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BI-INVARIANT SUBSPACES OF WEAK CONTRACTIONS

PEI YUAN WU

1. INTRODUCTION

For a bounded linear operator T acting on a complex, separable Hilbert space
H,let Alg T, {T}"’ and {T}' denote the weakly closed algebra generated by T and I,
the double commutant and the commutant of 7, respectively. A subspace K of H
is said to be bi-invariant (resp. hyperinvariant ) for T if K is invariant for every operator
in {T}" (resp. {T}’). LetLat T, Lat’'T and Hyperlat T denote the lattices of invariant
subspaces, bi-invariant subspaces and hyperinvariant subspaces of T, respectively.
The following trivial relations hold: Alg T'< {T}” < {7} and Lat7T 2 Lat"T2
Hyperlat T. :

For various classes of operators, among which are normal operators and
operators acting on a finite dimensional space, the elements of Lat’’T have been
completely determined (cf. [4]). In particular, if T satisfies the double commutant
property, that is, if Alg T = {T'}", then Lat''T coincides with Lat T.

The purpose of the present paper is to study Lat’’T for completely non-unitary
(c.n.u.) weak contractions with finite defect indices. Before in a series of papers
[13], [14] and [15] we investigated the elements of Hyperlat T for such operators.
(These were preceded by the work of Sickler [5].) We gave specific descriptions
of the elements of Hyperlat T and showed that Hyperlat T is preserved, as a lattice,
under quasi-similarities of this type of operator. In this paper we extend some of
these results to Lat’’7. As before we shall develop the theory in two stages, first
for C,, contractions and then for weak contractions. In Section 2 we fix the notation
and terminology and briefly review some basic results needed in the later work.
In Section 3 we consider c.n.u. C); contractions with finite defect indices. Specific
descriptions of the elements in Lat"’T are given in Theorem 3.5. As a corollary,
we show that Lat”’7T is also preserved under quasi-similarities (Corollary 3.7). The
former result is then extended to c.n.u. weak contractions with finite defect indices
in Section 4 (Theorem 4.1). We also give necessary and sufficient conditions, in
terms of the characteristic function of 7, that two of Lat T, Lat”’T and Hyperlat T
be equal to each other (Theorems 4.4, 4.5 and Corollary 4.6). In particulat, for the
operators considered any two of these lattices are equal if and only if the correspond-
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ing algebras of operators Alg T, {T}"" and {T'}’ are equal. Note that whether these
hold for general operators is unknown (cf. [4]).

2. PRELIMINARIES

A contraction T (JT|| < 1) is completely non-unitary (c.n.u.) if there exists no
nontrivial reducing subspace on which T is unitary. The defect indices of T are,
by definition, d; = rank (I — T*T)“} and d;. = rank (I — TT*)‘IZ'. Te C,(resp.Cy)
if T#7x = 0 (resp. T"x = 0) for all x # 0; C;; = C, n C,.. T is a weak contraction
if (/) its spectrum o(T’) does not fill the open unit disc, and (ii) I —T*T is of finite trace.
Weak contractions have equal defect indices. Note that Cy, contractions with finite
defect indices are weak contractions.

Let C be the complex plane. For positive integer n, let L% and H, denote the
standard Lebesgue and Hardy spaces of C"-valued functions defined on the unit
circle A. We use 7 to denote the argument of a function defined on A. For the sake
of brevity, a statement involving ¢ is said to be true if it holds for almost all ¢ with
respect to the Lebesgue measure. For an arbitrary contraction 7, let @ denote its
characteristic function. If T is c.n.u. and has defect indices dy = dp. = n < ®,
then @ is an n X n matrix-valued function defined on A. In the discussion of the
following we shall consider the functional model.of such a contraction, that is, we

consider T being defined on H = [H: @ AL2) ©{Ow @ dw:we Hy} by T(f® g) =

= P(e"f @ e'g) for f @ ge H, where 4(1) = — OT(t)*OT(t))'%' and P denotes
the (orthogonal) projection onto H. There is a one-to-one correspondence between
the invariant subspaces of 7 and the regular factorizations of @;. Let K < H be an
invariant subspace for T with the corresponding regular factorization @5 = 0,0,

