J. OPERATOR THEORY © Copyright by INCREST, 1979
1 (1979), 187-205

ANALYTIC PERTURBATIONS OF THE 9-OPERATOR
AND INTEGRAL REPRESENTATION FORMULAS
IN HILBERT SPACES

F.-H. VASILESCU

1. INTRODUCTION

In this paper we present the construction of some operator-valued kernels
which occur naturally in the study of certain integral representation formulas, in
particular in the analytic functional calculus for several commuting operators in
Hilbert spaces. These integral kernels are obtained in connection with the analytic
perturbations of a specific type of the d-operator, when 0 is regarded as a closed
operator on Hilbert spaces of square integrable vector-valued exterior forms.

Let H be a complex Hilbert space and €(H) (£(H)) the set of all densely defined
closed (bounded) operators, acting in H. For any T e ¥(H) we denote by 2(T), #(T),
A (T) the domain of definition, the range and the kernel of T, respectively.

In what follows we shall deal mainly with operators T € ¥(H) having the
property #(T) < A (T), i.e., roughly speaking, with operators T satisfying 7% = 0.
Such an operator T will be called exact when one actually has Z(T') = A (T). The
exactness of an operator T e ¥(H) with Z(T) < A (T) is equivalent to the invertibility
in #(H) of the operator T + T*, where T* denotes the adjoint of T’; this is a simple
and useful criterion from which some of the main results of this paper will be derived,

Let us consider a finite system of indeterminates ¢ = (o4, ..., 0,). The exterior
algebra over the complex field C generated by o, ..., g, will be denoted by A[e]-
For any integer p, 0 < p < n, we denote by A7[¢] the space of all homogeneous exte-
rior forms of degree p in ¢y, ..., 0,. The space A[s] has a natural structure of Hilbert
space in which the elements

[

WA e A G (l<p<...<j,<mp=1...,n

J

as well as 1 € C = A%q] form an orthogonal basis (the symbol A’ stands for the
exterior product).
Let us define the operators

(1.1) Sg=a,nE (Cedlol;j=1,...,n).
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Then the adjoints of the operators (1.1) are given by the formula
(1.2) SHEG oA D=8 (=1,...,n),
where ¢j -+ a; A &} is the canonical decomposition of an arbitrary element & € A[o],
with ¢j and ¢’ not containing g;. Note the anticommutations relations
S;S; + 8,8, =0
(1.3) (Jk=1,...,n),
S;SF + SES; =€,
where ¢, is the Kronecker symbol, which can be readily obtained from (1.1) and
(1.2).

For an arbitrary complex linear space L we denote by A[o, L] the tensor pro-
duct L ® Afo]. If 2 is any endomorphism of L then the action of 2 is extended on
Alo, L] by the endomorphism 1 ® 1. We identify these endomorphisms and keep
the notation 4 for both of them. Analogously, if 6 is any endomorphism of A[s]
then the endomorphism 1 ® 6, acting on Afo, L], will be also denoted by 6.

Any commuting system of endomorphisms a = (ay, ..., a,) acting on L
will be associated with the endomorphism &, on A[o, L], defined by the relation
(1.9 0,8 = (8 + ... +a,S)  (EeAle, L)).

From (1.3) we have that (5,)2 = 0.

Assume now that L is a Hilbert space H. Then A[o, H] is also a Hilbert space.
The action of any T'e ¥(H) will be extended by T ® 1, denoted simply by T, defined
on Z(T) ® Alo] = Ale, Z(T)). Clearly, for any endomorphism 0 of A[s] we have
6T < T0 (for Ty, T, in ¥(H) the notation T, = T, means that T, is an extension
of T)).

1)Let Q be an open set in C™” and C*(Q, H) (A(R, H)) the set of all H-valued
indefinitely differentiable (analytic) functions on Q. Consider a commuting system
o= (u,...,a,) in A(Q, L(H)), i.e. asystem of operator-valued analytic functions
such a(2)o(w) = o(w)a(z) forany j, k =1, ..., nand z, w in Q. The corresponding
endomorphism (1.4) for L = C*(Q, H) will be then given by

(1.5) 34(2) = (DS + ... + a4 ()S)N0E) , (zeQ),

where ¢ € A[o, C*(Q, H)]. We can consider also the usual d-operator

1.6) d =

0 _
dz, + ... + —

dz .,
0z, Zm

acting in the space A[dz, C*(Q, H)], where z = (z,, ..., z,) € Q are the complex
coordinates and dz = (dz,, ..., dz,) is the corresponding system of differentials.
Then the endomorphism &, + 9 acts in the space A[(c, dz), C(Q, H)], with (o, dz) =
(61 -+, 0,dz;, ..., dz,), and has the property (5, + 9)? = 0, since 8,0 =—ad,.
The aim of this paper is to study the exactness of the operators of the type

8, + 0, as well as some of its consequences, in certain Hilbert spaces of square
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integrable exterior forms. Unlike in some works dealing with harmonic forms on
strongly pseudoconvex manifolds [3], [1], or in the Hodge theory [8], we shall try to
emphasize the role played by T + T* rather than of TT* + T*T, where T e ¢(H)
is an operator with the property Z(T) < (T). Indeed, it is such an operator which
leads us to a class of natural kernels yielding integral representations formulas in
Hilbert spaces (see also [6]). Among some applications, we show that the usual
multiplicativity of the analytic functional calculus for commuting systems of operators
follows from a more general characteristic trait, namely from a property of module
homomorphism over the algebra of complex-valued analytic functions. Let us
mention that the results of this paper have been partially announced in [7].

