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SOME RESULTS ON NORM-IDEAL PERTURBATIONS
OF HILBERT SPACE OPERATORS

DAN VOICULESCU

The starting point for the present paper was a problem (attributed in [4] to
P.R. Halmos) concerning Hilbert-Schmidt perturbations of normal operators,
for which we provide an affirmative answer: every normal operator on a separable
Hilbert space is a Hilbert-Schmidt perturbation of a diagonal normal operator.

In fact, we prove more, namely that n-tuples of commuting hermitian operators,
for n > 2, are ¥ ,-perturbations of diagonal n-tuples of cémmuting hermitian ope-
rators.

Thus for n-tuples of commuting hermitian operators with n> 2 the norm-
ideal €, is not the right analogue of the trace-class for n = 1, where, by a corollary
of the Kato-Rosenblum theorem trace-class perturbations conserve up to unitary
equivalence the absolutely continuous part. We exhibit in the present paper for
each n >2 a norm-ideal 4, so that ¥, = ¢, when p<n and 4, < %,, and which
seems to be the right replacement of the trace-class forn > 2. We prove that for
n = 2 a n-tuple of commuting hermitian operators can be diagonalized after a
€, -perturbation if and only if its spectral measure is singular with respect to Lebes-
gue-measure. Moreover under the additional assumption that the multiplicity
function of the absolutely continuous part is integrable we prove that up to unitary
equivalence the ab solutely continuous part is invariant with respect to € -perturba-
tions. This improves a part of the results of J. Voigt [12] concerning ¥ ,-perturbations

for p <nand n > 3.
The method used to obtain these results grew out from the remark that the

proof of the author’s non-commutative Weyl-von Neumann type theorem ([14]
see also [2]) can be adapted for norm-ideal perturbations other than compact, provided
there are quasicentral approximate units for which the almost- commutation
property is satisfied in the norm of the given ideal. This reduces the diagonalization
problem modulo a given norm-ideal for a n-tuple of commuting hermitian operators
to a simpler problem about the existence of quasicentral approximate units. Given
a n-tuple 7 of operators and a norm-ideal €9’ we are thus led to consider an invariant
ke (7) (resembling Apostol’s modulus of quasitriangularity [1], [13]), which measures
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the obstruction to the existence of a quasicentral approximate unit represented by
7 and which turns out to be very useful in the study of the problems we are consi-
dering.
The paper has four sections.
In § 1 definitions are given and general properties of the invariant k4, are

obtained.
In § 2 we give the adaption of the non-commutative Weyl-von Neumann type

theorem.
In § 3 the invariant k4 is studied for certain special a-tuples of unitaries.
In § 4 combining the results of the preceding sections we obtain results on
the diagonality modulo %, for n-tuples of commuting hermitian operators and
results about the invariance of the absolutely continuous part under %, pertur-

bations.

The present paper is a revised version of two preprints (INCREST preprints
no. 34/1978 and no. 39/1978).

§ 1.

In this Section after preliminaries, general properties of the invariant k, are

presented.
We begin by recalling some facts from the theory of norm-ideals of operators

(see [7] ch. III or [10]).
Consider ¢ the space of sequences (¢5)jen, &€ R and &;#0 only for a finite
number of indices. We denote by & the set of real-valued functions @, defined on

¢, satisfying:

D &) >0if £ #£0
) & () = |a| $(0)
I @&+ n) < (&) + ¢(n)
1v) ¢((1,0,0,...)) =1
V) @ ((fj)jeN) = ‘D((Ifﬂj) DjeN)

where m: N — N is one-to-one and onto.

If s is a separable infinite-dimensional Hilbert space, £(#), A (), P(HK),
R(H), BT (H) (or simply &L, A", P, R, #i" when # is fixed) will respectively
denote the bounded operators on 5, the compact operators on 5, the finite rank
orthogonal projections, the finite rank operators on # and the finite rank positive

contractions on 3%.
For T € #(5#) and @ € & put

|Tla> = ¢((lj)jeN)
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where 4; are the eigenvalues of (T*7)"*(multiple eigenvalues repeated according to
multiplicity). Then

sup [TP|e

Pep

extends | |, to the set S of operators for which this supremum is finite. €4 is an
ideal in #(#) and a Banach space with respect to thenorm | |4. The closure €%’ of
Z in S4 is again an ideal. For T e ©, we have

[ATBlo < 1Al 'Tlg lIBI]
and
]qu) = HT}

if T1s of rank [,
Consider

®,((&);en) = (Y117 (1 < p < 00)
and

¢oo((‘fj)j€N)z sup ‘f,'
JEN

We shall write €, for &3) (1 < p < o) and | |, for| |g,. The ideals S5, and
€§) are equal for 1 < p < co. For p = co we have S§) = A and So, = 2.
For 1 £ p < oo we shall also consider

V(Ehen = X 875

where {F = |, ;] with n: N — N a bijection such that

1Ernl 2 16zl = (aml = ..
In order not to complicate notations, we shall write

€. | 7 for & | v

e
It is easy to see that 47 = %, and

U % c¥, c¢%,

lgs<p

and €, # 4, for p > 1.
For T € #(s) and arbitrary & € & we have:

IT)| = IT|p, < |T|e < |T); < ||T)| (rank T).
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If T¢S, weput|T|y = co.
Since we shall deal with n-tuples of operators we need some notations. Thus let

D = (T, ..., TPy e (L(#)),

6=(Sy ..., S,) e (L))"
and X, Y e Z(o); we shall write
WP =TO@T®,..,.TP @ TP)
(to)=Ty ..., T, Sy, ..., S,) € (LAY +m
™ 1@ = (T + TP, ..., TV + TY)

XtY=(XT,Y,...,XT,Y)
X=X, T}, .. . [X, T.D

el = max |75

<Jj<n
It le =112§1:n|lew
= (T, ..., T¥.
For 1< (Z())" and & € & we consider the numbers

go(7) = lim inf |(I — P)tPlp
Pe?
gdy(7) = lim inf [P, ]lo
Pe2

k@(T) = lim inf l[A, T]Lp

dedf
(the lim inf’s are taken with respect to the natural orders on 2, %;).

Then g4, qds are the moduli of @-quasitriangularity and respectively of &-
quasidiagonality ({1], [13]). The following relations between ¢o, qdy, ko are immediate

qdo(t) = qo(t), qdo(t) = ko(T)
gdy(7) = qdp(t%), ko(1) = ko(t¥)

4o(t, T*) < gdyp (1) < 290(7, 7).
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In case @ = @, (1 < p < oo) we shall write g,, g9d, , k, and in case D=V,
we shall write g,, gd,, k;. For p = oo we write simply g, gd, k. In fact k(7) is
always zero, this being equivalent to the existence of quasi-central approximate
units for the ideal £ (s#) of L(5) (see [2]).

The following three propositions for k4 are quite similar as statements and
proofs with known results on quasitriangularity and the simple proofs will be there-
fore omitted.

