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STABILITY OF THE INDEX OF A COMPLEX
OF BANACH SPACES

F.-H. VASILESCU

1. PRELIMINARIES

Let X and Y be two Banach spaces over the complex field C. We denote by
€(X, Y) the set of all linear and closed operators, defined on linear submanifolds
of X, assigning values in Y. The subset of those operators of ¥(X, Y) which are
everywhere defined, hence continuous, will be.denoted by #(X, Y). We write €(X)
and Z(X) for 4(X, X) and Z(X, X), respectively. We put also X* = (X, C), i.c. the
dual space of X.

For every S e 4(X, Y) we denote by D(S), R(S) and N(S) the domain of defi-
nition, the range and the null-space of S, respectively. We recall that the index of S
is given by

(1.1) ind S = dim N(S) — dim Y/R(S),

provided that R(S) is closed in Y and at least one of the numbers dim N(S),
dim Y/R(S) is finite. For every complex vector space M we denote by dim M the
algebraic dimension of M. If we represent the action of S by the sequence

(1.2) 0-X35 ¥,

not forgetting that S acts only on D(S)< X, then the number (1.1) may be interpret-
ed as the Euler characteristic of the complex (1.2) (see [9] or [7]). This remark suggests
a more general definition of the index, which will be presented in the sequel.

Consider a countable family of Banach spaces {X?}}.° ., and a family of opera-
tors o” € €(X?, XP*1) such that R(ef) — N(a”*1), for each integer p. We represent
them by the sequence

Pl P pP+1

(1.3) e X7 — 5 xo+1 X

and we say that (1.3) is a (cochain-) complex of Banach spaces. The sequence
(X, o) = (X7, "), , can be associated with the cohomology sequence H(X, o) =
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=(HP(X,0));/.> o, Where H?(X, a)=N(a?)/R(«”1). Let us assume that dim H?(X, o) < 0

= — 009

for every integer p and that dim H?(X, o) = 0 for all but a finite number of indices.
Then we may define

(1.4) ind (X, o) = f (—1)? dim H? (X, o).

p=—00

The number ind (X, «), which may be interpreted as the Euler characteristic of the
complex (1.3), will be called shortly the index of the complex (X, ).

It is easy to imagine a trick which makes possible the reduction of the case of
unbounded operators {a”} to the case of bounded ones (see the proof of Lemma 2.5
below), and we use occasionally such a procedure. However, we do not generalize
that procedure since it involves the transformation of the original topology into a
rather artificial one and some estimations become less precise.

Let us discuss the sigaificance of the number (1.4) in the finite-dimensional case.
If dim X” < oo for every p, o € #(X?, X?*1) and dim H?(X, o) = 0 if p < 0 and
p > n then one can easily see that

(1.5 ind (X,0)= g (—1)* dim X7 — dim R@™*) + (—1)"*' dimX"/N(a").

p=0

This remark shows that for arbitrary Banach spaces the number (1.4) cannot
be, in general, invariant under compact perturbations, as a well-behaved index is
expected to be. When a = 0 and o = 0, the number (1.5) depends just on the
geometry of the spaces, therefore only a certain type of complexes of Banach spaces,
namely of finite length, is Significant from the point of view of the classical stability
theorems of the index [3], at least for compact perturbations. However, the number
(1.4) makes sense and is stable under small perturbations for larger conditions (see
Theorem 2.12).

When dealing with complexes of Banach spaces of the form (X, «) = (X7,
a?)F_ o, with X7 = 0 for p < 0 and p > n (i.e. complexes of finite length), we write
them as (X, o) = (X?, a?)}_,, using freely the assumptions X» =0 for p < —1
orp=n+landae? =0forp < —lorp > n.

1.1. DerNITION. Let (X, a) = (X7, a”);_o be a complex of Banach spaces. If
R(e"™1) is closed in X", dim H?(X, o) < o for 1 < p < n— 1 and at least one of
the numbers dim H°(X, «), dim H"(X, o) is finite then (X, &) will be called a semi-
Fredholm complex of Banach spaces.

When dim H?(X, «) < oo for p =0, 1, ..., n then (X, «) is called a Fredholin
complex of Banach spaces.

We specify that for a semi-Fredholm complex of Banach spaces (X, «) the
number (1.4), possibly infinite, still makes sense and is called the index of (X, a).
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Note that if (X, a) = (X?, a?);_, is a semi-Fredholm complex of Banach spaces
then R(aP) is closed for all p =0, 1, ..., n — 1. Indeed, R(«"?) is closed by defini-
tion and R(«”) is closed by the condition dim H?P(X, &) < o0, for 1 <p <n—1
(see [3] or [9]).

In the next two sections of this work we shall obtain extensions of the usual
stability theorems of the index [3], valid for a semi-Fredholm complexes.

The fourth section contains some consequences of the stability theorems of
the index for finite systems of closed operators, commuting in a sense which will
be specified.

There is a consensus of the specialists (R. G. Douglas, D. Voiculescu etc.)
that a suitable notion of index for commuting systems of bounded operators on
Hilbert spaces must be connected with the Euler characteristic of an associated
complex (this was one of the facts which inspired our Definition 1.1). An approach
to the Fredholm theory in this context has been already developed in [2]. With these
conditions, the index of a commuting system turns out to be the index of a certain
operator, therefore the stability theorems can be reduced to the classical ones. As
a matter of fact, the index of a Fredholm complex of Hilbert spaces is always equal
to the index of a certain operator, as our Theorem 3.8 shows. However, it seems
that the case of commuting operators acting in Banach spaces (and, in general,
the case of complexes of Banach spaces) cannot be reduced to the case of one opera-
tor, while our methods still work.

Let us also mention that the Cauchy-Riemann complex of the d-operator
(4] is semi-Fredholm in certain conditions (this was another fact which led us to
Definition 1.1) and an application related to this result ends the present work.

2. THE STABILITY UNDER SMALL PERTURBATIONS

In this section we investigate the stability under small perturbations of the
index of a semi-Fredholm complex of Banach spaces.

Let X and Y be Banach spaces and S e %(X, Y). We recall that the reduced
minimum modulus of S(0) is given by

- Il Sx]
(S = inf ————)
rep d(x, N(S))

where d” stands for the distance. It is known [3] that R(S) is closed if and only if
y(S) > 0. In this case there is a continuous operator

S7: Sx > x £ N(S) (x € D(S))
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which maps R(S) into X/N(S) and with || S7Y| = y(S)™".
When S < 0 then one defines y(S) = oo.

2.1. LemMA. Let X, Y and Z be Banach spaces, S€¥4(X,Y), Te Z’(Y Z),
with R(S) = N(T) and R(T ) closed. Assume that A : D(S) - Y,B:D(T)— Z are
bounded operators and R(S) N(T), where S= S+ A, T = T + B. If

@.1) AN v(S)™ + 1B »(T)™ + [141l[[Bll ()™ »(T)* < 1

then R(S) = N(T).
Proof. Take rg > y(S)™ and r; > y(7)7* such that

22 [ 4llrs 4 11 Bliry + || 4]l || Blirsrr < 1,

which is possible by (2.1). Consider then y € N(T) arbitrary. We shall construct an
element x € X such that Sx = y. We shall use a closed graph type procedure inspired
from [10, Lemma 2.1]. Choose first y" € ¥ such that

Ty =Ty

and

1l < rell Tyl = rol Byl < (1B rrllpll.
Since y — 3" € N(T'), there is an x, € X such that y — »" = Sx,; moreover, we may
suppose that

Xl < rslly — ¥l < rs(L A+ Bl ro)llpll-
Let us define y, = y — le. Then we have

Iyl < 1y — Sxill + 1 Ax || < Bl reltyll + Al Xl <
< (|4llrs + | Blirr + 1AL Bll rsro) [ 21]-

Note that y, € N(T), therefore we may apply the same constructlon for y, and find
y, € N(T') and x,€ X such that Y= — Sxp = y— S(x]L + x,). We obtam in
general the sequences {y,}, = N(T) and {x,}, = D(S) such that y, == y — S(x; +

+ ... 4+ x,). Moreover,

Vel < (14l rs 4 1Bl 77 + 141 (| Bllrsre)* [1¥]
(2.3)
%]l < rs( -+ || Bl rp)( 4Nl rs + || Blirr + | 41| Bl rsre)<~Hixll,

for any natural k. By the relation (2.2) the series ¥,x, is convergent in X and let x
k
be its sum. As y, - 0 when k — oo, we obtain that ¥,Sx, is also convergent, hence
k

x € D(§) and y = Sx.
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2.2. COROLLARY. Consider S, T, A, B, S, T as in Lemma 2.1.If rg= (S,
= W), e, = ||All, ep= || Bl and e rg + egry + s48prsty < 1 then

2.4 1< sl T 2arr) :
@4 ") 2~ (1 +e9) (1 epry)

Proof. Assuming momentarily rg > y(S)~? and rp > y(T)™}, we obtain that

the solution x of the equation y = Sx constructed in the previous lemma satisfies
the estimations

rs(l + egry)
2 — (1 + gr)( + epry)

lxll < § llxill < iyl
k=1

obtained from (2.3). As rg, rp are arbitrarily close to y(S)™%, p(T)™* respectively,
we infer easily the relation (2.4).

