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CONTRACTIONS WITH RICH SPECTRUM
HAVE INVARIANT SUBSPACES

S. BROWN, B. CHEVREAU and C. PEARCY

1. INTRODUCTION

Let # be a separable, infinite dimensional, complex Hilbert space, and let
Z(s#) denote the algebra of all bounded linear operators on #. As usual, a subspace
A of A is said to be a nontrivial invariant subspace for an operator A in L(#) if
0) = M #  and AA <.4/. In [4] the first author solved the invariant subspace
problem for subnormal operators in () and in so doing originated a technique
for constructing invariant subspaces that was amenable to wider application.
In this paper we use the techniques and results of [4] to show (Theorem 4.1)
that all contraction operators in .#(5#) with sufficiently rich spectrum have non-
trivial invariant subspaces. The main new contributions to the ideas of [4] con-
tained in the present paper are the use of the Sz.-Nagy-Foias functional calculus
for contractions and Lemmas 4.5 and 4.6. For completeness, however, we havc
chosen to begin at the beginning, and thus we have included some preliminary
material of a general nature (§2) as well as some material on the Sz.-Nagy-
Foias functional calculus (§3). In addition, because of the different setting, many
of the results from [4] appear in a slightly different form. Nevertheless, it must
be said that the credit for Theorem 4.1 largely belongs to the first author.

Additional interesting results based on [4] and the present paper have
been obtained by Agler [1] and Stampfli [12].

2. GENERAL PRELIMINARIES

For purposes of completeness, we include some preparatory material of a
general nature.

ProposITION 2.1. Let X be a complex Banach space with dual X*, and let
L be a weak* closed subspace of X*. If “¥ denotes the preannihilator of ¥ in X,
then the annihilator (“YY of ¥ in X* is equal to &£, and the mapping o from
(X/°L)* onto & defined by setting d(_f):fo 7, f"\e (X/°L)*, where 1 is the quotient
map of X onto X[°%, is an isomorphism of (X[°LY* onto Z£.
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Proof. That (A¥)* =2 is Corollary 16.3 of [2], and that o« has the desired
properties is Proposition 16.6 of [2].

Throughout the paper, we will denote the Banach space of trace-class opera-
tors in () with the trace norm || ||, by (z¢). Recall from [5, Theorem 8, p. 105]
that setting

0 (4, T) = tr(AT), AeL(H), Te(x0),

induces a bilinear functional on Z(#) X (zc) that allows us to identify (zc)* with
ZL(A). This identification, which we use hereafter without further comment, has
the further property that the weak™® topology defined on £(#) = (1¢)* coincides
with the ultraweak topology on £ (). (For more information about the ultraweak
topology, see [5, p. 35].)

COROLLARY 2.2. If o is any ultraweakly closed subspace of L(#) and °sf is
the preannihilator of A in (tc), then ((tc)] ®=f)* can be identified with sf .

Proof. Apply Proposition 2.1 with X = (1¢) and ¥ = /.

We write (X*, w*) for the topological linear space consisting of the dual of
a Banach space X with its weak® topology.

THEOREM 2.3. Let X and Y be complex Banach spaces with X separable.
A linear mapping S:(X*, w*) — (Y*, w¥) is continuous if and only if whenever
a sequence {@,}3., converges to 0 in (X*, w*) then so does the sequence {S¢,}., in
(Y*, w*).

Before proving Theorem 2.3 we give a corollary needed later.

COROLLARY 2.4. Let X be a complex Banach and let 4/ be a weak* closed sub-
space of X*. Then the relative topology induced on M by (X*, w¥) coincides with
the weak* topology .# obtains as the dual of X[°4/. Consequently, if X is separable,
then the criterion for continuity obtained in Theorem 2.3 aslo applies to a linear
mapping S from . equipped with its relative topology in (X*,w®*) into a weak®
closed subspace & of (Y*, w*) equipped with its relative topology.

Proof. The equality of the two mentioned topologies is proved by inspection
with nets. Since X/°.# inherits the separability of X and .# and 4" can be identified
with (X/°.4#)* and (Y/°4°)*, respectively, the last statement is just a rephrasing of
Theorem 2.3.

