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COMMUTING WEIGHTED SHIFTS AND ANALYTIC
FUNCTION THEORY IN SEVERAL VARIABLES

NICHOLAS P. JEWELL and A. R. LUBIN

1. INTRODUCTION

Given a separable complex Hilbert space H with orthonormal basis {e,}
and a bounded sequence of complex numbers {w,}, a weighted shift operator T
is a (bounded linear) operator which satisfies Te, = w,e,.; for all n. T is called
unilateral or bilateral according as the index n ranges over the non-negative integers
or over all the integers. An excellent introduction to the theory of such operators
and an extensive bibliography can be found in the recent comprehensive survey
article by A. L. Shields [12]. It is shown there that each weighted shift is unitarily
equivalent to multiplication by the function z on a weighted H? or L? space. This
identification has been the cornerstone of an extensive interplay between operator
theory and analytic function theory and weighted shift operators have been a rich
source of examples and counter-examples in both areas.

In this paper we begin to extend the theory of single (i.e., one-variable) weighted
shifts to systems of (N-variable) weighted shifts (which we define below) and we
show an analogous identification between such systems and multiplications on cer-
tain H? or L? spaces in several variables. We concentrate our attention on the unila-
teral case where we will develop the basic analytic function theory. We will follow
the outline of [12] as a model for our theory, and we omit the details of proofs which
are obvious extensions of the single operator case. We assume that the reader is
familiar with the basic theory of operators in Hilbert space. We present several
applications of our theory to the theory of general commuting contractions, commut-
ing subnormal operators, Toeplitz operators in several complex variables, and
several variable analytic function theory. It is these applications which, to a great
extent, motivate this presentation of the general theory. We also note that [12] con-
tains a number of open problems most of which have natural extensions to the
multivariable case.
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2. DEFINITIONS AND ELEMENTARY PROPERTIES

Let N be a fixed positive integer throughout. We will use multi-index notation,
i.e., let I be a multi-index (i), . . ., iy) of integers. We write / > 0 whenever i; > 0,
i=1, ..., N. We also use the notation

U =iy + ...+l I'=40!. .. iyl

For I = 0 we write

where z =(z;, ..., zy) € CY and
T'=Th...Ti
whenever T = {T, ..., Ty} is a family of N commuting operators. We let ¢ =
=(0,...,1,...,0) be the multi-index having i; = 1 or 0 according as j =k or
otherwise and 0 be the multi-index (0,0, ..., 0) whose every entry is zero. For [/
the multi-index (i}, ..., iy), I £ & denotes the multi-index (4, ..., 7 £ 1, ..., iy).
Let {e;} be an orthonormal basis of a complex Hilbert space H and let
{w;;j:j=1, ..., N} be a bounded net of complex numbers such that

(*) Wi Wit e = WraWiee,x forall I, 1 <k, I < N.

%(H) denotes the algebra of all bounded linear operators on H.

DEFINITION. A system of N-variable weighted shifts is a family of N operators,
T={Ty, ..., Ty} on H such that

TjeI: wl,jel+ej ) (.] = 17 .. ',N)'

Clearly the condition (*) on the set {w; ;} implies that T is a commuting family
of operators. The family, T, is called a unilateral shift or bilateral shift according
as [ ranges over {/:I > 0} or all the multi-indices of integers.

In the following we will restrict our attention primarily to systems of N-va-
riable unilateral weighted shifts (which we will just call a unilateral shift) since these
yield our main applications of the theory. Some of the results which are stated only
for unilateral shifts have analogous statements for the bilateral case and, for the
most part, we leave it to the reader to investigate when this is possible. So from
now on, unless stated otherwise, we assume that T is a unilateral shift. (Similarly,
we could generalize further and omit condition (*) to define non-commuting shifts,
but our applications all deal with the commutative case.)

ProPOSITION 1. If {A;} are complex numbers of modulus 1, then T is unitarity
equivalent to the weighted shift S = {Sy, ..., Sy} with weights

Hr ;= A1s s,-)»lwt,j~
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[We note that T = {T,,..., Ty}, where each T acts on a Hilbert space H,
is said to be unitarily equivalent to S = {S,, ..., Sy} where each S; acts on a
Hilbert space K, if there exists a unitary operator U: H — K such that

U*SJUzn, j:l,...,N.]