ProposiTION 1.1. If w-lim 4, =1, A, € &F (H) the limit being with
teg
respect to the weak operator topology, then

ko(r) <liminf|[4, 1]lo

=¥

PROPOSITION 1.2, Given T (L(H)* we can find an increasing sequence of
A, € R (H), A, 11 such that :

] lim |[4,, t]le = ko(D).

n—o0

PROPOSITION 1.3. Let 1€ (Z(H))" and o € (SYN(H))" then
ko(t + 0) = ko(2)

The next proposition gives a property of k4 which sharply distinguishes it from
ge and gdg.

PROPOSITION 1.4. Let 9 € (L(3#))", (je N); we have

max (ko(t) < ko(@™ @ 1) < ko(tV) + ko(t®),

i=12
k,,,(@ 'c‘f’) — lim ko (@ ‘c‘j)) :

j=1 m-s00 j==1

Proof. In view of Proposition 1.2 we can find A\ 1 I, AY € RF(H), (j=
= 1,2 and m e N) such that

lim [[A55, =/ = Ka(a').

Then
limsup [[AD @ A2, 1D @ 19|, < kqs(’fm) + ko(t®)

m->00

and since A @ A2 1 Lyg» it follows from Proposition 1.1 that

k¢(‘C(1) @ 1(2)) k¢(T(1)) + k¢(T(2))
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For the other inequality let B,, 1 1, B, € %; (# @) be such that

im |[B,, T @ 1%]|p = ko(t® @ T¥).

00

Consider A,, = Pygo B,,|xgo- Then we have A, 1 I, A, € R (#) and
45 tPllo < {[Bn T @ t¥]lo,

so that using Proposition 1.1 we have

kq)('f‘l) @ 1(2)) > kq)(T(D)-

Similarly we prove

kot @ 1) 2 ko(t™®).
By the inequalities just proved we have that

" m+1 -1
kq,(é T(j))< k¢(@+ z‘j’)$ kq)(@ r‘f))-

i=1 j=1 Jj=1

Thus
lim kd,(é t‘”) < kg (@ -c‘f’) .
N5 00 j=1 j=1

The reverse inequality must only be proved when lim kg (@ z‘”) < oo. To this

m-—o0 j=1
end fix ()2, an orthonormal basis of # and using the definition of k4 choose
recurrently A,,€ Z{(# @ ... @ H#) such that "

m-times

Api1 2 A, @0, A, eff? = el

Q<ik<mwheree)) =0 ... 0@ e, 0@ ... @O0, ¢ being placed in

the i-th position, and
mo 1
-3 -se(3 ) <5
o j=1 J

Defining B, € ZH(H# @A D...) as B,=A,®000® ... we have B, 171 and

[Bm, ® r‘f’]
Jj=1

lim
m-—o0

= lim k,,,(g ‘r‘f’) .

' m->o0 j=1
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Hence

lim k, (é' r”’) > k,,(g r‘f’)- Q.E.D.

m-—oQ j=1 j=1

In case & = @, (I < p< oo) the preceding proposition can be given a more
precise form.

PROPOSITION 1.5. Let t'9 € (£(#))" (je N); then we have

[ ) Yp
k,,(@ r‘j)) = ( E (kp(‘t(j)))”) ,
j=1 j=1
where 1 < p < oo.

Proof. In view of the second part of Proposition 1.4 it will be sufficient to
prove that

(kp(l"l) @ r(z)))p — (kp(’t(l)))” “+ (kp(‘t(2’))”.
Thus, let 49) 1 I, AL € & (#) be such that

k() = lim [[49), /]|, .

Then
lim {40 @ AY, 1V @ ]|, =
= Hm(([A%), T¥1,)7 + (42, v2]| )7
n—-oo
so that

kG @) < (@) + (e TP,
For the reverse inequality let B,, 1 I, B,, € A7 (3¢ @ ) be such that

lim |[B,,, T(l)@z(m:”p = k,,(‘t‘”@r‘”).

Denoting U == (—1I) @ I there are 4} € #;(#) such that
1/2(B,, + U*B,U) = AP AR.
Clearly A1 I(j=1,2). We have

(B, TV @ t?][, =
= 1/2([B, 1V @]l + [[U*B,U, 1V ®1™],) >
>1/2|[B,, + U*B,, U, 1Y ®1¥)| ,=
= (41, 7115 + 143D, TP
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This gives
k(tP @1?) > ((k (z))P + (kp(r(a)))p)llp_ Q.ED.
PROPOSITION 1.6. Consider 1) € (£(#))", 1 <j<m and consider A\D = (AD],. . .
e M) e (L) (1 <j < mand 19 e C). Then we have:
kot @ ... @ 1) = ko(@® — AV @ ... @ (@™ — Am™)).
Proof. Tt will be clearly sufficient to prove that

koD @ ... @ 1) = ko((z® — D) @ ... @ (z(™ — Am)),
Consider A,€ Z{(# @ ... @ o) such that 4,1 ] and

Im 4, 0 @ ... ® 1™ = ko(t® @ ... @ 7).

§—00

Let further for every e = (e, ..., &,) € ({—1,1}), U, be the unitary operator
el @ el @ ... @ ¢,l. Then we have

4,79 @ ... ®t™)p =

22 Y, UJ4,1® ... ® 1" UMy =

e€{=L1m
=2 ¥ UAU & ... D "]
ec{-1,1}m
Now, there are 4} € 7 (o) such that
2 Y UAU¥=AD @ ... @ A™.

ee{~1,1}m
Clearly A{) 1 I for s — oo and for every 1 < j < m. We have
k¢(t(l) @ e (.9 ‘c(’")) =

=lm|[AY® ... @ AM, 1V D ... ® 1|y =

§—C0

=lim|AP @ ... ® 4", @V —20) @ ... & (™ — AM)}|p >

5= 00

2ka((tV —AD) @ ... @ (7™ — AMY), Q.E.D.

For the next proposition we shall consider a variant of kg, denoted ko and
which, as can be easily checked, has similar properties with k 4. Though we shall not
work with the invariant E,,, we introduce it here because it shows how by a slight
modification we get an invariant with very good symmetry properties.
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Let © = (T, ..., T,) e (Z(#))" and consider d_: # - # & C” the operator
defined by

dé=T¢(®e + ... + T ®e,
where { € # and e,, .. ., ¢, is the canonical orthonormal basis of the #-dimensional

Hilbert space C,
We define

ko) = lim inf |(4 @ L)d, — d.4)|o.

Ae af #)
Clearly
ko() < 7‘4)(7-') < nkg(7).

Let now G be a compact topological group, p : G —» £(3#) a continuous
unitary representation and

P(T) =S p(&)Tp(g™) dy,
G

where du is Haar-measure on G, the projection of norm one onto (p(G)). Moreover,
assume there is a projective unitary representation g — V, of G on C* such that

(p(@) ® L), p(g™) = (L ® V,)d,.

