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PERTURBATIONS OF NEST ALGEBRAS

THOMAS FALL, WILLIAM ARVESON and PAUL MUHLY

INTRODUCTION

Let {P,: n > 1} be a sequence of finite dimensional projections on a Hilbert
space # such that P, 1 1. An operator T on J# is said to be triangular (resp. quasi-
triangular) relative to {P,} if PiTP,= 0 for each n >1 (resp. |[PL TP,| - O as
n— co). Let 4 and 2. denote the corresponding two algebras of operators on .
The algebra 24 was introduced in [1], where it was shown that every operator
in 2. is a compact perturbation of an operator in .#. One deduces easily from this
that 24 = 4 + ', which can be regarded as a characterization of the compact
perturbations of operators in # (here 2 denotes the algebra of all compact opera-
tors on 7).

It is natural to ask the extent to which a characterization like this is valid for
other nest algebras in place of #. Specifically, consider the triangular algebra [0, 1]
of the unit interval, defined as the set of all operators on L*0, 1] which leave
invariant each subspace L0, ¢], 0 < # < 1. What we seek is a characterization of
operators in S, 3 + A in terms of the projections {P,:0 < t < 1}, where P,
denotes the projection onto L2[0, r]. This is accomplished in section 2 (Corollary
of 2.3), following a rather general discussion in section 1 which implies that.# o, 1,4
is norm-closed. In fact, we present a characterization of compact perturbations of
arbitrary nest algebras which covers both cases £, ;) and # at once.

1. CLOSURE PROPERTIES OF PERTURBED ALGEBRAS

It is easy to see that for any C*-algebra & of operators on a Hilbert space,
the algebra o/ -+ of all compact perturbations of operators in & is norm-closed.,
Indeed,

o + A =N (n(A)

where n is the Calkin map and n(s/)isclosed since 7 is a C*-homomorphism (5],
1.8.3). This is false for general norm closed non-self-adjoint operator algebras [3].
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In this section we obtain a result which contains the required information
about nest algebras, as well as a much broader class of operator algebras. In view
of the negative result of [3], this appears to be the best state of affairs one could

hope for.
Let &% be a complex-linear space of operators on a Hilbert space # and let

F* denote tee space of all ultraweakly continuous linear functionals on &. & is called
local if there are enough compact operators in & to separate points in &, ; equiva-
lently, & is local if, and only if, the ultraweak closure of & n.¢ contains &. Thus,
the most general local linear space of operators is obtained by starting with a linear
space &, of compact operators and taking for & any linear space lying between
&, and the ultraweak closure of %,.

THEOREM 1.1. Let & be a norm-closed local linear space of operators. Then
& + A is norm-closed, and the canonical isomorphism between the Banach space
quotients & + A'|S¥ and A |F ONA is an isometry.

Proof. Fix a compact ogerator K. We claim:

inf |[K+ S| = inf |[K+ S|
Ses Sesnxt

We prove only the nontrivial inequality >. By the Hahn-Banach theorem, there
is a linear functional fin #” satisfying ||| = 1, f= 0 on & N, and

[f(K)|= inf |K+ S].
SesnNK

If we express fin the form f(X) = trace (XT), X e A", where T is a trace class ope-
rator satisfying trace | T| = 1, then we may consider f as extended to a linear functional
f on all bounded operators X by the same formula. f is ultraweakly continuous of
norm 1, it vanishes on & N, and so it vanishes on the ultraweak closure of & N .
Since the latter contains & by hypothesis, we conclude that f(y) = 0. So for each

Sin &,
If(K) = IfiK+ S)| < I|IK+ S|.

The desired inequality follows by taking the infimum over all S in &.
Now form the Banach quotient space #'/% n 2 and the normed linear space
& + A|S (the latter should be regarded as a subspace of the quotient £(s#)/%).

Define a linear map

AL OA > F +H]F

by a(K + N X)) =K +&. The preceding paragraph shows that « is an isometry.
Since #'/% n A is a Banach space, &+ /& is complete and therefore closed as a
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linear subset of #(#)/F. Letting n:L(H#) —FL(#)/F be the canonical projec-
tion, we conclude that

P+ =S+ AP

is norm-closed as a linear subspace of Z(#).

COROLLARY 1. Let & be norm-closed local algebra of operators. Then st -4
is a norm-closed algebra and the natural homomorphism of sf|sf N A on st H|H
is an isomorphism of Banach algebras.