In order to prove Theorem 2.3 we need two intermediate results.

ProrosITION 2.5. Let X and Y be Banach spaces. A linear mapping
S: (X*, w¥) - (Y*, w*) is continuous if and only if there exists a map T: Y - X
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such that
2 (Y, Soy={Ty,p), ye¥, peX*

Furthermore, when this happens T is a bounded linear map and S = T*.

Proof. Suppose first that there exists a map 7:Y — X such that (2) holds.
Let {@,} be a net converging to 0 in (X*, w*). For any y in Y we have (y, S¢,)=
= (Ty, ¢,), and therefore {y, Sp,) tends to O for all y. This proves the con-
tinuity of S (in the weak* topologies).

Conversely, suppose that S: (X*, w*) - (Y*, w*) is continous. Then for any
y in Y, the mapping ¢ — (y, Sg) is a continuous linear functional on (X*, w*),
and therefore (cf. [2, Problem 15J]) can be identified with a unique element 7y
of X satisfying (y, S¢) = (Ty, ¢). To prove the last statement, it is sufficient to
show that if (2) holds, then T is linear and bounded, for in this case by definition
we will have S = T*. But linearity results from a standard uniqueness argument
and boundedness from a straightforward application of the closed graph theorem.

The next proposition is contained in [2, Problem 16X].

PROPOSITION 2.6. Let X be a Banach space. A linear submanifold of X* is
weak® closed if and only if its intersection with the unit ball of X* is weak* closed.

Proof of Theorem 2.3. Only the “if” part is not trivial. Let then § be a
linear map from X* to Y* such that the sequence {Sp,}5>, converges weak* to 0
in Y* whenever {¢,}2, does so in X*. For any y in Y the mapping Ty: ¢ —
{y, S(p> 1s a linear functional on X*. Assume, for the moment, that Ty is weak*
continuous for all y. Then Ty can be identified with a unique element of X (cf.
[2, Problem 15J}), and the relation (2) holds. Thus, by Proposition 2.5, to complete
the proof we only need to show that each mapping Ty is weak* continuous, or
equivalently that it has weak* closed kernel (cf. [2, Problem 12UJ). Let E, =
=2* N Ker(Ty) where #* denotes the unit ball of X*. Since X is separable, #* is
metrizable and the weak* closure of E, coincides with its weak* sequential closure.
Let then {¢,}72, be a sequence in E, converging to some ¢ in X*. Since %* is weak*
closed, ¢ belongs to #*. By definition of E, we have (y, Sp,» = 0 for all n, and
by the hypothesis on S we get (y, Sp) = lim (y, S¢,» = 0, that is, ¢ belongs to
Ker(Ty). Thus E, is weak* closed and so is Ker(Ty) by Proposition 2.6. As observed
before, this concludes the proof.

THEOREM 2.7. Let X and Y be Banach spaces and let S be a continuous
linear map from (X*, w*) into (Y*, w*) with trivial kernel and norm closed range.
Then S(X*) is weak* closed and S is a weak* homeomorphism of X* onto S(X*).

Proof. By Proposition 2.5, § = T* with T a bounded linear operator from
Y to X. Since S(X*) is norm closed, it follows from {2, p. 359] that S(X*) is also
weak* closed and that the range of T is norm closed. By Proposition 2.1, there
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exists a Banach space Y; such that Y¥ = S(X*#), and by Corollary 2.4 there is no
loss of generality in viewing S as a map from X* onto Y;*. A repetition of the above:
arguments yields a bounded linear operator 7' from Y, to X with norm closed
range such that S = T}. The operator T; has trivial kernel because S is onto and
dense range because S is one-to-one. Therefore T,(Y;) = X and 7 is invertible.
It follows that S is also invertible and the equality $-1= (T-Y)* implies (by
Proposition 2.5) that S-1:(Y¥, w*) - (X*, w*) is continuous. Thus the proof is
complete.

