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TRANSITIVE ALGEBRA PROBLEM AND LOCAL
RESOLVENT TECHNIQUES

A. A. JAFARIAN and M. RADJABALIPOUR

0. INTRODUCTION

Throughout the paper by an operator we mean a bounded linear transforma-
tion acting in a general Banach space 2. When refering to the terms ‘“‘normal’ or
““adjoint’ it is understood that the underlying space is a Hilbert space. The algebra
of all operators on Z'is denoted by Z(Z). By a subspace of 2 we always mean a closed
linear manifold in Z. A subalgebra o of Z(%)is called transitive if the only invariant
subspaces of o7 are {0} and ¥.

The results of this paper are contained in the next two sections. In the first
section we generalize some results due to Foias |7}, Lomonosov [13), Fong-Nordgren-
Radjabalipour-Radjavi-Rosenthal [9] and Jafarian [12] as follows: If &/ is a uniformly
closed algebra of operators, if K and L are two operators such that /K < Lo/,
6(K)# {0}, and O€ o(L), and if K (respectively L) is in the following class I (resp.
class II), then &7 is not transitive.

Class I:  (a) Decomposable operators.

(b) Adjoints of subdecomposable operators.
{c) Adjoints of M-hyponormal operators.
Class II: (x) Subdecomposable operators.
() Hyponormal operators.
(See below for the definitions.)

In [9], it is shown that if «/K < L& fora éompact operator K and a certain
operator L, then & is not transitive. Their proof is based on Lomonosov’s theorem
[13], [24, pages 156-—159] and cannot be regarded as a local resolvent technique,
while our proof is heavily based on the properties and existence of certain local
resolvents. Even the techniques used in [7] and [12] are not applicable here, though
their results can be obtained as corollaries of ours. We would like to mention that
our results are essentially disjoint from those of [9] and cannot be obtained as co-
rollaries of each other. However, we acknowledge some motivations from [9] and
[12].
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In the course of our study we obtained some results of possibly independent
interest on local resolvents. These extend some results due to Clancey [2], Putnam
[16; 17), Radjabalipour [20; 21] and Stampfli-Wadhwa [26; 27] which are gathered
in the last section of the paper.

Now we define the opzrators mentioned in the classes I and II.

DermNITION 1. Let M be a positive number. A Hilbert space operator T is
called M-hyponormal if

(T—2(T—2)* < M(T—2)(T — z) for all zeC.

Note that the class of 1-hyponormal operators is the same as the class of
hyponormal operators. Recall that every subnormal operator is hyponormal. The
results that we will prove for M-hyponormal operators are new even for normal
operators. The special case in which K and L are equal normal operators is discussed
in [12].

Now we are going to define the class of decomposable operators. First we need
some notations and terminology. For an arbitrary operator T € (%) and an arbitrary
closed subset F of C we let

X (F)={xeZ:(T — z)f(z) = x for some analytic function f,: C\ F —» Z}.,

It is easy to see that X(F) is an invariant linear manifold for 7. Note that if z ¢ o(T)
-then £,(z) = (T — 2)7x.

Dunford’s condition {C). An operator T is said to satisfy condition (C) if X7(F)
is closed for all closed sets F.

Single-valued extension property (s.v.e.p.). An operator Te #(Z) is said
to have the s.v.e.p. if there exists no nonzero analytic Z'-valued function f such that

(T — 2)f(z)=0. 4
Any operator satisfying condition (C) has the s.v.e.p. [22, Theorem 2.13].

Local spectrum and local resolvent. For an operator T with the s.v.e.p. and
for x € Z we define the local spectrum o1(x) of x by

or(x) = n {F : F closed, x € X(F)}.

The complement of o;(x) is called the local resolvent set of x and is denoted by p ;(x).
It is easy to see that there exists a unique analytic function R(z; x): p;(x) = % such
that

(T— 2)R(z; x) = x.

The function R(z; x) is called the Jocal resolvent of x. It follows that if T has the
s.v.e.p. then '

Xi(F)={xeZ:0/x) c F}
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DEFINITION 2. An operator T e #(Z) is called decomposable if T satisfies
condition (C) and

(1) o(TF) €« C\ F®

for all closed sets F, where TF is the operator induced by T on Z/X4(F) and F*
denotes the interior of F.