2.3. COROLLARY. Consider S, T, A, B, S, T as in Lemma 2.1. Then there is a
constant so(S T) > 0 such that if || 4]} < &S, T) and HBH < &S, T) then the inclu-
sion R(S) < N(T) is equivalent to the equality R(S) = N(T ).

Proof. If at least one of the operators S, T is non-null then we can choose
&S, T) = (Vi — 1) min {3(S), »(T)}.

Indeed, if 0 = max {y(S)™%, y(T) '} and ¢ > [|4], e >||B]| then the condition 2¢0 4
-+ 262 < 1 implies the condition (2.1), therefore we may take

eo(S, T) = sup {& > 0; 260 + &20* < 1} = (V2 — 1§,
If both S and T are null then &,(S, T) may be any positive number.

The bounded perturbations from Lemma 2.1 may be replaced with relatively
bounded perturbations in the sense of the following

2.4. DEeFINITION. Consider Se4(X, Y), T € 4(Y, Z) and A a linear operator
with D(4) = D(S) and R(4) = D(T). We say that 4 is (S, T)-bounded if

(2.5) llAx]| + [[T4Ax|| < al|x|| + b]|Sx||, xeD(S),
where a, b are nonnegative constants.

The operator 4 is (S, 0)-bounded if and only if 4 is S-bounded in the sense of
[3, Ch. IV].
Let us also note that the operator 4 from Lemma 2.1 satisfies the evaluation

x| + [ TAx{| < ([4[ + {1 BAI) {Ix] + (Bl [|Sxll, xe D(S),
therefore A4 is (S, T')-bounded.
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We shall obtain a variant of Lemma 2.1 for relatively bounded perturbations.

2.5. LEMMA. Let (X?, a?)3_, be a complex of Banach spaces with R(a®) = N(a?)
and R(o) closed. Assume that B? is an («7, a?+)-bounded operator (p = 0, 1) satisfying
R(@® + % = N(@! -+ BY) and

2.8 1B7x + flar*1pox ]| < aylix|| + byllerxll, x & D().

If ¢, = max {a,, b,} and

Q7 o+ y@®™ + al + y@)™) + el + @)™ + )™ < 1
then R(«® + B°) = N(a* + BY).

Proof. The present statement can be reduced to the case of Lemma 2.1 by a

well-known procedure. Namely, consider AA’P = D(x?) and define on )21’ the norm
2.3 ixllo = Nxll + Nloerxll,  xe X2

Then X7, endowed with the norm (2.8), becomes a Banach space (p = 0, 1, 2). More-
over, if &? - X7 > X7+ is the operator induced by «” then ”35”“0< 1. Analogously,

if BP 1 X? — X»*1js the operator induced by §” then, by (2.6), we obtain that || lAil’ o <
< cp=0,1).
Note also the equalities

A arx . p p
(o) = in ‘”—‘”Ao— =, JDH(EP — ”j x”—l— Tz @)
sefe de, N(@)  yshen ol Ix — vl x 1 -+ y(a?)
x ¢ N(a?)

Then the condition (2.7) implies the inequality

IBPIPCBo)™ -+ 1B 75 -+ 1B 1B 17(50) ()2 < 1,
which in turn implies, by Lemma 2..1, the equality
R(e® + B%) = N(a* + 7).

The proof of Lemma 2.5 shows that we can reduce the case of relatively bounded
perturbations to the case of bounded perturbations. Moreover, actually the perturbed
operators may be supposed bounded. Such a reduction will be applied in the next
section, when the estimations of the norms are not interesting for the final results.
However, we prefer in general the conditions of Lemma 2.1, which provide better
estimations (compare, for instance, (2.1) and (2.7)) and a simplified language.
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For any pair of closed subspaces M and N in the Banach space X we set

(M, N) = sup d(x, N)
xeM

lxl<1

and 5(M, N) = max{8(M, N), 6(N, M)}. When 8(M, N) < 1 then dim M = dim N
(see [5] or [3]).

2.6. LEMMA. If S€ (X, Y), A : D(S) — Y is a bounded operator, S = S + A
and R(S) is closed in Y then

S(N(S), N(S)) < |41l 9(S)™.

Proof. Taking r > y(§)“1 and x € N(S) arbitrary then we can find ve N(g')
such that
1% + oll < || Sx|} = rll4x]| < rl4]}|x]

therefore

dx, N(S)) < 1 41] 95y x].

If X and Y are two Banach spaces then we denote by X @ Y their direct sum,
endowed with the norm ||x @ y|* = ||x| + |[¥|? (x € X, y € ¥). We identify some-
times X with X @ O and Y with0 @ Y.

2.7. LemMMA. Consider S € 6(X, Y) and take a finite dimensional Banach space
M and Aec B(M,Y). Define then S, c (X @ M, Y) by the relation S,(x ® v) =
= Sx -+ Av, for every x € D(S) and v € M. Then we have

dim N(S,)/N(S) - dim R(S,)/R(S) = dim M.

Proof. Let us write R(A) = N; + N,, where N; = R(S) n R(4yand N; n N, =
= 0. Clearly, R(S,) = R(S) + N,, hence dim R(S,)/R(S) = dim N,.

Consider then M; = A(N,), My < A™(N,) such that M;+ M,= M,
M, N M, =0 and with 4 : M, - N, an isomorphism. Take x e D(S), v, € M,
and v,e M, such that S,(x @ (v; + v,)) =0 = Sx + Av; + Av,. Then Av, =0,
thus v, = 0. We can write

N(S) = {x @ vy; x€ D(S), vye My, Sx + Av, = 0}.

If we consider the space X/N(S) and the linear operator

A

S71:8x = x4+ N(S), xeD(S),
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we infer the equality
NS)INCS) = {(S4v, + N(S), 0); v, € My},
showing that N(S,)/N(S) is isomorphic to M,;. We conclude that
dim N(S )/N(S) + dim R(S)/R(S) = dim M, + dim M, = dim M.

Let us mention that a variant of this lemma can be found in [5], for S injective.

2.8. DErFINITION. Let (X, o) = (X?, a?);_o be a complex of Banach spaces
and {Y, y} = {Y?, y?};_, a system with the following properties: Each Y7 is a finite
dimensional Banach space and each y? € Z(Y?, X?*1). Let us define p?(x @ y) =
= a’x + y?y, where x € D(o*) and y € Y7, and assume that (X@ Y, f)=(X? @ Y?,
BP)5..0is a complex of Banach spaces. In this case we say that (X @ Y, f) is an extension
of (X, &) by the system {Y, y}.

2.9. PROPOSITION. Let (X, a)=(X?, a”);_, be asemi-Fredholm complex of Banach
spaces. If (X @ Y, p) is an extension of (X, «) by the system {Y, y} = {¥?, y"}i¢
then (X @ Y, B) is also semi-Fredholm and

ind (X @ ¥, p) = ind (X, 0) + ¥, (—1) dim Y.

=0

Proof. By Lemma 2.7, it will be enough to prove the assertion when (X, a)
is actually Fredholm.