2. THE 0-OPERATOR IN HILBERT SPACES

From now on H will be a fixed complex Hilbert space. Let @ be an open
relatively compact subset of C™ and L2(Q) the usual Hilbert space of all (classes of)
complex-valued square integrable functions on €, with respect to the Lebesgue
measure. Let us denote by H, the completion L) ® H of the tensor product
L*Q) ® H with respect to the canonical hilbertian norm. In other words, Hy, is the
space of all (classes of) H-valued functions, strongly measurable on  and whose
norm is a square integrable function [5]. We shall use also the notation Cg, for L*(Q).

Let us fix a system of indeterminates { = ({,, . . ., {,,) and define the operator
8 in A[{, Hy). As in the scalar case [2], we shall use the way of the theory of distri-
butions. Every element & € A[, H] can be associated with a A[{, H]-valued distri-
bution v, by the formula

Q.1 o) = S P(2)E@E) di(z), (9 e CRQ)),

where d1 is the Lebesgue measure and CP(Q) is the usual subspace of C*(L)
(= C®(Q2, €)) of all functions having compact support. We may therefore
consider the areolar derivatives dv./0z; as well as the operations [jAve: = Vg ne
(j=1, ..., m). In this way the formula

= 9 o
Goa= -2 4 .00 e
U§ ( 821 Cl + + 82 Cm) A U{

m

makes sense and defines the operator 0 within the theory of distributions.
We denote by 9(0) = A[{, Hy the set of those ¢ e A[l, Hg] such that there

exists an n € A[{, Hy] satisfying dv, = v,; we set 9¢ = 5. In other words we have

) (o@no die) = — ( Zj’ @b+ ... + %" (z)Z,,,)) A E@) diz)»
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for any ¢ € CP(Q). The formula (2.2) shows that the operator 0 is a weak extension
of the operator (1.6). (We prefer to use the system { = ({, ..., ,) instead of
dz = (dz,, ..., dz,,) in order to stress the independence of the former on the points
in Q) As in the scalar case, the operator 9 is closed and densely defined. In fact,
if € is in A[{, C=(Q, H)] and both ¢ and d¢ belong to A[C HQ] where 9¢ is defined
as in (1.6) with an obvious identification, then & € 2(0) and ¢ satisfies also (2.2).
A nother useful remark is that if y € A[, C®(Q, £(H))] and 7 with its derivatives are
bounded on Q then for any ¢ € 9(9) we have also yA ¢ € 2(0) and d(y A &) can be
calculated according to the rules of the exterior derivative. Indeed, the formula
(2.2) is still valid for ¢ € CP(Q, L (H)); this last assertion follows from the density
of Q@ L(H) in C(Q, Z(H))[5]).

The most important feature of the operator 9 is that 2(0) c A (8—) as one
can see from the formula (2.2). Therefore 8% has a similar property. Let us denote
by 0, the “scalar” operator 8, i.e. the operator 0 obtained for H = C. We shall see
that @ is the closure of 9,®1, defined on %(3,)@ H.

2.1. LEMMA. For any &€ (D) there is a sequence cfjeg((i) ® H such that
&~ & and (0,@1)¢, - 0¢ as j — oo, in A[l, H).

Analogously, if & D(0*) then there is a sequence g”jeg((f“)@H such that
&~ Cand (0¥ @1) & — 0% asj — oo, in A[l, Hg).

Proof. Let us fix & € 9(d). Since the coefficients of ¢ and 9¢ are strongly measu-
rable functions and we are interested to approximate their values with elements of
H, with no loss of generality we may suppose that H is separable. Assume that{e,}?_,
is an orthonormal basis of H. Let us represent & = Y, &,{;, where I = (iy,. .., i)

'

is an arbitrary multi-index with 1 <i, < ... <i, < m and =0, ~ooo AT,
(The symbol “®’ will be generally omitted when represeating exterior forms;
it will be used only to stress the aspect of certain forms.) Analogously, 7 = J¢
will be written as n = Z 12, Let us define the operators

2.3) wy(2) = Z @ eel, (e k=123, ...),

for any y = Y.9,0; € A[{, Hy), where the scalar product is in H. According to the

'
definitions (2.1) and (2.2) we can write

Ve () = S 0@) Y, (1i2), e e, diz) =
I

= u (3 ((oeme 30)0)= —u{ 3 ({700 a0 6i0) o a

1

- J§1 zj " S % (@i (2) di(z) = 50":&'(4’),

for any ¢ € C2(Q). In this way u,& € P(9) and dué = u, L.
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J—oe

j J
Let us define now ¢; = Zukg' and n; = Z,um. We have lim ¢(z)=¢(2),
k=1 k=1
lim n;(z) = n(z) almost everywhere and [¢;(2)i<[E(2)1, lin(z)'< !n(2)!], by the Bessel
joe

inequalities. Therefore the Lebesgue theorem of dominated convergence implies
that ¢; » ¢ and ; = 9¢; - n =09 as j — 0o, in AlC, Hyp).
Next we. show that Y} (&,(»), el € 2(9,) for any natural k. Indeed, if we
7

define the operator
wk(ZXIZI) = Z(xla el e AL, C)
I I
for any Z x,C; € A[L, H], then we have for each ¢ € C§(Q)
I

§¢<z) Y, (i), el dile) =
I

_— ( y ( Yore dz(z)) z,) -

1

~ —w, ( 5 Sg-g@ (D) 422) A Z,) -

1 i
= —{Tot) 1 ¥ <8, 00 LI,
1

which proves that 8, <&/(2), el = Y, <mi(2), e>{;. Consequently the elements
I I

¢; constructed above belong to @((Z)@H, which finishes the proof of the first part
of Lemma 2.1.