Proof. &+ is an algebra because " is an ideal in #(3#), and the preceding
theorem implies that it is norm-closed. Thus we may form the two indicated Banach
algebra quotients, and the natural map o: &/f N A — o + H'[H", defined by

OCZA—*—.Wﬂ‘.%/HA—}—‘%/,

is a surjective homomorphism satisfying || < 1. Since o has trivial kernel, the
closed graph theorem implies that «~! is bounded, and the assertion follows. 7

Notice that, unlike the situation of Theorem 1.1, one cannot assert that the
isomorphism of &/ &/ N A on &/ +-A"[A is an isometry, but merely a contradiction
with bounded inverse.

By a nest we mean a linearly ordered family of projections on a Hilbert space
which contains O and 1 and is closed in the strong operator topology. Every nest
2 has an associated nest algebra, defined as the algebra of all operators which leave
each element of £ invariant. It is shown in the appendix (see Corollary 2 of Proposi-
tion A) that a nest algebra is the ultraweakly closed linear span of its rank one ope-
rators. Thus, every nest algebra is local, and we have

COROLLARY 2. For every nest algebra sf, sf + A" is norm-closed.

2. COMPACT PERTURBATIONS OF NEST ALGEBRAS

Consider the algebra .#15, 1; + A of all compact perturbations of operators
in the nest algebra Jo, ;; of the unit interval. There is an obvious condition that
every operator A in this algebra must satisfy, namely P} 4P, should be compact
for every t in the unit interval {0, 1], where P, is the projection on L?[0, t]. Indeed,
if A =T+ K with K compact and T in S, 13, then

PiAP, = PIKP, e X .

This necessary condition for membership in #o 17 4- A is not sufficient, as
the following example (adapted from pp. 18—19 of [7]) shows. Let P;, P,, ... be
any strictly increasing sequence of nonzero projections in {P, :0 <t < 1} such
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that P, 11, and for each » > 1 put E, = P,— P,_;, where P, is taken as zero.
Choose a unit vector e, in the range of E,, and define an operator T on L2[0, 1]
by

T = ¥ G edens.
n=1

T is clearly a partial isometry with infinite rank which satisfies TE, = E,,,T and
ITE,| =1 for each n > 1. Since P, = E, + ... + E, and since P,T = 0, the pre-
ceding identity implies that TP, = (P,,, — P)T = P,,, T, for each n > 0.

Note first that PLTP has finite rank for each P in {P,:0 < t < 1}. Indeed, if
P # 1 then we may choose n > 1 so that P,_; < P < P,, hence

TP = T(P—Pn—1)+ TPn—1= T(P_Pn—l)_l_PnT"

PTP = PT(P— P,_,) -+ PT,
and so
TP — PTP = P'T(P—P,_,) + (P,— P)T.

But each term on the right is at most of rank one, since P'T(P — P, ;) =
PTE(P—P,.,), (P,—P)T=(P,— P)E,T, and both operators TE, and E,T have
rank one. Thus TP — PTP has rank at most two.

Second, we claim that there is no compact operator K such that T K belongs
to F, 17-'Indeed, if K is any operator for which T—K leaves each P, invariant,
then notice that TE, = E,.,KE,. For

TE, = E, ., TE, = E,, (T — K)E, + E,..KE, = E,.,KE,
because-
E,.(T—K)E, = E,, Pi{T — K)P,E, = 0.
It follows that
IKE,|| 2 | Eysr KE,|= || TE,|| =1

for each n. This inequality implies that K cannot be compact because the E,’s are
mutually orthogonal.

What we need for a second condition is an appropriate generalization of the
notion of quasitriangularity described in the introduction which applies to arbitrary
nests.

DEFINITION 2.1. Let P be a nest of projections on H#. An operator T on H
is said to be quasitriangular relative to P if

(©) PATP is compact for each P in P, and

(i) the function Pe P — P TP e is continuous.
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Here, o is topologized by its norm topology and £ has the strong cperator
topology. To see that this does generalize the preceding definition of quasitriangula-
rity, let P, ¢+ 1 be as in the introduction and let 2 be the nest
{P,:n = 1} U {0, 1}. Notice that the projection 1 is the only accumulation point
of #; since PLTP = 0 for P = 1, we see that 2.1 (ii) reduces to the assertion

lim |PiTP,| = 0.

n—»oo

It is of some interest that definition 2.1 can be given in an alternate form which
involves only the range of the mapping P — PTP, and we digress momentarily
to present this. Throughout this section, # will denote a complex Hilbert space.