ProrosiTiON 1.7. Consider t, G, p, V,, P as above. Then we have

kg(t)=  liminf |(4 ® L), — d.d|e.
deaf #)n(Gy

Proof. It is clear that the first term of the equality to be proved is < than the
second term, so it will be sufficient to prove the reverse inequality. For 4 € #{ (5¢)
we have:

I(A ® In)dr - drAId) =

=S e ® V)(4 @ I)d, — d.A)] o du(g) =

G

=g (4 ® L)(p(2) ® L), p(g™) — (p(g) ® L)d.p(g™) 4| odpu(g) =
G

=g l(p(g™9)4p(g) ® 1,)d, — d.p(g ™) Ap(g)|odp(g) >
G

> ‘S ((p(g™)4p(g) ® 1)d. — d, p(g™M)A4 p(g))du(g)| =
G ' [
= I(PG(A) ® In)dt - drPG(A)!(P‘
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It is easily seen that |[P_(4)|| < 1and, P (4) € . Now if A4, t+ Tand |(4,® I,)d,—
—d, A,le = ke(z) for m — co, we then have

ko(r) = liminf [(P (4,) ® 1,)d, — d.A,le.

n—+00

Since P_(A,,) t I it is easily seen that this gives the desired inequality. Q.E.D.
For the next proposition let P,(k € N), be orthogonal projections such that

kZ P, = I. Consider the von Neumann algebra # = ((P,)xen)’ and the normal pro-
eN

jection of norm one onto #
A(T) - Z PkTPk'
keN
It is easy to see that
AE&Y) <« &P
and
[4(D)le < ITo

for Te &Y.
Let further ¢ = (S, ..., S,) € (£ ()" be a n-tuple of isometries (S} S; = I)
and assume

S;A(T)SF = A(S;TS})
for 1 < j < nand all Te Z(#).

PROPOSITION 1.8. Let o, B, A be as above. Then we have

ko(o) = lim inf |[o, A]lo-

Aeat @#)nS

Proof. Tt is clear that the first term of the inequality to be proved is < than
the second term and so it is sufficient to prove the reverse inequality. We have

14S; — S;Alo = W(AS; — S;4)SH o =
= (4 — S;AS¥) §;S¥ o>
> |A((4 — S;AS¥) $;5%)| 6 =
= (4(4) — A(S;AS})S;S}le =

= [(4(4) — S;4(4)S})S;S}o =
= |A(A)S; — S;A(A)|o.
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Nowif A, 11, A, € Z{(#) and

1[4 s C]lw — ko(0)

for m — oo, then we have

ko(0) = liminf |[4(A4,), 6]lo-

It is easily seen that we can find &, < &k, < ... so that
’ : km 1
A4,)— ¥ PAP| <—
l s=1 {a) m

Ko,
Then for A, = Y, P.A,P, we have A, € R (#) n B, A,, 11, and
51

ko(o) > liminf |[4,, dlle,

"M—->00

which is easily seen to give the desired inequality. "Q.E.D.

§ 2.

In this section we shall give an adaption of the main result of [14] to the
case when (o) is replaced by some norm-ideal G, of course under the hypothesis
of the existence of appropriate quasicentral approximate units.

DEFINITION 2.1. Let & < £(H#) be a vector subspace with an at most countable
algebraic basis. We shall say that Z is ®-well-behaved if for every ne N and T,, . .
T, e we have

AE]

ko(Ty, ..., T,) = 0.

LemMMa 2.2. Let &' < L(H) be a vector subspace with an at most countable
algebraic basis. Assume moreover X is ®-well-behaved. Then, given ¢ >0 and T,, ..
T, € X there are B, € Ri () such that

el

(i)}, By =1,

=1

(”) Z ‘i[Bm! Y’J]ldb < &, fOl’ 1 SJ < n,
1

ht=

(i) Y, I[Bys Tllo < 00, for all TeX.

m=:1

Proof. We complete the given set T, ..., T, e & to a sequence (1;)s> which
spans the vector space Z.
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Taking ¢, = ¢. 27" we can find 4,, € #;, 4; = 0 such that
Ant 1L, Aps14n = A, and |4, Tjlle <&, for 1 <j<m+n.

We shall prove that taking

B~(1 L Az 1 ! A2 v
m ( m+1) m+1 T ( m) m)

conditions (i), (i), (iii) are satisfied.
It is immediate that (f) holds, so we shall concentrate on (ii) and ().
First we remark that since A,,,,4,, = 4,, we have

B, = (1 1 I 1 L AZ)II2 1 1 IIZ(I A
m——( m—}-l) ( m) " ( m—}—l) mr1):

It follows that for 1 < j < m -+ n we have

1 . 1 . 1/2
|[Bm,13-1|¢<sm+1+|[((1— m+1)’“(1~‘;)"'") , T]

To evaluate the last commutator let us write
=(1— ! I—(l—}—)A?n
m+1 m

;—m‘zls X,<1

{4

and remark that

and
l[Xm$ ]( ¢ = 28,,,
We have

X322 Tlle = 3;

S 22X, — 2D, T,)dz| >
r [

where z/2 is defined on C\\(— o0, 0] and positive on (0, o), and where I' is the
boundary of the rectangle with vertices ~41l— m?—i, —i— m?4+1,24+1,2—1.
1t follows that
X33 Tlle < 2Sup [(Xn — 2D, Tille <
< 2[[Xn Tillo sup (X — 2D <

< 32mie, < 2°,,.
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Thus we have
I[Bma ];]IO < Emt1 -+ 29m8m < £.2™m,

It follows that for 1 < j < n we have

2™ =g,
1

s

Z—l |[Bma T:,]Id) <

which proves (ii).
For arbitrary je N we have

Y, [[B. Tillo <
m=1

J o
< 2 ][Bm: -T')]ld) + Z g2™m <
me=1 m=j+1

J
< 3 B Tllo 2 < co.

Since the (T;)§2., span the vector space &, this proves (iii). Q.E.D.
For the next lemma we shall denote by £/ (o) the Calkin algebra and by

p L) > LA (H)

the canonical map.

LeMMA 2.3. Let of =« L () be a C*-subalgebra, Icsf, and let B < of
be a »-subalgebra which has an at most countable basis as a vector space over C. Let
Sfurther p : p() = L(H) be a unital x-homomorphism such that p(p(B)) is O-well-
behaved. Then there are isometries L;€ £(#)(je N) such that

L¥L; = 5,1

and
Lp(p(5)) — bL, & &)

for allbe &, and
}im | L; p(p(b)) — b Ljle =0

forallbe & .
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Proof. Let (b)7>, = % be a sequence which spans the vector space Z. In view

of Lemma 2.2 there are B;; € #{ (#) (i, j € N) such that

o

Y By =1,

j=1

-
<.

¥, llo(p(b), Bllo < 27 for 1 <k <4,

Y. llo(p(®)), Bille < o0 for all be 4.
=
Using the results of [14] we can find isometries L,; such that LL,; = Tand LXL, =0

when (r,s) # (i,j) and
HLijp(p(bk)) - bkLij||'|Bij|d> < 27
for 1< k<i+
We define L; :53 L;B;;.
We have !

It is immediate that L¥L; = ;1.