Proof. Let U be the unitary operator defined by Ue; = Z/e,.

COROLLARY 2. Suppose all the weights w; ; of T are non-zero. Then T is
unitarily equivalent to the unilateral shift S with weights given by

Hy ;= |W1,,-|-

Proof. In Proposition 1 let =1 and A;,., = 4,w, ;/|w, ;. The corollary
follows once we show that {1;: I > 0} is well-defined. Let

J:II+8j=12+£k=I+8j+8k.
Then °

_ _ Wr.,i ___;ll+zkwl+ek,j_
)'J_lll‘?'fj_ hy = =
lel.jl (Wi ek,jl

_ MWr, W4 e, j _ AWr, Wi e, k _

|Wl+ek,j| (Wi, |Wl.jwl+ej.k

_}'1+8/wl+5j,k =
— T T T My toeg

Wi e, il

Hence, by induction (over |I|), {4;: I > 0} is well-defined.

Note. Provided all the weights are non-zero, Corollary 2 is valid for bilateral
shifts also. In this case we define {4} inductively as follows: (note that Proposition 1
is also true for bilateral shifts),

bo=1, Apee, =2y llwryl, and g = Apw, o, flwi,, .

As above /J, is well-defined for
J=L+e¢=L+eg and J=1I —¢=1—g;

suppose

J=11+£j=12‘_‘8k31+8j—ek.
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Then

>

_ W, g _t-aWi-g, j _
O B N e
|W1,,j| 'wl—tk,jl
_ Wik Wi-aj

Wre,, il ]wI—Ek,jI

_ Wi, Wi-e, 1V, AWi—ete;,k

le—fk,k' |W1—tk,k”'l,jl/lwz-ek+ej,k|

; Wr_e,, il? Wl,jlW1~ek+ej,k, _

-1
Wy—e,, kl® Iwy, 1 Wr—e,+e;, &

= Wrj Wi +e,k ; Wr-ere;,k

— by T — ~]+€j - -
Iwy |W1_ek+ej,k| Wi—eg+e;, k

p— — b

= Afy—t,, = 4.

This calculation shows that {4,} is well-defined for all J.

COROLLARY 3. Suppose » = (Ay,..., 2 y) where M| = ... = |Ay| = 1. Then
T={Ty,....,Ty} and ‘T ={N\T,, ..., 5Ty}
are unitarily equivalent.
Proof. Let 2, = Ay ... 7% in Proposition 1.

From Corollary 3 we see that the spectrum of each T},j =1, ..., N as well
as the various parts of the spectrum have circular symmetry about the origin, and
the joint spectrum is invariant under ‘‘torus’ rotations, i.e., (yy, ..., y) € (joint
spectrum of T') implies that (ue™,. . ., uye”~) € (joint spectrum of 7') for all 6; €
€(0,2r],j=1,..., N. Also, Corollary 2 shows that, for shifts with non-zero weights,
we may always assume that {w, ;} is a set of positive real numbers.

PROPOSITION 4.
17t = iup0 Wy NWrten N + o« Wit (in—Den, NVI+iney, Ne1 + - »
Z

Witiven+ (incg—DeEn-1, N=1 * + » Wrgiventinogenonta.+isse+ (i3—Dey, 100
PRrROPOSITION 5.

Tre, = | Wrensi—e AT
! 0 if ;=0

J

\Y
-
I
=

(If T is a bilateral shift, then

£ — .
Tjel == W[_gj,jel_gj, J= 1,. . .,N.)
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PROPOSITION 6. T is compact if and only if (w; ;1 -0 as {I} > oc0. T;e
€ %P0 < p < o0) if and only if ¥, lw, ;1P < oo.
PROPOSITION 7. Let A be an operator on H having matrix (a,;) with respect to

the basis {e;}, ie., a;; = (Aey, e;), and let S be a weighted shift with weight
sequence {v; ;}. Then, for anyj, 1 <j < N,

: AS; = T,A
if and only if
{ UJ,_,-a,’J.,_gj:O if fJ=0 (I,J?O)
UJ,jal+£jv-’+£i - W,’ja” OtherWiSC.

(If S and T are bilateral, then AS;=T;A if and only if

Vs, jQr+e;,0+6; = Wy ;4;

Sfor all 1,J)
Proof. Compare the action of A4S}, T;4 on e,.

