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ON S-DECOMPOSABLE OPERATORS

B. NAGY

1. INTRODUCTION

Residually decomposable operators, introduced by F.-H. Vasilescu [14],
[15], as well as bounded and unbounded S-decomposable operators, studied by
I. Bacalu [2], [3] and the author [8], are linear operators that show a “good spectral
behaviour’” only outside a certain part of the spectrum. There are more related
definitions of this good behaviour, which are ail connected with the concept of
decomposability in the sense of C. Foias (see, e.g., [7]). It was proved in [9] that for
any closed operator there is a unique minimal closed subset of the spectrum, called
the strong spectral residuum, outside which the operator has a spectral behaviour
of this kind (strong decomposability).

The main result of this paper is that for any bounded operator there is a uni-
que minimal closed subset of the spectrum, called the spectral residuum, outside
which the operator shows a similar spectral behaviour (decomposability). The spec-
tral residuum is contained (maybe properly) in the strong spectral residuum and is,
in general, different from the spectral residuum in Vasilescu’s sense [15], p. 385
(which was proved to exist only for a certain class of operators). As a preparation
we extend a recent result by M. Radjabalipour [12] and prove the equivalence of
bounded (S, 1)- and S-decomposable operators. In Section 2 we shall give the
necessary definitions for closed operators, but we shall restrict most of the discussion
in Section 3 to the bounded case, leaving open the question whether these results
are valid if the operator is unbounded.

2. PRELIMINARIES

Let X be a complex Banach space’and let €(X) and #(X) denote the class of
closed and bounded linear operators on X, respectively. C and C will stand for the
complex plane and its compactification, respectively. If F < C, then F° denotes
€ \\ F and F denotes the closure of Fin C. For T € 4(X), 2(T) is its domain and
o(T) denotes its extended spectrum, which is its spectrum s(7) if Te #(X) and is



278 B. NAGY

$(T) U {oo} otherwise. We put p(T)= o(T)". If Y is a closed subspace of X and
T(YNn2D(T)) < Y, then wewrite Y€ #(T), and T|Y or Ty denote the restriction of
Tto YQ2(T). Letx denote the coset x + Y for any x in X and let X/Y denote the
quotient Banach space. Put

T = {XeX|Y; nNT) # D}

and TYX = Tx for any X € 9(T¥) and xe x n D(T). TY is the operator induced
in X/Yby T. If o(T) U o(Ty) # C, then TY € €(X/Y) ([10]).

We recall some definitions and facts from [14]. Let T e %(X). For xe X,
z € C we write z € 6,(x) if in a neighborhood U of z there is a holomorphic function f
such that (u — T)f(u) = x for ue U n C. There is a unique maximal open set
Or in C with the following property: if G < Oy is an open set and G - 9(T)
is a holomorphic function such that (u — T) f(u) = 0 for ue G n C, then f(u) = 0
for ue G. Set Sy = Of and for any x in X set y;(x) = dp(x)°, o7(x) = yp(x) U Sr
and pp(x) = op(x)°. If S; = O, we say that T has the single-valued extension pro-
perty. For any Te ¥(X), H < C set

Xp(H) = {x e X; or(x) = H}.

Xr(H) is a linear manifold in X. A subspace Y in J(T) belongs to the class S if

Ty € B(Y).
Let F be a closed set in C and define

H(T, F)={Ye S(T); o(Ty) < F).

If #(T, F) has an upper bound (with respect to the relation <), which belongs to
J(T, F), then the upper bound is denoted by X(T, F). If X(T, F) € #;, then it is
denoted also by Xy . Subspaces of the form X (T, F) (with F closed in C) are called
spectral maximal spaces of T.