[Lip(p(B) — biLile <

k
< 21 Li;Bip(p(b) — b L;;Bijle +
Jj=
-+ E (”Lijp(p(bk)) - bkLij” : |Bij|d> +
j=k+1
+ lo(p(b), Bij]ld)) <
K

szl IL;;Bi;p(p(b)) — biLijBjle +

+ 3 277+ Y le(p(®), Bijlle < oo
j=k+1 j=k+1

Since (b,)3., spans 4 it follows that
Lip(pb)) —bL;e S

forallbe 4.
If 1 € k < i then we have
|Lip(p(by)) — biLilo <

< ‘Zl ”Lijp(p(bk)) - bkLij” ‘|Bijle +
j=

oo

+ Y lp(p(6Y), Bijlle S}_;l 2784 27 = 27,

ji=1
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We infer
.lim |Lip(p(by)) — byLilg = 0,

and since ()71 spans Z it follows that
lim |L;p(p(8)) — b Lilo = 0
for all be 4. Q.E.D.

THEOREM 2.4, Let o/ < L(H#) be a C*-subalgebra, Ic€ o/ and let B < of
be a x-subalgebra which has an at most countable basis as a vector space over C.
Let further p: p(f)— L () be a unital %-homomorphism such that p(p(®)) is $-well-
behaved. Then there are umitaries U, L(H, H @ H) such that

Uk @ p(p(B)U, — beEY),

lim (U @ p(p(6))U, — blo =0

Sfor all be B,

Proof. Let (b)i1 = &, b, = bff be a sequence of selfadjoint elements which
spans the vector space #. Using Lemma 2.3 and passing to a subsequence of the

sequence of isometries given by this lemma, it follows that we can find L; € Z(5¢)
(ieN), with LFL; = 6,;/ such that

BL; — Lip(p(5)) € S
for be B, ie N and

oL — Lip(p(b))le < 27 for 1 <k <.
We define

S;=1— Y LLF+ ¥ Ly LE.
i=j i=j
‘We have
I[S;, blle <

<‘§(1[Li LE, billo + l[Liwy LY, bdle) <

< Z; Qlp(pBNLY — L¥ble + |Lip(p(B) — BiLile +
4+ |Lir1p(P(b)) — biLisile) <

<4 Z [L;p(p(b)) — byLlo.

i=j
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This easily gives now
[S); bl e G

and in case 1 < k < j we have
L), Bille < 27743,

This again implies

[S;, b]e &Y

and

lim [[S}, £ll = 0
for all be 4.
Defining

Ul H DH - H
by ,

Uk¥h, @ hy) = S,hy + L s

it is now easily seen that U, is unitary and the desired properties hold. Q.E.D.

COROLLARY 2.5. Let o be a C*-algebra with unit, and let %< of be a *-subal-
gebra which has an at most countable basis as avector space over C. Let p;: of — L(H)
(j =1,2) be unital x-monomorphisms such that p() N A (H#) =0 (j=1,2) and
moreover p{(%) (j=1,2) are ®-well-behaved. Then there are unitaries U, e L(H)
such that

Unpl(b) - pZ(b) Un € 651?)

and
lim |U,p,(b) — p(8)U,]e = O

for all be A.

Proof. In view of Theorem 2.4 there are W) e Z(#, #DH) (j =1, 2) uni-
taries such that

Wip,(8) — (py(b) ® puB) W) € €Y
and
lim [ W p,(6) — (pa(B) ® po(b))W|o = O.

n—oo

We can take U, = W@* wd, Q.E.D.
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COROLLARY 2.6. Let & be a n-tuple of commuting hermitian operators. Then the
Jollowing assertions are equivalent ;

(@) ko(0) =0

(if) qdo(8) =0

(ii7) there is a diagonal n-tuple &' of commuting hermitian operators such that
§—6eSP

(iv) given ¢ > 0 there is a diagonal n-tuple &' of commuting hermitian operators
such that 6 — &' € &) and |6 — 8’|y < &.

Proof. 1t is easily seen that (iv) = (iii) = (i) = (i) so that all we have to prove
is that (i) = ().

To prove that (i) = (iv) it will be sufficient to consider the case when the
spectrum and the essential spectrum of 6 are equal. Indeed 6 = 6, @ J,, where J;
is the diagonal part of § and §, has no eigenvectors.

By Proposition 1.4 the hypothesis kg(8) = 0 implies kg(d;) = 0. Clearly the
spectrum and essential spectrum of d, are equal and it is also clearly sufficient to
prove (iv) for 6 replaced by J,.

Thus we can assume the spectrum and essential spectrum of § are equal.

Let 6 = (D, ..., D,) and consider & the C*-algebra generated by Dy, ..., D,
and I. Let further # </ be the *-subalgebra consisting of polynomialsin Dy, ..., D,.
Consider

p1: Sl - L(H)
the identical representation of .o/ and consider also

pa: A = L(K)
a faithful representation of &/ of infinite multiplicity which is an infinite direct
sum of one-dimensional representations.

It is easily seen that k4(8) = O implies that p,(#) is P-well-behaved and it is
obvious that p,(#) is also @-well-behaved.

After these remarks assertion (iv) follows by applying Corollary 2.5 to the
representations p, and p,. Q.E.D.

§ 3.

Let J={ji, ju, j» - - .} be a countably infinite set and let Aut(J) be the set of
bijections of J onto J. Let &J) be the vector space of systems of numbers (¢;);es»
&; € C such that]¢; +# 0 only for a finite number of indices j € J. By I$)(J) we shall
denote the Banach space obtained by completing é(J) with respect to the norm

I(éj)je-l]d) == ¢(l§]‘1l) Ifizl, .. ')'

We shall write /2 for lg? and /; for lg? and |-, ||, for the corresponding
norms,
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In I2(J) we consider the orthonormal basis (¢;);es where e; = (£{));cs with
égj) = 5:}-
There is an isometric linear map
diag: IQ(J) - SQUT))
which associates to an element of I{(J) the corresponding diagonal matrix, i.e.

dlag ((é_,)JGJ) ei - éiei fOI' all iEJ.

Let also P; denote the rank one orthogonal projection of /2(J) onto Ce; and consider
# the von Neumann algebra ((P;);e;)’ = diag({®(J)).
By 4 we shall denote the projection of norm one

A(T)=Y P,TP;
jed
for T'e L(I3(J)).
Consider now a = (2, ..., a,) € (Aut (J))* a n-tuple of automorphisms of J.
Let (), ..., T(a,) denote the operators on I(J) defined by
T(ai)(éj)jel = (Wj)jEJ
where 7; = fa.—lm- For & = &, we get a n-tuple u(a) = (U(wy), ..., U(x,)) of uni-
taries given by
Ulade; = ewj-
ProposiTion 3.1. We have
ko((Uly), ..., Ule,)) =
= SuePN(inf{ max [T(a)n — nle } n= (Uj)je] e IPU), iy = -+ =N, = 1}) =

Igign

= S‘é%(inf{ma_xlT(“i)’l —nlo [ = ()jes€lPVU) 0<n; <1
m

Igign
foralljeJandn;, = ... =n;, = 1}).
Proof. Let us denote by E,, E, the two quantities we want to prove equal
with k g(u()).
It is clear that £, < E,.