This proposition can be used to derive necessary and sufficient conditions
for two shifts T and S to be similar or unitarily equivalent, e.g., two unilateral shifts,
both with positive weights sets, w; ; and v; ;, are unitarily equivalent if and only if
wyj=uvr; forall 7>0and1 <j<N.

ExaMpLES. (1) Let L%T%) denote the standard Lebesgue space of square sum-
mable functions from the N-torus, T%, into C. Let H3(T") denote the standard Hardy
space of L3(TN) functions with analytic extension to the N-polydisc. Then {e; = z/}
is an orthonormal basis for H%(TV) or L%(T") according as I > 0 or I is all multi-
indices. The system M = {M,,..., M.} where M, acts on H¥T™) or L¥T") by
multiplication by z; (1 < j < N) gives a system of N-variable weighted shifts, uni-
lateral or bilateral, respectively, with weights w; ; = 1 for all 7and .

(2) Let SN denote the unit sphere in CV. Let H%(SN) denote the standard Hardy
space given by the closure in L%(SV) of the polynomials in the coordinate functions
Zy, ..., zy. For each j, 1 <j< N, let M, act on H*(SY) by multiplication by z;.
We can parametrize the sphere in such a way that the system M = {M_,,..., M.}
is identified as a system of N-variable weighted shifts with weights given by

wi,y = G+ DY + M)

(see [7]). Note that M, is the Toeplitz operator acting as H?(SM) with symbol
the jth coordinate function.

(3) Let {e;: I > 0} be an orthonormal basis for a Hilbert space H and let
T={T, ..., Ty} be a system of N-variable weighted unilateral shifts with weights

1 1
wr,y = G+ D00 + D3,
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Then T can be used as a universal model for a large class of commuting con-
tractions in the sense that if S = {S),..., Sy} is a system of commuting contractions
such that

N
Y lsiE <1,
j=1

then S is unitarily equivalent to a compression of T to the orthogonal complement
of some joint invariant subspace [8]. This yields analogues of some well-known
theorems modelling (single) contractions on the adjoint of the standard unilateral
shift. For some related work on compressions of systems of unilateral shifts and
their dilations see (2, 3].

Furthermore, it can be shown that each T} is subnormal, i.e, (for each j, 1 <
< j < N) there exists a Hilbert space K; 2 H and normal operators N; € Z(K})
with N;{ H=T,. The lifting problem asks whether T has a commuting subnormal
extension, i.e., whether there exists a Hilbert space K 2 H and commuting normal
operators M,,..., My<€ %(K) such that

M;H=T, 1<j<N.

It was formerly unknown whether the lifting problem always had a solution,
but T answers this negatively [8]. Two additional examples of commuting subnor-
mals without commuting normal extension follow; we note that, at present, all
known examples of this phenomenon use weighted shifts. In this context, Carl Cowen
has recently described an analytic Toeplitz operator (which is thus subnormal)
whose commutant does not dilate. In fact its commutant contains a compact ope-
rator. See [5].

- (4) Let N = 2 and {e,: I > 0} be an orthonormal basis for H. Let T = {T;, Ty}
be a two-variable system of weighted unilateral shifts with weights

_[2if =0, L [rrife=0i=n
PRV 0, 0, e 1 if iy # 0.

Then T, and T are both subnormal, but do not have a commuting normal extension.
In fact, T, does not have any bounded extension commuting with the minimal normal
extension of T,. This example is due to M. B. Abrahamse [1], although it was not
given in the context of weighted shifts.

(5) Let N = 2 and {e;: I > 0} be an orthonormal basis for H. Let T = {T, Ty}
be a two-variable system of weighted shifts with weights

wia=1 if i,=0
wro=1 if =0

wy, ;=0 otherwise.
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Then T, and 7, are both subnormal, and, in fact, are both quasinormal; also, each
element of the two parameter semigroup {7’} is subnormal. However, T does not
have a commuting normal extension [10].

Although Examples 4 and 5 are of interest as counter-examples to some natural
conjectures, shifts having some of their weights zero represent, in some sense, a
degenerate case. Hence, unless specified otherwise, we assume all weights wy ;
are non-zero. Then, as already noted, Corollary 2 implies that we may assume that
all the weights are positive real numbers.

3. WEIGHTED SEQUENCE SPACES

As in the single operator case, we now find that we may view a system of
N-variable weighted unilateral shifts as multiplication operators on certain weighted
sequence spaces.