PROPOSITION 2.2. Let P be a nest of projections on # and let T be an operator
such that PATP is compact for every P in P.

Then T is quasitriangular relative to 2 if, and only if {P*TP: Pe &} is a norm-
compact set of operators.

Proof. The “only if” assertion follows from the elementary fact that the con-
tinuous image of a compact space is compact.
For the converse, assume that the set

& = {PTP: Pe 2}

is norm-compact. Note that the relative norm and strong operator topologies on &%
must coincide; for the identity map of (&, norm) onto (&, strong) is a continuous
injective map of a compact space onto a Hausdorff space, and is therefore a homeo-
morphism.

Since operator multiplication is (jointly) strongly continuous on the unit
ball of #(#), we see that the function P+ PLTP is continuous, considered as a
map of & into (&, strong). By the preceding paragraph, we deduce the required
property 2.1 (if).

Let & be a nest of projections on J#, let F5 be its associated nest algebra,
and let 2.5 be the algebra of operators which are quasitriangular relative to 2.
In the proof of Theorem 2.3, we will make use of the distance formula from {1]:

inf |4—T| = sup [[P+4P],
TeSy Pe?

for every operator 4 on .

THEOREM 2.3. For any nest 2,

BIp =Fp + A .

Proof. We first prove the inclusion 2. If T belongsto #» land K is any com-
pact operator, then as we have already observed P(T + K)P = PKPe X, for
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each P in 2. So it suffices to show that, for fixed X, P+ P~KP is a continuous
function from £ to X .
Assume first that K has rank one, that is K¢ = (&, e)f, where e and f are

vectors in the underlying Hilbert space. For any two projections P and Q, we can
write

PKP{— Q*KQC = (PE, e) PHf— (Q%, ) O f

= (¢, Pe— Qe)PLf+ (&, Qe) (P f— Q).
It follows that
|PKP — QLKQ| < [[Pe— Qe . | fI + IPf— Qfll . lell,

and hence the left side goes to zero as P converges strongly to Q.

By taking finite linear combinations, it follows that P+ PLKP is continuous
for any finite rank K. Finally, if K is an arbitrary compact operator, choose finite
rank operators K, K, ... so that ||[K— K| — 0 as n —» oo. Then since

sup |PLK,P — P'KP|| < | K, — K|

Pe?

tends to zero as n —oo, the function P+ P'KP appears as a uniform limit of
continuous functions from £ to . Hence, P+ PLKP is continuous.

For the opposite inclusion <, et 4 belong to 2.5 and choose ¢ > 0. We
will find a compact operator K = K, such that the distance from 4— K to £, is
at most &. Because ¢ is arbitrary, this implies that 4 belongs to the norm closure
of £ -+ A", and the theorem will then follow from the results of the previous
section.

To obtain K, we make use of the fact that the set {PLAP: P e 2}, being com-
pact in the norm topology, contains on ¢ —net {P;AP;:0 <j < n}. Thus, for
every P in there is a j, 0 <j < n, so that

|PLAP — P}AP;|| < e.
There is clearly no loss if we assume that
O=Py<P,<..<P,=1
Putting E; = P; — P;_,, define

K= Y] PHE,

j=1

By property 2.1(/), each operator PfAE; = P} AP,E; is compact, and hence K is
compact.
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By the remark preceding this theorem, to prove that the distance from 4 — K
to.f » is at most ¢ it suffices to show that |Q4{(4 — K)Q| < & for each @ in #.

For that, fix Q. Then there is a j, 0 < j < n, so that P;_, <Q < P;, and we
claim first that

044 —K)Q = E,Q+ AQE,.
Indeed,
A—K:EAE,\ Z P AE, = V‘ P AE,.
k=1 =

But since E,Q =0 if k > j and Q'P, = 0 if k < j, we have Q*P AE,Q = 0 for
all £ # j, and hence

QXA — K)Q = Q'P,AE,Q = E,0*AQE,.
Now choose &k, 0 < k < n, so that
1Q*4Q — PEAP| < ¢
Then E;QYAQE; is within & of E;PyAP.E; and so
1044 — K)QIl = | E;Q* AQE}|| < |E;PEARE] + e.

But since P.E; = 0 for k < j and E;P{ =0 for k> j, it follows that E;P{APE;
vanishes for all k, and we have the desired conclusion that ||QY{(A4— K)Q || <e.