For the reverse inequality it is sufficient to remark that for 7= (1,);e, € I$’(J)
and 7" = (n});e; where n; = min (1, |n;|) we have

[T — nle = [T@)n’ — 1 |o.

Thus it will be sufficient to prove that k 4(u(x)) = E,. It is easy to see that u(x), 4,
4 satisfy the conditions of Proposition 1.8 so that

ko(u(2)) = lim inf |[4, u(@)]lo.

dea{na



RESULTS ON NORM-IDEAL PERTURBATIONS 21

But now
R NB=diag({neci) | 0<n; < 1forallje}

and for 4 = diag(y), n € 3(]) we have
I[4, Ue)lle = |U(e) A Ux)*— A|p =
= |diag(T(x;) ) — diag (M)l =

= |n— Thle-
This now easily gives
k o(u(x)) =
= sup (inf { max |T(a)n — nlo|n = (1)jes € ¢, 0< n; < 1 for all
meN 1gign
jeJand n;,= ... =n;, = 1}).
This now easily gives kg(u(a)) = E,. Q.E.D.

Consider now f;, ..., f,, € [°°(J). Then the proof of the preceding proposition
immediately gives.

COROLLARY 3.2. We have

ko((U(@y), - .., Ula,))) =
= kO((U(“1)7 EREEE] U((X"), dlag(fl)a ce s d]ag(fm))

‘We shall now apply Proposition 3.1 to certain concrete exam:ples.
For the rest of this section we shall take J = Z" and «; € Aut(Z") will be
given by

a((my, ..., m))y=(my, ..., m)
where mj =m; 40,;. Also in order to simplify notations we shall write U; for
U(e;), u for u(a) and T, for T(x,).
PROPOSITION 3.3. We have for n =1
kl(Ul) =2.

Proof. Let & = (& )yez € IM(Z) with &y = [. Then

T —Ch= 3 16— &l=

k=—00

0

= Y e — &l Y (G — &> 2085 = 2.
B=1

k=-— o0

Because of Proposition 3.1 this gives k(U = 2.
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To get the reverse inequality consider £™ e JY(Z) given by
é‘(im) — 1L ifljlsm
0 if [jl> m.

Then |T(,) £™—E&™)|, = 2 so that using again Proposition 3.1 we have k,(U,;) =2.
Q.E.D.

Since in what follows we shall be interested to determine whether ko(Uy, .. .,U,)
is zero or not, we shall use the following fact

LeMMaA 3.4. The following conditions are equivalent:
() ko(Uy, ..., U)=0

(it) inf{]max Ty —nle [neld(Zn0....0 = 1} =
g1€n

(il inf { max |7y — nlo |nE€C(ZM), Mooy =1} =
Lign

Proof. 1t is immediate that (if) <> (iii). Also (i) = (ii) is an immediate conse-
quence of Proposition 3.1. Conversely, assume (i) holds; we shall prove that
keo(Uy, ..., U)=0. Indeed, then there are n' € [’(Z") such that ) o =1 and

max ITi'lm — ”(s) Io < 275,

1€ign
Then defining ' by
1 if max |m <s
‘(s) . 1<ign
Nim ,...oma) = () .
M 1s enos ) if max |m;| > s

1gign

it is easily seen that
M’(s) . n(:)l‘p < (2.5‘ + l)n ns2-s,

Hence it follows that

Nimoeomn =1 for max |m) <s
1gign
and
lim max [T’ — "9y =0
soo0 1gign
so that ko(Uy, ..., U,) = 0 follows from Proposition 3.1. Q.E.D.

PROPOSITION 3.5, For n > 2 we have

k"(Ul, ceey Ull) = 0.
Proof. In view of Lemma 3.5 this reduces to finding ' e /"(Z") with
'7((?,....0) = 1 such that
lim ( max | T; ® — n@],) = 0.

s=00 lgign
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Let T"= ({z € C| |z|=1})" be the n-dimensional torus and let du be normaliz-
ed Haar measure on T", Then for n > 2, by the Hausdorfi-Young inequality, the
Fourier-transform gives a bounded linear map

F: LYT") - I(Z7%)

where ¢ = " T Thus, if we can find x' € L*(T") such that
n —
[0 < Xso S % du =1
T'l
*) { and

lim ( max S (di)?dp) =0
T’I

so00 1gign
where d{z,, ..., z,) = |z; — 1|, then taking

n9= F (1)

we will have

11%(5)) w0y =1

and

lim ( max [Ty —n],) =0

so00 1g€ign

so that k,(Uy, ..., U,) = 0.
Now we will show that in order to find y, € L*(T") satisfying (*) it will be suffi-
cient to find , € L*([—1, 1}") such that

v, 0, 2—nS y,di=1
[-1,1]"
**) and

lim S (rp)?dA =0
[-1,0]"

EEadod

where dA is Lebesgue-measure and r(fy, ..., t,).= (§ + ... -+ t2)!2, Indeed, then
we may define

Xs(eimls N Ys(ty, -+ s )

for —1 < t; < 1 (1 <j < n) and it is easily seen that the functions y, will satisfy (*).
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Now taking
2— (34 ... F 12 when 1/s < (124 ... +1312 < 1
¢, Ins
sy oy ly) =
- ! 0 when 1/s > (4. .. +1)Y* or
when 124+ ... +2>1,

where ¢, is the (n — 1)-dimensional volume of the unit sphere in R", we have

1 2n 1 1
rotptdr = ——S ridr=1,
1/s Cp Ins Ins 1/s

2—nS v di = 2‘"c,,S
(-1,

and

2" el
S (fr)edd =c, ( ) S (rya i dr =
[-1,1j"

c,in s /s

2%\l Lok B T Y
=cn( S ridr=2r-1.c n-1l.(Ins) = 1
¢, Ins s

and clearly

1
lim (Ins) *~1=0.

§—=>00
Thus the functions ¥ satisfy (**), which ends the proof. Q.E.D.

Our next aim is to show that for » > 2 we have k7 (U, ..., U)> 0. To this
end we must first estimate the Fourier-coefficients of the functions

Fiz) = (z; — 1)/ (é:l 2 — ”2)

where ze Tt ={z=1(z, ...,2)€e C"| |z| = ... =z} = 1}.

Before doing this let us recall a few facts we shall use.

Let @ = R” be a bounded open set 230=(0,...,0) and let G: Q2> C
be a function which is C® on @\{0} and assume dG/dx; is L* with respect to Lebes-
gue-measure on Q\{0}. Then, if n> 2 the function dG/dx; which is defined on
O\ {0}, hence almost everywhere defined on @, coincides with the corresponding
distributional partial derivative of G on Q.

On the n-torus T* we shall consider the differential operators D* for a =
= (0, ..., &,) With a; = O integers so that

lel

(D), ..., el = ——— (e, .. ., &%).
1) ) 80y, ..00," st )
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Also we shall consider the neighbourhood Q « T” of 1=(l, ..., 1) defined by
Q= {zeT|z; # —1 for 1 <j < n}.