DEFINITION. Let {8;: I > 0} be a set of strictly positive numbers with Sy= 1.
Then, let

H:(B) = {f(2) = I§0f12’1 £l =I§|f,|2ﬂ? < o}

Clearly H*(B) is a Hilbert space with the inner product
f.8> =Y figibi.
1>0

We note that the elements of H?(f) are considered as formal power series with-
out regard to convergence at any point z€ CV. {z!: I > 0} forms an orthogonal
basis for H%(f) which is, in general, not orthonormal.

Let M = {M.,,..., M_.} denote the multiplication operators given by

M., f(2) = 7 f(2) G=1,...,N)

defined on the “polynomials” in the coordinate functions, z;, of H*f). Then M_,
which may not be bounded on H*(f), shifts the weighted basis {z'} of H2() and, as
the following proposition shows, this is equivalent to a weighted shift acting on an
orthonormal basis. '

PROPOSITION 8. The linear transformations M_, (j=1, ..., N) acting on H*p)
Sform a system which is unitarily equivalent to a system of injective weighted unilateral
shift linear transformations with weights w; . defined in terms of B as below. Conversely,
every system of injective weighted unilateral shifts with weights w; ; is unitarily equi-
valent to (M., ..., M.} acting on some H*(p).

Proof. For the first half define w; ; = B4, /f;- On the other hand, given
{Ty, ..., Ty} define B, by

T'ey=Pf; e, 1>0.
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B, # 0 for all I since each 7 is injective and, in fact, f; > 0 since we may assume that
the shifts have positive weights. In either case define U: H — H*(f) by Ue, = Bi' z'.
Then U is unitary and

UsM,U=T;,j=1,...,N.

Note that the above proposition holds only for commuting weighted shifts.
For the bilateral case, define again

Wr ;= ﬁl—'re,»/ﬂl-
In the other direction, given {w; ;}, define
ﬁo =1, BI+SJ = B Wi, js
(which reduces to 77e¢, = B¢, in the unilateral case) and
ﬁl—e,- = ﬁI/WI—e,-.j~
We must show that {§,} is well-defined. This follows, since, if

J:II+8i212—8j:I+Si—Ej,
then

By = Brte, = Browr,i = ﬁl—t:_,-wl—sj,i = Br Wi—e;, i/Wl—s,-. i=
=BiwrilWiseie i = Broe/Wre ~e; ;= Br, — & = Pr-
COROLLARY 9. M, is bounded (j=1, ..., N) if and only if
{BU + €)/p1):I > 0}
is bounded for each j, 1 <j < N.

From now on we will assume that each M is bounded and we note that we
can now interchange freely between either viewing the operators as weighted shifts
or as multiplication operators. By examining the conditions for similarity of shifts
we note, amongst other facts, that

H¥TN) # H}(SY) (N> 1).
ExampLES. (1) In Example 1 of Section 2, f; = 1 for all  and
H*(B) = HXTV).
(2) In Example 2 of Section 2,
Br =[1/(1] + N — D!]'* and H*(B) = H*(S™).
(3) In Example 3 of Section 2,
By = 2.
(4) In Example 4 of Section 2,
Br=11if i, #0, By=24if i, =0.
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Note that {8,} is uribounded, but le, Mzg," are éach bounded operators. “This is
possible since S
WM, =2> 1.

4. THE COMMUTANT

Given a formal power series, @{z), in N variables, ¢ induces a map on H?(f)
by formal power series multiplication f— ¢@f. We denote. by .H>(f) the set
{@: of € H¥(p) for all f€ H*B)} and, for ¢ € H* (B) we denote by M, the map
taking f to ¢f. Since z° € H%(8) we have ¢z° = ¢ € H*(B) for any @€ H°°(B) ie.,
H* (B) = H¥B). So (p has the representatlon

o) =Y ¢, 2"
) o ‘ >0

A linear operator 4 on H%() can be represented by the matrix (4,s) with respect
to the orthogonal basis z/, where ,
<4z’, z)

I 2'1?

If A4 and B are operators with correspondmg matrices (AIJ) and (B”) then AB is
represented by the matrix whose (I J)th entry is V Ark BK

AIJ =

ProrosiTION 10. (1) M¢ is a bounded map on H*);
(2) Moy =M, M, (o, € H=(B).
Proof. (1) Note that _
o) = Z @y 2" = I)ZJ(M-J'Z’- .
Thus a
{02, 25) = ok Jﬂx (K2 J).

