is a partial isometry function
A 0
1 =304, =[" ) ]
0 'Y2(As Z)

with initial space equal to [Ran H(z)I” and final space equal to [Ran H o A(2)]~
such that Ho A(z) = y(A4, 2)H(z) f(A)*. Then necessarily y,(4) has initial and
final space equal to [Ran 4,(z)]” = [Ran /; o A(2)]". We can redefine y,(4) to be
unitary by setting it equal to the identity on [Ran A,(2)]* without destroying any
of the above properties. That v, is a group representation, that is, satisfies the
dentity y,(4B) = y,(4)y,(B) follows by computing 5, o (4B) = (h; o A) o B in two
different ways, much like a computation in the proof of Theorem 11 of ref. [3].
From Iy o A = y,(ADhP(A)*, g, 7y = f; (the first component of F) and fie A =
= a(A) f1p(A)*, it follows that gy; o 4 = a(A) gy; 7:(4)* as well.

Now by Theorem 3.2 of ref. [7], since dim #™* < oo, for each y € Hom (G,
U(A %)) there is an

E, € Hzxr (v, €) 0 (Hawr (e, V)7
such that
sup {IIE,l, I1EH} < M < oo.
v

We now set
F) = 6) [ E 0}

0 1
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and
. Ey(z)“1 0
F@) —[ .

H(z).
LS
Then F = F,F, (restricted to R) satisfies all the requirements of Lemma 4.1.

The statement and proof of the next theorem is suggested by the lifting theorem
proved by Abrahamse [1] for the scalar Cy, case. The duality techniques go back
to the original paper of Sarason [14].

THEOREM 4.3. Let o: Rat(R) - ¥ (#) be a OR-pure c.c.u. representation.
Suppose that, if 1= Rat(R) - L(2) is a minimal 0R-normal dilation of o, the
normal operator 1(z) has bounded spectral multiplicity function. Then, for any operator
Te%(#) such that T commutes with o(Rat(R)) there is a Y e £(D) commuting
with t(Rat(R)), and a constant M depending only possibly on the bound for the
spectral multiplicity function for 1(z), such that

@ 1Yl < MIT|
and

(i) T= PxY|#.

Proof. By using Theorem 2.1, we can assume that ¢ = o, for some @ in the
unit ball of HZx, x,) (2, B). By possibly considering ¢* instead of ¢ (where o*(f)=
= g(f)*), we can assume that dim " < dim 2",. Finally the boundedness assump-
tion on the spectral multiplicity function of z(z) implies that we can assume that
dim J* < oco.

Next note that we may identify the space

dim o, ) A H é*(yf,)((l, e) o )
@ o with #, = e Hear,, (B, €
! ALZC?(M,, #) 4
via the correspondence

dim o, dim ',

(“B f; - Z <'5 ei>ﬁ

1 1
where {e;} is a fixed orthonormal basis for 2#,.. The space ,9%1 @AL%‘*(;{)A in turn
is isometrically isomorphic in a canonical way to

A Héz(f.)(aﬁ e) 0 @ : 0 H?‘;z(x/“, o) (ﬁ, e) O
H = e )
AL2C?(.>{., x) AL%?(;{)A il 0 0 0

By Theorem 3.1 there is a ¥ € 4(@) such that T = Ty. Hence

dim o, dim &,

® T= @ Ty
1 1
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defines a bounded operator on JAfl. By the proof of Theorem 3.1, vy, (the lower
right entry of ¥) is a bounded operator on (AL%)~ with [y2]l <||T|. Hence the

operator L,,, on ALZC:W)A of multiplication by /5, on the left is bounded by || Tl
dim X,
Thus the operator ( @ T) ® L,,, which can be considered to be acting

on Jf has norm equal to || T||
Now define the operator T,, from a dense subset of % into Jf by

Twth} viifh =P&%f
and

Hz’?‘(x")(as e) 0
€

AL%%(X‘, o) ALZCB(,){) 4

Then it is a simple check that fp on its domain agrees with the bounded operator
dim o,

( @ T) @®L,,,and thus has a unique bounded extension to all of # with I T,,([

= [|T|l. Conversely, if Y is any element of %#(©) such that TY = T,,, then Ty =
= Ty = T. Thus, to prove the Theorem, it suffices to produce a

Hz o (@ ) 0
Ye

AL;’(X‘, X) AL?(;{) A4

such that ]A"Y = f‘,, on JAK
This reduction enables us to use the duality results established above as follows.
Define a linear functional L on

Kocwr, » ), B) [ Kécror y(@, ) O
[6*4]
ALZ%M/)A ALocol(x_, x) 0

L({ flo*4]}) = Q2ri)™ S tr (Y(2) f(2) [0(2)* 4(2)]) v(z) dz.