Recall that a set G in a vector space X is said to be balanced if .G < G for
A} < 1. The absolutely convex hull of a set G is the smallest convex and balanced
set containing G. Alternatively it is the collection of all linear combinations
X, + ...+ ax, of vectors x,,...,x, in G such that fo| + ... + |a,| < 1.
The following is the last proposition of a general nature that we shall need.

PropoSITION 2.8. Let X be a complex Banach space, and let E be a subset
of the closed unit ball B of X such that for all ¢ in X*, ||lp|| = sup (x, ¢).
xek

Then the closure of the absolutely convex hull of E is the entire unit ball 4.

Proof. Let € be the closed absolutely convex hull of E (that is, the closure
of the absolutely convex hull of E). Clearly € = #. Suppose Z # € and let x,
belong to #\C. By a standard consequence of the Hahn-Banach theorem (cf.
{2, Prop. 14.15]), there exists a linear functional g in X* and a real number ¢ such
that Re(g(x)) < c for all x in ¥, while Re(g(x,))> ¢. Since 0% the number ¢
is non-negative. For any x in €, write |g(x)| = Ag(x) with [A] = 1. We have |g(x)| =
= Re(dg(x)) = Re(g(4Ax)) < c¢. Thus [g(x)] <€ ¢ for all x in ¥. But then, by the
hypothesis on E, we have |igl| < ¢, contradicting the fact that ||g]| = [g{x.)] =
= Re (g(x,y)) > ¢. Therefore ¥ = 4.

To see what the preceding results have to do with an arbitrary operator A
in Z(s#), we need the following definition.

DEFINITION 2.9. Let A e#(s#). We denote by o7, the smallest ultraweakly
closed subalgebra of #(#) containing 4 and 1, and we call &/, the ultraweakly
closed algebra generated by A. (It is clear that o7, is just the closure in the ultraweak
topology of the algebra of all polynomials p(4).)

Thus &/, contains the norm closed algebra generated by A and iscontained
in the weakly closed algebra generated by 4. Moreover, since L () = (1¢)*, it
follows from Proposition 2.1 that o/, is the dual space of (r¢)/*s/,, that is,
o, = ((rc)/* s/ 4)*, where the duality is given by the relation

3) ([T}, B) = tr(BT), Be s, [T) e (ze)fo st 4

Thus &7, carries a weak* topology, and by virtue of Corollary 2.4, this topology
on «/ , coincides with the relative ultraweak topology 7, obtains as a subspace of
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Z(#). This topology on o/, will be called interchangeably the ultraweak or weak*
topology on & 4.

3. FUNCTIONAL CALCULUS PRELIMINARIES

In this section we set forth for completeness some preliminary material on
function spaces and the Sz.-Nagy-Foias functional calculus for contractions [8,
p. 109] that will be needed in Section 4.

We write T for the unit circle in the complex plane and D for the open
unit disc Int(7). For 1 < p < +o0, let L(T) denote the Banach space of all
functions f on T such that |f|? is integrable with respect to normalized Lebesgue
measure on T, and let Hy(T) denote the subspace of the Hilbert space L,(T) spanned
by the functions {t"}$,. Furthermore, let L (T") denote the Banach algebra of all
essentially bounded functions in L,(T) under the essential supremum norm, and
let H,= H.(T) be the closed subalgebra of L (T) defined by Ho=L(T) N Hy(T).
Since L(T)=L(T)*, L (T) carries a weak* topology, and it is well known that
H, is also closed in this topology (cf. [6, p. 27]). By Corollary 2.4, the relative
weak™ topology on H,, is the same as the weak* topology that accrues to H,, by
virtue of being the dual space of L,(T)/*H.(Prop. 2.1). Henceforth in this paper we
shall refer to this topology simply as the weak® topology on H, without further
explanation.

Let &7, denote the Banach algebra of all bounded holomorphic functions on
D under the sup norm. There is an intimate and well-known connection between
H,, and &/, that we shall need later (cf. [11], Th. 17.10]).