Hence the matrix of M, is given by Ay =¢,_; (I = J), 0 elsewhere. This
implies that M, is bounded since its matrix is everywhere defined.

(2) For f € H*(B),

(pu[/f ((Pl//)f
(note that @y is a well-defined element. of H>(f)).
Thus .
M¢.pf= oWf)= M, M,,.
This last proposition shows that H(f) is a commutative algebra of bounded

operators on H*(f) containing M, j =1, ..., N. Hence the commutant, {sz: Jj=
=1... N}, contains H(f). We will show that equality holds.

THEOREM 11. If A is a bounded operator on H¥B) which commutes with
M.,(j=1,...,N), then A= M, for some ¢ € H® ().

5 — c. 1056
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Proof. Let ¢=Az°. Then ¢ € H*B) and AzX=AMx z° where M,={M,,. ..
., M, }. Thus AzX =M.x Az2°=zF¢ (K > 0). Thus Af = ¢f for all polynomials 1.
For arbitrary f€ H*f) we approximate f by polynomials f,, and, by the algebraic
properties of power series multiplication, we see that Af = ¢f. Thus ¢ € H*(f)
and 4 = M,
COROLLARY 12, Suppose T is a system of injective unilateral shifts. Then
{T\,..., Ty} is a maximal abelian subalgebra of B(H).

CoROLLARY 13. {T, -+, Ty} have no common reducing subspace.

ExAMPLES. (1) Consider Example 2 of Section 2. The operators Tj, ..., Ty
are the Toeplitz operators on H*(SV) with symbols given by the coordinate functions.
Theorem 11 shows that T e #(H?*SY)) commutes with T}, ..., Ty if and only if
T = M, for some ¢ € H*® (B). Since H*f) = H?(S"), it is easy to see that H(f)=
= H*(SV), i.e., functions which are boundary values of bounded analytic functions
as the open unit-ball in CV. This was first proved for general N in [7]. Corollary 12
shows that the C*-algebra generated by {T;:j=1, ..., N}is irreducible; this was
first proved by Coburn [4] using properties of the Szegd reproducing kernel for
H?(S?). An alternative proof in the spirit of this paper is given in [7].

(2) In the case N = 1 it is easy to see that M, does not have a square root.
For N > 1, since it is only {M, , ..., M,,} and not {M,,}' that is well-behaved,
it is not surprising that roots exist. For f'e H*f) we write

@)= Z Z;cv [z, o ozn)-
Define A by
A gz, .. 2y )) = 2N 82y s Znoy)
A(Z’IQVM1 g =1z zﬁ,"g.

We choose 8 so that we can extend A to H*f) by linearity and continuity (this is
possible for many choices of ). Then

AY =M, f.
We use the notation [¢[e = |M,| for ¢ € H>(B). Note that o], < [¢lle
(since [@llg = [[Mg2°ls < IMllizlg = M.
COROLLARY 14. H(B) is a commutative Banach algebra.

5. THE SPECTRUM

For any operator A4 let 6(4) denote its spectrum and r(A) its spectral radius.
For a system of N commuting operators T = (Ty,. .., Ty), let jo(T) denote the joint
spectrum of (T3, ..., Ty).
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THEOREM 15. Let T be a system of N-variable weighted unilateral shifts (not
necessarily injective). Then

o(T)={AeC: M <rT)} (j=1,...,N).

Proof. Consider T, and assume the system is injective. Suppose 4 ¢ o(7}).
Then (T, — 2)7! exists and commutes with T,, ..., Ty. Hence (T, — )1 =M,
for some ¢ € H*(B) by Theorem 11. Thus (z; — 2)¢ = 1 which implies

_ —}s(_il+l)ifi2=...=iN=o
v { 0 otherwise.
Therefore, ,
lpBU + ¥ = K M2, 21473 < | MLIIBW)BU + J).
Thus .
BA + DIBU) < IM, | 1A
for all I with i, = ... = iy = 0 and for all J. Using Proposition 4 we have
J+ k
IME| = sup Wy 1 Wrse 1 ..o Wipk—1ye,1]= SUp M .
J»0 J >0 B(J)

So |ME| < I M 1A+, Taking kth roots and letting k — oo, we have r(Ty) < {A].
Thus o(Ty) = {4 : |A| < r(Ty)}. If T, has some zero weights, then T} is a norm limit
of operators of the form S; where {S;: 1 < j< N}is a system of injective unilateral
shifts and hence the result follows.