If T= [OTl L);]is the triangu]afion on H= K@ K%, then the characteristic
, :

functions of T3, T, coincide with the purely contractive parts of @,, @,, respectively.
For the details, the readers are referred to [6]. Operators in {T} have the form

P'[; (C)’]’ where A4 is a bounded analytlc function while B and C are bounded

measurable functions satisfying the conditions 40; = @14, and BO; + C4 =
= AA,, where A, is another bounded analytic function (cf. [8]).

For arbitrary operators Ty, T, on H,, H,, respectively , T; < T, denotes that

T, is a quasi-affine transform of T,, that is, there exists a one-to-one operator X

from H, onto a dense linear manifold of H, (called quasi-affinity) such that XT,=
= T,X. T, T, are quasi-similar (T, ~ T,) if T, < T, and T, < T;.

A c.n.u. Cy, contraction T with finite defect indices is quasi-similar to a uni-

quely determined operator, called the Jordan model of T, of the form Mg @ ...

..@®Mg,,where E,, ..., E, are measurable subsets of A satisfying E;2FE;, 2. ..

. 2E, and M, denotes the operator of multiplication by e'* on the space L*(E;)

of square-integrable functions on E;,j=1, ...,k (cf. [12], Theorem 2). Indeed,
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E;={t:rank A(t) > j},j=1, ...,k and, in particular, E, = {t: O4(#) not
isometric }. Let U and ¥ denote the operators of multiplication by e on AL? and

A, L2, respectively, where 4, = (I — Oy 9#)7. It is known that T'is quasi-similar
to U as well as to V (cf. [6], Prop. IL. 3.5). In this case, both U and ¥ are unitarily

equivalent to the Jordan model of T (cf. [2], Lemma 4.1).
If T is a weak contraction, then @, admits a scalar multiple, that is, there exist

a scalar valued analytic function é & 0 and a contractive analyticf unction Q such that
QO; = 0,;Q=34I. For ac.n.u. weak contraction T'on H we may consider its Co—Cjy,
decomposition. Let Hy, H, < H be the invariant subspaces for T'such that T,=T|H,
and T, = T|H, are the Cy and C,, parts of T, respectively. Then H, and H, correspond
to the =-canonical factorization @, = @,.0,; and the canonical factorization
Op = 0,0, of Or, respectively. They are even hyperinvariant for T and satisfy
H,v H, = Hand Hyn H, = {0}. For the details consult [6], Chapter VIII. A weak
contraction is multiplicity-free if it admits a cyclic vector (cf. [12] for equivalent
conditions).

3. C;; CONTRACTIONS

Throughout this section T denotes a c.n.u. C;; contraction with equal defect
indices n < 0 on H = [H2 @ ALY © {O;w & 4w: we HZ}. We start the proof
of our main result with the following

3.1 LEMMA. Let T be as above and let U be the operator of multiplication
o 40
byeton AL If S=P {B C] is an operator in {T}"', then Cis in {U}".

Proof. Let W be an operator in {U}'. Let § be a scalar multiple of @ and
let @ be a contractive analytic function such that QO; = @;Q = § Ic«. For each

0 0
m=1,let F, ={t: 6] Z—L}.Then F,} A.Define S,,=P 1 .
m — X, WA 5 Q I W

It is easily seen that S,e{T}. Since Se{T}”, we have §,S=SS, and it
follows that Xg, WC = CXg, W for all m > 1. As m — oo, we obtain WC = CW.
This shows that Ce {U}".

3.2 LEMMA. For j=1,2, let T; be a c.n.u. Cy; contraction with finite defect
ndices and let A; = (I — @’,“-J.@Tj)"lf. Then the following are equivalent to each other:

(1) T, is quasi-similar to T,;

(2) rank A,(t) = rank A,(t) a.e.