On Q there are local coordinates 6,, ..., 8, such that 0, e (—n, n) and ei=z;.
On Q we shall also consider the function r(6;, ..., 0,) = (6% + ... + 62)1/2,

We shall need the following fact which is a consequence of the results of [15]
(see also [11], Theorem 4.1 ch. 1V and the proof of Theorem 2.17 ch. VII):

For n > 2 there is an integrable function H; on T", such that H; is C* on
T"™\{1}, H;—i 6% is C* on 2 and for the Fourier-transform #(H,) = (¢,)mez~
we have

¢ = 0 and ¢, = y m;|lm|™" (m # 0),
where
lm||l = (mi 4 ... 4 mi)ve
and 7y is a constant.

LEMMA 3.6. For n > 2 let F;, H; be the functions defined above and let

E; = H; —F;. Then for the Fourier-transform F E; = (d,,)mez~ we have

lim d,lm|"t = 0.
[tmj{ 00

Proof. 1t is easily seen that it will be sufficient to prove that the partial deriva-
tives of E; up to order n — 1 are L*, or equivalently in view of a remark made before,
to prove that D*E; are in L' on Q\{1} for a= (o, ..., a,), 0 <oy Y00, <n — 1.
Working on @\ {1} it will be sufficient to prove that for r —0 we have D*E; = O(r ~'*i )
where o] = a; + ... + «,.

Passing to the local coordinates § we have

E,— (0, — ™) r24 &% — 1)(r—2_ (4 5 sinze,‘/z)“l) + b

Tke=1

where b is a C*-function of 8y, ..., 8, in some neighborhood of [ —7, 7]". We have
n n -1 n —1
E, =LO%?4 GO, (Z e,tQk)(4 ¥ 0,%) ( ¥ sin? ek/z) +b
fome1 k=1 k=1 .

where L, G, Q, are C*®-functions in some neighbourhood of [—=, #]* It is easily
seen that ' ' .

ol
00«

gl (0 64(2”: 92)—1)—003-'“})
69“ ik & D .

(65r %) = O(r~1o)
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Also since y, = sin 8, can be taken as local coordinates in some neighbourhood of
O, ..., 0) we easily obtain

Ja} n
9 ( Y, sint6 ) — O(r-2-),
Now because (0% /06%)(K,Ky) is a sum of products of the form
018! alvi
(oo %) (5 )
with |B] -+ |7| = o] it follows that

o 2o LG = 0C=)

g:, (G 0; ( "Z Gsz) (4 nz 02)_1( HZ sin20k/2)—l) = O(r'-1%)
k=1 k=1 E=1

and hence

ol
a0®

E;=0(r- )

which is the desired result. Q.E.D.
PROPOSITION 3.7. For n > 2 we have

kU, ...,U)>0.
Proof. Let
'g:E, = (ag))m ezn

Then because of Lemma 3.6 there is a constant C > 0 such that
P < CA + [m|)™+

where |m| = max |m;|. Indeed it is obvious that the Fourier-coefficients of H;
1gjgn

satisfy such an estimate and the Fourier-coefficients of the difference H; — F; have

been estimated in Lemma 3.6.
Consider now (&) the decreasing rearrangement of the numbers (|a{|)me 2z~ ,
i.e. &) = |a))| where ¢: N — Nis a bijection such that

|a$ 1)\ a )2)‘ 2 |aa(3)
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Then the preceding estimate easily gives

5;{1') < Ck1+i/n

for some C > 0.
Assume now that k; (U, ..., U,) = 0. Then it follows from Lemma 3.4
that we can find g = (g)mezn € ¢(Z") such that

)
gﬁ% ..... 0) = 1

lim |T; g —g®|; =0

§— 00

for 1 < j < n. Now for G¥, GY the Fourier-transforms of g and of T;g" — g®¥
we have
G =(z; — 1) GY.

Thus we shall have

8 crro = 0o o=

j=1 1= =
On the other hand
n — n .
3 ( GEd=3 (Y @G- g

T"

Jj=1 meZn

Denoting (7)., the decreasing rearrangement of the [(T;g" — g),|(me Z"),
we have

/N
M:
—~——
Ms
O

kj)rﬁcj)) £C Z ( Z ,,;‘i)k—ux/n) —
Jj=1

k=1

= C Y, |T;g" —g"lr

Jj=1

which contradicts the assumption

lim |T;g¥— g¥|; = 0.

S—=00

Thus we must have k; (U, ..., U, > 0. Q.E.D.
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§ 4.

In this section we study €, and %, -perturbations of n-tuples of commuting
hermitian operators. The reader of this section should keep in mind that for such
n-tuples of hermitian operators diagonalizability modulo &% is equivalent to the
vanishing of kg4 by Corollary 2.6.

ProposiTiON 4.1. Let 6 = (D, ..., D,) e (L))" be a n-tuple of commuting
hermitian operators the spectral measure of which is singular with respect to Lebesgue
measure on R". Then we have

k7 (6) =0.

Proof. Because of Proposition 1.4 it will be sufficient to prove the proposition
in case 6 has a cyclic vector &. Since the spectral measure of 6 is singular with respect
to Lebesgue measure we can find for every je N a sequence of disjoint Borel sets
(0. in R" such that
Y, (diam (@) < 1)j
k=
and

Y, @) =1,
k=

where for a Borel set w, diam(w) denotes the diameter of w and E(w) denotes the

spectral projection of é corresponding to w.
Then we can choose for every j € N an integer n; such that

ny N |
3, E@}) c—ési <1/,
k21 i

For some sufficiently great m; € N we can then find g9 € N such that

milgl) > diam (wf") for ] <k <m
and
nj

Yy, (myigd) < 1)
k=1
Then each w)” is the disjoint union of at most (gi/)" Borel sets of diameters
<mj1. Replacing each wf’(1< k< n,) by these at most (gi/))" Borel sets we get a
new finite sequence (w,(f))ﬁgl (of course the new n;is bigger) of disjoint Borel sets
such that
diam (o)) < mj* for 1 < k< n;
my™n; < 1jj
ny

¥ B ¢ — éh < 1.

h=1
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We then define P; € 2(5#) as the orthogonal projection onto the finite-dimensional
subspace

CE(@)¢ + ...+ CE@) &
Then we have

[Pj, D] = ﬁ E(o{) [P;, D] E(o{?).
E=1

Now E(wy) [P;, D;] E(w{) has rank < 2 and it is easily seen that
J i

E(@d) [P;, D] E()|| < 2 diam(of) < 2m;™.
Hence we have
P, Dlla <2 ¥,(mi% ...,my,0,0,...)=

———

2nj—times
2n; 2n+1
=2mjt Y, kTt < 2/711-_15 x U dx <
k=1 1

< 8nmj'ni" < 8njVn,

Hence we have

lim |[P;, 8]l = O.

J—o0
Passing to some subsequence we may suppose the P;’s have a weak limit Q. Then we
have Q& = ¢ and [Q, d] = 0. Because of the cyclicity of & this implies Q = I. This
shows that the P;’s converge weakly to I and the proposition follows from Proposi-
tion 1.1. Q.E.D.