OR

by

It is a routine check to show that L is well-defined. We wish to show that L
has a bounded extension to all of

| Kocvar, x )0 B) ] / K}DCI(-Y) 0]
(0*4] /

ALeyand ALtyr,xy O
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By Lemma 4.2, any fin

Kocwr, x,)(@, B)
AL%"I(}{)A
has a factorization f = gh where

Hgg(xf‘)(d, 6) 0

ge

ALGx,, ) ALGx)
and

Kocyr, x (e, B)

he

Lg(y/)

and
max {lgll3, 1A]2} < M2|f ..

Hence

L f[0*4]}) = S tr (¥ gh[@*4]) dm = S tr (h[@*4] Pg) dm =

OR OR

=<qu, [@Jh*> . .
4 Loww @)

One can check that [A@} h* is orthogonal to [f ] [Héa(,{.,,g, 0] in Léw_(g,{,, and
that ¥g is in
[ Hé’(x)(ot, e) 0
Achﬂ(xf., x) Acha(x/) A

Hence the above inner product is equal to

A 2} A
<TwP;;,g, P, [ y ]h> < Il lglhe Ile < 1T M2 £ 1.

x

It follows that L has a unique bounded extension as claimed. Now by Lemma 4.1,
there is a

H_og?(;r.)(d, oz) 0
Ye

AL, x) ALGZx 4
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such that

Y] < T M? and L({f[O%4]}) = Str (Yf[0*4]) dm.

By a computation similar to that above, we conclude that ]A",, = ]:;, Thus
Ty = Ty = T and the Theorem follows.

REMARK. For ¥ e %(0) and any 7y in Hom (ny(R), U(KX ), define ﬁ}i on a
dense subset of

n Hewy (7)) 0 © 01 [ Heuwx, x(B7) 0
H, = e
ALy, ) ALEs) 4 4 0 0 0

by fy”,h = P;% Y g where g is an element of

?

Hgoz(f.)(a5 y) 0
ALz, #) ALty 4

such that P;, g = h. The proof of Theorem 4.3 shows that
?

ILIl = sup {|T%]: y € Hom(ro(R), (A ))}.

This is the operator generalization of a result of Abrahamse [1] for the scalar Cy,
«case. Thus the open question of (bounded) lifting of the commutant for a model of
infinite rank is equivalent to the question of whether this supremum is finite in
general It is easily shown (using the Grauert-Bungart theorem, (see ref. [3]) that

each T;’, is similar to T} % = Ty, and thus each ||T | (for a fixed y) is finite. The
proof of Theorem 4.3 also shows that this question has an affirmative answer if
‘the assumptions of finite dimensionality can be removed from Theorem 3.2 of ref. [7].

5. COMPACT OPERATORS IN THE COMMUTANT

A c.c.u. representation o of Rat(R) is said to be of class Cyy (see refs. [4]
:and {8]) if both a(f,) and o(f;)* tend to zero in the strong operator topology whenever
the sequence {f,} cRat(R) tends to zero pointwise boundedly on R. If we set
0 = 0 as in Theorem 2.1, then ¢ is of class Cy, if and only if the characteristic
function © € Hz«, x (o, B) is inner, i.e. is unitary a.e. on dR. Since, in particular,
this implies dim 4" = dim 2", we may also assume that 2 = % . Since also in

%9

this case 4 = 0, the second component of the model space vanishes.
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The purpose of this section is to extend the characterization of the compact
operators in the commutant of a Cgyy contraction due to Muhly [12] to operators
of class Cyy of finite rank on a multiply connected domain. The result will depend
on the lifting theorem (Theorem 4.3) (specialized to C,, representations) and the
approximation result Theorem 3.6 of ref. [7].