At this point it seems valuable to point out that information concerning {Tj,. ..
..., Ty} can be gleaned by regarding each T); as a countable direct sum of one-va-
riable weighted shift operators. Let us return to our original orthonormal basis
{e;:I > 0} and for simplicity consider the case N = 2; the case for general N
holds analogously.

Write X,, for the closed linear span of {e,, : n > 0} for each m > 0 and let
Y, be the closed linear span of {e,, : m > 0} for each n > 0. Clearly for each

n,m 2 0, X, reduces T; and Y, reduces T,. Thus, we can write T3 = @ T|X,, and
m=0

T,= ® T,|Y, and each of the summands is a one-variable weighted shift with
n=0

respect to the corresponding basis.

THEOREM 16. Let T :{Ty, T,} be a system of injective two-variable weighted
unilateral shifts. Then Ty and T, have empty point spectrum.

Proof. Suppose x is an eigenvector for T, corresponding to eigenvalue A.

We write
(=]

x=Y XomCop
nm=0



218 NICHOLAS P. JEWELL and A.'R. LUBIN

Then

(o)
Xop = Z Xn0€no
n=0

is an eigenvector for the injective shift, T;|x,, with eigenvalue /. However, injective
(one-variable) unilateral shifts have no eigenvalues [9] and so x, = 0. Similarly,

(=)

0= Xm = Z Xnm€nm

for each m and, therefore, x = 0. Thus T;, and sxmllar]y, T,, have empty point
spectrum.

We can use the direct sum decomposmon to 1mprove Corollary 13 by droppmg

the commutativity assumption.’

PROPOSITION 17. Let {T,, T,} be a system of not necessarily commuting weightéé’
unilateral shifts having no zero weights. Then Ty, T, have no common reducing subspace.

Proof. Consider H = '@ X,,. With respect to this decomposition, we have

m=0
TiX, 0]~ - 0= 0
L Tx Se 0"
T = LA and T,= | = S
0, IS B B T

where S; maps X; onto X;,, since all of the weights are non-zero. Lét P be a pro-
Jectlon onto a common reducing subspace so that PT, = TP and PT, = T,P.
Wrmng the matrix P = (P;;) with P} . and comparing entries of PT; s and TyP

we'see, since each S; is onto ‘that P;;'= G 1fz # j. Thus, each P,, isa pI‘O_]CCthﬂ on
X, | dnd P, T X = (T1{Xl_1) P,,(z “$'1). “An injective weighted (one- variable)
unilateral Shlft is 1rreducxble and so P;;=0or I|X,_| for each i. PT,=T,P 1mphes
that PSS, = S, oPiq i1 (2 2) and hénce P = 0 or T'according as P,; = 0 or 11Xy,

ie., there are no nontr1v1al commion reducing subspaces.

6. ANALYTIC STRUCTURE

For any w = (wy, ..., wy) € CV, let A, denote the linear functional of eva-
luation at w defined on the polynomials by 4,,(p) = p(w). :

DEFINITION. w is said to be a bounded point evaluation (bpe) on H2(B) if 2,
extends to a bounded linear functional on H2(p), i.e., there exists some ¢ > 0 such
that ‘

[4.(P)] = [pW)| < clipllg

for all polynomials p.
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-If w.is a.bpe, then, by the Riesz theorem, there exists some k., € H2(f) such
that 2.(f) = (f.k,) for all fe HYB). We.call k,; the reproducing kernel for H*B)
at w. Since (27, k,,) = w’ we see that we must have

ko) =JE(; W LB,

PROPOSITION 18. w is a bpe if and only if ki(z) € H¥(B), i.e., if and only if
Z fwal@ . [wylPR[B(I)R < co.
J=0

PROPOSITION 19. w is a bpe if and onl y zf w; is in the point spectrum of Ti* for
each j, 1 <j < N, and each w; corresponding to a common eigenvector in H*B).
If lwjl = ][Tllfor eachj, 1 < j < N, then wzsnotabpe