ProposiTION 3.1. There is a unique unital Banach algebra isomorphism ~ of
H, onto o o, such that p(t)=p() for every polynomial p. If his any function in H,
then the sequence {l;(n)},‘f:o of Fourier coefficients of h relative to the orthonormal
basis {t"}2, for HZ(T ) is identical with the sequence of Taylor coefficients of h.
Moreover h(t) = lrlTrI} h(rt) almost everywhere on T, and for every Ay in D,

~ 1
/ Ao = -
o) 27 S

h(t)
Ti—4

de.

Consequently if A, € D and E,  is the linear functional on H,, obtained by setting E; (h)=
= h(lg), h € Hy, then E,  is weak* continuous. Furthermore, for every positive integer

n, the linear functional h — /zA(n) on H, is weak* continuous. Finally, if ly€ D,
then any h in H, can be decomposed as h(t)= h(A,)-+ (t — Ao)g(t) where g e H_, and

llglleo < /A — 146])) 1A llo -
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We now recall some of the facts about the Sz.-Nagy-Foias functional calculus
for contractions (i.e., for operators 4 satisfying [[4]] < 1) that we will need later.

A contraction 4 is called completely nonunitary if there exists no reducing subspace
A # (0) for A4 such that 4|.# is unitary.

THEOREM 3.2. Let A be a completely nonunitary contraction in £(#), and let
& 4 be the ultraweakly closed algebra generated by A (Def. 2.9). Then there is an
algebra homomorphism @:h — h(4) of H,, into sf , with the following properties:
@) If h(t) = 1, then h(A) = 1, and if h(t) = 1, then h(4) = A,
b)) If he H,, and /;(/1) = Y, c;d* then h(4) = lim Y, rhc,d*,  where  this
k=0 L N
limit exists in the strong operator topology,

©) A < ||All for every hin He,

(d) If {h,} is a bounded sequence in H,, and {h,} converges pointwise to O on D,
then {h,(A)} converges to O in the weak* topology on s ,; if the convergence o
{h,} to O is uniform in D, then |h(A)| — 0.

() If {h,} is a bounded sequence in H,, and {h(t)} converges to zero almost
everywhere on T, then {h,(A)} converges to O in the ultrastrong operator topology
(¢f. 14, p. 36)),

(£) The mapping ¢ is continuous if both H_, and </ , are given their weak™ topo-
logies,

(8) If o is an isometry, then ¢ is a Banach algebra isomorphism of H,, onto
o 4 that is moreover a homeomorphism when H,, and s/, are given their weak®
topologies.

Proof. Most of this result is contained in Theorem III.1.2 of [8), but there
are some few details to be checked. Since H, is the weak* closure of the set of poly-
nomials and (a) is valid, to verify that all operators i(A4) belong to .« ,, it suffices
to prove (f). But according to Theorem 2.3 (which is applicable since L(T) is
separable), to prove (f) it suffices to show that if {A,} is a sequence in H,, that
is converging weak® to 0, then the sequence {4,(4)} converges ultraweakly to zero.
Such a sequence {h,} must be bounded by the uniform boundedness principle and
must satisfy /1~,,(A) — 0 pointwise on D by Proposition 3.1. Thus the desired conti-
nuity follows from (d), which is essentially contained in Theorem IIL. 1.2. of [7],
and the well-known fact that on bounded subsets of #(#°) the weak and ultraweak
operator topologies coincide, as do the strong and ultrastrong operator topologies
[5, p- 36). To prove (g) it suffices to note that if ¢ is an isometry, then the range
of ¢ is norm closed, and thus by Theorem 2.7, range ¢ is weak® closed and ¢ isa
weak* homeomorphism of H_, onto range ¢. But the only ultraweakly closed subal-
gebra of &/, containing 4 and 1 is 7 , itself, so range ¢ = & ,.



CONTRACTIONS WITH RICH SPECTRUM HAVE INVARIANT SUBSPACES 129

4. THE MAIN THEOREM

In this section we finally prove the central theorem of the paper, which is
the following.

THEOREM 4.1, Let A be any operator in L(#) such that |A|| = 1 and such
that 6(A) n D is sufficiently large that

) sup [A(A)| = || Al o> /1 € Hoo.
A€ ynD

Then A has a nontrivial invariant subspace.