The equivalence of this definition with the original one given by Foias [6]
is discussed in [22], and the present form is more suitable to our work. We refer the
reader to [3} and [22] for the properties of decomposable operators; in particular,
we mention that every decomposable operator T has the s.v.e.p. and

(2) o(Ty) < o(T)n F,

for all closed sets F, where T = T | X{(F).
As usual, the restriction of a decomposable operator to an invariant subspace
is called a subdecomposable operator.

1. TRANSITIVE ALGEBRAS

Now we are ready to prove the key theorem of this section. As in [9], instead
cf unifcrmly clesed algebras we consider algebras which are operator ranges
(A linear manifold is called an operator range if it is the range of a bounded linear
transformation between two Banach spaces.)

In the rest of the paper we fix the following notation:

D,={zeC:|z| <}, (r>0).

THEOREM 1. Let of be an algebra of operators on  and assume that o is an
operator range. Suppose there exist operators K and L such that /K < LoZ. Then
there exists a number a > 0 such that

X (C\D,) = X (C\ D),

for all r >0. In particular, if Xx(C\ D,) # {0} and X, (C\ D,,,) is not dense in Z
for some r > 0, then ./ is not transitive. (Here &/9 denotes the set {Am:me M,
Ae &}, where M < Z.)

Proof. Let ¥ be a bounded linear transformation defined on a Banach space &
such that &/ = V%. Let € = {ye® : LV(y) = 0} and define S : % — #(%) and
T:%[€ - B(Z) by S(y) = V(»)K and T(») = LV(y), where y is the equivalence
class containing y. Obviously S and T are well defined bounded linear transforma-
tions and S(%) < T(#/¥). Moreover, T is injective. By Theorem 1 of [4] (extended
to Banach spaces) there exists a bounded linear transformation ¢ : & — #/% such

9 — c. 1056
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that S = T ¢. Let A = V(y) be an arbitrary operator in &/ and let 6> 1 be fixed.
Choose y, € ¢(y) such that Uy, < ble! [yj. Assume yy,y,, ..., ¥y, are chosen,
find y, € ¢(y,—,) such that §y.}| < bie: lly,_,ll. It is easy to see that [yl < b*+?
Joim iyl

Let xe X,(C\ D,) andlet f: D, - Z be an analytic function such that
(K — 2)f(z)=x. By induction, one can easily show that (K — z)f"(z) = nf"1(z)
forn=1,2,.... (Here f'» = d%f/dz".) Define

) =3 @) V(5,0
n=0
for |z| < r/(b]l@l). The function g is analytic and
L — 2g@) = ¥, @t LV() f70) — ¥, (znt) V(y) (0) =
n=0 n=0

= LV(yy) f(0) = V(y) Kf(0) = Ax.
This shows that 4xeX, (C\ D,,), where a = bj¢|. That is X, (C\ D, c
< X, (C\ D,,,).

Now assume Xx(C \ D,) #{0} and X,(C\ D,,,) is not dense in Z. If o7 Xy
(C\\. D,) = {0}, then the null space of every operator in &/ contains Xx(C \ D,)
and hence & cannot be transitive. If & Xx(C \ D,) # {0}, then its closed span is a
non-zero invariant subspace of &/ contained in the closure of X, (C\ D,,). This
completes the proof of the theorem.

ReMaRK 1. In the proof of Theorem 1, if the operator L has the s.v.e.p., then
A X(C\ D,)c plXL(C N D, pp10) = X1 (C N D,y g0)
>

Now we prove the main result of this section.

THEOREM 2. Let &/ be an algebra of operators on & and assume that o is an
operator range. Let K and L be operators such that K < Lof, o(K) # {0}, and
0 e o6(L). Moreover, assume that K(respectively L) is in class 1 (resp. class 11). Then
&/ is not transitive.

Proof. In view of Theorem 1, it is enough to show that X (C \ D,) # {0}
for some r >0 and X;(C \\ D,) is not dense in Z for all s > 0. To do this we consider
different cases of K and L.

(a) If K is decomposable, then, in view of (1), Xx(C \\ D,) # {0} for every r
less than the spectral radius of K.