Proof If wis a bpe then forfe H2(B), we have

(fs Tk = (2, f kw )—w (fkw)—(fwkw)
Thus Tj*k,,=w;k,, and so w; is in the point spectrum of T* for each J. By Corollary 3,
w; is in the point spectrum of T for each j with a common eigenvector.
Conversely, suppose x is a non-zero vector in Hz(ﬁ) and Tjx = wxforj=1, ..., N.
Let A(f) = (f; cx), for fe H¥B) where ¢ is a non-zero constant to be determmed
Aisa bounded linéar functlonal on H ). Also

@f) = Gfy ex) = (ch*x)—WA(f)

So )(z’) = wJ)(zo) /1 # 0 and s0 AMz% # 0. Put ¢ = 1/(zo, x) so. that A(z“) =1;
Then /I(p) p(w) for all polynomxals p and so w isa bpe. If [w;| = [|T;|| for
j=1,..., N, then

Z |W1|2j1 e [WN|2jN : S w Z S|P IWNIZjN _
> =
J>0 - ﬂ(J)z Lo J= n;, - ﬁ(-])z
) j=1,...,N
. n=0,1, 2

- 3 ll‘rjllz"/ﬂ(nejﬁ= 00

n=0
Jj=1, .., N

since f(ne;) < |77 < || T5)*"
PROPOSITION 20. If w is a bpe and f— Zf,z € H2(,B), then the series Y, fyw’
converges absolutely to 2.(f). Thus we can unambtguously denote. A (f) Sfw).

Further this property characterizes a bpe.
Proof. Suppose w is a bpe and f==Y,f;z’. Let S, = -}, f;z’.be the nth partial

J<n
sum of f. Then S, converges to fin H%(f) and so S,(w) = 1,(S,) —4,.(f) and hence
the power series. ¥, f;w’ converges. By symmetry, it also converges at-(|w|, ..., Iw,[)

and since f€ H%(f) implies that. Y| filz/ € H¥$), the convergence must be absolufe
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Conversely, suppose the power series Y, f,w”’ converges for all fe H%(B). Then we
can define a linear functional on H*(8) by A(f) = Y. f;w’ and let

kp = Y wlBUY
if.€<n

Then
(k=Y fiw = Af) as n > co.
{J:i<n

By the uniform boundedness principle
k,= Y, wZ'|Bje H¥p)
>0
and thus w is a bpe.

PROPOSITION 21. If the power series @(z) converges at w for all ¢ € H*(f),
then

le(W)l < [M,|.
Further, if w is a bpe and f € H¥B), then

Au@f) = A (@)A.(f).
Also k,, is an eigenvector for all operators in {T¥, ..., Tx}'.

Proof. Since H*(B) is a commutative Banach algebra with identity and evalua-
tion at w is a multiplicative linear functional, we have |p(w)| < || M, | from general

Banach algebra theory. Note that this holds for all bpe’s w, but in general will hold
for a larger class of w's. For

¢ = Y 0,27 € H2(B),
los| < IMI/IT,

and this can be used to compute which w's give convergence of the power series
¢(w) in special cases. The second statement follows from a formal power series
argument and the third by reasoning similar to the proof of Proposition 19.

we have

 THEOREM 22. If ¢ represents a bounded analytic function on the polydisc {z: |z} <
< Vn} then @ € H®(B) and
1,1l < sup {lo(@)} : 2] < Vn. I T}

Proof. The key to the proof is an analogue of von Neumann’s inequality for
commuting contractions, namely

1p(Ty, - .., THI<sup {Ip@2)| : |z < Vn T4} 91

We note that this result is not in general best possible and we do not know if,
in fact, | p(Ty, ..., Tyl < sup{|p(z)| : |z;| < 1} (which is in general false for commut-
ing contractions) does hold for contractive weighted shifts,
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This establishes the theorem for ¢ a polynomial. For a general bounded ana-
lytic function we approximate ¢ by its rectangular Cesaro sums which converge
strongly as in the one-variable case [13, p. 310].

Question. Under what conditions is H®(f)=H>(D) for some D< CV, and
in this case how do we describe D?

7. SUBNORMAL SHIFTS

The results for one-variable weighted shifts carry through to N-variable case
almost without change and so we only quote the most important of these which
generalizes Berger’s characterization of one-variable subnormal weighted shifts.