Let {P,} be a sequence of finite dimensional projections such that P, 1 1, and let
J be the nest algebra alg {P,}. It is clear that theorem 2.3 implies the characteri-
zation given in [1] of compact perturbations of operators in .#, namely that A4 be-
longs to £+ " if and only if | P;AP,]|| tends to zerc as n—oco. On the other hand, it
is a simple matter to deduce the following characterization of compact perturbations
of operators in the triangular algebra £, 1; of the unit interval. Letting P, denote
the projection of L0, 1] onto the subspace L2[0, t], we have

COROLLARY. Let A be a bounded operator on L0, 1]. In order that A should
have a decomposition A=T +-K with T e Fo, 1) and K compact, it is necessary and
sufficient that P}tAP, be compact for all t € [0, 1] and the function t — PLAP, be (norm)
CONtinuous.

Proof. This follows from 2.3 after noting that the map ¢+~ P, is a homeo-
morphism of the closed unit interval onto the nest {P,:0 <t < 1}.

APPENDIX: THE PREDUAL OF A NEST ALGEBRA

Let 2 be a nest of projections on a Hilbert space #, and let o&/=alg 2 be
its associated nest algebra. The purpose of this section is to describe the annihilator
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of & in the space of all ultraweakly continuous linear functionals on Z(H#),
and thereby identify the predual of «7.

' By an atom (associated with &) we mean a nonzero projection of the form
Q—P, whetre P and Q are projections in & such that P is the immediate predecessor
of Q; that is, P < @, and if Re &P satisfies P R< Q,thenR=Por R=Q. .
It is easily seen that the atoms are simply the minimal projections in the von
Neumann algebra generated by £. It follows that distinct atoms are orthogonal,
and for each operator 4 in #(#) we can form the operator

‘

8(A) = SEAE,

the sum extended over all atoms E associated with 2 (if 2 has no atoms then § is
defined to be the zero mapping). é is a normal positive linear map of Z(+#) into
the diagonal &7 N /% of /. Moreover, since each projection E appearing in the
sum is a nested difference of «/-invariant projections, we have EABE =—=EAEBE
for all 4, Bin «f. It follows that the restriction of & to &/ is a homomorphism.

The Banach space £ (5#),, of all ultraweakly continuous linear functionals on
L(s#) is identified with the space £1(#) of all trace class operators X having the
natural norm

X1y = tr((X* X)),

and ghis identification associates the linear functional p with the operator X via
the formula p(T)=tr(XT), T e£(5#). The annihilator of &/ in £(#),, is described
as follows.

PROPOSITION A. Let p eL(H),.. Then p annihilates o iff p has the form
p(T) = tr(XT),

where X is a trace class operator in & satisfying 6(X) = 0.

Proof. =>: Let p be an ultraweakly continuous linear function on £ (#) which
annihilates o/ and let X be a trace class operator such that p(.) =tr(X.). We will
show that Xe ./ and §(X) = O.

Fix Pe 2 and T e2(#). Note that PTP* belongs to &. Indeed, if Q is any
projection in &, then either @ < P or Q = P and hence P10 = 0 or 0P =0; in
either case we have QNPTPL)Q =0, which shows that PTPL¢ alg = /. Since
tr(X-) vanishes on & we have

tr(PLXPT) = tr(XPTPY) = 0,

and therefore PLXP=0 since T is arbitrary. The conclusion X e & now follows.
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To prove that §(X) = 0 it suffices to show that EXE = 0 for every atom E.
But since ETEe &/ N /* = o/ for each T in £(s#), we have

tr(EXET) = tt(XETE) = 0,

and hence EXE = 0 since T was arbitrary.

In order to prove the converse, we require some preliminaries. We remark
that the referee has kindly pointed out that the essential ingredients of
Lemmas 2 and 3 below are contained in pp. 23 — 28 of [9]. We have retained
this discussion for completeness.

LeEMMA 1. Let e be a vector in S such that Ee = O for every atomic projection
E associated with P. Then {|Pe|: P P} is the entire interval [0, |e|].

Proof. Clearly {|Pe|: P e 2} is a subset of [0, [le]]] which contains both end-
points. So if it is not the entire interval then there isa ¢, 0 < ¢ < [lef|, for which
|Pe|| # t for every Pe . Define

Fy={PeP:|Pe| <t}
Py = {PeP: ||Pe| > t}.

&, and &, are complementary sets in &, and P, <P, for any pair of projections
P;e &#,. Put.

P, =\&, and P, = N\N&,.