THEOREM 4.2. Let 6=(D,, ..., D,) e (L(H))" be a n-tuple of commuting
hermitian operators with n = 2. Then we have

k,(8) = 0.

Proof. Using Proposition 4.1 and the fact that ¥, <%, it follows that it will
be sufficient to prove the theorem under the additional assumption that the spectra]
measure of J is absolutely continuous with respect to Lebesgue-measure.

Now in Proposition 3.5 it was shown that k (U, ..., U,) =0 forn = 2.
Then defining 4; = 1/2(U; + U;*) we obtain a n-tuple (4,, ..., 4,) of hermitian
operators with spectrum [—1, 1]"< R” and with spectral measure absolutely conti-
nuous with respect to Lebesgue measure and such that k,(4,, ..., 4,) = 0.

Consider now ff = (By, ..., B,) = (A,®1x, ..., A, ® Iy). We have k,(f) =0
and f has infinite multiplicity. Now if § has spectral measure absolutely continuous
with respect to Lebesgue measure and ||¢]| < 1| (which is an inessential assumption
here) then we can write § = B,@ f, with B, unitarily equivalent with é. It follows
k,(d) = 0. Q.E.D.



30 DAN VOICULESCU

Lemma 4.3. Let De #(#) be a hermitian operator with spectrum [0, 1].
Assume the spectral measure of D is absolutely continuous with respect to Lebesgue
measure and the multiplicity function is 1 on [0, 1]. Then we have

(D) = —

T

. 2ni no Bhai o . .
Proof. Consider V, = exp (_m D). Then @ e » V, is unitarily equiva-
n k=1
lent to the bilateral shift of multiplicity one, so that by Proposition 3.3 we have

n 2kni
kl(@ eTV,,) =2
k=1

and hence by Proposition 1.5 we infer k,(V,) = 2/n. Then, for

C,= (¥, — V), de At
2i
we have

1 ,
Ve Al > > v, — Vi, Al = I[C,, 4],

so that k,(C,) < 2/n.

.2 o .
Now, C, and sin ‘" D are unitarily equivalent so that
n

k(D)< lim = . —L = L.

n—=o0o N

On the other hand for 4 € #Z; we have

[ (7 2) 4], <

2 2rn
< 2™\ [D, Al exp (— uDu)
n n

Ve, A4l =

and hence
2
k(7)< exp (—1‘)1«1(0).
n n

This gives
1 < exp (?it)kl(D)
R
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and taking the limit for n — oo we obtain
k(D) = 1/n. Q.E.D.

LEMMA 4.4. Let 6§ = (Dy, ..., D,) be a n-tuple of commuting hermitian ope-
rators with spectrum [0, 1]", spectral measure absolutely continuous with respect to
Lebesgue measure and multiplicity function equal 1 on [0, 11". Then for n > 2 we have

0 < k;(0) < o0.

Proof. a) We shall prove first that k,7(5) > 0. Indeed, if we would have k;; (6)=0,
then considering

Uy, ..., U) = (exp (2niDy), ..., exp (2niD,))
it would follow that k- (U,, ..., U,) = 0, because if 4,, 1 I, 4, € #{ are such that
4 0ll; =0 for m— oo,
then, since
(4., exp(2niD)]l; < 274, Djlli exp(2nl[D;ii),

we also have
|[Am’ (Ul’ ey Un)]l; -0 fOI' m — CO.

But the n-tuple (U, ..., U,) considered here is unitarily equivalent to the n-tuple
(U, ..., U,) appearing in Proposition 3.7 and so k,; (U, ..., U,) cannot be zero.

b) Let & be a cyclic vector for ¢ and consider for eachmeNand (i, ..., i) €
€{0,1,...,m —1}" the set

Wiyt = [iafm, Gy 4+ Dfm) X ... X {i,/m, (i, + 1)/m).
Then denoting by E(, ..., i,) the corresponding spectral projection of § we have

by EGy, ...,0) =1
({1s o ves in) €{0,..., m—1;n
Let further P,, denote the projection onto the finite-dimensional subspace spanned
by the vectors E(, . .., i,)¢, for (i, . .., i,) running over the set {0, 1, ..., m —1}".
Then it is easily seen that the projections P,, are weakly convergent to I. Moreover
we have

[Pm, DJ] = 2 E(ll . ln)[Pm9 ‘DJ] E(il’ LIRS | ln)

(e sin) €{0,1,...;m—~1}"
and E(, ...,1%,) [Py, D;) E(iy, ..., 1, has rank at most 2 and norm <2/m. This
gives
[P D7 < ¥,2/m, ..., 2/m, 0,0, ...) < 2(mn)2(2m" + 1)V" < 8.
2mn_times

Thus we have k;(8) < oo. Q.E.D.
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THEOREM 4.5. Let 6 = (Dy, ..., D,) be a n-tuple of commuting hermitian ope-
rators. Then we have

k@) =1 mls)di ()
Rn
where 0 < y, < oo is a constant independent of , m is the multiplicity function of the
Lebesgue absolutely continuous part of 8 and dJ is Lebesgue measure. For n =1

1
we have y, = ——-

T

Proof. First, using Proposition 4.1 it follows that it will be sufficient to prove
the theorem only for § with spectral measure absolutely continuous with respect
to Lebesgue measure. Second, using Proposition 1.4 it follows that it will be sufficient
to prove the theorem in case J has finite multiplicity. Third, using Proposition 1.6
it follows the proof of the theorem is reduced from the case of finite multiplicity,
to the case when § has multiplicity one.

Thus, let 2 = R” be a bounded measurable set and let &, be the n-tuple of
commuting hermitian operators given by the multiplication operators by the coordi-
nate functions in L*(Q, d1). Then let w(Q) = (k; (84))" in case A(2) >0 and v(Q) =0
in case A{€) = 0. We must prove that there is a constant y, independent of Q such
that y(Q) = y,4(£2). It is immediate that v(Q) is translation invariant, v(rQ) = r"v(Q)
for re R, r> 0 and in case 2,71Q we have v(Q,) T v(2) because of Proposition 1.4.

Also clearly v(Q) = v(Q') in case A(2\ Q) = Y\ Q) =0.

We shall take y, = v([0, 1]").

Then 0 < y, < oo because of Lemma 4.3 and of Lemma 4.4 and for n = 1 we have

Y = —lm because of Lemma 4.3.
¥id

We shall first prove that ¥(2) = 7,A(£) in case £ is a disjoint union

2=y Q) where

j=1
QD = [0 69 + 1/m) x ... x [t 1P + 1/m)

with e R(l €i<n, 1 <j < m)and me N. Thus  consists of s disjoint subsets
of the form

[tla tl + I/m) X ... X [tm tn + l/m)

which because of Proposition 1.6 may be moved into different positions via transla-
tions leaving v(Q) invariant provided they remain disjoint. This gives

([ )m ™y, < W@) < (7] + 1)y,

where [x] denotes the integer part of x.
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Now, dividing each Q) into p” disjoint subsets of the form

[ 6, + (pm)™) X ... X [t £y + (pm)™)

the same argument gives

([ps ™)™ (pm) ™"y, < v(Q) < ((ps''"] + 1)" (PM) ™"}

For p — oo we obtain
¥(Q) = s m™y, = ADyn.