Let S be closed in C. A finite family of open sets (Gy, ..., G,; G, is called an
open S-covering of the closed set H = C if

n

U G, > HU S and G-inSzﬂ fori=1,...,n.
i=0
An open S-covering of @ is simply called an S-system.
Let n be a positive integer. T'e (X) is called strongly (S, n)-decomposable
if for any open S-covering (G,, . .., G,; Gy) of o(T) there are spectral maximal spaces
of I, X; «c2(T)(i=1,...,n) and X, = X such that

1° o(T|1X) < G, for i=0,1,...,n,
2° for any spectral maximal space Y of T

Y=Y (¥ Xo.
i=0
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T is called (S, n)-decomposable if we postulate 2° only for Y = X. T is said to be
(strongly) S-decomposable if it is (strongly) (S, n)-decomposable for every positive
integer n. (Strongly) ¥¥-decomposable operators are called (strongly) decomposable.

We note that E. Albrecht [1] has shown that not every decomposable operator
is strongly decomposable. Further, an operator T is (S, n)-decomposable in our
terminology if and only if 7' is (S, n)-decomposable and has property (y) ([16], pp.
1574—1575) in Vasilescu’s sense (cf. [8]). Moreover, many properties of S-decom-
posable operators in [2], [3], [4] and [8] are, in fact, consequences of (S, 1)-decom-
posability and will be used accordingly without further comment. Finally, T is
(S, n)-decomposable if and only if it is (SN o(T), n)-decomposable, therefore we
may assume that S < o(7).

We also note that (S, n)-decomposable operators differ from decomposable
operators in two important respects: they need not to have the single-valued extension
property, and there is no description of their spectral maximal spaces in terms of
the manifolds X (F).

3. THE RESULTS

Until we state otherwise, assume that the operator T belongs to #(X). We
shall say that a closed subset F of ¢(T) is a set-spectrum of T if X(T, F) exists and
o(T|X(T, F)) = F (cf. [6]). The interior of any subset A of ¢(T) in the topology of
6(T) will be denoted by 4°.

1. LEMMA. Let F be a closed subset of o(T).
a) If X(T, F) exists, then there is a largest set-spectrum F,, contained in F.
b) If Tis (S, 1)-decomposable and F n S = @, then F' = F,,.

Proof. a) Put F,, = o(T|X(T, F)); then F,, c F. If Ye #(T, F,), then o(Ty)c
< F,, = F, hence Y < X(T, F). Thus X(T, F,) exists and is identical with X(T, F).
If F, is any set-spectrum in F, then X(T, F,) = X(T, F)y= X(T, F,). By [7], 1.3.4
we obtain that

Fy = o(T\X(T, F,)) = o(T\X(T, F,)) = F

Hence F,, is the largest set-spectrum in F.

b) X(T, F) exists (cf. [16], p. 1574), hence F,, exists by a). There is an open
set G, such that G, n S=@ and F'= G, no(T). Let ze F' and let G, be an
open set such that z ¢ Gy and (G,; Gy) is an S-covering of o(T). Since T is (S, 1)-
decomposable, there are spectral maximal spaces X;, X; such that X = X; + X,
and o(T|X)) = G; (i = 1, 0). According to [5], Lemma 1, we have

o(T) = o(T| X)) U o(T|Xp) U St.
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Hence z € o(T|X}). Since ¢(T|X,) = F,, we obtain that Fic F,,.
REMARK . The relation F' < F,, follows also from [5], Lemma 2.

2. Lemma. Let T be (S, 1)-decomposable, let G be an open subset of C such
that G NS =@, and put Y = X(T, G). Then o(T¥) n G = O.
Proof. We clearly have

Y=X(T, G n o) > X(T,G n oT)).
By Lemma 1 and [7], 1.3.4, we obtain
G n o)< o(Ty) = G n oT).
An application of Proposition 5 in [5] yields

a(T") = o(T) \_o(Ty) = G".

The following lemma generalizes a result due to M. Radjabalipour [12], and
will provide us with an important tool for proving Theorem 6.

3. LEmMA. Let T be (S, 1)-decomposable and let F < C be closed and such
that X(T, F) exists. If (Gy; G,) is an open S-covering of F, then

X(T, F) « X(T, Gy) — X(Gy).