(b) Let K be the adjoint of a subdecomposable operator (on a Hilbert space )
and let N be the adjoint of a decomposable operator on a Hilbert space s# containing

Z such that
L
N— A B\%&
0 KiZ.
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(Note that N is also decomposable [10].) Let Q be the orthogonal projection from
sonto Z. By [10, Lemma2] QX (C\ D,) < Xx(C\\ D,) for all r > 0. Assume,
if possible, that QX (C\ D,) = {0} for all r > 0. Then Z < [X\(C\ D)}*
and hence it follows from (1) that ¢(K) is in the closure of D, for all r > 0. This
means that o(K) = {0}, a contradiction. Therefore, if K is the adjoint of a subde-
composable operator, then Xx(C \ D,) # {0} for some r > 0.

{c) Next let K be the adjoint of an M-hyponormal operator and assume that
K is not normal (otherwise K is decomposable and we are done by the case (a)).
By [21, Theorems 1 and 2] there exists a non-zero vector x and a bounded function
f: C - Z such that (K — 2) f(z) = x. If K has an eigenvalue 2, # 0, then X;(C\\ D,)
# {0} for all » < |4o]. If K has no non-zero eigenvalue, then f(z) is weakly continuous
for z # 0 [27, proof of Lemma 1]. Given an arbitrary Jordan curve I" having 0

in its exterior, we write u = ¢ f(4) dA and observe that, for z in the exterior of I,
T

the function
£() =\{§ (A — 27 f() di
Jr

is analytic and (K — z)g(z) = u. (see Stampfli [25, page 289] for details.) Assume,
if possible, that u = 0 for all such Jordan curves I". It follows from Morera’s Theorem
that fis analytic everywhere except possibly at 0. Since fis bounded in a neighborhood
of 0, it follows that f' can be redefined at O (if necessary) to become analytic every-
where and still (K — z)f(z)=x for all ze C. Thus x= 0, a contradiction. Therefore,
u # 0 for some curve I', and hence Xx(C\ D,) #{0} whenever D, n I, = @.

Now we turn to L.

(o) If L is subdecomposable, then X, (F) is closed for all closed sets F[19,
proof of Lemma 1] and thus o(L| X, (F)) = Fn o(L), [3, page 23] (or [22, Theorems
2.10 and 2.13]). Since 0 € o(L), it follows that X,(C \\ D,) # Z for all s > 0.

() If L is hyponormal, then, again, X, (F) is closed for all closed sets F [20,
Proposition 1]. Therefore by the argument given in (x), X, (C\ D,) # Z for all
s> 0.

REMARK 2. An operator S is called a quasiaffine transform of an operator T
if there exists an injective operator W with dense range such that WS = TW. It is
easy to see that WX(F) c X (F) for all closed sets F. Therefore, if K is a quasi-
affine transform of K, and if L, is a quasiaffine transform of L, then Theorem 2
remains true with K and L replaced by K, and L,, respectively.

REMARK 3. Two operators are quasisimilar if they are quasiaffine transforms
of each other. Here we give an example of an operator which is quasisimilar to a
normal operator, but is in neither of classes I or II (cf. the assertion at the end of
Re mark 2). Let B be an operator that is quasisimilar to a unitary operator U with
o(U)={z : 12| = 1} and o(B) = {z : |z] < 1}. Such an example is given on page
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262 of [28]. The operator B + I is not decomposable because ¢(B + I) # o(U =+ I-
(see [3, page 55]). In view of [22, Corollary 7.3] B + I cannot be even a subde-
composable operator. Also ({21, Theorem 3]) B + I is not the adjoint of an M-
hyponormal operator. So B + I is not in class I. Since every operator T in class IT
satisfies condition (C), it follows, again, from [22, Corollary 7.3] that B + I'is not
in class II. The operator B-I is quasisimilar to the normal operator U - I and
U + Iis in both classes I and II.

REMARK 4. A class of operators is introduced [11] which is called the class of
quasi-decomposable operators. The class of decomposable operators is contained
properly in the class of quasi-decomposable operators [1]. By [11, Section 3] every
quasi-decomposable operator can be used as K or L in Theorem 2.

The following theorem is an analogue of Theorem 1 in which the algebra is
replaced by a single operator. .