Consider now ¢ € 2(3%) and notice that we may still suppose H separable
and that {e,}f2, is an orthonormal basis in H. It is clear that the operator u; given

J
by (2.3) is self-adjoint (in fact, u, is a self-adjoint projection), thereiore ¢; = Y ud s
k=1

an element of 9(9*) since

— i —
<éJ,aV> = <Z Uy *‘):’ Y>’
k=1

for any y € 2(d), on account of the first part of the proof. The same argument using
the Lebesgue theorem of dominated convergence shows that {; — ¢ and 5*@ - 0%
as j — oo, in A[{, Hy).
Take 6 =Y 6,{; € 2(0,) arbitrary. Then from the formula (2.2) we infer
J

easily that §@x € 2(9) for any x e H, therefore assuming & =Y, &,; and 9%& =
. I
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=Y, n,{, we shall have

ker), &> 00, 30,0 =
:<IZ (%), e el 5;%@%&0 =
:<12 {ni(*), ) . L, ZJ‘,%@&CD =

:<IZ (%), e ¢, ;0151%
hence Y, <¢/(*), e>E, € 2(0%). In this way ¢ € 2(0¥)® H for any J, and the proof
I
is complete,

2.2. THEOREM. The operator 0 is the closure of the operator 9,®1.
Analogously, the operator 0% is the closure of the operator 0} ®1.
Proof. As we have already noticed in the previous proof, 2(0,) @ H = 9(5);
by Lemma 2.1 we obtain that d is precisely the closure of 0,®1.
Concerning the second assertion we have only to prove that Z(0¥)@H <
< 2(0%). Indeed, if (Y, 0,{)®x is in DOF)QH then for any (¥, &)@y in
I 7

9(5S)®H we have
UYL ®x, 5(; &EL®YY =

4 Y 0,l)®x, (;QL)@}’)
7

and approximating any ¢ € 9(d) with elements from 2(0,)® H'in the sense of Lemma
2.1 we obtain the desired conclusion.

Theorem 2.2 suggests that many significant properties of the operator 5s
can be formulated and proved for the operator 0 too. As a sample, we shall show
that if Q is a strongly pseudoconvex domain in C™ (in the sense of [1]) then the range
of 0 in A[f, Hy] is closed. For the operator 0, such a result is a consequence of the
deep theory concerning the 8-Neumann problem, developed by J.J. Kohn [3], [1].
We need some auxiliary results, which can be formulated in a more general context.

Let us fix an operator T e ¥(H) such that Z(T) < A (T).

2.3. LeMmMa. The operator L = TT* 4+ T*T is self-adjoint.
Proof. The result is given in [3, Prop. 2.3], so that we only sketch its proof.
It is enough to show the relation

L+D*'=>0+TT)T+ A+ TTH + 1,
herefore (L + 1)7! is self-adjoint, whence L is self-adjoint.

2.4. LemMA. The operator B = T + T* is self-adjoint.
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Proof. Obviously, B¥ > B. Let us show that B is closed. For, take x, € Z(B) =
=2(T) n 2(T*) such that x, » x and Bx, —» y as kK - co. We can write x, =
= X; = x;, with x; € #(T) and x}’ € Z(T*). Then x;, —» x' € #(T), xi’ = x'' € B(T*),
Txy = y' € #(T), T*x; » ¥y’ € #(T*) and y = y' + y'' = Tx"' -+ T*x'=Bx, hence
B is closed.

Assume now that x, € Z(B*) is such that the pair {x,, B*x,} is orthogonal
in H @ H on.the graph of B. Then we have {(xy, x) -+ (B*x,, Bx) = 0 for any
x€%(B), whence B*x,eZ(B*) and B*x, = — x,. By Lemma 2.3 we obtain

(1 + L)xy = 0, thus xo = 0. Since B is closed we must have B = B*.

2.5. COROLLARY. We have the orthogonal decomposition

(2.4) H=R(T)® AT* ® A (T + T*.
Proof. The equality (2.4) follows from the relation
@y AT+ %) = 9(T) @ BT,

whose proof is straightforward.

2.6. LEMMA. The space R(T) is closed if an only if the space R(T + T*) is
closed.

®

Proof. The assertion is a consequence of the equality (2.5).
Let us return to the operator @ when acting in strongly pseudoconvex domains.

2.7. THEOREM. Assume that Q < C™ is strongly pseudoconvex. Then ()
is closed in A[L, H).

Proof. Let us consider the self-adjoint operator L = 0,0% + 9¥0,. It is known
that #(L) is closed in A[{, Cq) [3], [1]. Therefore we can write L = L, @ 0 with
respect to the decomposition A[{,«Cqo) = (L) ® #'(L), and L, is self-adjoint and
has a bounded inverse on £(L). Note the identification

(2:6) AL, Hol = (2(L) ® H) @ (4(L) ® H).

The operator Ly'®1 has a bounded self-adjoint extension Ly'® 1 on (L) ® H,
which must be injective since the range of Ly! ®1 is dense in #(L) ® H. Then
the operator L, ® 1 has a closed extension L, ® 1, whose inverse is Ly? ® 1. In
this way the operator L ® 1 has a closed extension L ® 1 = (Ly ® @0 on
A[L, Hg) by (2.6), and the range of L ®1 is closed. Obviously, L ® 1 is also self-
adjoint.

Let us prove now that L ® 1 is exactly the operator 9* + 8%3. Indeed, if
&€ 9(L) then by Theorem 2.2 we have ¢ ® x € D(90* + 9*d) for any x € H, there-
fore 39* + 9*0 > L®]. Since both L ® | and 80* ® 6*0 are self-adjoint (the
latter by Lemma 2.3) we have also that L ® 1> 00* + 0*3, hence they must
coincide. In particular, the range of 90%* + 0*3 is closed in Alp, Hy). Since 0 + 9%
is self-adjoint (Lemma 2.4) and the range of a self-adjoint operator is closed if and only
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if zero is an isolated point of its spectrum, we infer that the range of d <+ 0% is closed
in A[, Hg), therefore the range of d is closed, by Lemma 2.6.