Note that for an arbitrary p we have the equalities
dim N(P)/R(f™") = dim N(B?)/R(@*™) — dim R(B*™)/R(a?™) =
= dim N{(a@”)/R(x""1) + dim N(B7)/N(«?) — dim R(B?1)/R(aP7%).
By Lemma 2.7 we have also
dim N(B?)/N(e?) 4+ dim R(B?)/R («*) = dim Y7,
By summing up these equalities multiplied with suitable powers of —1 we obtain

ind (X @ ¥, B) = ind (X, @) + }(—1)(dim N(B?)/N(«?) —

—dim R(B*Y)/R(a*~) = ind (X, &) + 2 (—1)? dim Y.

p=0

which completes the proof.
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Consider a complex of Banach spaces (X, a) = (X?, a?)j_o. If D(a?) is dense
in X? then the adjoint «?* is defined and belongs to ¥(X?+1*, X7*). Moreover,
R(a?*1*) = N(ar*), therefore

qn—2# Qb

u"—l*
0 — X"* > Xn-1¥ > oo —— XO¥ 5 ()

is again a complex of Banach spaces; it will be denoted by (X*, a*) and called the
dual of (X, a).

2.10. LEMMA. Let (X, a) = (X?, a?);..o be a complex of Banach spaces with D(a?)
dense in X? for every p. Then (X, o) is semi-Fredholm if and only if the dual complex
(X*, a*) is semi-Fredholm. In this case ind (X*, a*) = (—1)"ind (X, o).

Proof. Assume first that (X, o) is semi-Fredholm. Then R(«?) is closed for every
p, therefore R(a?*) = N(a?)L and N(o#*) = R(a”)}! (where ¢“_L_’’ denotes, as usually,
the annihilator of the corresponding subspace in the dual). From simple arguments
of duality we have that the space

N *)/R() = R 4Ny

1s isomorphic to the space (N(a?)/R(e?1))*, therefore we can write

ind (X*, o*) = z (—1)?dimN(@" =2~ 1¥)/R(a"~?*) = (—1)" ind (X, o).

p=0

The converse implication is similar.

2.11. THEOREM. Assume that (X, a) = (X7, a”);_, is a semi-Fredholm complex
of Banach spaces. Then there exists a positive number (X, o) such that if y?: D(a?) —
— X?+1 s bounded, ||7?|| < e(X, ), ff=a?+ y?(p=0,1, ...,n) and (X, ) =
= (X7, BP)p_o is a complex of Banach spaces then dim H*(X, f) < dim H”(X, «)
for every p and ind (X, B) = ind (X, o).

Proof. Notice first that we may suppose dim H"(X, o) < co. Indeed, there is
no loss of generality in assuming that D(a?) is dense in X? for every p; if
dim H"(X, o) = o0, by passing to the dual complex we obtain, by Lemma 2.10, the
desired situation. We shall obtain our theorem from a more general statement.

2.12. THEOREM. Assume that (X, o) = (X7, a”);2, is a complex of Banach
spaces with dim H?(X, o) < oo for every p > 1. Assume also that H?(X,o) = 0
Sor all but a finite number of indices. Then there exists a sequence of positive numbers
{ep}p>0 such that if y» : D(a?) - X*** is bounded, |y*|| < &, p* = of + y* and
(X, B) = (X?, BP)2o is a complex of Banach spaces then dim H"(X, B) < dim H?(X, o)
for every p and ind (X, f) = ind (X, o).
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Proof. Let us define the number
m(X, o) = min {m; H/(X,«) = 0, p > m}.

We shall obtain the assertion by an inductive argument with respect to m(X, o).
Assume first that m(X, o) = 0. Then we take

2.9 ¢, < min {gy(0? 7L, a?), gy(a?, a?*Y)}, p=0,1,2, ...,

where gy(a”, «?*?) is given by Corollary 2.3. If we have ||y?|| < ¢, for every p then by
Corollary 2.3 we infer that H?(X, p) = 0, hence ind (X, 8) = ind (X, &) = 0.

The case m(X, o) = 1 needs a special treatment. Take first ¢, > 0 and ¢, > 0
small enough in order to have

&y(@) (1 + & (@)™
2 — (1 + & y@)™M(A + & y(@H)™)

<1,

and gy(«®)"? < 1. Then from Lemma 2.6 and the relation (2.4) we obtain that
S(N(ao), N(B%)) < 1, therefore dim N(f°) = dim N(a®) (see [6] or [3]). If we take
g, satisfying (2.9) for p > 1 then we have H?(X, f) = 0 by Lemma 2.3, hence the
assertion is valid in this case.

Suppose now that the assertion is true for m(X, o) = m > 1 and let us obtain
it for m(X, o) = m -+ 1. We have therefore H?(X,0)=0 if p>m+1 and
dim H"(X, &) = n,, < . Let us write R(a™ 1) + M = N(«™), where dim M = n,,.
We define the space Xm1 = X" 1 @ M and the operator

B @ 0) = o '(x) + v, xeD@"™D), veM.

It is clear that R(E™) = N(«™), hence if X? = X7 and & = o forp # m — 1
then (X, &) = (X7, @”)>, has the property m(X, &) = m. Let {¢ »}p>0 be the sequence
given by the induction hypothesis for (X, &). By changing, if necessary, &, , &m+1
with smaller positive numbers, we may assume that there exists § > 0 with the pro-
perties

2.10) 5o Ew Y@ By 7)Y
2 — (14 2,y + &4 p@m D))

andn,, 6 < ¥,_,. We define then ¢, = &, (p#m — 1) and take ¢,,_, <(&3,..,—n5,0%)"2

Counsider now 97 : D(a?) = XP+1 with {|y?|i < ¢, and 7 = of 4 y?. We shall
constructamap =1 on D(x™1) @ M such that it 53 ==fm-1_ gm-Lthen |[§™ 1 ' <Z,_;.
For, take a basis {vy, ..., 0,,} of M with the property that if v = Y} ;A;1; then
25 < oll (j=1,...,n,). The existence of such a basis follows from the well-
known lemma of Auerbach (see, for instance, [1]). Take then v; € N(8™) such that
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o, = il <d(j=1,...,n,), which is possible according to (2.10), (2.4) and Lemma
2.6. Then for all xe D(@™ ) and ve M, v = Zl v;, we define

Jvi

Bt @ v) = B30 + 3 475,
j=1
Note that we can write

1774x @ )l <y x] + ’H z’" <

< Emall X[} 4 npdllvll < (6ho1 + SN2 (X @ vl < Epmallx D 0ll.

I£ we put ﬁl’ g? forp # m— 1 then, by the induction hypothesis, the complex
X, p) = (Xf’ [)’1’),, o satisfies dim H7(X, ﬁ) dim H”(X a) for cverypandmd(X B =
(= ind (X a). Since by Lemmas 2.1 and 2.7

dim N(B™)/R(B™™Y) = dim R(B™Y/R(™™) < n,,

and by the induction hypothesis

dim N(B™%)/R(B"2) < dim NF"O/R(E"2) <
< dim N(&mﬂ)/R(&m—i:) — dim N(am—-l)/R(am—2)’

‘we obtain dim H”(X, f) < dim H*(X, «) for any p > 0.

From Propositioh 2.9 we infer the relations

ind (X, &) = ind (X, o) + (—1)""'n

m

and
ind (X, f) = ind (X, B) + (=1)""'n,, ,

therefore ind (X, ) = ind (X, a) and the proof of Theorem ‘2.12 is complete.

Theorem 2.11 is a particular case of Theorem 2.12, with X? = Oforp > n -+ 1
In this case we may take

&X,a) = min {¢,; 0 < p < n}.

By using a duality argument one can state and prove a variant of Theorem 2.12
for a complex of Banach spaces of the form (X, «) = (X?, a?);_ _,, such that
dim H?(X, o) < oo for p <0 and H?(X, o) = 0 for all but a finite number of indices,
provided that R(x™') is supposed closed in X°. .
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3. THE STABILITY UNDER COMPACT PERTURBATIONS

A notion analogous to relative boundedness (Definition 2.4) is that of relative
compactness.

3.1. DerFiNITION. Consider S€4(X, Y), T€ ¥(Y, Z) and A4 a linear operator
with D(4) o> D(S) and R(4) = D(T). We say that A is (S, T)-compact if for every
sequence {x,}; < D(S) with both {x,}; and {Sx.}; bounded, the sequences {Ax,},
and {TAx,}, contain convergent subsequences.

Note that A is (S, 0)-compact if and only if 4 is S-compact in the sense of [3,
Ch. 1V].