Obviously this theorem applies to any contraction whose spectrum is the
closed unit disc, and, more generally, by the maximum modulus principle, to any
contraction A such that ¢(4) contains some annulus {4:1 —¢ < |4 < 1}. More-
over, (4) will also be satisfied if 6(4) simply contains the union of the unit circle
and a spiral asymptotic to the unit circle. In fact, by [10, Prop. 4.15] there are
operators A satisfying (4) such that ¢(4) n D is countable.

The proof of this theorem will be accomplished by making some preliminary
reductions and then proving a sequence of lemmas. There are several assumptions
that one can make about the operator 4 in question without loss of generality
when looking for invariant subspaces. First, we may (and do) assume that A4
is completely nonunitary. (For if not, then the unitary part of 4 provides a supply
of invariant subspaces.) Next, note that by virtue of (4), 4 is not a scalar. Thus
by [8, Th. I1.5.4] we may assume, by taking adjoints if necessary, that the sequence
{4,}%., tends to 0 in the strong operator topology. (Note that taking adjoints does
not affect the validity of (4).) Finally, we may suppose that the left essential spec-
trum o,,(4) of A coincides with o(4), for otherwise either 4 or 4* has an eigen-
value (cf. [9, p. 47]).

Since A is completely nonunitary, we may consider the homomorphism
¢: H,, - &/, given by Theorem 3.2. By [7, Corollary 3.1}, we have, for any /4 in

H,, I?(a(A) < D) n o(h(A)). Therefore, by (4),
lhlle = sup [AA)] < ||,
A€a(A)ND

and by virtue of (¢) of Theorem 3.2 we conclude that ||A|l,= ||A(4)| for every A
in H,, or, in other words, that ¢ is an isometry. Thus (g) of the same theorem tells
us that the map # — h(A) is a Banach algebra isomorphism of H,, onto &, that is,
at the same time, a homeomorphism between H,, and &/, when these algebras are
given their weak* topologies. This is an important ingredient in the proof of
Theorem 4.1, and we -use it first to obtain the following lemma. Throughout the
remainder of the paper, we shall write Q for the quotient space (zc)/* &, Wwhich
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is the predual of &7 ,. Elements of Q will be written as equivalence classes [C], where
C € (z¢), and the quotient norm on Q will be denoted by || ||,.

LEMMA 4.2. For every A in D, there exists an element [C,] in Q such that
©) {C3l, A)y = tr(h(A)C;) = h(A), he He,

where the notation {[C,], h(4)) is as in (3) and denotes the dual action between o/ ,
and Q.

Proof. We observed in Proposition 3.1 that for any fixed 4 in D, the mapping
h ~ h(A) is a weak* continuous linear functional on H,,. Thus, since the map h(4)—h
is a weak* homeomorphism of &/, onto H,, the map A(4) — l;(l) is a weak™® conti-
nuous linear functional on & ,. But according to [2, Problem 15J], suchlinear function-
als must arise from the dual action of Q on &, and hence there exists an element
[C,]in Q such that (5) is valid.

We turn now to a brief outline of another key idea from [4]. As usual, if
x,ye, we denote by x ® y the rank-one operator u — (u, y)x in L(3F). It is
well-known that ||x ® |l = ||lx ® x|, = ||x]|-||y]| where || ||,, as before, denotes
the trace norm. Moreover, an easy computation shows that tr(x ® y) = (x, »)
and that if Be%(#), then B(x ® y) = Bx ® y. Suppose, for the moment, that
it can be shown that there exist vectors x and y in 2# such that [x ® y] = [C,] in
0, where C, is as in Lemma 4.2, Then for every 4 in H,

h(0) = tr(W(A)(x ® ) = tr(h(A)x ® ) = (h(A)x, y).
In particular, taking 2 = 1, we see that (x, y) = 1, so that x and y are nonzero.
Moreover, taking A(t) = ¢"+1, we see that (4%(4x), y) = 0 for all positive integers n.
If Ax = 0, then kernel 4 is a nontrivial invariant subspace for 4, while if Ax # 0,
then Ax is noncyclic for 4, in which case \/ A"(4x) is a nontrivial invariant sub-

n=0
space for A. Thus the proof of Theorem 4.1 can be completed by proving the
existence of vectors x and y in s such that [x ® y] = [C,)}, and this is accomplished
by establishing a sequence of lemmas. The first lemma shows that for any A in
o(4A)n D, [C,] is at least a limit (in Q) of images of rank-one operators.