Proof. Since (1) is equivalent to the fact that 7; and T, have-the same Jordan
model, the equivalence of (1) and (2) follows immediately.

8 — c. 1056
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3.3. LeMMA. Let T be as before. If K\, K,e Lat"T, K, < K, and T|K, is
quasi-similar to T|K,, then K; = K.

Proof. Since o(T'|K;) < o(T) (cf. [3], Theorem 3), T|K; is also a C,, contraction
for j = 1, 2 (cf. [6], Theorem VII. 6.3). Let ©; be the characteristic function of T|K;
and 4; = — OF Oj)%", j=1,2. The quasi-similarity of T|K, and T|K, implies
that rank 4,(t) = rank 4,(¢) a.e., by Lemma 3.2. On the other hand, since K; © K,,
we have @, = Q0, for some contractive analytic function Q (cf. [6], Prop. VII. 2.4).
Hence rankdy(f) = rank A(r) + rank 4,(r) a., where 4= (I — Q*Q)% (cf. [6],
Prop. VIL3.3). It follows that rankd(z) = O a.e., whence Q is an inner function.
It is easily seen that Q is also outer. Hence Q is a constant unitary function (cf. [6],
Prop. V.2.3) and we obtain K, = K,.

It was shown in [13] that for K;, K, in Hyperlat T, the preceding lemma holds
even without the assumption K, < K,. (However this assumption is essential here
as may be seen from the discussion below.) It is instructive to contrast these results
with the corresponding ones for normal operators with finite multiplicities.

The quasi-affinity X in the next lemma has been considered by Sickler [5] and
also implicitly in [14].

3.4 LEMMA. Let T be as before and let V be the operator of multiplication by e
on the space A L%, where Ay = (I — OTO?)%. Let X:H - A,L2 be defined by
X(f® g)= —A4,f+ Org for f® ge H. Then X is a quasi-affinity intertwining T
and V. .

Proof. For any f® ge H,
XT(f @ g) = XP(e'f @ e''g) = X((e"f D €'g) — (Opw @ 4w)) =
= — 4, — Opw) + Or(e'g — 4w) =
= eit(_ A:::f+ OTg) + (AzzzaT - @TA)W =
=X @ ) = VXD g),
where w € HZ and we make use of the fact 4,0; = Op4. This shows that X inter-
twines T and V.

To show that X is a quasi-affinity, let K= {f® ge H: — 4,/ + O, = 0}
and L = XH. K = {0} follows from Theorem 3.5 of [14]. On the other hand, since
T < V|L and T~ V, we infer from Lemma 4.1 of [2] that V' is unitarily equivalent
to V|L. Note that L is a reducing subspace for ¥ andhence L € Lat”’V. As remarked
above, for normal operators with finite multiplicities these imply that L = 4,LZ.
Hence T is a quasi-affinity, as asserted.

As indicated above, for normal operators bi-invariant subspaces are exactly
reducing subspaces, the structure of which is well-known. The following main
theorem says that the inverse images under X of bi-invariant subspaces of V' give all
the elements in Lat"'T.
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3.5 THEOREM. Let T be a c.n.u. Cy, contraction with equal defect indices n <
on H = [H2® ALY © {Ow @ Aw:we H.}. Let V be the operator of multiplication
by e on A.L2 and X be the quasi-affinity from H to A, L% defined by X(f @ g) =
= —A,f+ O;g. Let K = H be an invariant subspace for T with the corresponding
regular factorization @ = 0,0,. Then the following are equivalent:

(1) K is bi-invariant for T;

(2) TIK is of class Cy;

(3) the intermediate space of the factorization Or = Q,0, is of dimension n;

(4) K = X"X(L) for some bi-invariant subspace L< 4,12 for V.

Proof. (1) = (2). This follows from the fact that o(T|K) < o(TK) (cf. the first
paragraph in the proof of Lemma 3.3).