Then each P; belongs to £ and P, < P,. Moreover, by a familiar lemma ([4], Appen-
dice II), P; must belong to the strong closure of &;, i= 1, 2. Since || Pe| < ¢t for each.
Pe &, wehave | Pe|| < t; and since || P;e| cannot equal ¢, it follows that || Pie|| <t.
Similarly, |Pge| > t.

In particular, P, < P,. We claim now that P, — P, is atomic. For if Qe £
satisfies P; < @, then O cannot belong to &;, so that Q € &,, and hence Q =P,
as asserted. By hypothesis we conclude that [[(P, — P))e|| = 0, and hence ||P.e| =
= [|Pyel|. This is absurd, however, since [[P.e]| <t < ||P.e].

For every finite subset # of £ having the form

F={0=P,<P<...<P,=1},
define a mapping dgz: L(H) - L(H#) by
j=1

Each §# is a unital, completely positive expectation of £(s#°) onto the commutant
F' of & ; the restriction of 64 to &/ is an algebra homomorphism; and for # € ¢
we have

5@ 05925_@-05@:5_@,.
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Considering the finite sets & as an increasing directed family relative to
set inclusion, we have

LEMMA 2. For every compact operator X,

lim [|05(X) — 6(X)[| = 0.
F

Proof. Let A be the sum of all atomic projections associated with 2. We
claim first that

lim 05(4+X)|| = lim [|55(XAY)]]| = O,
F F

for every compact operator X. Since X4* = (4*X*)* and each 67 maps adjoints
to adjoints, it suffices to show that

lim ||57(XAY)|| = 0.
F

Suppose first that X has rank one, that is X¢ = (&, e) f where e and f are
vectors in 4. Then

XA = (4%, o) f = (&, At f.

Choose numbers 0 =¢, <t < ... <t,= ||d%e] so that |} —1},] < &
for each i. Applying Lemma 1, we may find projections 0 = Py < P, < ... < P,=1
in 2 so that [|P;4-e|| = ¢;, 0 <j < n. This clearly implies

(P — Piy)dre|? = 1 — 1}, < &
Letting
F ={Py, Py,..., P},
we claim that
|0(XAN] < e |If |-
Indeed, if &es, then

i=

(60X €l = | i (& (P, — P, 3) Ate) (P, — P, ) [ It =

= i (S, (P; — Py AP (P, — P ) f 1P <

j=1

n

< i€ Y, WP — P fIE=

= {iCIPe*If 1%

as asserted.
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Now if ¢ = &, then since ¢ = 65 © 5, we have
162(XAY)|] = [|64(32(XA1))||
<[ox(XAN| < e |If 1l

It follows that lim ||0#(XA4)|| = O for every rank one operator X.

By taking finite linear combinations, the same conclusion holds for all finite
rank operators X; since the maps 85 are all uniformly bounded in norm by 1 and
since the finite rank operators are norm dense in the space of compact operators,

we conclude that
lim [|(X4Y)] =0
F

for every compact operator X.
To finish the proof, let X be an arbitrary compact operator. Then we can write

X = XAl 4 AiXA + AXA.

Since both terms 6(XA%) and d5(41XA) tend to zero in norm as & increases,
it suffices to show that

lim [[65(4XA4) — 5(X)| = 0.
F

Fix ¢ > 0. Since AXA is a compact operator which lives in A3, we can
find a finite set of atoms A4,,..., 4, so that |[PAXAP| < ¢ for every projection P
satisfying P | A, + ...+ A4,. We may assume that each 4; has the form 4; =
= @, — P;, where

J’
P1<Q1<P2<Q2<"'<Pn<Qn-
Let
rg’.:{O’PI!QI"",Pan’1}-

Then every finite set which contains & has the property that Q; is the imme-

diate successor to P; in ¥, for each j = 1,2,..., n. Thus §5(4XA) has the form

So(AXA) = Y, A,X4;+ ¥, EAXAE,
j=1 E

J

where the projections E in the second sum are all orthogonal to 4, + ... 4 4,.
Thus
\ZEAXAE| = supg||[EAXAE| < e.
Similarly,
o0X) =Y, 4;X4; + Y, FXF,
=1 F

J
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where each F in the second sum satisfies F < A and F 1 A4, + ... A4, Hence
IZFXF| < & It follows that

|0e(AXA) — (X)) < 2,

whenever 4 = #.

LeMMA 3. Let X be a compact operator in s such that 8(X) = 0. Then X
belongs to the radical of .