LemMa 4.3. (cf. [4, Lemma 4.2)). Let Aeo(A)n D. Then there exists an
orthonormal sequence {x;}{2, in H such that |[(A — X)x;|| = 0, and for any such
sequence, ||[x; ® x;J —[C;]llp — O.

Proof. Since A € o1,(4), one knows (cf. [9, Prop. 2.15]) that there exists an
orthonormal sequence {x;}f2, in # such that ||(4 — A)x;|| — 0. Since the element
[x; ® x;]—[C.] belongs to the Banach space Q whose dual is &, it follows from
a consequence of the Hahn-Banach theorem (cf. [2, Cor 14.11]) that for each i
there exists an operator B; = hy(4) in &/, such that || B;]| = [|A]lc = 1 and

[1x: @ x;] —I[Clllg == x: ® x]—IC)), Bi)
= tr(h(A)(x; ® x; — C})).
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Let 8, = 71i(/1) and write h,(t) = B; + (t — Ak (t). Then, by Proposition 3.1, k;e H,,
and || k;|le < m = 2/(1 — |A|). Thus for each i we have

1 @ x]—I[Cilllg = tr({B; + ki(A) (A — 1} {x; ® x;— C}})
= Bi{tr(x; ® x) — tr(C)} + trky(d) (4 — ) (x; ® x)
= tr({ky(4) (4 — x;} ® x) = (ki(A) (4 — Nx;, x;)
< k(D114 — x|
since tr(x; ® x;) = 1and tr(C;) = {|C,], 1>=1 also. From the facts that [|k,(4)] =

= k|l < m and [|[(4 — Dx;|| - 0 we deduce the desired resuit.

LemMMA 4.4 (cf. [4, Lemma 4.3]). Let Leo(A)n D and let {x;}2; be any
orthonormal sequence such that ||(A— A)x;]| = 0. Then for any fixed w in 3,
lI[x; ® wilig - 0.

Proof. Fust as in the previous lemma, we conclude that there exists a sequence
{h;}s2, of functions in H,, such that for all i, ||4;]j, = 1 and

[[x: ® wlllg = tr(h:,(4) (x; ® w)) = (hi(A)x;, w).
Writing as before /1,(t) = l;i(l) -+ (t — A) ki(t), we have
11 ® wlllg = Au(2) (xeiy w) + (ki(A) (4 — D)xi, w).

The first summand on the right tends to zero since the /~zi(/l) are bounded and {x;}
is an orthonormal sequence, and the second summand tends to zero as before;

hence the result.
The next lemma is almost a symmetrical version of Lemma 4.4, but it is

much harder to prove.

LemMmA 4.5. Let {x;}{2, be any orthonormal sequence in #. Then for every
JSixed win A, ||[[w ® xi]llg = 0.

Proof. Once again, let {#;} be a sequence of functions in the unit sphere of H,
such that

v ® xilllp = (W @ xi], hi(4)) =
= tr(h(A4) (W ® x))) = u({h(ADw} ® x;) =

= (h(A)w, x;).

Suppose now that this sequence does not converge to zero. Then there exist a positive
number & and a subsequence {i;} of positive integers such that (4, (A)w, x;) > 6.
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Since the closed unit ball of H,, is weak* compact, there exists a subsequence {A; jk}
of i;, converging (in the weak* topology) to some g in the unit ball of H,. For
convenience of notation we set g, = lzijk—g and y, = x;, . Since (g(A)w, y,)—0,
it follows that for & sufficiently large, |(gi(4A)w, y)| > 0, and it is clear from the
definition that [|g,[lo < 2 and that {g,} converges weak* to 0. Using the fact that
{A"} converges strongly to 0, we fix a positive integer N such that [[ANw]| < §/6.
We write

gt) = pu(®) + t"m, (1)

where p, is a polynomial of degree at most N — 1, the coefficients of p, are the
corresponding Fourier coefficients of g,, and m, € H,.