(2) < (3). This is an immediate consequence of Theorem VIIL.6.3 of [6].

(2) = (4). Note that XK is invariant for ¥ and T|K < V[XK. Since T|K is
of class Cy,, we infer that T K is quasi-similar to the unitary operator V|XK. Hence
XK reduces V and XKeLat”V. Let K, = X"{(XK). Then K < K, and both are
invariant for 7.

We first show that K, e Lat”T. Let S =P ; (é] be an operator in {T}",

where A, B and C satisfy AO; = O;4, and BO; + C4 = A4, for some bounded
analytic function 4,. For f @ g € Ky, consider XS(f @ g) = — 4, Af + O(Bf + Cg).
Since

— A, Af = —4,A0;07f = —4,0.4,07'f =
= — 044,07 f = —0(BO, + CA) O7'f =

= —OBf — 0;CA07Y,
we have
XS(f® g) = (—OyBf — 0;:CA07f) + Ox(Bf + Cg) =

= —07C407f + 0Cg = O:CO7 (—4.f + Org),

where we make use of the facts that @(f)! exists for almost all  and 4,0, = O,4.
Note that ¥ is unitarily equivalent to U, the operator of multiplication by e on
AL2. Let Y : A4, L2 — AL? be the unitary transformation such that YV = UY.
Consider @, as a multiplication operator mapping ALZ to A*L2. Since YO, e {UY,
we infer from Lemma 3.1 that CYO; = YO.C. Hence

YXS(f ® g) = YOrCOr(—4,f + Or8) = CY(—4.f + Org),

whence XS(f @ g)= YCY(—4,.f + Org).Since Ce {U}", we have YICY e {V}".
Thus XS(f® g)e Y‘ICY(XK) < XK. This shows that K, € Lat’'T.
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Note that X|K, : K; - XK is a quasi-affinity intertwining T|K, and VIXK.
Since T|K, is of class C;;, we infer as before that T|K; is quasi-similar to V,X?
Hence T K, is quasi-similar to T{K. It follows from Lemma 3.3 that K= K, = X!
XK), completing the proof.

(4) = (1). This is actually contained in the proof of (2) = (4).

3.6 COROLLARY. Let T, V and X be asin Theorem 3.5. Then Lat"'T =~ Lat''V.
Moreover the isomorphisms are implemented by the mappings K — XK and L - X (L)
where Ke Lat''T and L € Lat"'V. In this case, the Cy, contraction T|K is quasi-similar
to the unitary operator V|XK-

Proof. From the proof of Theorem 3.5 we have X “}(XK)=K forany KeLat"'T.
Hence to complete the proof it suffices to show that XX (L) = L for L€ Lat"V.
Obviously, XX Y(L) < L. Let L, = L © XX (L). We have XX (L)< XX (L) n
n L, = {0}. 1t follows that XX Y(L,) = {0} and hence X™(L,) = {0}. Note that
by Theorem 3.5 XX (L) is in Lat”’¥ whence L, is also in Lat"' V.

Since for almost all ¢, 4,(¢) is a self-adjoint operator on C” bounded by 0 and 1,
there exists an orthonormal base {¥, (1)} of C" such that A4,(t) ¥,(t) = 6,(1) ¥, (1),
k=1,2,...,n, where the eigenvalues §,(¢) are arranged in non-increasing order:
126(t) 28,(t) >... =6,(t) =0 (cf. [6], p. 272). Assume that x = x, ¥, + ...
...+ x,¥, is a non-zero element in L,. For each positive integer m, let F, =