Since for Q@ # @ and H # {0} the operator 9 cannot be exact, Theorem 2.7
is the best information about @ on this line.

3. ANALYTIC PERTURBATIONS OF 3

Let U be an arbitrary open set in C" and a = (%, - - ., 4,) a commuting system
in A(U, #(H)). We denote by & ,(«, H) the set of all points ze U such that the system
a(z) = (y(2), . . ., 2,(2)) is singular as a commuting system of linear operators {4}
The set &(x, H) is closed in U (it may be either empty or equal to U in certain
cases), therefore the set U\, (x, H) is open [4], [6]. We associate the system
o= (o, ..., %) with the system of indeterminates ¢ = (g, . .., d,). The system
{=1(, ..., s will be associated, in the sense of the previous section, with the
operator 0. It is known that for z € U\Zy(a, H) the operator J,,, + 8%., where
dy(is given by (1.4), has a bounded inverse on Alg, H], therefore (9., + 0g-) "
is an element of C=(Q, Z(Alc, H))), for any open @ = U\ (o, H) ([6]; see also
Lemma 3.1 below). When © is an open relatively compact subset of U\ (x, H)
(i.e., the closure of Q is also contained in UN\Y (¢, H)) then we may consider the
operator 0, + 9, acting in A[(g, 0), Hy), where 8, is given by (1.5). When defining
the operator 9, 4+ 0 we take into account the following canonical identifications:

Al(o, D), Hol = Alo, A[L, Holl = A, Ao, Hpll =
= Alo, A[{, Hlol = AL, Alo, Hlg).

We start with the unbounded variant of a result in [6], stated in the general
case. :

3.1. LemMa. Assume that TeG(H) has the property R(T) < A (T). Then
T is exact if and only if T 4 T* has a bounded inverse on H.

Proof. ¥ Z(T)= #(T) then, by Lemma 2.6, #(T + T*) is closed. If
xed (T4 T*), as Tx and T*x are orthogonal, we have Tx =0 = T*x. But
x = Ty, therefore T*Ty = 0, whence x = 0. In this way (T -+ T*)™! exists and is
everywhere defined, hence (T + T*) e L(H).

Conversely, if (T + T*) e L(H) then, by Lemma 2.6, Z(T) is closed and
H= R(T) ® R(T*), from (2.4). Consequently, A (T) = #(T).

3.2. CorOLLARY. If T is exact then we have the relations
(T+ T Tx =TT+ T, (xez(1)),
(T +TH7T*y = T(T + T,  (yeD(T*).

Proof. If veX (T) then v = Tv, with v, e (T*), hence (T4 T*)7'v =
= p, € A (T*). This means that (T + T*)" ¢ (T) = A (T'*). Analogously, we have
(T+ TH T H(T*) <« H(T).
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Take now x e Z(T). Then x = x4 + xy, Xg€ H(T) and x, e X (T*). We have
then
(T-THTx=(T-T¥Tx;=(T+T* T+ THx, =
= (T + T*T - T%) 'x, = T¥(T -+ T 'x, = T*(T +~ T*)'x.
The second relation can be obtained in a similar way.
Let us return to the case specified at the beginning of this section.

3.3. LemMA. Consider an open set U c C™ and a commuting system o =
= (%3, + -+, Oy = AU, L(H)). If Q is any open relatively compact subset in
UNS (x, H) then the operator D, = 8, + 8 is exact in A[(s, {), Hgl.

Proof. We use an argument similar to that of Theorem 3.1 from [6], with some
modifications due to the unboundedness of 9.

Consider n € 2(D,) such that D,y = 0. With no loss of generality we may
suppose that n is homogeneous of degree p <n+mingy, ...,0, 0 ..., (e
Then we represent § = o+, + ... + 1, where #; is of degree jin {,, ..., Cm
and of degree p — j in gy, ..., 6,; moreover, by (2.2), each ; is in .@(?9‘). We shall be
looking for a solution ¢ of the equation D¢ = n, where ¢ = &, + &, + ... + &,
¢; being of degree j in {s ..., ¢, and of degree p —j — 1 in oy, .. ., 6,. By identi-
fying the forms of the same type we obtain the syStem of equations

5&60:’70
5161' +5£j—1:'7j (]: 1, ;P_l),

X . aép—l = np
with the conditions
5&’10 =0

5unj+§"j~1:0 (G=1,...,p)
oy, = 0.

Let us define Q(x(2)) = (0, + 0%.) 1 (ze 2) and note that Q(x(z)) and its
derivatives are bounded on , according to the choice of Q. Define also &,(z
= Q(x(z))no(2). By Corollary 3.2, applied to §,(.), we have {(z) € £7(85.)), for every
z & Q. Moreover, as 1, € 2(0) we have also &, 9(9) and §,0¢, = —00,&y = —0ne =
= 8,1, whence 8,(n, — 0¢,) = 0. Define then &(z) = Q@(2)(n(z) — 3&(2)) €
€A (0] (z€ Q), hence 5,5 =, — 0. We have also 5,6, € D(0), therefore
8 — 0F) = 8,1, + 00,¢, = 0, which allows the continuation of the procedure.
One has, in general, 7,(z) — 0¢4(2) e #(3,,), hence &,(z) = Q(2))(nz) —
— ¢ _l(z))e%(éa(z,) and 6,¢; + 62:]_1 =1y, forany j=1,...,p — 1. Note also
that 5_169(6) implies that ge@(a‘) too. From the structure of the operator §,
and from the Corollary 2.2. we obtain that the degree of &; in oy, ..., 0, must be
p —j — 1. In particular, the degree of n,(z) — 0¢,.4(2) in 7y, .. ., 0, is zero. Since
4+ is exact, the kernel of 8,.., on the space A%q, A[{, H]} must be zero, therefore
5§p_1 = 1, and the proof is complete.
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3.4. COROLLARY. With the conditions of Lema 3.3, if ne A”[(a, {), Ho] has the
property Dn =10 in Q then