THEOREM 3. Let A be an operator such that llm sup IL-* AK"|® =a <co
Jor some injective operator L and some operator K. Then AX K(C \ D)< X, (C\D,,)
for every r > 0. In particular, if a < 1 and K= L then X (C\ D,) is an invariant
linear manifold of A.

Proof. Let x € Xi(C '\ D,) and let f : D,— Z be an analytic function such that
(K — 2)f(z) = x. Let

[eo]
g@) =¥} (2'nl) L A K™ f(0)
n=0
for |z] < r/a. By an argument similar to the one given in the proof of Theorem 1,
one can observe that g is analytic and (L — z)g(z) = Ax. The rest of the proof is
trivial.

EXAMPLE 1. Let 5 be a Hilbert space with an orthonormal basis {e, e, ...}.
Define Ke,, = b™e,, and Se, =e,:,, where 0 < b < | is an arbitrary positive
number. It is easy to see that K™ "SK" = b™"S and K"S*K" = b"S*. Therefore,

lim ||K"'SK"I|" =b1>1, and lim |K™ S* K"ll" = b < 1. So, in Theorem 3, all
positive numbers a are pos51ble. However, if J is an invertible operator and A4 is a
nonquasinilpotent operator, then |J"AJ"| is not less than the spectral radius of 4

1
and hence lim sup [[J~"4J"||" > 1.

Note. In case that K and L are two equal positive operators sharper versions of
Theorem 3 are obtained in [23}.

The following two corollaries can be proved in the same way that Corollaries
1 and 2 of {9] are proved except at the end, where instead of Theorem 4 of [9] we
apply our Theorems 1 and 2.

COROLLARY 1. Let A be an operator for which there exist a bounded open set 9
containing 6(A), an analytic function ¢ taking 9 into 9 and a decomposable operator
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K such that AK = K@(A) and 0 e o(K) # {0}. Then A has a nontrivial invariant
subspace.

COROLLARY 2. If A is a power bounded operator and if there exists an integer k
and a decomposable operator K such that AK = KA* and 0 € o(K) # {0}, then A
has a nontrivial invariant subspace.

REMARK 5. In view of Remark 4, Corollaries 1 and 2 remain true if the word
“decomposable’ is replaced by the word ““quasidecomposable’”.

2. LOCAL INVERSE AND LOCAL RESOLVENT

Local inverses which are so named for the first time here have been studied
implicitly in the works of Putnam [16; 17; 18], Stampfli [25], Radjabalipour [20, 21],
Stampfli-Wadhwa [26; 27} and Clancey [2]. Here we will obtain some results con-
cerning the boundedness, continuity, and analyticity of these functions which are
generalizations of some results due to the above mentioned authors.

DEfFINITION 3. Let Te #(2) and xe Z. Assume there exists an Z-valued
function f defined on a subset 4 of C such that (T — z)f(z) = x. The function f is
called a local inverse of x (with respect to T).

It is obvious that if T has no eigenvalue in 4 then the function fin Definition 3
IS unique.

Our first result is about the lower semi-continuity of the norm of a local inverse.
This extends a result of Clancey [2] to reflexive Banach spaces by a different proof.
(The proof given in [2] does not apply to Banach spaces.)

THEOREM 4. Let X be a reflexive Banach space, let Te B(X), and let xe %.
Assume that fis a local inverse of x. Then f can be redefined so that || f| becomes lower
semi-continuous.

Proof. First observe that if M is a (strongly) closed subspace of Z and if ye &,
then there exists at least one element v € y -+ M such that

lull = inf {lv]l :vey + M}.

Now, for each z in the domain of £, let N_ be the null space of (T — z), and let g(z)
be a vector in f(z) + N, whose norm is minimal. Obviously (T — z) g(z) = x for
all z in the domain of f. We show that || g| is lower semi-continuous on the common
domain of f and g. Let « be an arbitrary nonnegative number. Let {z,} be a sequence
such that ||g(z,)| < « and lim z, = z, for some z, in the domain of f. We have to
show that |g(z,)| < a. Since {g(z,)} is bounded, it has a subsequence {g(z,)}
converging weakly to a vector v such that ||| < «. Therefore (T — z,,) g(z,,) con-
verges weakly to (I' — z,)v and hence (T — zy)v = x. So vef(z) + N, and thus
lg(zo)ll < v}l < a. This completes the proof of the theorem.
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REMARK 6. Let T be a nonzero quasinilpotent operator and let 0 # x = Ty
for some vector y. Let

_[(T—2)'x ifz#0
f(Z)—{y if z=0.