= {t:x(t) # 0 and 6,(t) = 1 , where j is the largest integer such that x; = 0.
m

Note that except for 7 in a null set x,(t) # 0implies that 4(¢) # 0. (This follows from
the fact that the mapping x — (x,, . . ., x,) furnishes a unitary transformation from
A,L% onto LYE) @ ... @ L*E,) which extends the densely defined mapping
4,0 = (v, ¥)o, . .., (v, ¥,) 8,); cf. [6], p.272.) We conclude that X, x # O for
some m. Let & be a scalar multiple of @ and let Q be a contractive analytic function
such that QO ,=Q@;=4§;. Consider the element fGg = P (0 @ 4QXg, (% v .+
1
.ot % ‘I’j))in H. Note that
j

X(f®g)= @rAQme()-;i Y+...+ ’if *PJ.) =
1 J

X X
=A*5xpm(_lwl+. o+ _!qv,.) -
o 6;

= 0xr, (5, ¥, + ... + x;¥;) = £, x.
Since 6Xf, xe€ L,, we have f@ge X-Y(L,) = {0}. Thus f@g=0 and from
the computations above 6Xf,x = 0, which is a contraction. Therefore L; = {0}
and hence XX-1(L) = L, completing the proof.
3.7 CoroLLARY. Let Ty, T, be c.n.u. Cyy contractions with finite defect indices.
If T, is quasi-similar to T,, then Lat''T, = Lat"'T,.
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Proof. Since the quasi-similarity of T; and T, implies that they are quasi-similar
to the same unitary operator, the eormclusionnow follows from Corollary 3.6.

The next theorem gives necessary and sufficient conditions that Lat T = Lat"'T
for the operators we considered.

3.8 THEOREM . Let T be a c.n.u. Cy,; contraction with equal defect indices n < co.
Then the following are equivalent :

(1) Alg T={T}";

(2) Lat T= Lat"'T;

(3) for any Ke Lat T, T|K is of class Cy;;

(4) the intermediate space of any regular factorization of O is of dimension n;

(5) Oq(t) is isometric for t in a set of positive Lebesgue measure.

Proof. Note that (1) = (2) is trivial and the equivalence of (2), (3) and (4)
follows immediately from Theorem 3.5.

(3) = (5). Assume the contrary, that is, ©(¢) is not isometric for almost all 7.
Then the Jordan model of T is of the form M = M, @ Mg, ®...® Mg, acting
on L* @ LYE,) ® ... ® L¥E,). Let V be the operator defined before. Since L? @
®0@...®0reduces M and M is unitarily equive!lent to V, we infer from Corollary
3.6 that there exists a subspace K e Lat”’T such that T|K is quasi-similar to M ,.
Thus T|K is a c.n.u. multiplicity-free C,; contraction with AN\ {t : O k(t) not iso-
metric} of Lebesgue measure zero. By [14], Corollary 4.2, we conclude that there
exists a subspace K, e Lat (T|K) such that (T|K)|K, =T|K; is not of class Cy,. This
contradicts (3).

(5) = (4). Let O = 0,0, be a regular factorization. Then we have rank
A(t)=rank A,(t) +rank 4,(¢) a.e., where 4= — 9#(91)'% and 4;,=— @?@j)%‘ ,
j=1, 2. Since rank 4(t) = 0 for ¢t in a set of positive Lebesgue measure, say
a, the same is true for rank 4,(t) and rank 4,(z). Thus @,(¢) and O,(¢) are isometric
on a. It follows that the intermediate space of & = 0,0, must be of dimension n.

(5) = (1). Let S be an operator in {T}". It suffices to show that Lat ' <
< Lat S for all n > 1, where for any operator L, L' denotes the direct sum of »
copies of L. Note that @,.m = O(t)™ is isometric if and only if @(¢) is. Since
T™ s also a c.n.u. C;; contraction with finite defect indices, (5) implies that Lat T\ =
=Lat”’ T, Thus Lat T < Lat S follows from the observation that S™ e {T™}".

In the remainder of this section we consider the splitting property of {T; @ T},
Alg (T, @ T,)and Lat (T, @ T,) when T}, T, are the type of operators we considered
above (cf. [1] for general T, Ty).