By Proposition 3.1, if # is any fixed positive integer, then the sequence {gk(lz)}
of n'® Fourier coefficients of the sequence {g;} must tend to zero. Thus, since ||p; |\,
is bounded by the sum of the moduli of the N coefficients of p,, we have'|p,ll,— 0.
Furthermore, since [lg,llo < 2 for all k, it follows that ||m, ||, <3 for k sufficiently
large. Thus the inequality

0 < (g(Aw, yIl = [(p(Dw, ¥) + (m (D) ANw, Il <
< (DIl + |l D1 1AW < i pelleo - [[w ] + 3(5/6)

is both valid and untenable for k sufficiently large, and we have reached a contra-
diction.

LEMMA 4.6. Let 4y, ..., A, be any finite sequence of (not necessarily distinct)
numbers from o(A)n D. Then there exists a corresponding family {x}}, ..., {x}}

of mutually orthogonal orthonormal sequences such that lim ||(4 — A)xk| =0 for
io0

1 <j < nand lim||[x] ® x{llg =0 for all 1<j,k < n with j # k. Furthermore
” 1

if 615 +e » O, is any sequence of n scalars and u; =Y, 5;xf, v; = Y, 6;xl, then
j=1 1=1

”

lim [|f; ® vl — ¥, 6C, Jllp = 0.

400 j=1

Proof. Consider the operator A, @ ...® 4,, where each 1; acts on an infinite
dimensional space. Since the set {1, ..., 4,} =0}, (4), one can apply [3, Theorem A]
with 4, ® ... @ A, = N, in the notation of that theorem, and it follows easily
that there exists a family {x}}, ..., {x} of mutually orthogonal orthonormal se-
quences (i.e., (x}, x§) = 6,6;) such that lim [[(4 — A)x{| = 0 for all 1 <j<n.

i—»o0

Suppose now that 1 < j, k < n with j s k. For clarity of notation we set
A= A=A, x;=x}, and y; = xF. As before, there exists a sequence {A;}{2,
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in Hy such that ||A;|le=1 and [[[x; ® yilllp = (h(A)x;, ) for each i. Using the
decomposition A(f) = hi(2) + (t — A)g{t), we obtain

Il ® illlg = AW xs, ) + (g(ANA — 2) x5, ) = (gANA — A) x4 ),

and the right-hand side of this equation tends to zero as before.
To prove the last assertion in the statement of the lemma, we write

@ v]=Y Sfx®@x1+ Y i ® x]
j=1 1

Jj <j#k<n

By what has already been proved, the second summand on the right converges to
0(in || [lp), and by Lemma 4.3 the first summand converges to 2512[Cz,-]-
iz
LeMMA 4.7 ({4, Lemma 4.4])). Let S < Q be the closed absolutely convex hull
of the set {[C,]: A e a(A) n D}. Then S is equal to the closed unit ball of Q.

Proof. For any h(4) in &/, we have
A = lhllo = sup 1A = sup IK[C,l, (A,
A€a()ND A€o(A)nD

and Proposition 2.8 gives the desired conclusion.

LemMmA 4.8 (cf. [4, Lemma 4.5]). Let [L]e Q and suppose there exist vectors
s and s' in H such that |[[s ® s'] — [L]|lp < & < 1. Then there exist vectors t and
t"inH such that |ls — tl| < Ve, |ls" — t'l] < V&, and ||t @ '] — [L}llp < &/4.

Proof. Let [K]=[L]—[s® s']. f [K]=0, set t=2s and ¢t' = 5. If d=
= |[[K]llp # O, then by Lemma 4.7 there exist 4;, ..., 4, in D (not necessarily dis-
tinct) and scalars o, ..., &, such that

<¢/8d, ¥ layl < L.
0 .