PROPOSITION 23. {T, ..., Ty} has a commuting normal extension if and only
if there exists a probability measure u defined on the N-dimensional rectangle

R=1[0,a] X [0,a] x ... x [0, ay), where a; = ||T||, such that S L ()=
R

- S #du(t) = B3 for all J > 0.
R

The proof is identical to the one-variable case given in [12].

8. ALGEBRAS GENERATED BY SHIFTS

Let o/, be-the closure in Z(H), in the weak operator topology, of the polyno-
mialsin Ty, . . ., Ty. It is clear that &/ is contained in the commutant of {7}, . . Ty}
which is equal to {M,:pcH%(f)} by Theorem 11. We wish to show that equality
holds. This follows from Theorem 26 below since a subspace of Z(H) is closed in
the weak operator topology if and only if it is closed in the strong operator topology.

For

weTV = {(w, ...,wy) 1wl = 1,1 <j < N},
define a map on H%p), f— f,, by

fw(zly ey ZN) :f(wlzb LI ] WNZN),
ie, (fs =W
PrOPOSITION 24. (1) If @ € H®(B) and w< TV, then ¢, € H*(B) and
lowlle = ll@lles

(2) w — ¢,, is continuous from TN into H®(B) in the strong
operator topology for each ¢ € H*(f).
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Proof. (1) Let f€ H¥B). Then (¢f )., = @[, and { fis, v, =S, Therefore (fz),, = f
and.so 9, ;=¢.(f5)w= (p(fx))» € H¥B)and so @, € H(B). Also | 1, 5= fi, and so.

Puf = TS5 < 1Pl Efip 18 10wl < Tple = H0W)5ie < 100 ix
2 lpe; — (PweJ"B = | ; (PKeJ+K - ((p)y)l( eJ—}»Ig”p_z '

= “ Z (l - M)I_J)(pl—.lelhﬁ__)o as w - (15 19 < vy 1)
I>J

for fixed J. Thus, using (1), the required continuity holds at (1,1, ..., 1). By transla-
tion the result follows.
" This proposition allows us to define the vectof-valued Riemann mtegral

S(pwp(w) fds (when fe H“’(ﬁ), @ € H=(p), p is continuous on TV and dsis normalized
Lebesgue measure on 7%) as in-the: one-variable case.
PROPOSITION 25. If ¢ € H®(B) and p is of the form:
pw) = gpxwk(we ™y
where only finitely many coefficients are different from zero, then

gwm ds = My, when (¢+p)(2) = Y00, 2 € HY(P):

Proof. Identical to the one-variable case.
Let Ki(t)=Kj,(t)) ... K;(ty) be the multiple (rectangular) Fejer kernel [13,
p. 303] where K, is the usual one-variable Fejer kernel. Then, for ¢ € H%(f),
oxK; =[1/(H+ D ... (jN+1)]K2<:|J Sk(@) = o,(¢)

where ’ ’
Sy(p) = 2 o,z
I<K

THEOREM "26. If @ € H®(B), then
(1) a,(9) € H*(B);
2 llos(@Meo < @llcos

(3) a,(@) = ¢ in the strong operator topology.
Proof. Identical to the one-variable case.

9. REMARKS

In the one-variable case there are several results concerning invariant subspaces
of a weighted shift. In the present situation it is the common invariant subspaces of
{Ty, ..., Ty} that are of interest, but it seems too much to hope for much general
information.. concerning: these subspaces. However, in particular cases, (such as
Example 2 of Section 2) a description of the, cammon invariant subspaces. of
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{T\,...,Ty} of finite codimension can be obtained [7] and this result can be extended
to the general situation with a little work. Similarly, results concerning reflexivity of
&/ can be proved [7] and again these can be extended to the general situation with
suitable hypotheses. However, little extra is gained by looking at the proofs in the
general situation and so we omit them here.

In [11] O’Donovan gave a beautiful description of the C*-algebras generated
by a single weighted shift in terms of certain covariance algebras when the shift is
either essentially normal or has closed range. It would seem of interest to extend these
ideas to the N-variable case since a general result would extend results already known
for particular examples (Example 1 — see [6], Example 2 — see [7]). This appears
to be a non-trivial problem.

Research of first author supported by the Commonwealth Fund of New York in the form of
a Harkness fellowship. Research of second author supported by NSF Grant MCS 78 —01442.
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