3.9 LEMMA. For j = 1,2, let T; be a c.n.u. Cy, contraction with finite defect
indices and let E; = {t : Ort) not isometric}. Then the following are equivalent to
each other:

M {Ty & T} = {Th} & {T2};

(2) E; n E; has Lebesgue measure zero.
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Proof. Let M,, M, denote the Jordan models of T, T,, respectively. Then (1)
holds if and only if {M, & M,}' = {M,} & {M,}' (cf. [1], Lemma 4.1). However
the latter condition is equivalent to (2), by Theorem 3 of [2].

Note that the preceding lemma also follows from Prop. 4.2 of [1].

3.10 THEOREM. For j = 1,2, let T; and E; be as in Lemma 3.9. Then the fol-
lowing are equivalent:

(1) Alg (T @ Ty) = Alg T, © Alg Ty;

QD Lat (I ® T))=LatT, @ Lat T,;

(3) E, n E, has Lebesgue measure zero and A "\ (E, U E,) has positive Lebesgue
measure.

Proof. (1) = (2). This is proved in Prop. 1.3 of [1].

(2)=>(3). The first assertion of (3) follows from the fact that (2) implies
{T, ® T} = {T)} ® {T,} (cf. [1], Prop. 1.3) and Lemma 3.9. Assume that
AN(E, U E,) has Lebesgue measure zero. Since Orgr, (¢) is isometric if and only
if both Or(t) and Or,(t) are, we infer from Theorem 3.8 that Lat (7, @ T3) #
# Lat”’(T, @ T3). On the other hand, from the assumption we deduce that both
Or,(t) and Or,(r) are isometric for ¢ in sets of positive Lebesgue measure. Hence
Lat 7T, @ Lat T, = Lat"'T), @ Lat''T, = Lat’’(T; @ T,), by Theorem 3.8 and [1],
Prop. 1.3. This shows that Lat (T, @ T,) # Lat T; @ Lat T,, contradicting (2).

(3) = (1). (3) implies that Or (¢}, Or,(t) and Or gr,(f) are isometric for z in
sets of positive Lebesgue measure. Thus Alg (T, @ T) = {7, @ T} = {T}' @
® {T,}' = Alg T, ® Alg T,, by Theorem 3.8 and Lemma 3.9.

4. WEAK CONTRACTIONS

In this section we extend some of the results in Section 3 for .C;, contractions
to weak contractions.

The. next theorem describes the elements of Lat’’T for weak contractions

4.1 THEOREM. Let T be a c.n.u. weak contraction with equal defect indices
n < oo on H, and let Hy, H, be invariant subspaces for T such that Ty = T|H, and
T, = T\H, are the Cy and Cy, parts of T, respectively. Let K = H be an invariant
subspace for T with the corresponding regular factorization Op = ©,0,. Then the
following are equivalent:

(1) K is bi-invariant for T

(2) T|K is a weak contraction;

(3) the intermediate space of the factorization O = 0,0, is of dimension n;

(4) K = Ky v Ky, where K, = Hg, K, < H, are bi-invariant subspaces for T, T,.
respectively. '

Proof. (1) = (2). For bi-invariant K, we have ¢(T|K) < o(T). (2) follows
immediately.
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(2) = (3). If T|K is a weak contraction then it has equal defect indices,
which implies (3).

(3) = (2). I—(T|K)*(T|K) certainly has finite rank. Hence to complete the
proof we have only to show that ¢(T|K) # D, where D denotes the open unit disc.
Indeed, T is a weak contraction implies that o(T) # D. Therefore det O,(5,) # 0
for some Zy€ D (cf. [6], Theorem VI. 4.1). Hence det ®,(4,) # 0. Using Theorem
VI. 4. 1 of [6] again, we conclude that A, ¢ o(T|K), whence o(T|K) # D.