Bae) =%, ¥ (— 1 QuE)@0GEN (),  (z€ Q)

j=0k=0
is a solution of the equation D,C =y in Q, where Q(%(2)) = (8., + 6%.)™" and n;
is the part of n of degree jin {,, - - -, {,,. Moreover, B,y € A?"Y(a, {), Hg).
Proof. The solution B,n of the equation D,¢ = 5 is the explicit form of the

solution constructed in the previous lemma.
Let us consider the differential operator

3.1) =—( 0 ?;+--~+»—Z:,),

acting in A[{, C*(Q, H)], where @ = C™ and Z¥ corresponds to {; by the relation
(1.2). It is easily seen that (3.1) is the formal adjoint of the operator 4. It is also clear
that the operator (3.1) has an extension, In the theory of distributions sense, in the
space A[Z, Hg). Furthermore, we have the following

3.5. LEMMA. Assume that Q < C™ is open and relatively compact. I,
n € A[L, Hy) has compact support and n € D(0%) then 0%n = 1.

Proof. Variants of this result for the scalar case can be found in [1] and [2].
As we need parts of the argument in the sequel, we shall give a complete proof.

Let us take y € C&2(C™) such that supp y = {z; ||z|| < 1} (where “supp” stands

for the support), x(z) = y(—2),x = 0 and S x(z) dA(z) = 1. Define then y.(z)=

= ¢ 2My(z/e), for any & > 0. Let us denote by n, the convolution product y*y;
analogously, y, = x,*y, where y = 0*n. Note also that y is still with compact support.
Indeed, if ¥ € C(Q) is arbitrary then a direct calculation from the definition of 9*
shows that

ZF+ .. .+%—Z’,ﬁ)n + Yo*n.

21 Zm

_ 2
(32) Ty = — ( a‘”

In particular, if ¥ = 1 in a neighbourhood of supp #, we obtain that supp y has to

be compact.
As in the scalar case [2], we have n, — 5 and y, - 7 in A[{, Hgl, as ¢ - 0.
We shall prove that d*5, = y,. Indeed, according to the properties of y,, we can

write
(rexp, 0 = <, 140> = <, 0(1,*0)) =
= (1, 1+00) = (1, 00) = (B*n,, 6,
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for any 0 € 2(0); the equality 5(15$6) = 7,#00 is true in a neighbourhood of supp 7,
on account of the relation (2.2). If the coefficients of 8 are in C*(Q, H) then

. m a _ N
Fon, 0= — (¢ ¥ 780 0,
@ <j§l 0z; s )

therefore 0%, = — Y (8/:32]-)2-*;1a because of the density of such @’s in A[Z,H,).
i=1

Finally, if ¢ € C{°(£) is arbitrary then, with the notation (2.1), one has that
v(p)= S P(2)y(2)dA(z) = ling S 0(2) 0*n,(2) di(z) =

— limS ( ¥ Z—‘p?;f)m(z) diz) = (— ,é %Z* v, )(«J),

£—-0 j=1 zj

i.e. 9*n = 9y in the theory of distributions sense.

3.6. LEMMA. With the conditions of the previous lemma, if n is also in 2(0)
and n =Y, 0L, then On,/0z;€ H for any I, j and *
1

- ;%:2 — [Ionll2 2
D) S;| o 4A@) = 1onl + 9l

I j=17; 0Z; 4

Proof. Assume first that the coefficients of 5 are functions from C*(Q, H), with
compact support. Then, by the relations (1.3), we can write in A[{, Hg]
10012 + 19nl12 = (90 + 9%, 1y =

m 02 _ _
= — s C =
j;l 0zj 82_,- IE n1¢; 21 U I>

=% 3

1 j=1

!' %’_ﬂ 5i2 dA(z).
Il oz |

Take now . as in the previous lemma. Then for n, = y,*n we have n,— n,
0_’15 = y.*0n — dn and M, =y In—Inase—0,in A[{, Hy]. By the preceding calcula-
tion we obtain that dn;/0z; are elements of Hg and the equality still holds.

We can prove now the main result of this section. By a smooth form we mean
any element ¢ € Al(o, {), C=(Q, H)] with &, 8¢ in A[(e, {), Hg).

3.7. THEOREM. Consider an open set U c C™ and a commuting system
= (o, *,a,) < AU, L(H)). If Q is any open relatively compact subset of
UNS (o, H) then the operator D, + D¥ has a bounded inverse R, on Al(c, ), Hgl.
Moreover, if & is a smooth form then R is also smooth.
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Proof. The invertibility of D, — D} follows from Lemmas 3.1 and 3.3. The
second assertion is a reflection of the regularity of the soiutions of the elliptic diffe-
rential operators. Let us reduce our problem to a managzable case.

Assume first that ¢ e A(s, 0), Hg) is a smooth form such that D,¢ = 0. By
Corollary 3.2 we have that D,R,¢ = £ and D}R, = 0. It will be enough to prove
that for any y € C$°(Q) the form # — YR,¢ is smooth. Since R, € (%), we have
also 5 € 2(9*%), by the formula (3.2). From the equalities satisfied by R, we obtain
that