For elements a and f of Hom(ny(R), %(X)), let Ccm(x)(“’ B) consist of those
functions f in L%(m) which are continuous on 4R\ (4R N C), and satisfy fo A =
= a(A) fB(A)* for all 4 in my(R). By an argument analogous to that given by
Muhly [12] for the disk case, it can be shown that K(I)cl(y{)(ﬂ, ) is the dual space
of Ccoo(,{)(oc, B)/A o i@, B), and hence LZ 4 (m)/H_‘;m (x, B) is the second
dual of Ccoo(x-)(a, ﬁ)/ACoom(oc, B). Muhly’s arguments also show that the linear
manifold Hg(x)(@, B) + Ccewux\(, B) is closed in Lgx)(m). Finally for f a scalar
or operator valued function, let M, be the operator of multiplication by f and
f+ the restricted operator M| Hfg(a).

THEOREM 5.1. Suppose X is a finite dimensional Hilbert space, o and p
are elements of Hom(no(R), %(HX)), © is an inner function in Hgx) (2, B), H
is the Hilbert space Hfg(oc)@@Hfr(B), and o: Rat(E)—n%(%) is the representation
defined by

o(f) = PxM;|#, fe Rat(R).

Then a compact operator T on H# is in the commutant of {o(f): fe Rat(i)} if and
only if there is a function ¥ in Hgx)(, o) such that ¥ © Hz(B)c OH (), O*¥
is in Hex (B, o) + Cioopp(Bs @), and T = P¥ .| #.

Proof of Sufficiency. Suppose O*) = Q + K where Q isin Hg (B, «) and
K is in Ccoo(‘x,)(ﬁ, o); then ¢ = O(2 4 K). We wish to show that T=Pxy, | #
is compact. Since Q is in Hgx)(f, @), P»@, Q.| = 0, and it suffices to show
that P»@®, K, | is compact.

Now we note that ch(m(ﬁ, o) is the uniform closure of [v714 Coo(f)(oc, pI* -+
+ Acoopry(B, o). (This is an easy operator generalization of Theorem 1.1 in [2].)
Since the map ¥— Px ¥, | # is continuous from Hg q(x, o) into £(#), we can assu-
me Kis in [”_lAcw(xf)(ﬁ’ a)l* + Apm(x,)(a, B). As above, the Acwm (a, IB) piece
induces the zero operator on J; so it suffices to assume that Kisin [v™14 (B> 1.
But

v—lACOO(;()(a7 ﬂ) = ZZblACm(‘xr)('y; ﬁ)
for an appropriate y in Hom(m(R), #(#')), where b, and b, are Blaschke

products on R chosen as in the proof of Lemma 4.2. Now by Theorem 3.6 of
Ref. [7], any element of Acwm(% B) can be approximated uniformly by a finite
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linear combination of inner functions in Acm(x)(y’ B). Hence we will be done if we
show that

P#@+Z1+b2+(B*)+ I H

is finite rank if B is an inner function in Acmm(y, B). Since B, b, and b, are all
continuous on E\(@R n C), one can show that

bib,B*Hy (0) = T @ Hy(B)

where J is afinite-dimensonal subspace of Ly((m) Tt now follows just as in Muhly’s
argument [12, p. 209] that P»@, b,,b,, B% | # has finite rank as asserted.

Proof of Necessity. If Tis in the commutant of {s(f): f'€ Rat(R)}, by Theorem
4.3 there is a ¥in Hgur)(a, «) such that T=P,¥, |s#. The problem is to show
that if T is compact, then any such P has the property that @*¥ is in Hgpr)(B, o) +
—+ Ccoo(x,)(ﬁ, o). We leave it to the reader to check that the duality properties of

Hzx(f, o)+ C o J/)(ﬂ’ o) mentioned above, together with Lemma 4.2, specialized
to the case where ©® is inner, as a substitute for the Riesz factorization lemma,
enables one to push Muhly’s arguments for the disk case, simplified to the case
where " is finite dimensional, through.
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