(2) = (4). Let K,, K, be subspaces of K such that T'|K,and T'|X, are the C,
and Cy, parts of T|K, respectively. Then we have K=K, v K, and K, € H,, K, € H,
(cf. [6], Theorem VIIL 2.1 and Prop. VIII. 2.2). K, being invariant for the Cy(N)
contraction Ty, is bi-invariant (cf. [9], Theorem 3.1). On the other hand, since T|K,
is of class Cy;, we conclude from Theorem 3.5 that K, is bi-invariant for T,. This
proves (4).

(4) = (1). Let S be an operator in {T}". Since H, and H, are hyperinvariant
for T, they are invariant under S. Let S, = S|H, and S; = S|H,. We claim that
So€ {To}'. Indeed, it was proved in Theorem 3.1 of [15] that H, = WH for some
W e {T}". Forany Vin {T,}’, consider VW as an operator on H. It is easily seen that
VW e {T}'. Hence SVW = VWS = VSW. This shows that S,V = VS, on H,.
Hence S, € {T,}"" as asserted and we have SoK, < K,. In a similar fashion we can
show that $,X, = K,. Thus SK < KX for any Se {T}"' and K is bi-invariant for T.

4.2 CorOLLARY. Let T, T, and T, be as in Theorem 4.1. Then the following
lattices are isomorphic: Lat"'T, Lat'" Ty, @ Lat'T, and Lat'' (T, @ T)).

Proof. Since T, and T, are of class Cyy and of class C;,, respectively, Lat’'T, @
@ Lat"'T, = Lat"' (T, @ T) follows easily from Prop. 1.3 and Lemma 4.4 of [1].
Lat”"T = Lat"'T, & Lat"'T; follows from Theorem 4.1 and [15], Lemma 3.2.

At this connection we should point out that whether two quasi-similar c.n.u.
weak contractions with finite defect indices have isomorphic bi-invariant subspace
lattices is still unknown. The difficulty lies in that we don’t know whether this holds
for Cy(N) contractions. (However the corresponding result for hyperinvariant
subspace lattice is true; cf. [15], Corollary 3.4.)

The next result generalizes Lemma 3.3.

4.3 CoROLLARY. Let T be as in Theorem 4.1. If K, Kye Lat''T, K, < K, and
T\K, is quasi-similar to T|K,, then K, = K.

Proof. A straightforward argument, using the C, — C;, decompositions of T'[K|
and T|K; and Corollary 1 of {11}, reduces the assertio n to those of their C, and C);
parts. The latter follow from Corollary 2 of [7] (for Cy(N) contractions) and Lemma

3.3 (for C;; contractions).
The next theorem generalizes Theorem 3:8.
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4.4 THEOREM. Let T, T, and T, be as in Theorem 4.1. Then the following condi-
tions are equivalent:

() Alg T={T}";

(2) Lat T = Lat"T;

(3) Alg T, = {Th}";

4 Lat T, = Lat''Ty;

(5) for any Ke Lat T, T|K is.a weak contraction;

(6) the intermediate space of any regular factorization of Oy is of dimension n;

(1) ©4(t) is isometric for t in a set of positive Lebesgue measure.

Proof. The equivalence of (2), (5) and (6) follows immediately from Theorem 4.1.
That (3) and (4) are equivalent to (7) follows from Theorem 3.8 and the fact that
Ox(1) is isometric if and only if @7 (¢) is (since Or, coincides with the purely con-
tractive part of the outer factor of ©y). Also note that (1) = (2) is trivial and (7) = (1)
can be proved along the same line of arguments as in the corresponding implication
in Theorem 3.8. Thus to complete the proof we have only to show that (5) = (7).

Assume that (7) does not hold, that is, @r(¢) is not isometric for almost all ¢.
By the preceding remark, the same is true for @r(t). We infer from Theorem 3.8
that there exists a subspace K; € Lat T; such that T|K, is not of class Cy,. Certainly
T|K, cannot be a weak contraction (cf. [6], Theorem VII. 6. 3). This contradicts (5)
and completes the proof.