Jj=1

w1 § aic)

j=1

For each j choose §; so that 67 = da;. Then we have

© “m-ﬁ%m;
=

‘ < g/8.
0

By Lemma 4.6 there exist m mutually orthogonal, orthonormal sequences {x/},,
1 <j < m, such that lim ||(4—A4)x{]| =0 for 1 <j < m and such that, if we
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m m
set u; = Y, O;xf and v; = ¥ §;x/, then
=1 j=t

lim {u; ® v]— ¥ 85IC; Mg = 0.
i j=1
Thus, by virtue of (6), we know that for all i sufficiently large,

™) K] — [u; ® villlg < /8.

Define s, =5 + u; ands; = s' + v, We show that we can choose f =s;, and
t' = s;, for some integer f, sufficiently large. Note first that for each i,

m

sl = Tlosl* = Y16, < d = |I[K]llg < &

j=1

Thus for any choice of i, if ¢ and ¢’ are chosen as indicated, we have [ls —#|| <}
and |js’ — '}l < ¥e. On the other hand,

[s; @ sil— L= @ vl + [, ® T+ [u; @ vi] + [s @ s'1 —[L]
=k @uv]+[u @5+ [ @ vi]—I[K]
Thus, by (7), for i sufficiently large we have

lls; ® s;]—[Llllg < l[s @ villlg + ll; ® sllg + /8.

Since [s @ vi] = ¥, s ® xfland similarly for [u; ® 5], both |[[s @ v]]|l, and
j=1
[u; @ s']llp tend to zero by Lemmas 4.4 and 4.5, so that we may choose /, as desired.

The next and last lemma concludes the proof of Theorem 4.1.

LeEMMA 4.9 (cf. [4, Theorem 4.6)). If [L] is an arbitrary element of Q, then there
exist vectors x and y in H# such that [L] = [x ® y}. In particular, this is true for
(L] = [Col.

Proof. It suffices to prove the lemma for all {L] in @ such that |[L]jlp < L.
Applying Lemma 4.7 to such an [L], we obtain the existence of a finite sequence

A1s « « -sA, OF (nOt necessarily distinct) numbers from ¢(4) N D and a corresponding
sequence o, ..., d, Of scalars such that ||[L]—§ o[C; lllg < 1/8. Moreover, if
we set 0 = a; for each j, then by Lemma 4.6 theré:elxist vectors u and v such that
¥ ® v] — jfllai[CM]”Q<l/8' Thus |J[L] —[u ® v]]| < 1/4, and we set u,=u, = u,
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vy = v, = v. Suppose now, by induction, that u, and v, have been chosen for 1<
< k < n so as to satisfy

(L] — [ @ villlp < 1/2%, N — tealf < 172572, o, — veall < /2570
Applying Lemma 4.8 with ¢ = 1/2?", s = y,, and s’ = v,, we obtain u,,,= ¢ and
v,+1=t" satisfying the above inequalities for k = n - 1. We have thus constructed
by induction two sequences {u,} and {v,} such that ||[u, ® v,] —[L][lg = 0. But the

inequalities |lu,+; —u,|| < 1/2® and |lv,.; — v,]| < 1/2" clearly imply that these
two sequences are Cauchy in #. Let x = lim 4, and y = lim v,. Since

”[un ® vn] - [x ® y]”Q < ”un ® Uy — X ® y”r

< ”un ® (U" —y)Hr + ”(un _x) ® y”r

= |lu,

o, — 2l + lluy — x| Iy}l = 0,

we have [x ® y] = [L]. Thus the proof of Theorem 4.1 is complete.

Remark. It seems likely that some modification of the techniques employed
herein and in [4] should permit one to prove that every operator 4 in #(s#) such that
|4}l = 1 and o(A4) contains the unit circle has a nontrivial invariant subspace, but
the present authors have been unable to prove this.
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Added in Proof. After this paper was written, the authors learned that Daun Voiculescu has
independently proved Theorem 4.1. above. His proof was presented to the Colloquium in
Functional Analysis in Timisoara in May, 1978.
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