3.2. LeMMA. If A is (S, T)-compact then A is (S, T)-bounded.

Proof. Indeed, if A is not (S, T)-bounded then there is a sequence {x,}, < D(S}
such that ||x ]l + ||Sx|l <1 and ||4x|| + |[T4x, || > k, therefore {Ax}, and
{TAx,}, cannot contain convergent subsequences.

Let us remark that if 4 is (S, T)-compact, XA = D(S) is endowed with the
norm |ix|ly = ||x|| + || Sx]| (xeAA’), Y= D(T) is endowed with the norm ||y, =
= |+ Tyl (ye f’) and A is the operator from )? into f induced by A then
Ae @(AA’ , Y ) and A is compact in the usual sense, as follows from Definition 3.1 and
Lemma 3.2. Conversely, the compact operators that we work with are relatively
compact in the sense of Definition 3.1 (see Lemma 3.4 below), hence it is enough,
from our standpoint, to consider only compact perturbations.

3.3. LeMMA. Consider Se 4 (X, Y) and T 4(Y, Z) with R(S) < N(T) and
R(S) closed. We have dim N(T)/R(S) < oo if and only if for every bounded sequence
{»}e © N(T) there exists a sequence {x,}, = D(S) with the property that {y, — Sx,}
contains a convergent subsequence.

Proof. If dim N(T)/R(S) < oo then we can write N(T) = R(S) + M, where
dim M < oo and M n R(S) = 0. Since both M and R(S) are closed, the projection
P of N(T) onto M parallel to R(S) is continuous. If {y,}, = N(T) is a bounded
sequence then y, = Sx, + w;, with {w;}, = M. As |[w,|| < || P]| [[»[l, the sequence
{wle = {» — Sx;}, contains a convergent subsequence.

Conversely, let us assume that dim N(T)/R(S) = oo. Then we can construct a.
sequence {y.}, < N(T) such that ||y ]| = 1, d(y;, R(S)) = 1/2 and

1
d(yk, SP{R(S)J yl, sy yk—l}) > 'i‘ s k 22’

by a well-known lemma of Riesz [3), where ““sp” stands for the expression ‘the linear-
space spanned by”. In this case for each {x.}, = D(S) the sequence {y, — Sx.;};
cannot contain any convergent subsequence.
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3.4. LEMMA. Consider Se€€(X,Y) and T € €(Y, Z) with R(S) =« N(T), R(T)
closed and dim N(T)/R(S) < co. Take the compact _Ooperators Aeﬂ(X Y) and
Be .QZ(Y Z) with the properties R(S) c N(T) and R(S) closed, where S = S + A
andT = T + B. Then A is (S, T)-compact, dim N(T)/R(S) < o0 and R(T) is closed.

Proof. We show first that A4 is (S, T)-compact. Indeed, if {x,}, = D(S) and
{Sx:}, are bounded sequence then, by the equality TAx, = —(BS + BA)x, for
all k, we infer that both {4x,}, and {TA4x,}, contain convergent subsequences.

The other assertions are consequences of the following fact: If {3}, < D(T)
is a bounded sequence with fyk — 0 as k — oo then there exists a sequence {x;},<
< D(S) such that {y, + §xk}k contains a convergent subsequence. Let us prove this
statement. Since Ty, + By, - 0 as k — oo, we may suppose that {By},, hence
{Ty.}«, is a convergent sequence. As R(T) is closed, we can find ve D(T) and a
sequence {v,}, = N(T) with y, + v, + v > 0 as k — oo.

Now, let us write N(T') = R(S) + M, where M n R(S) = 0 and dim M < co.
Denote by P the projection of N(T') onto M parallel to R(S). Then v, = Sx; + w,
with w, € M for all k. The vectors x, can be chosen such that

%l < rllSxill < rlf1 — Pl [fogll,

where r > y(S)™ is fixed. Since {v,}, is bounded, we may suppose that the sequences
{wi}x © M and {Ax}, are convergent. Then we have

yh+uk+v:yk+Exk—Axk+wk+U”0’ k — o,

hence {y, + Sx}, is convergent.

In particular, if {y,}, = N(T) is a bounded sequence then we can find {x,}; <
c D(S) such that {y, + Sx,}, contains a convergent subsequence, hence
dim N(T)/R(S) < 00, by the previous lemma.

Assume now that R(T ) is not closed. Let T, » be the (closed) operator induced
by T in Y, = Y/N(T). Then T, is injective and R(TO) = R(T) Since R(T) is not
closed, we can find a sequence {#,}, = Y, with ;]| = 1 and To’1k -0 as k— o0.
Let us choose a bounded sequence {y},, with y, representing #, for each k. Then
Ty, — 0 as k — oo, hence there exists a sequence {xh = D(S) with Ve + Exk}k
containing a convergent subsequence. In this way the sequence {#,}, may be supposed
convergent to a certain 7, and ||#,|| = 1. Moreoverﬁ"(,n0 = 0, hence 5, is an eigen-
vector of T,. This contradiction shows that R(T) must be closed.

3.5. CoROLLARY. Let (X, a) = (X?,a?);_o be a semi-Fredholm (Fredholm)

complex of Banach spaces. If y? € B(X?, XP+Y) is compact for every p and (X, f) =

= (X7, BP)p_o is a complex of Banach spaces, where f7 = o? - y7, then (X, B) is
semi-Fredholm ( Fredholm).
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Proof. If (X, &) is semi-Fredholm, but not Fredholm, with no loss of generality
we may suppose that dim H*(X, «) = oo. If p < n and R(fP™") is supposed closed
then we obtain that dim HP(X, B) < co and R(B®) is closed, by Lemma 3.4. As
R(™) = 0is closed, the property is true for every p < n, by induction. In particular,
R(f"™Y) is closed. In this case we cannot have dim H*(X, f) < o, by the same
Lemma 3.4.

From this argument, the case (X, ) Fredholm is clear.

Corollary 3.5 shows that in order to investigate the stability of the index under
compact perturbations, only the case of Fredholm complexes must be took into
consideration.

3.6. LEMMA. Let (X,a) = (X7, a”)p_0, (Y, B) = (Y7, B*)5o0 and (Z, y) =
= (ZP, y?)i_o be complexes of Banach spaces. Assume that the sequence

0 - D(?)'S D(Br) S Dy?) - 0

is exact and uP+tlg? = fPyP pP+IfP = yPyP, fo;l' every p. If any two of the complexes
(X, a), (Y, B), (2, y) are Fredholm then the third is also Fredholm and we have the
equality

ind (Y, B) = ind (X, &) + ind (Z, ).

Proof. The hypothesis implies the existence of a long exact sequence of coho-
mology ‘

Gl .= B 0) D HY, p) 2 HY(Z, 5) S X a) o

where #° and 7 are induced by u? and v respectively, while W? is a connecting homo-
morphism (see [7] for details). From the exactness of (3.1) it follows that if any two
of the complexes (X, o), (Y, B), (Z, y) are Fredholm then the third is Fredholm as
well. In this case (3.1) is a complex of finite dimensional spaces, whose index must
be zero on account of its exactness. On the other hand, by the formula (1.5),

ind (X, o) — ind (¥, B) + ind (Z, 7) = 0.

3.7. THEOREM. Assume that (X, o) = (X7, aP)i_o is a Fredholm complex of
Banach spaces. Take y? € B(X?, XP+1y compact for each p, such that (X, B) = (X7, f?);.,
be a complex of Banach spaces, where 7 = a? + y?. If

3.2) dim R(yPt1yP) < o0, p=0,1,...n—2

then ind (X, f) = ind (X, o).

Proof. Let us denote by X? the finite dimensional space R(y?™1y?~2) for 0 <
< p € n, where y2 =0, y7t =0, Plainly, X? « D(«?). If we consider in D(a?)
the norm given by (2.8), we may suppose with no loss of generality that «? is conti-
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nuous for every p. Note that both N(«?) and R(x”) remain unchanged in the new
topology and that the index is preserved. Moreover, as y? is (a?, a?*1)-compact
by Lemma 3.4, the restriction of y” on D(oc”) will be still compact in the new topology.