The implication (7) = (5) of the preceding theorem is proved in Prop. VIIIL.
2.3 of [6] for weak contractions with defect indices not necessarily finite.

4.5 THEOREM. Let T, Ty and T, be as in Theorem 4.1. Then the following
conditions are equivalent :

(1) T is multiplicity-free;

@ {ry" ={1};

(3) Lat""T = Hyperlat T,

@ (T} ={T)} and {T\}' = {T\};

(5) Lat"'T, = Hyperlat T, and Lat''T, = Hyperlat T,.

For other equivalent conditions for a weak contraction being multiplicity-free,
compare Theorem 5 of [12].

Proof. The equivalence of (1), (2) and (4) is established in Theorem 5 of [12 ;
(2) = (3) is trivial.

(5) = (4). Since Lat T, = Lat’'T, for C,(N) contractions (cf. [9], Theorem 3.1),
Lat"'T, = Hyperlat T, implies that Lat T, = Hyperlat T,. By Corollary 4.4 of [9]
we have {Ty}'' = {T,}'. As for T),let ¥V and X be defined as in Theorem 3.5. Note
that the mapping X — XK implements both the isomorphism from Lat’’T; to Lat’'V
and the one from Hyperlat T, to Hyperlat V (cf. [13], Corollary 1). Hence Lat”'T; =
= Hyperlat T, implies that Lat”’V = Hyperlat V. For normal operators this is
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equivalent to ¥ being cyclic. Therefore, T; is also cyclic and satisfies {7,}"" = {T,}’
(cf. [12], Theorem 5).

(3) = (5). By Theorem 4.1 we have Lat’'T, < Lat”'T = Hyperlat 7. Now
using the structure of hyperinvariant subspaces of T (cf. [15], Theorem 3.3), we
deduce that any subspace K, < H, which is hyperinvariant for T must be hyperin-
variant for 75, It follows that Lat’’ T, = Hyperlat T,. The same argument applies to 7.

Combining Theorems 4.4 and 4.5 we have

4.6. COROLLARY. Let T, T, and T, be as in Theorem 4.1. Then the following
conditions are equivalent:

(1) Alg T = {T};

(2) Lat T = Hyperlat T,

(3) Alg Ty = {T,} and Alg T, = {T,}';

(4) Lat T, = Hyperlat T, and Lat T, = Hyperlat T;;

(5) T is multiplicity-free and O(t) is isometric for t in a set of positive Lebesgue
measure.

The preceding corollary generalizes Corollary 3.6 of [15] and the main result
in [10]. °

For the splitting property for weak contractions, we have the following gene-
ralization of Lemma 3.9. Note that this also generalizes Theorem 4.6 of [1].

4.7 THEOREM. For j = 1, 2, let T; be a c.n.u. weak contraction with finite defect
indices and let T;o and T ;, denote its Cy and Cy, parts. Let E; = {t : Or(t) not isometric}
and let @; be the minimal function of T;,. Then the following are equivalent :

(1) {Tl @ Tz}' = {Tl}, 3% {Tz}’§

() {T1o @ Too) = {Too}' ® {Tio}’ and {T}; @ T}’ = {T0a}' @ {Twi}'s )

(3) Ey N E, has Lebesgue measure zero and @, A ¢, = 1, that is, ¢,, ¢, have
no common nontrivial inner divisor.

Proof. The equivalence of (2) and (3) follows from Lemma 3.9 and [1], Theorem
3.1. The equivalence of (1) and (2) is an easy consequence of Lemmas 4.3, 4.4 and
Prop. 4.5 of [1].

Conditions guaranteeing the splitting of Alg(T,®7T,) and Lat(T,@T,)
for weak contractions will be given in [17], Theorem 4.

Added in proof. The question posed after Corollary 4.2 has been solved
positively, that is, quasi-similar Cy(N) contractions have isomorphic lattices of
(bi-) invariant subspaces. Hence the same holds for c.n.u. weak contractions
with finite defect indices (cf. [16], Theorem 3).
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