On =0y A RE -+ W — 5,R0),
0%n = (U, — Y8R,

where U, = — ((09/02)Z§ + ... + (04/9z,)Z%). By Lemmas 3.5 and 3.6 we
obtain that if n =Y, n,{;, with n;€ Als, H]y, then dn,/0z; are still in Alo, Hlq,

for any I and j. Anallogously, dn;/0z; are in Alo, H], (note that Lemma 3.6 can be
stated with dn,/0z; instead of dn;/0z;, with a similar proof). We can apply now an
induction argument (see [2], Th. 4.2.5(b)) in order to show that the coeflicients 5,
belong to any Sobolev space W9 (Q, Alo, H])(¢=0) of those A[s, H]-valued functions
on ©, whose derivatives up to the order g are square integrable, therefore 5, are smooth
functions, by the Sobolev lemma.
Let us obtain the assertion in its full generality. Consider a smooth form
&e Al(o, 0), Hy). By Corollary 3.2 and the previous case, &, = D¥R.,¢ = R, D¢
is smooth, hence &, = D,R,é = & — &, is also smooth. We have therefore the rela-
tions ORE = & — 8,R,¢ and (7*Ru£ = ¢, — 0FRE. It is clear that the preceding
procedure can be again applied to YR, for every y € CP(Q), which finishes the proof.
3.8. COROLLARY. With the conditions of the previous theorem we have the equa-
lities :
R(A (D) 0 A0, 0), Hal) = A (D) n 477(0, D), Hy]
and
R(A(DF) n A?l(o, ), Hol) = #(D,) n AP*(o, {), Hy),

for any integer p, 0 < p < n+ m, where A”[(a, ), Hyl is zero for p= —1 and
p=m-+n—+1.

Proof. The equalities follow from Corollary 3.2 and from the structure of the
operator D,, mapping A?{(a, {), Hy] into 4°+Y(a, {), H).

'4. SOME INTEGRAL FORMULAS

Let U be any open subset of C" and 6=(0y, ..., 0,), { = ({, ..., {,) systems
of indeterminates. Let us denote by Hf° the space of all (classes of) strongly mea-
surable H-valued function in U, whose norms are locally square integrable. If
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¢ e Al(a, ), HEF] then we define its integral on a bounded Borel set Mc U in the
following way: Denote by ¢,, the part of ¢ of degree m in {j, ..., ¢, and by ¢,
the form obtained from &, by substituting {,, . . ., {,, withdz,, ..., dz,,, respectively.
Then we put, by definition

@.1) S D Adzy A .. A dzng E()Adzy A ... A dz,
M. M

C early, the right side of (4.1) make sense and it is an element of Afa, H].

The integral (4.1) does not suffice for our purpose. We need a more complicated
concept, valid for some smooth surfaces of real dimension 2m — 1. First of all
notice that the operator & makes sense as a closed operator in A[, H¢] (hence also
in A[(o, {), HY®]), when A[{, H\%°] is endowed with its natural topology of Fréchet-
Hilbert space, giving @ a similar meaning with that from the second section. Then
for any open relatively compact 4 « U, whose boundary X is a smooth surface,
and for any ¢ € 2() in A[(e, {), H'%] we define

@.2) S ) Adzy A .. A dz,,,:S 9E@z) A dzy A ... A dz,,

p]

where the right side is given by (4.1). Plainly, the formula (4.2) is suggested by the
Stokes formula. In particular, if ¢ € 2(9) has compact support and we denote by
£, the convolution product y.+&, where y, has been defined in the proof of Lemma 3.5,
then ¢, - ¢ and 55_5 — 0¢ as ¢ — 0, therefore

S E2) A dzp A ool A dz,,,:limS E(2) A dzy A ... A dzy,

g0

Consequently, if § = ¢ and the support of ¢ is contained in A then

4.3) S 1) A dz, A ...Adzmzs n@) A dzy A ... A dz,, =0.
4 U

The definition (4.2) makes sense also for forms defined only in neighbourhoods
of Xin U.Indeed, if Q@ = X is an open relatively compact subset of U and ¢ € C°(Q)

is equal to 1 in a neighbourhood of Z then for any & € 2(d) in A[(, {), Hg] we have
o¢ € 2(0) in Al(s, 0), H}®°] by natural extension, hence we may define

4.2)* S Ez) A dzy A ... A dz, =S d0E@) A dzy A ... A dz,

z a4

By the above remarks, the formula (4.2)* does not depend on the particular choice
of the function ¢.

4 — c. 1056



200 F.-H. VASILESCU

Suppose now that x = (ay, ..., 2,) <« A(U, £(H)) is a commuting system such
that &(x, H) is compact in U Then the operator B,, given by Corollary 3.4, maps
the kernel Z[(c, {), H\>] of 8, = 0, when acting in the space A[(o, ), H*], into the
space A[(g, §), H)?], where ¥V = U\ y(z, H). From now on we shall denote by
P_ the projection of A[(s, ), H}?*] onto A[{, HI]; note that P«a c OP Let us
also assume that & (2, H) = A, with 4 as above. Then for any e Z[(a 0), H]
we define the H-valued linear map

4.4) 1,6 :S PeBE(Z) A dzy A ... A dz, —

—S @) A dzy A ... A dz,,.
A4

Let us remark that the map (4.4) may be not null only on the space
Z™(o, 0),HE<] of those forms of Z{(s, ), H*] which are homogeneous of degree
minay, ..., 0, L1y - .., L, Indeed, if & is of degree < m —1 then, by Corollary 3.4
B2 is of degree < m—2 and the integral (4.4) is plainly null. When ¢ is of degree
>m+ 1 then P;¢ = 0 and the part #,, of B, of degree m — 1in {y, ...,
which is theonly one participating at the integration, is of degree >1ino,, ..., 0,,

hence Pry,,—; = 0.

4.1. LEMMA. The map u, does not depend on the particular choice of the set
A o Py(a, H) and is continuous.

Proof. Indeed, if ne 2" (0, {), H, le] and its support is compact and disjoint
of & y(a, H) then, by Corollary 3.4, B,n satisfies (6,+ 9B,y = nin U and the support
of B,y is contained in the support of 4. Then we can write Pzn = dn, in U, where the
support of 7, is compact, hence by (4.3)

S Pen(z) A dzy A ... A dz,=0.
7
In particular, if we take

N = (6 -+ W1 BE — &) — (5, + OuB,E — &),

where ; € C*(U) is zero in an open neighbourhood of &y, H) and is one outside
another (relatively compact) open neighbourhood of & y(a, H) in U(j= 1, 2), then
we obtain that the integral (4.4) does not depend on 4.