Let &7 be the restriction of «” on X?. We have R(E?) « X»+1. Indeed, if
x € )?;’, x = yP~L 92~2p by the identity 75?1 = 0 we can write

oaPx = __(ypo(pﬂ + ypyp—l)yl)‘ZU —
= pP(yP PR pP TP Ry — yPyP TP Ry = pPyPTlaP Ry,

Note also that R(7”) < X2+ where 57 is the restriction of y? on X?. In this way
both (X, @) = (X7, &")r_o and (X, f) = (X7, BP)r_,, with B? = a? -+ §7, are complexes
of finite dimensional Banach spaces, therefore by the formula (1.5) we obtain

(3.3) ind (X, &) = ind (X, B).

Consider now the quotient space i’” = X”/X’P and denote by a? and 77 the
maps inducedin X? by «” and y?, respectively, for all p. From the equality

@+ 0@ -+ 07%) + O(1 — 6) y7+1 42 = 0,

where 0 € 0 < 1, we infer that R(&’J + G)Af”)c: N(&’”r1 + 0)3”1), therefore (:\\/,& -}
+ 6y) = (IAYI’ ar + H)A)”),, 015 a complex of Banach spaces. As (X, «) and (Y &) are
Fredholm, by Lemma 3.6 it follows that (X oc) is also Fredholm and ind (X o) =

= ind (X &) + ind (X a) A snmlar property is also true for (X /3) (X &+ ),
therefore if 1nd(X a) ind (X [3) then, by (3.3), ind (X, o) = ind (X, B) as well.
Indeed, by Theorem 2.11 we have that ind(S(, &) = ind ()A(, &+ 9)3) for small values

of 0. By Corollary 3.5 (X’, a+ 0)3) 1s Fredholm for each 6. Since the index is conti-
nuous by Theorem 2.11 and its values are integers it must be constant, and the proof
is complete.

We think that Theorem 3.7 is true without the condition (3.2). Besides Corollary
3.5, one reason for this conjecture is a consequence of the following

3.8. THEOREM. Assume that (X, a) = (X7, aP)i_o is a complex of Hilbert spaces.
Then there exist two Hilbert spaces H, and H, and a closed operator T, from H,
into Hy with the properties:

(1) R(a?) is closed for all p if and only if R(T,) is closed ;

(2) (X, o) is Fredholm if and only if T, is Fredholm and in this case indT, =
== ind (X, a);

(3) H?(X, a) = O for all p if and only if T, has a bounded inverse from H, into H,
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Proof. With no loss of generality we may suppose that each o” is densely
defined, therefore the adjoint «”* is also (densely) defined. Let us set

Hy= © X%  H = @ X%+,
k>0 k>0

and define the_operator

(3.4) T( k@oxzk) = k@ (a2kx2k + “2k+1*xzk+2),

>0

where xy, € D(a®*) n D(a®1*), for each k > 0. Plainly, T, maps a subspace of H,
into H,.

Let us prove that T, is closed. Note that R(a®*) = N(a2*+1) and R(a¥+1*)c
< N(2*Y)L, and take ¢, = @ xJp € D(T,) with {¢™},, and {T,¢™},, convergent.
k>0

By the above remark we obtain that both {a®x7;},, and {a?*+1*xJt .} areconvergent
sequences. By using that a?* and «2**1* are closed we infer easily that T, itself is closed.
Let us prove the equality

(3.5) N(T,) = kEEO(N(az") © R(E*7Y)

(where H © K denotes the orthocomplement of K in H). Indeed, take @ xy, € N(T),),
k0

hence o?*xy, = 0 and a¥+1*x,,,, = 0 by the orthogonality, for every k > 0. In this

way we have also xy € N(@?1*) = R(a®* 1)L, hence x, € N@?) © R(@®*1). Con-

versely, if x, € N(0?) © R(02*77) then x, € D) N D(@*1*) and @ xo € N(T)).
>0

We have also the equality
(3.6) H © R(T) = @ (N@**) © R(@*)).
k>0

Indeed, if @ yy+;€ Hy © R(T,) then y,., is orthogonal to both R(a®) and
k>0

R(o2*+1%), therefore yy4q € N(@¥+1) © R(«?) for all k, which gives one inclusion.
The other inclusion is similar.

One more equality is needed. Namely we have

3.7 R(T) = @ (R@™) ® R(@***1*))
>0

(extending the meaning of the direct sum for orthogonal not necessarily closed linear

manifolds). It is clear that R(T,) is contained in the second side of (3.7). Conversely,

take @ y.+1 belonging to the second side of (3.7). Then we can write that yy., =
k>0

= a%*xy, + a2 +1*x); .. Moreover, according to the decomposition X = N(aZ)@



STABILITY OF THE INDEX 263

@ R(o®*), we may suppose that xj, € R(@¥*) and xj;, € N(a2F), for all k. In this way,
setting Xy = Xp + Xor € D(@%) n D(02*1%), we have a?*xy, + o2k +1%x, = x5+
+ a2k HlEx 0 = Vartq, therefore @ Yo4q € R(T,).

k>0

The assertion (1) results in the following way: If R(«?) is closed for all p then
R(«"¥) is closed for all p, hence (3.7) implies that R(T,) is closed. Conversely, R(T,)
closed implies that R(x¥) and R(x?*+1*) are closed for every k, hence R(a”) is closed
for all p.

From the equalities (3.5) and (3.6) we obtain that (X, «) is Fredholm if and
only if T, is Fredholm and in this case ind (X, ) = ind T,, therefore (2) is true.

Finally, if H?(X,«) =0 for all p then N(T,) = 0 by (3.5) and R(T,) = H,
by (3.6), thus T;! exists as a bounded operator from H; into H,. The converse asser-
tion is similar, showing that (3) is also true.

Let us mention that the consideration of the spaces A, and H; has been suggest-
ed by a similar construction in [9, Ch. 1V].

3.9. CoroLLARY. If (X, )=(X?, o?); ., is a Fredholm complex of Hilbert spaces,
PP € B(X?, XP*Y) is compact, fP = aP+y? and (X, B)y=(X?, B);_o is a complex of
Hilbert spaces then (X, B) is Fredholm and ind (X, f) = ind (X, «).

Proof. Let T, and Tj be the corresponding operators given by Theorem 3.8
for (X, w), (X, B) respectively. It is clear that T, — T, is compact, therefore
ind T = ind T, by the classical theorem of stability of the index under compact
perturbations [3] (which is also a consequence of our Theorem 3.7). By Theorem 3.8
we obtain that ind (X, §) = ind (X, o).

Let us remark that by using Theorem 3.8 one can define a more extensive
concept of semi-Fredholm complex of Hilbert spaces, in connection with the same
notion for the corresponding operator.

One more remark. In the proof of Theorem 3.8 we can consider another
operator T, from H, into H,, defined by

H } . _
T3 @D Xops1) = @ (@ 1xgy + a2 x4 1),
k>0 k>0

where Xy, € D(2**1) 0 D(?**), for all k> 0. Then N(TF), Hy © R(T¥)and R(TH)
satisfy some variants of the formulas (3.5), (3.6) and (3.7), respectively. It is easy
to see that (T,&, 0D = (¢, Tft;1> for all £ € D(T,) and n € D(TF). One can see that
TF is the adjoint of T,.

Finally, let us mention that the stability of the index of a Fredholm complex
of Hilbert spaces is also pointed out by M. A. Subin in his book Pseudo-differential
operators and spectral theory (Russian), Nauka, Moskow, 1978. We have become
recently aware of this work, containing an assertion that overlaps Corollary 3.9.
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4. COMMUTING SYSTEMS OF LINEAR TRANSFORMATIONS

For finite commuting systems of linear continuous operators in Banach spaces
there is an adequate concept of joint spectrum which is strongly related to the combin-
ed action of the operators on the space, introduced and studied by J. L. Taylor
[10]. The purpose of this section is to present in this spirit some elements of spectral
and Fredholm theory, valid for certain systems of linear transformations, not
necessarily continuous (see also [11] for a slightly different approach to the spectral
theory of the unbounded systems).

Let us recall some basic definitions and notations [10], [11], [12]. Consider
a system of » indeterminates ¢ = (o3, ..., 6,) and let A[o] be the exterior algebra
over C generated by o, ..., g,. For any integer p, 0 < p < n, we denote by A?[d]
the space of all homogeneous exterior forms of degree p in oy, ..., o,. The space
Alo] has a natural structure of Hilbert space in which the elements

ouN ... Noj,, 1<ji<...<j,<n p=1,...,n

and 1 € C = A%s] form an orthonormal basis.
An important role will be played by the operators

4.1 SiE=0;, A& Cedlol, j=1,...,n
and by their adjoints
4.2) SEE + o, NEHN=E, j=1,..,n

where £ 4- o; A £} is the canonical decomposition of an arbitrary element &€ A[o]
with £} and £}’ not containing o;. Note the anticommutation relations

S_[Sk + S[{Sj = 0
@3) , S k=1, m

where g;, is the Kronecker symbol.