The next step will be to prove that v(Q) = y,4(2) when Q is a bounded open set.
To this end, let Q,, denote the union of all sets of the form

k2™, (ky + 1)277) % ... % [k,2™™, (k, + 1)27™)

with k;€ Z (1 < i < n) and m € N, which are contained in . Then it is easily seen

that Q) = Q, = ... and | @, = 2. By what has been already proved, we have

m=1
W(2,) = 72U Rp)
and thus
v(Q) = y,A(82)
for Q a bounded open set, follows from Proposition 1.4.
Let now Q < R” be a bounded measurable set and let ¢ > 0. Then we can

find a compact set K = @ and a bounded open set G such that A(G\K) < &. Because
of Proposition 1.4 we have

v(K) < v(2) < v(G)
and

(VG < (KDY + (M(GN\K))U™,
It follows that

(G — (GNK" < (W@ < (WG
Now since G and G\K are open sets, we have

WG\K) = y,A(G\K) < &y,
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This gives
(’))n}‘(G))I/" - (8yn)1/n <
< (VYY" < (7a(A(Q) + ).
Since ¢ > 0 is arbitrary, we must have (&) = y,4(Q). Q.E.D.

The next two corollaries are immediate consequences of the preceding theorem.

COROLLARY 4.6. Let 6 be a n-tuple of commuting hermitian operators. Then
k7 (6) = O if and only if the spectral measure of b is singular with respect to Lebesgue

measure on R".

COROLLARY 4.7. Let 6V (je N) be n-tuples of commuting hermitian operators
with sup ||6YV|] < co. Then we have
jeN

ki @ 87 = ,(;ZN (e (04,

CoroLLARY 4.8. Let F=(f,....f,) :R">R" be a C'-map. Let further
6 =Dy, ...,D,)e (LK) be an-tuple of commuting hermitian operartors and m
the multiplicity function of the absolutely continuous part of 8. Then defining

F(é) = (fL(DD LI Dn)s .. -’f;n(Dl, “eey Dn))

det (ﬁf_,_)
6xj 1<i, j<n

where 7y, is the same constant as in the statement of Theorem 4.5.

we have

m(s) dA(s)

(kz (FO))" = vng

Rn

Proof. Let K<R” be the set where det(df;/0x,);<;, ;< vanishes. Then by Sard’s
theorem F(K) has Lebesgue-measure zero and hence the restriction of F(5) to
E(K)## (E(w) denotes the spectral projection of & for a Borel set @ = R") has spectral
measure singular with respect to Lebesgue measure. Now R"\X is a disjoint union
of bounded Borel sets Q;, j € N such that Fis a Cl-diffeomorphism of some neigh-
bourhood of {7, onto some neighbourhood.of F(§j). It is now immediate that the
multiplicity function of the absolutely continuous part of F(6)|E(€2;) is zero outside
F(Q)) and equal mo(F|Q;)™ on F(€;). Thus by Theorem 4.5 we have

(ki (F3) | E@)H)" =y, SF mo(F | @) dA =
(€2;)

= %.S Idet(3f;/0%,)1 <, j<nlm dA.
R
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Now since
F(3) = (FO) | E(K)#) @ @ (F(0) | E(2)#)
. e .
we get the desired result by using Corollary 4.7. Q.E.D.

THEOREM 4.9. Let 6,8’ be two n-tuples of commuting hermitian operators.
Assume k,;(0) < oo and & — 8' € €;;. Then the absolutely continuous parts of & and
&’ are unitarily equivalent.

Proof. Let m, m’ denote the multiplicity functions of the absolutely continuous

parts of 6 and ¢'. Clearly k;(6’) = k; (8) < co and this means in view of Theorem 4.5

that m and m’ are integrable. Considernow F = (f}, ..., f,): R? = R* a n-tuple of

polynomlal functions and F(8), F(&') as in the statement of Corollary 4.8. Then

F(6) — F(6') € ¢ and hence k; (F(5)) = k7 (F(5"). Takmg for 2- <] n; fi(xy ...
.+» X,) = x; and using Corollary 4.8 we have

S 10f3)0x,)m d2 = S 0f,/0x,] m' d2

for all polynomials f;. Now df,/0x, may be any polynomial and since m and m’
are integrable with bounded support it follows that m and m’ must be equal almost
everywhere with respect to Lebesgue measure and this is just the desired result. Q.E.D.

The method used to prove the results of this section is in fact quite flexible
and by using a C®-functional calculus instead of the polynomial functional calculus
one can obtain extensions of the above results to manifolds. We briefly sketch below
such extensions, leaving the details to the reader.

The basic fact concerning the C*=-functional calculus we shall need, is: given
8, &' n-tuples of commuting hermitian operators with 6 — 6’ €& and f: R* > R a
Ce-function, we have f(8) — f(8") € €Y. Moreover for fixed f assuming 6]}, ||8’]}
are bounded by some fixed constant, then given‘ & > 0O there is § > 0 such that

60— 8o < B = lf(5) f(5 N < e

This follows by using the Fourier transform method from [9] aryld' remarking that
the replacement of the trace-class by €9 is inessential. :

Let & -be a n-dimensional C*-manifold, countable at mflmty and consider
C.(%¥) the C*-algebra of continuous function on 2 which converge to zero at infinity.
Consider further C2(%) = C.(%) the #-subalgebra of infinitely differentiable functions
with compact support. Given a non-degenerate =-representation p: C(Z) — L(H)
there is a direct sum decomposition p = p, @ p, into an absolutely continuous and
a singular part (¢ € o isin the space of p, if the associated measure p; on % is
absolutely continuous with respect to Lebesgue measure when restricted to any
coordinate neighborhood). ' '
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Concerning diagonability results modulo €' it is easily seen by splitting p
into a direct sum of representations corresponding to the spectral projections asso-
ciated with certain Borel sets on &, that: if for every point pe Z we can find real
functions fj, ..., f, € 4° which give local coordinates in some neighbourhood of p
such that k4(p(fy), - .., p(fy)) = O, then there is a representation p’ of C.(Z) which
is a direct sum of one-dimensional representations and such that

p(f) — p'(f) e &P

for all fe ¥F(Z). Using this remark it follows immediately from the results about
- n-tuples that for S = &, there is always such a p’ and that for Q' = & there is
such a p’ provided p is reduced to its singular part.
Concerning the invariance up to unitary equivalence of absolutely continuous
parts, we have the following results.
Let p, and p, be non-degenerate =-representations of C.AX) such that

Pif) — pe(f)e €y

Sor all fe GX(X). Assume moreover that the multiplicity function of p,, , is locally
integrable (or equivalently

kx(pdfD)s -« o pi(fa) < 0

whenever fy, ..., fo€ b, f; =fF). Then p,, and p,, are unitarily equivalent.
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