A similar argument shows that we have also, for any &e Z™[(o, {), H}"l,

1, (E) :S PrR,, of(2) A dzy A ... A dz, —

-S Pré(z) A dzy A ... A dz,,

4
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where @ o 4 is a relatively compact open set in U, whose closure is disjoint of
(2, H), and R, q is given by Theorem 3.7. If Y € C§°(Q) has the property that =1
in a neighbourhood of X then by (4.2)

S PiR, ol(z) A dz, A ... A dz,, :S P70 YR, i(2) A dzy A ... A dz,,.
v A

Since R, q is continuous and 9R, o = ¢ — §,R, of in Q, we infer the continuity of
e on Z7i(a, 0), Hi<l.

Let us mention that the continuity of g, can be also proved by showing that
B, is closed, hence continuous, on Z™[(s, {), H;?°]. However, the formula (4.5) makes
a connection between g, and Theorem 3.7.

Note that Z™[o, {), Hy"] is an A(U)-module. In some important cases the
space H can be also given a structure of A(U)-module by means of the maps

(4.6) v{f)x = pulfxay, A ... Ana) (feA(U); xeH).

The map p, itself becomes an A(U)-module homomorphism. More precisely, let us
denote by Z{{(s, {), Hi*] the closure in Z"[(a, {), Hi] of those exterior forms Y #;x;,

J
where the coefficients of 5; are smooth functions having values in the commutant
of the set {a,(2),...,,(2);ze U} in L(H), x;e H and (6, + 9)n; = 0 for any j.
Then we have the following

4.2. THEOREM. Assume that a=(ay, . . ., a,) is a commuting system of operators
in (H) and define az)=2z;—a;, j=1,...,n z=1(2,...,2,)€C" and
o=y, ...,0,). If U< C" is any open set containing Sc+(ot, H) then for any
£ € Z3l(o, 0), H) and fe AU) we have u(fe) = vi(/Ii9)-

It is known that (4.6) provides, in this case, an analytic functional calculus,
i.e. v, is a continuous homomorphism of the algebra A(U) into the algebra ¥ (H)
such that v(p) = p(a), for any complex polynomial p [6], since Fca(xr, H) is exactly
the joint spectrum of the system @ = (a, . . ., @,) when acting on H [4], [6]. Theorem
4.2 asserts that the usual multiplicativity of the analytic functional calculus is, in
fact, a property of A(U)-module homomorphism. This feature will follow from a
Fubini type property of the integral map (4.4), which will be described in the sequel
(see also [4], [6)).

Suppose that U « C"*™ is open and write a point in U as a pair (z, w) =
=2y, -+ vy Zy Wy, .- -» Wy,). The corresponding system of indeterminates when
defining @ will be ({, @) = ({,, ..., L,, @, - - -, @,). We shall consider two systems
o=1(t,...,,) and f = (B, ..., B,) in AU, L(H)) such that («, f) = (o, . . .

s %y By - .5 B) IS @ commuting system. The operator §, will be defined with the
system of indeterminates ¢ = (o3, . . ., ¢,) While the operator é; will be defined

with the system of indeterminates © = (14, ..., 7,,)-
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A closed set F < U is said to be C"-compact in U if for every compact K < V
the set F N (C"x K) is compact, where V is the projection of U on the last m coor-
dinates [4].

Let us extend the definition (4.4) for commuting systems a = (%, ..., %,)
with & ,(«, H) C"-compact in U. Namely, we shall fix an arbitrary function ¢ € C®(U)
such that ¢ =0 in a neighbourhood of & y(«, H), @ = 1 outside another neighbour-
hood of & y(«, H) and supp (1 — @) is C"-compact in U. Then the support of the
form (8, + 8)@B,¢ — ¢ is C-compact in U and if P, is the map of Z"[(s, {, @), HI*
which annihilates the monomials containing o,, . . ., 6, and letting the other invariant
(which agrees with Pz from (4.4)), then we define

@4.7 1,8 (W) = S P (3¢BE(z, w) —E(z, W) Adzy A ... Adz,,
CII

for any & e Z"[(o, {, @), H*?]. We shall see that the definition (4.7) is independent
of ¢ and w — (&) (w) is analytic.

4.3. LEMMA. Assume that ne A[(C, @), H) is in the domain of 0 and its

support is C"-compact. Then the form Sn(z, w)Andz; A ... Adz, is in the domain

of 0 in Al@, H] and

n

5811(2, uf)AdzlA...Adz,,:Sffn(z, wyadz A ... Adz

where V is the projection of U on the last m coordinates.
In particular, if the degree of nin{y, ..., L, is <n — 1 then Sa—n(z, w)Adz A
A...Andz,=0.

Proof. Take y, € Cg°(C"+™) with the properties of Lemma 3.5. Then for every
relatively compact open set Q = V we have 5, =y, xn —>n and 9y, - 0n in
A, @), Hy] as ¢ - 0, where W= Un(C"xQ). If n =n, + n,, where 7,
is of degree <n — 1in{,, ..., {, then we have for we Q

85/1(2, wyadz;A ... A dz,= limSéqs(z, wiadz A ... Adz, =

e—=0

limsgn,,,s(z, WAdzA ... Adz,=limd Sﬂ,.,s(Z,W)dZﬂ\ ... Adz

=0 &0

n
where Nn—1, e = Le * Np—1 and Mo, e = Xe * My since

85;1"_1,5(2, wyandz;A ... Adz, =0
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for a sufficiently small ¢, by the Stokes formula. Consequently, \ n(z, w)A dz; A

A...Andz, = S n(z, W) Adz;A ... Adz, is in the domain of @ in A[@, HY
and the first assertion holds. The second assertion follows easily from the first.