Consider now a complex linear space L. Then the tensor product L ® A[s]
will be always denoted by Afe, L]. Analogously, A”[o, Llis L ® AP[c],0 < p < n.
If A is any endomorphism of L then the action of A is extended on As, L] by the
endomorphism 4 ® 1. The latter will be also denoted by A (as a rule, we omit the
symbol “®’ when representing elements and endomorphisms connected with
Ale, L]). Analogously, if 8 is an endomorphism of A[s] then the endomorphism
1 ® 0, acting on Afg, L], will be also denoted by 6.

When L is a complex Banach (Hilbert) space X then Ao, X] is also a Banach
(Hilbert) space, which can be identified with a direct sum of 2" copies of X. The
action of each 7 € €(X) will be extended in Alo, X] by T ® 1, denoted simply by T,
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defined on D(T) ® Alo] = Als, D(T))], which is still a closed operator. Clearly,
for any endomorphism 6 of A[s] the endomorphism 79 extends 07T

Let X be a fixed complex Banach space and ¢ = (o4, ..., 0,) a fixed system of
indeterminates.

4.1. DerINITION. We say that a = (&, ..., q,) < €(X) is a D-commuting

system if there exists a dense subspace D of X in (M) D(a;) with the properties:
Je=1
(I) The restriction 8,= (a,S; + ... + a,S,)|4[c, D] is closable;
(2) If ¢, is the canonical closure of §, then R(6,) = N(5,).

Note that Definition 4.1 can be equivalently expressed in the following way:

(1") The restriction 5A{,’ = (q,S; + ... + a,S)|A4”[s, D] is closable for every p,
0<p<m

(27) If 6 is the canonical closure of (SAf,’ then R(6%) = N(6,™Y),forp =0,1, ..., n,
where 6311 = 0.

From this equivalent form of Definition 4.1 we obtain that each D-commuting
system can be associated with the complex of Banach spaces (417[g, X1, 65);_,, which
makes the connection with the previous sections. The cohomology corresponding
to this complex will be denoted by H(X, a; D) = (H?(X, a; D))p_e.

Plainly, if a = (ay, ..., a,) < #(X) is a D-commuting system then §, is conti-
nuous and from 6,0, =0 we infer that (a;, ..., a,) is a system of mutually commuting
operators.

The concept given by Definition 4.1 is a notion of “strong commutativity’.
We can give also a concept of “weak commutativity™.

4.2. DerINITION. Consider a system a={(a,, . . .,a,) of densely defined operators
in €(X). We say that a = (ay, ..., a,) is a D,-weakly commuting system if a* =
= (a¥, ..., a}) c 6(X*) is a D,-commuting system.

In Definition 4.1 the basic operator ¢, S, + ... -+ a,S, may be replaced with
the operator a; S¥+ ... -+ a,S¥. In order to prove this assertion, let us introduce a
“Hodge type” transformation of A[e, X] into itself [9].

Note that each ¢ € A7[o, X] may be represented uniquely as

é“—— Z, ) Sjl o Sijjl._.jP, le._‘jPEX.
IS h<...<jpgn

Let us define then in A" 7[o, X] the element

4.9 & & =pin D2 Z S;kl - S;‘-‘P Sl e S,,le_,_jp s

1€i1<eee<jp€n

with i2 = —1, and extend the map # by linearity on the whole space Ala, X].
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4.3. LEMMA. The map# of Alo, X] into itself is an isomorphism whose

square is the identity.
When X is a Hilbert space then #is a unitary transformation.

Proof. If 1 <j, < ... <j, < nis a fixed system of indices then for every
xe X we have by (4.3)

E(S), ... Sy, x) = GV 1)h=t (= 1)1 8k, .. Sk, %,

where | < ky < ... <k, <nand{jy, ...,jp} U {ky, ..., )} = {1,2, ..., 0}
We can write then

#(H(S), ... ;X)) =
= in(n-l)(_l)jl—l L. (_1)jp—1(__1)k1_1 . (—l)k’""’"]Sjl . Sj,, X =
= (e g S x =S5, ... S x.

From this calculation we obtain by linearity that the square of #is the identity on
Alo, X], hence # is an isomorphism.

When X is a Hilbert space then # is an isometry, hence # is actually a unitary
transformation.

4.4. LEMmA. Consider a system a = (a, ..., a,) < €(X) and assume that there

exists a subspace D < (M) D(a;), D dense in X. Let us denote by 3,,(3‘;) the restriction
j=1

of @S,+ ... +a,S, on Alo,D] (A%[c, D]) and by 3,37 the restriction of
a,S¥ + ... + a,SF on Alg, D} (AP[e, D]). Then we have the properties:

(1) 8,(82) is closable if and only if 3,(y"~7) is closable;

(2) The system a = (a,, ..., a,) is D-commuting if and only if R(y,)= N(y,),
where v, is the canonical closure of ;1‘,.

Proof. Let # be the map given by (4.4). Obviously, # A?[o, D] = A" ?[s, D).
Take now x € D and fix a system of indices 1 <j; < ... </, <. Then we can
‘write

#((@ S+ ... +a,8,)S), ... S;,x) =

= (Z SeSiy - SfpakX) =Y @S} #(S), ... S;x)
k=1

k=1

hence

@.5) 4§ 00 —J1raE,  Eedfo, D]
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From (4.5) we obtain easily that 2 is closable if and only if 3\): ~7 is closable. In this
case, if 62 is the closure of 6% and yZ is the closure of §g we have also #62 = y2~7 3%,
In particular, a = (a,, ..., a,) is D-commuting if and only if R(y,) < N(y,).

Let us remark that if @ = (a;, ..., q,) © ¥(X) is a Dy-weakly commuting
system and X is reflexive then we may define 3= (y,.)*, where y,. is given by Lemma
4.4. Then 67 has the property R(6;) < N(Jy), which follows from the corresponding
property of y,.. It is easily seen that J} is an extension of the operator

@S, + ... +a,S)HA [0', M D(g; ] .
j=1
In particular, if @ = (a,, ..., a,) is D-commuting for a certain D then 8% always
extends 4,. '

Let us illustrate the consistency of Definitions 4.1 and 4.2 with a significant
particular case. Take again an arbitrary Banach space X.

4.5. PROPOSITION. Assume that ay, ..., a, from (X)) are densely defined,
bj=a7'eBX)(j=1,...,n) and that by, ..., b, mutually commute. Assume also
that a¥, ..., a} are densely defined. Then we have the following properties :

(1) a =(ay, ..., a,) is a D-commuting system, where D = b, ... b,X;

() a* = (af, ..., a}) is a Dy,-commuting system, where D, = b¥*. .. b¥X*,

(3) R(3,) = N(8,) and R(S,) = N(3,4).

Proof. Since ay, ...,a, are densely defined, the subspace D =5, ... b, X
s dense in X. Analogously, D, = b¥... b¥X* is dense in X*. Moreover, D M D(ay)

. j=1

and D, < (M) D(a¥). Consider the restriction , of ;S + ... + a,S, on A[s, D].
j=1

Let us show first that §, is closable. For, consider £ € A[o, D). Then for any 0 € A[o, D,/]

we can write (5,&, 0) = (&, %«0}, where 7,. is given by a*S* - ... 1 a*S* res-

tricted on A[o, D,] and (#, &) is the form associated with the duality of A[c, X]

and Ale, X*] naturally induced by the duality of X and X*. As A[s, D,] is dense in

Afo, X*] we infer that 3‘, is closable. .

A similar argument shows that J,. is closable in A[g, X*].