By the above theorem { f|| is lower semi-continuous for some choice of y. Note that
fis an analytic function with a singularity at 0. However, | f| is not u pper semi-con-
tinuous for any choice of y, because otherwise || fj must be bounded in a neighbor-
hood of the origin which implies that f has a removable singularity at 0 and x = 0,
a contradiction.

The next property that we study is the weak continuity of local inverses.
The local inverse in Remark 6 is not weakly continuous at 0 because it is not bounded
around the origin. It is easy to see that in reflexive Banach spaces a bounded local
inverse is weakly continuous if the operator has no eigenvalue in the domain of the
local inverse [27, proof of Lemma 1]. However, if the operator has some eigenvalues
in the domain of a bounded local inverse, then the local inverse may be weakly
discontinuous.. ’

We raise the following question.

QUESTION 1. Can every bounded local inverse be replaced by a weakly

continuous one?
As a partial answer we prove the following theorem.

THEOREM 5. Let X be a reflexive Banach space, Te B(X), x€ X, and let N_
denote the null space of T — z. Suppose that f: A — % is a bounded local inverse of
x with respect to T. Assume for each z € A there exists an invariant subspace M. of
T such that =N.® M., and the projections P_ onto M_ parallel to N _ are uniformly
bounded. Then the local inverse f can be replaced by a weakly ¢ohtinuous one.

Proof. First observe that the range of T — z is a subset of M. and thus x € M,
for all z in 4. Let g(z) = P, f(2), (z € 4). Obviously g(z) is bounded on 4 and (T — z)
g(z) = x. Let A # pu, A€ 4, and pe 4. We have

x=T—wWegw)=T—pw[—P)gp)+ P, gW)] =
=[(A — W — P;) gw] ® (T — WP, g(w).

Since xe M. for all ze 4, it follows that (I — P,) g(p) = 0 and thus g(y)e M.
Note that g(1) € M, by definition. Hence g(4) € M_ for all 4 and z in 4. Let {z,} be
any sequence in 4 converging to the point z,€ 4. We show that {g(z,)} converges
weakly to g(zo). If not, then there exists a subsequence {z, } of {z,}, a linear functio-
nal ¢, and a positive number ¢, such that

| o(g(2)) — 0(g(z9)) | =t
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where /, = z, for all k. Since g(4,) is bounded, there exists a subsequence {g(/; )}
of {g(/,)} which converges weakly to a vector y. Moreover, (T — z,)y = x. Since
g(/y) e M. for all i, ye M and thus y = g(z,). Hence

lim |o(g(4;,)) — @(g(z)l = 0

a contradiction. The proof of the theorem is complete.

ReEMARK 7. If all Eigenvalues of an operator T ona Hilbert space # are redu-
cing, then 3¢ = N, @ R. for all ze C, where R. denotes the range of T —z. There-
fore, Theorem 5 applies to hyponormal operators. Also, if T is a scalar type spectral

operator, that is, if T =S +dE(4) for some spectral measure E, then N, = E({z})
c

and hence Z = N, ® M., where M. = E(C\ {z})Z. Here ||P.|| does not exceed
the bound of the spectral measure E.

In the next proposition we will use the boundedness or weak continuity of the
local inverse to obtain some nontrivial spectral manifolds of the form X (F), whose

existence played an important role in Section 1. The proposition is essentially
proved in [25].

PROPOSITION 1. Let & be a reflexive Banach space, A be a Cauchy domain,
and let f: p(T)U 04 — X be a function such that (T — 2)f(z) = x for some T € B(T)
and some x € X . Assume that f is bounded on 0A. If f is not weakly continuous, then
X1(04) is nontrivial ; if f is weakly continuous, then x = u + v, where

1

2ni

1

U= : S
2ni JiapN\ a)

S fydie X (4) v= () die XH(C\ 4),
+0A

where D is an open disc containing o(T) U A. In particular, at least one of X (4)
or X1(C "\ 4) is nonzero.