Proof. Assume first that £ is finite, say
P={0=P,<P <...<P =1}
In this case § has the form

7

§T)= Y ETE,
=1

where E; = P;— P; ;. We claim first that each Xe «/, for which 6(X)==0, must
satisfy X" = 0. Indeed, since PfXP; = O for all j we have E, XE, = O for all p > g,
and since 6(X) = 0 we in fact have E,XE, = 0 for all p > q. Because

E 4+...+E =1,
we can write X in the form
n
X= Y EXE =Y EXE,
p.g=1 p<g
It follows that X” is a finite sum of operators of the form
E,XE E,XE,...E,XE,,

where p, < ¢, ps < Gs,. - ., P < g, Note that each product of this form must
be zero. For if it is not, then by the orthogonality of the E’s we must have

<@ =p<go=...=pP,< ¢y
and in particular 1 < p; < p, < ... < p, < n, an absurdity.
Notice that, in fact, (4X)" = (4X)" = 0 for all 4 in &/. For
3(AX) = 6(4) 6(X) = 0 and §(X4) = §(X)dé(4) =0,

and the preceding argument implies that both AX and X4 are nilpotent of index n.
In particular, this shows that X belongs to the radical of «/.

In the case of a general nest 2, we can argue as follows. Fix a compact Xe o/
with 8(X) = 0, and choose ¢ > 0. By lemma 2, there is a finite subset

F={0=P <P <...<P,=1}



PERTURBATIONS OF NEST ALGEBRAS 149

of 2 such that
10=(X)] < e

Consider X, =X — §#(X). Thisis acompact operatorin alg & for which §#(X,)=0.
By the argument just given, we see that

(AXO)" == (XOA)" =0

for every A in alg #, and in particular this holds for all 4 in &/ <alg%. This,
implies that X, belongs to the radical of 7. Since ||X' — X,|| < ¢, ¢ is arbitrary
and since the radical of &/ is norm-closed, we conclude that X belongs to the
radical of «.

Returning now to the proof of Proposition A, let X be a trace class operator,
in &/ satisfying 6(X) = 0. We claim that tr (X4) = O for each A4 in /. Indeed,
for each A in &/ XA is a trace-class operator satisfying

S(XA) = 5(X) 5(4) = 0.

By lemma 3, X4 must belong to the radical of & and in particular is quasi-
nilpotent. Since the trace of a quasinilpotent trace class operator is zero ([6]
X1.9.18), we conclude that

tr (X4) = 0.

It is well-known that the Hardy space H* of the unit disc is the dual of
the Banach space quotient

L'/Hg,

where H} denotes all functions in H! which vanish at the origin. In view of Pro-
position A, we may infer an analogous result about any nest algebra & = alg 2.
Letting #}(/) denote the space of all trace class operators X in .« satisfying 6(X) =0,
we have

COROLLARY 1. & is the dual of the quotient space LY (H)[H ().

Proof. Since #(s#)is the dual of ZYs#) and H#Y/) is the annihilator of o/
in #Y(#), the formula is evident from first principles. 4

COROLLARY 2. Every nest algebra sf is the ultraweakly closed linear span of
its rank one operators.

Proof. Let p be an ultraweakly continuous linear functional which annihilates
each rank one operator in .7, and write p(-) = tr (X-), where X e Y (s#). By
proposition A it suffices to show that X e o/ and 6(X) = 0.

To see that X e &, fix P in the lattice lat & = 2. Choose vectors e € PL#
and fe s, and let e ® f be the rank one operator £ — (&, ¢) f. Since

e®f= PleQ® [f)Pte PL(H) P4,
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it follows as in the proof of proposition A that e ® fe «f. Hence

tr (X(e ® f)) = 0.
But
Xe®/f)=e® X,

and so

O0=tr(X(e®f)=1tr(e®@ Xf) = (Xf, o).

Since e (resp. f) is arbitrary in PL3# (resp. Pi#), if follows that PLXP = 0. Hence,
Xealg? = o.

We claim now that §(X) = 0; equivalently, EXE =0 for every atomic pro-
jection E associated with £. Indeed, since E is atomic we must have either £ < P
or E_1 P for every Pe 2. So if e, f are any vectors in E#°, then Plle ® f) P =
= Pe ® P! f=0, and hence e ® fe of. It follows that

(Xfe)=tr(e® Xf)=tu(X(e®f) =0
Arguing as above, we conclude that EXE = 0.
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