Let us prove the inclusion R(S,) = N(3,). Notice that every 5 € Afo, D] can
be written as = b, ... b,£ and by the density of A[s, D] in Als, X] we have that
& =limb, ... b, therefore

k->00

51 =Y by...bj...bSE=
j=1

A

=lim Y by, ...b; ... bby ... 5,5,

ko0 j=1
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where the hat over »; means its deletion. On the other hand, for every k we have

50(2 by.ooiby ... [bby ... b,,sjck) -
=1

= by by ibyby by by —by .. by bbby .. 5)S;S, =0,

j<q

hence 3an € D(o,) and 6a§ﬂn= 0. Since d,, is the canonical closure of Sa we get actually
R(,) = N(6,), therefore a = (a, ..., a,) is a D-commuting system. Analogously,
a* = (a¥, ..., a¥)is a D,~commuting system, hence the first and the second assertion
are proved.

In order to prove the third assertion we need the relation

(4.6) 0758 + ¥80uE = nE, & € D(d,),

where 7, is given by Lemma4.4 for (b,,. .., b,). Indeed, if £ € A[o, D] then y,éeA[o, D]
and we have by (4.3)

0a¥ol T V60,6 = Y a;b;¢ = né,
=

whence we derive (4.6). In particular, if # € N(5,) then n = 6,¢, where & = n"lym,
hence R(d,) = N(J,). Similarly, R(5,) = N(6,), and the proof is complete.

Let us remark that Proposition 4.5 applies to the case of the operators a; =
=c¢;—z (j=1,...,n), where ¢, ..., ¢, are unbounded self-adjoint operators
whose spectral measures mutually commute, and z,, ..., z, are complex numbers
whose imaginary part is non-null.

Consider a D-commuting system a = (a, ..., a,) < €(X) and a system of
complex numbers z = (z;, ..., z,) € C" It is easily seen that z — a = (z; — a,, ..
...y 2, — @, is also D-commuting.

4.6. DerINITION. Suppose that a = (ay, ..., a,) c¥(X) is a D-commuting
system. Then it is called nonsingular (singular) if R(5,) = N(5,)(R(5,) # N(5,)).

The system a = (ay, ..., a,) is said to be semi-Fredholm (Fredholm) if the
associated complex of Banach spaces (A7[o, X1, 65)5_¢ is semi-Fredholm (Fredholm).

For a D-commuting system a = (ay, ..., a,) < ¥(X) we can introduce now a
notion of joint spectrum, denoted by op(a, X), consisting of those points z € C* such
that z — a is singular. When a = (a,, ..., a,) < #(X) this notion coincides with
that of J. L. Taylor [10].

For a = (ay, ..., a,) = ¥(X) semi-Fredholm we may define its index by the
equality

indp @ = ind (42[s, X, 52)7_o.
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Similarly, for a D,-weakly commuting system a = (a, ..., a,) in G(X) we
can introduce a notion of weak joint spectrum ¢’ (a, X) given by o, (a*, X*), as well
as a notion of weak index defined by ind} a =indp a*. Since both notions of weak
joint spectrum and weak index are expressed in terms of the corresponding “‘strong”
ones, their properties can be easily derived from the properties of the other, there-
fore we shall not deal with the “weak’ concepts in the sequel.

Note that the system of operators a = (a,, ..., a,) with the properties stated
in Proposition 4.5 is nonsingular. In fact, a method used in Proposition 4.5 can
be adapted in order to obtain a more general criterion of nonsingularity (see also
[10, Lemma 1.1] for bounded systems).

4.7. LEMMA. Assume that a = (ay, . .., a,) < ¥(X) is a D-commuting system.
Assume also that there exists a system b = (b, ..., b,) in B(X) with the properties:

(1) b;D = D and ayb;x = bjaix for all j,k =1, ...,n and x € D;

(2) Y abjx = x for every xe D.

Jj=1
Then a = (ay, ..., a,) is nonsingular.

Proof. The assertion can be obtained by using an equality similar to (4.6). We
omit the details.

It is beyond our scope to make an extensive study of the notions of joint
spectrum and index for commuting systems. We shall restrict ourselves to some
consequences of the previous sections.

4.8. THEOREM. Consider a D-commuting system a = (a,, ...,a,) in €(X)
which is semi- Fredholm. There exists an g, > 0 such that for each system (¢y, ..., ¢,) <
c BX) with |lc;ll < e, if bj=a;+c¢ forj=1,...,nand b= (by, ..., b)) is a
D-commuting system, then b = (b, ..., b,) is semi-Fredholm, dim H?(X, b; D) <
< dim H”(X, a; D) for all p and ind, b = indpa.

If a=(ay, ...,a,) is nonsingular then b = (by, ..., b,) is also nonsingular.

Proof. Let g, > 0 be given by Theorem 2.11 applied to the complex (A7[c, X],
00)r_o. Take g,=n"2%,. If b is as stated then (A7[o, X1, 85)7_, is a complex of Banach
spaces with the property

0 — okl < 1 XSl <%  O0<p<m,
j=1

since ||S;|] = 1 for each j. By Theorem 2.11 we obtain
dim H?(X, b; D) < dim H?(X, a; D) and ind, & = indj, a.

In particular, when a = (ay, ..., a,) is nonsingular then b = (b,, ..., b,)
is also nonsinguiar.
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The hypothesis & = (b, ..., b,) be a D-commuting system is redundant.
As the operator §, exists, it is enough to ask R(5,) = N(5,).

4.9. CoROLLARY. The joint spectrum of a D-commuting system a= (ay, . . ., a,) <
< €(X) is a closed set in C.

Similarly, the set of those points z € C* such that z — a is not semi-Fredholm
( Fredholm) is closed.

The corresponding result concerning the invariance of the index under compact
perturbations is given by the following

4.10. THEOREM. Consider a D-commuting system a = (ay, ...,a,) in E(X)
and a system of compact operators ¢ = (cy, ..., c,) < B(X). Suppose that b =
= (by, ..., b,) is also D-commuting, where bi=a;+c,j=1,...,n Ifa=(ay,
-+« a,) is semi-Fredholm (Fredholm) and dim R(c;c,, — cic;) < oo for all j and k
thenb = (by, ..., b,) is semi-Fredholm (Fredholm) and indp b = ind, a.

Proof. Note that §, — 6, = ¢,8; + ... + ¢,S, is compact on A?[¢, X], for
each p. Moreover,

@S+ ... +&S)eS + ...+ ¢,S) = Y (o — ac)S; S
i<k

This equality shows that the condition dim R(cjc, — ¢,¢;) < oo for all j and k
implies the condition (3.2), therefore the conclusion can be derived from Theorem 3.7.

4.11. THEOREM. Consider a D-commuting system a = (ay, ..., a,) in €(X),
where X is a Hilbert space. Then there are two Hilbert spaces Hy, H, and T,€ C€(H,, H,)
with the following properties:

(1) The system a = (ay, ..., a,) is Fredholm if and only if T, is a Fredholm
operator and in this case indp a = ind T,;

2) If (cys - - -, ) = B(X) is a system of compact operators andb = (b, ..., b,)
is @ D-commuting system, where b; = a; +¢; (j= 1, ...,n), when a = (ay, ..., a,)
is Fredholm then b = (b,, . .., b,) is Fredholm and ind;, b = ind,, a;

(3) The system a =(ay, ..., a,) is nonsingular if and only if T;' e B(H,, H,).

Proof. We consider the associated complex of Hilbert spaces (A”[o, X], 65)5_0
and apply Theorem 3.8. The spaces H,, H; and the operator T, correspond to this
complex in the quoted theorem. The assertion (1) follows from Thm. 3.8 (2), the
assertion (2) is a consequence of Corollary 3.9 and the assertion (3) can be derived
from Thm. 3.8 (3).

Note that Theorem 4.10 contains a characterization of the nonsingularity
in terms of invertibility. Similar characterizations of the nonsingularity can be found
in [11} and [12].
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Some results concerning almost commuting (i.e. commuting modulo the
compacts) Fredholm systems of bounded operators in Hilbert spaces (and actually
an idea of Fredholm complex in this context) can be found in [2].

We end this section with the following question: Is there any reasonable
connection between the “weak’ and the ”’strong’ nonsingularity of a system of
closed operators in an arbitrary Banach space?

5. AN EXAMPLE

Let ©Q be a bounded open set in C” and A a finite dimensional Hilbert space
(some of the assertions which follow can be obtained in an arbitrary Hilbert space).
We denote by Hg, the space L#(Q, H) of all (classes of) H-valued measurable functions
on Q, whose norm is a square integrable function with respect to the Lebesgue
measure. Consider also C(Q2, H) (C§°(Q)), the space of all indefinitely differentiable
H-valued (complex-valued) functions on @, whose support is compact.