Proof. If f is not weakly continuous, then N, (the null space of T — z) is
not the zero subspace for some z e d4. Hence X(04) o N, s {0}. If fis weakly
continuous, then ¥ and v are well-defined [25, Scholium] and x = u 4+ v. Let

¢

g(z>=—1—,--g G- fdL, (z¢3),
+0A

i1}

h(z) =

S (=271 f(0) di, (zed).
2ni JiapN o) ’

By [25, proof of Scholium], (T — z)g(z) = u, (T — z) h(z)=v, and hence u € X(4),
v e X(C \ 4). Since at least one of u or v is nonzero, the proof is complete.
The next proposition gives some sufficient conditions implying Dunford’s

condition (C) whose usefulness was observed in Section 1. First we need the
following definition.
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DerINITION 4. Let m be a positive integer. An operator T'e (X)) satisfies a
local growth condition of order m if for every closed set 6 < C and every x € X, +(6)
there exists an analytic function f: C \. 6 —» Z such that (T — z)f(z) = x and

/@i < K[dist (z, 6)] ™™ x]

where K is a positive number independent of 6 and x.

All hyponormal operators satisfy a local growth condition of order 1 [20],
[25), and all spectral operators of type m — 1 satisfy a local growth condition of
order m [5, proof of Theorem XV. 6.7].

The proof of Proposition 2 is similar to the proof of {25, Theorem 2]. We present
the proof for minor differences.

PROPOSITION 2. Let T be an operator on a reflexive Banach space &. Assume
T satisfies a local growth condition of order m. Then X (F) is closed for all closed sets
F, that is, T satisfies condition (C).

Proof. Let {x,} be a Cauchy sequence in X(F) and let x = lim x,. For each n,
let £, : C\F - Z be an analytic function such that (T — 2)f,(z) = x, and | £, <
< K[dist(z, $))"™)|x,]l. Now, following the proof of [25, Theorem 2], we see that a
subsequence of {f,} converges to an analytic function f:C\F —> Z such that
(T — 2) f(z) = x. This completes the proof.

COROLLARY 3. If the adjoint of an M-hyponormal operator satisfies a local
growth condition of order m = 1, then it has a nontrivial invariant subspace. In parti-
cular, if a cosubnormal operator satisfies a local growth condition, then it is decomposable.

Proof. Let T be the adjoint of an M-hyponormal operator satisfying a local
growth condition, and assume without loss of generality that T is not normal. By
[21, Theorems 1 and 2] there exists a nonzero vector x and a bounded function f: C —
— & such that (T — 2)f(z) = x. Let 4 be an open disc such that 4 n o(T) # @
and o(T)\ 4 # ©@. (Note that T cannot be quasinilpotent [21, Corollary 5].)
In view of Propositions 1 and 2 one of X;(4) or X(C\ 4) is a (closed) invariant
subspace of T which is not equal to {0}. Therefore, there exists a proper closed
subset F of o(T) such that X(F) is closed and different from {0}. Since T satisfies
condition (C), it has the s.v.e.p. and hence o(T|X1(F)) = Fn o(T) [3, page 23], [22,
Theorem 2.13]. Thus X (F) is a nontrivial invariant subspace of 7. In particular,
if T is cosubnormal, then it follows from [19, Lemma 2] that T is decomposable.

Note. Every hyponormal operator satisfies a local growth condition of order
1 [20], [25]; however, the invariant subspace problem for hyponormal operators
is still unsolved.

In the case of the local growth conditions of order 1, we have the following
interesting result.

PROPOSITION 3. Let & be a reflexive Banach space, T € B(Z), and let 0 # xe%.
Assume that T satisfies a local growth condition of order 1 and x has a local inverse
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defined on an open disc A4 such that A ", 61(x) # ©. Then f can be replaced by a function
g such that g is bounded on a closed disc contained in A with center in 6(x). In parti-
cular, T has a nontrivial invariant subspace.

Proof. Using Theorem 4, replace f by a function g such that lg(z)} is lower
semi-continuous. Now imitate the proof of [2, Theorem 1] to obtain the first part
of the proposition. For the last part of the proposition, apply Propositions 1 and 2
as in the proof of Corollary 3.