4.4. LeMMA. The map p, given by (4.7) does not depend on the particular
choice of the function ¢. Moreover, u (&) e AV, H), for every & e Z"((o, {, @), HI).

Proof. The independence of p, on the choice of ¢ follows by refining the first
part of the proof of Lemma 4.1, via Corollary 3.4 and Lemma 4.3. Note also that the
integrand of (4.7) satisfies

0P (0pB,t(z, w) — &z, W) = — P,0k(z, w) = P,8,&(z, w) = 0,

hence, by Lemma 4.3, 6_;_1«(&) =0.

The next result is an extension, in Hilbert spaces, of Theorem 3.6 from [4].

4.4. THEOREM. Let U be an open set in C"*™ and V the projection of U on the
last m coordinates. Consider also o« = (%, ..., 0,)c A(U, Z(H)) and f = (By, ..., B,))
c A(V, L(H)) such that («, B) is a commuting system. If & («, H) is C"-compact
inU and &, (B, H) is compact then for every & € Z"(o, {, @), H¥*) and n € A™[(z, @),
C=(V, (o, B))], with (5, + )y =0 in V, where (x, B is the commutant of (2, B)
in #(H), we have

I'l(m,ﬂ)(rl A é) = #ﬂ(r’lu'a(é))

Proof. The formal part of the proof is not essentially different from that of
Theorem 3.8 from [6], which in turn is an explicite variant of the proof of Theorem
3.6 from [4], so that we only sketch it.

Consider ¢ € C=(U) with the properties from the definition (4.7) for & (x, H).
Analogously, take ¥ € C2(V) for & (8, H) and 6 € C=(U) for ¥ ((a, ), H), with
similar properties. Then we can obtain the relation

0Py, 9B, p(N A €) — P A PoE =
OYP By (1 A (0P, B, — Pyl) — PN A (09P,B,E — Pot) + On,

where the support of n, is compact. By integrating this relation and using the equality
5\/18 By A (0pP,B,E — PEAdzyn ... Adz, =
=5|//Bﬁr1 S(é(pP,Blg” — POAdz A ... Adz, + Ony,

where the support of #, is compact in V, we obtain the desired conclusion.
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4.5. PROPOSITION. Let U < C"*™ be an open set and x = (2, ...,%,) <
< A(U, ¥ (H)) is a matrix of commuting elements which commute also with «,, . .., «,.

Denote by B; =Y upn, B= By, ...,B). If L, H) and & (B, H) are both
K=

Cr-compact then ;Z(cf) = pg(c), for any & e Z"(o, {, @), HY), where Ui is the map
induced by the formula

u(z, w) (xaj A ... A0 )= Y, (detu,; (z, WD)y XOu,A ... ADy,
1< <kp

for xe H, u(z, w) being the identity on the other terms (here “‘det’ stands for the
determinant).

The proof of Proposition 4.5 is similar to that of Proposition 3.12 from [4]
(see also [6]), so that we omit it.

Proof of Theorem 4.2. By Lemma 4.1, it will be sufficient to verify the property
U (fE) = v,(f) 1o(€) for & = nx, where the coefficients of 7 are smooth functions with
values in the commutant of « in #(H) and xe H. By Theorem 4.4 and LLemma 4.1
we can write

va(f)”m(nx) = .uu(va(f) ’lx) = ”a(n va(f)x) = #(a.u)(rl /\fXG'l Ao A 0',,)-

If we transform the system (z; — ay, ..., 2z, — a,, w, — @y, ..., W, — 4,) into
the system (w, — zy, ..., W, — Z,, W, — @y, ..., W, — a,) with a suitable matrix
(see Theorem 4.3 from [4] or Theorem 4.1 from [6]) then the form n A fxa, A ...
... A 0, remains unchanged and we obtain by Proposition 4.5,

Pz, oM A fXTLA L oo A6 = 1 (nve(f) X) = po(fix),

where f(z,w) =w — z and p(f) (w) = f(w) [6].

Theorem 4.2 is, of course, related to the existence of the analytic functional
calculus for commuting systems in #(H). Moreover, the formula (4.4) is given by a
canonical kernel of Martinelli type (see also [6]), while (4.5) is connected to a family
of canonical kernels, seemingly depending upon the parameter Q. However, Theorem
4.2 gives more than the analytic functional calculus, actually in the one-dimensional
case. Let us illustrate this assertion.

Consider b e #(H) and take an open set U < C containing the spectrum of b.
In this case the space Z'[(o, {), H<] can be identified with the space of those pairs
(fi, f>) from Hecx HI®® such that (8f,/02)(z) = (z — b) fy(2) almost everywhere in U.
If we denote by ¢ the form fio + f,{ then for a(z) = z — b the formula (4.4) can
be written as

1 (8) = S @ — by fi(z) dz + S fiz) dz A dz,

I a4
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where 4 < U contains the spectrum of b and I is its boundary. By Theorem 4.2 we
obtain p,(fZ) = f(b)u,(¢), for any fe A(U) and ¢ e Z)[(a, {), HEC), where f(b) is
given by the Riesz-Dunford functional calculus. In fact, this property is valid in
this case for a larger class of forms, namely for those obtained by asking only the
integrability of f,.

In the scalar case, the formula (4.4), more precisely an extension of it, is connect-
ed to an integral representation formula of Martinelli type with an additional term.
It is therefore ;Slausible that these techniques can be applied in order to obtain inte-
gral representation formulas of a more general type, in particular for exterior forms
whose coefficients are vector-valued functions, with respect to commuting systems
of operator-valued analytic functions.
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