Notice that every areolar differential operator 8/0%;, defined on C(&2, H),
where @ contains the closure Q of @, is preclosed in H, and denote by a; its canonical
closure (j=1, ...,n). We shall show that the system a = (a;, ..., q,) = (Hg)
is a D,-weakly commuting one, where D, =C$(Q, H) and that the J-operator
[4], [12] is strongly connected with this property of (a;, ..., a,).

Let us fix a system of indeterminates { = ({,, ..., {,), which play the role of
the system of differentials dz = (dz,, ..., dz,), but with no special meaning related
to the points of Q. The operators given by (4.1) and (4.2), which correspond to ;,
will be denoted by Z; and Z}, respectively.

We recall that the 5—operator may be defined, as a A[{, H]-valued distribution,
in the following way:

We say that € ¢ D(é) < A[L, Hgl if there exists 7 € A[C, Hg] with the property
0 ~ _
6 (e aie = - ( % 8+ ...+ t.) n e aic,
0z, 0z,

for all ¢ € CP(Q), where di is the Lebesgue measure. In this case we put d¢ = 7
(see [12] for details).

Each element & € A7[C, Hy) (0 < p < n) will be written in what follows as

5(2): 2 éjl...jp(z)gj]/\ /\sz, z € Q.

I€ii<...<ipgn

We remark also that the scalar product {x, y) of H combined with the Lebesgue
integral defines naturally a scalar product on AP[{, H] by the formula

g @, @) 4@ = Y, g<é,-l..;,-,,<z>, Mive (@) dA(2).
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5.1. LEMMA. & e D@) n AP[L, Hg) if and only if there exists n e AP+, Hy)
uch that

S {n(2), 6(2)) dA(z) = S<é(z), 90(2)) dA(2),

or all e AP*Y({, D,], where

&=—(1E;"+ ...+—6—Z§*)-

9z, dz,

Proof. Take &eD(@)n AP[f, Hol and set 5= 0¢. Fix also 1€/, < ...

. <Jp+1 < n and consider 0(z) = p(z) {;, A ... A, ,,, where o€ CP(Q, H)

Since ¢ is a finite linear combination of fixed vectors of H whose coefficients are

functions from C§(R), the formula (5.1) applies to ¢ and we can write, by identi-
fication, the following equalities:

S<n(z), 0(z)) d2 (z) = g Minentyer (2, 9(2)) dA(2) =

L p+1 _ - . X é?; .
= S Y =D 1<Cj,..,j,.,...j,,+1(z)’ oz, (Z)> @ =

m==1

pil _, 0o . A ”
- — S< @, % DM@ A AL A@’,-P+1>dl(z)=

m=1 Zj,,,

- S (E(2), 96(2)) dA (2),

where the hat means deletion. For an arbitrary 0 € A?*+1[{, D,] we obtain the conclu-
sion by linearity.
The converse implication is similar and we omit it.

5.2. LEMMA. a = (ay, ..., a,) is a D,-weakly commuting system.

Proof. For any ¢ € D, we have afp =—(0¢/0z) (j =1, ..., n), therefore,
with the notations from Lemma 4.4,

(5.2) Vo= @ ZF + ... + afZHIAL, D,] = SIALL, D,).
The operator Yar 1S preclosed since 9, which is the formal adjoint of 9, is densely
defined. Plainly, §a,§a*= 0, implying the same relation for its closure.

If 7,4 is the canonical closure of fwa., we define the operator 8=(y,s)* (see the
comments following the proof of Lemma 4.4).
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5.3. COROLLARY. The operator 0 is equal to 5.

Proof. The assertion follows from Lemma 5.1 and the equality (5.2).

From now on we assume that Q is a strongly pseudoconvex domain in the sense
of [4]. Denote also by Q an open set containing Q.

5.4. LEMMA. For every € D(8) there is a sequence &, € AL, C(Q, H)] such
that &, — & and 8¢, — 0E (k — oo) in A[L, Hy). In particular, a= (a, ..., a,) is a
D-commuting system, where D = C(Q, H).

Proof. Such an approximation result is known for Hilbert-Sobolev spaces on
bounded domains with smooth boundary (see, for instance, [8, Ch. 3, §4]) and the
methods can be adapted to this case too. However, we shall sketch the proof of this
result on a somewhat different line. Assume first that U < @ is an analytic coordinate
neighbourhood which is star-shaped, i.e.

{tz=(tzy, ..., 1z,)); zeQnU}cQnU

for every ¢ < 1, £ > 0. It is known that £ can be covered with a finite family of such

coordinate neighbourhoods [4]. If 8¢ A[{, Hy] and supp 6 = U (where “supp”™

stands for the support) then lim 6, = ¢ in A[{, H,,], where 0,(z) = 0(tz) [4]. More-
t-1

over, if 8 D(9) then 6, € D(0) for every t and 00,= 1(30),, as a consequence of the
formula (5.1).

Let us fix ¢ € D(@) with supp ¢ € @ n Uand ¢ < 1. Then &, can be naturally
extended in the set ¥, = {z € U; 1z € 2}, and keep the same notation for this exten-
sion. We assume also &,=0 in U\ FV,. Consider then a function y € C(C”) such that

suppy = {z;|z;]*F ... FlzP <1}, 0 < y < 1, 2(—2) = x(2) ande(z)d/I (z) = 1.

For e > 0 we set y,(z) = ¢72"(z/e). If we define the convolution product
6@ = (1@ — w) €0 d20m,

then we have lim &, , = &, in A[{, Hy] (see, for instance, [8]). When z € V,, where

e—0

t < s < 1 then by (5.1) and a change of variables we infer that
01,2 =\ 1z = W) 3L, 02 ),

for a sufficiently small ¢ > 0, therefore the assertion of the lemma can be obtained
in star-shaped coordinate neighbourhoods. The general assertion follows by an
argument of partition of unity type.
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Lemma 5.4 shows that the definition (5.1) of & and the definition of 9 in [4]
(which is actually the stated property) are equivalent in domains with smooth
boundary.

Let us consider the Cauchy-Riemann complex

(5.3) 0= A, Hol —> ... 255 AMZ, Hyl = 0
which is semi-Fredholm and for which
dim N(@P)/R(O*) < o0, p=1, ...,n,

where 07 is the restriction of @ on A”[{, Hy]. This assertion is a consequence of the
theory developed by J. J. Kohn in [4]. In fact, in this case we have actually N(3?) =
= R(6"™Y) for p > 1, via the Grauert theorem asscrting that strongly pseudoconvex
domains are holomorphically convex (see also [4]) and the well-known Theorem
B of Cartan. We shall combine this property of & with our statements from the pre-
vious section in order to obtain some significant results.

Consider the functions c; (Q - (H), which are analytic in @, such that
¢i(2)ex(2) = c(z)ci(z), for all ze Q and j, k=1, ...,n Define then on A?[{, Hy]
the continuous operator

(028) (2) = (c1(2) Zy + - .- + c(2DZ)E(2).

As 8“1556 =— §P+19PE for Ee D(ﬁ"), we have that

(5.4) (AP[T, Hol, 07 + o)1

is a complex of Hilbert spaces.

5.5. PROPOSITION. There is an &y > 0 such that if

max sup |c;(z)|| < &
1<ign zeQ

then the complex (5.4) is semi-Fredholm. In particular, the equation (02714 §2-1) ¢ =g
has a solution & € AP, H], for every n € N(0? + 6F) and p > 1.

Proof. The assertion follows from Lemma 5.4, Theorem 4.8 and from the
mentioned properties of the complex (5.3).

Taking instead of A%, H,] = H, the orthocomplement in H, of the space
of analytic square integrable H-valued functions then the analogues of the complexes
(5.3) and (5.4) are actually Fredholm and their indexes are null.
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Added in proof. A variant of Lemma 2.1, stated for bounded operators and with a

different proof, has been obtained also by V. Ptak (Commentationes Mathematicae, 21(1978),
343 -348).

Gr. Segal has defined a concept of Fredholm complex in the context of vector-bundles

(Quart. J. Math. Oxford, 21(1970), 385—402). One can see that, locally, the concept given
by our Definition 1.1 on Banach spaces is more general.

10.

11.
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