REMARK 8. Let u be a Borel measure supported on a compact subset of C.
If fe L*(p) is such that the functions g,(}) = (2 — z)™* f(%) belong to L¥y) for all z
in some open set G, then in view of [16] G does not intersect the support of f. (Note
that the multiplication by z in L%(u) defines a normal operator and the local spectrum
of fis its support.) Consequently, a similar statement is true in LP(u) for2 < p < co.
We are grateful to Professor Gill Martin who pointed out a direct proof of these
facts as well as brought to our attention that if 1 < p < 2 and if fe L?(u) is essen-
tially bounded, then the functions g,(1)=(1—z)71f(4) belong to L?(u) for allze C.
Our Proposition 3 shows that if fe LP(u) for some p e (1, co) and if the functions
g.(4) = (A — z)"Yf(2) belong to L”(x) for all z in some open set G intersecting the

support of f, then S |g,|?du is uniformly bounded for z in an open disc contained

in G with center in the support of f.

In the remainder of this section we apply the above results to the class of
dominant operators which are defined below.

DEFINITION 5. A Hilbert space operator T is called dominant if for each ze C
there exists a positive number C, such that

(T — 2XT — 2)* < C(T — 2)*(T — 2).

Obviously every M-hyponormal operator is dominant. An important result
about dominant operators, related to our work in this paper, is that given a non-
normal dominant operator T there exists a non-zero vector x which has a local
inverse with respect to T* defined on C.

COROLLARY 4. Let A be the adjoint of a dominant operator and suppose A
satisfies a local growth condition of order 1. Then A has a non-trivial invariant subspace.

Proof. If A is not normal, then there exists a nonzero vector x and an Z-valued
function f defined on C such that (4 — z)f(z) =x, [21, Remark 3]. Now apply Pro-
position 3.

In [21, Theorem 3}, it is shown that if T and T* are both M-hyponormal,
then they are normal. Counterexamples are given in the case T and T* are dominant
{21]. The following corollary may be of interest; it shows that if T and T* are
dominant and T satisfies a local growth condition of order 1, then T is normal.

COROLLARY 5. Let A be the adjoint of a dominant operator, and let T be a
dominant (respectively, subspectral) operator satisfying a local growth condition of
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order 1. Assume WA = TW for some injective operator W. Then A is normal. If,
moreover, W has a dense range, then T is a normal (resp., similar to a normal)
operator.

Proof. Assume, if possible, that 4 is not normal. Then there exists a nonzero
vector x and an Z-valued function f such that (4 — z)f(z) = x [21, Remark 3].
Then (T — 2)Wf(z) = Wx. In view of Proposition 3, there exists a bounded function
g defined on an open disc D intersecting op(Wx) such that (T — z)g(z) = Wx.
Now, by {27, Lemma 1] (resp., [8]) g can be chosen to be analytic on D. Thus (W x) n

n D = @ a contradiction. Therefore, 4 is normal. The rest of the proof follows
from [21, Theorem 3(a, b)].

It is well known that the spectrum of a non-normal hyponormal operator has
positive measure [15]. However, a dominant operator can be even quasinilpotent.
The following corollary shows that if A is the adjoint of a dominant operator
having spectrum on a smooth curve and if A4 satisfies a local growth condition of
order 1, then it is normal.

COROLLARY 6. Let A be the adjoint of a dominant operator, and let T be an
operator satisfying a local growth condition of order 1 and having spectrum on a smooth
curve J. Assume WA = TW for some injective operator W. Then A is normal.

Proof. Assume, if possible, that A is not normal. By following the proof of
Corollary 5, we obtain a nonzero vector x, an open disc D, and a bounded function
g :D - Z such that (T — z)Wg(z) = Wx and D n on(Wx) # ©. Now for each
zonJ we have £ = N, @ M,, where N_and M_are the null space and the closure
of the range of T — z, respectively [14, page 62]. Hence, by Theorem 5, Wg(z)
can be replaced by a function which is weakly continuous in D and analytic
in D \_J. Therefore, Wg(z) is analytic throughout D and hence o, (Wx)n D = O,
a contradiction.
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