Proof. We may and will assume that F < ¢(T), that G;, G, are not disjoint from
o(T) and o(T) is not contained in G, U G,. Set K =G, n G,. Then X(T, K) cxists and
will be denoted by Y.

Since the resolvent (z — T|X(T, F))™ exists for z e F¢, for any x inX(7, F)

there is a holomorphic function f such that
z—DT)f(z)=x for ze F-

Let x denote the coset x + ¥; then

z—Tf(z)=x for ze F°,

and the function f defined by f(z) = f@ is holomorphic. By Lemma 2, we have
G, N Gy < p(TT), hence the function f defined by

= _ | 1@ ¢ ze F©
1@ {(Z—TY)‘ly_c or ze Gy N G,
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is well-defined, holomorphic and satisfies

(z— TV fz) =X for ze F* y (G, n G,).
Put H, = F\ G, and Hy= F\ G,. Then H, and H, are disjoint compact sets
and (H, U Hy)* = F°U (G, n Gy). LetD be bounded Cauchy domains ([13], p. 288)

such that H; < D; (j=1,0) and D, n Dy= 0. Let B; denote the positively
oriented boundary of D; (j=1,0) and put ¢ = (2ri)™*. Then

X =c S z—TH'xdz= ¢ Sf(z)dz +c Sf(z)dz.

o= |T% +1 B, B,
Setting
% =c Sf(z)dz (j=1,0),
B
we shall show that Hf < §7¢(x;). Indeed, if vye HS, then we can find a smaller

Cauchy domain D} (with boundary B) such that D > H; and v, ¢ D). Then for
some neighborhood NV of v, we have N n D =@, and forve N

(v — TY)cS J@ dz = cg(v—z+z—— 7y ——"- dz = %;.
v—2z v—z
B} B",-
Since the function’
gj(y) —_ cgl(_zld
B}

is holomorphic for v € N, we have proved that v, € é7v (x)).
According to [15], Lemma 2.1, in a neighborhood N = N of v, there is a
holomorphic X-valued function /; such that /1;(v) = g,(v), hence

(o —T)hv) = x; for ve N'.
Let x;eXx; and define the holomorphic function r; by rj(v) = (v — T) h;(v) — X;

(ve N’). Assume that, in addition to our hypothesis, v,€ HS n K¢, then vy € p(Ty).
Since ri(v) € Y, for some neighborhood N < N’ of v, we have

(v — DY) — (v — Ty i) = x; (veN").
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Since the function /n;(v) — (v — Ty)™'ri(v) is holomorphic, we obtain that
(%) © H; U K and x = x; + x4+ y for some ye Y. Here o(y) c KUS G,
and a;(x)) =« Hy U K U S = G,, since Sy  S. Further, the relation y.(x;) < G,
and Theorem 4.2 in [14]imply that x, € X(T, G))+X+(Sy). Hence xe X(T, Gy +
+ X1(G,). The proof is complete.

4. THEOREM. Let T be (S, 1)-decomposable. Then T is S-decomposable; further
Jor any closed F in C such that X(T, F) exists and for any open S-covering (Gy, ..., Gy;
Gy of F

M X(T, Fy < ¥, X(T, G) + X;(Go).

j=1

Proof. The relation (1) for the value n = 1 was proved in Lemma 3. Assume
that (1) is valid for n covering sets, and the covering (G, ..., G,; Gy)is given. Then

there is an open S-covering (D, ..., D,; D,) of Fsuch that 17, c Gjforj=0,1, ...
..., n. By assumption,

n-1 — —
X(T, F) 'S, X(T, D)) + X(D, U D,).
J=1

Applying Lemma 3, we obtain
X;(Dy U D)= X(T, G,) + X1(Gy).

Since X(T, Ej) < X(T, 6;), we have (1) for n + 1 covering sets. Setting F = a(T),
we obtain that T is S-decomposable.

5. DerFINITION. Let 7€ 4(X) and let 2= 2(T) denote the family of all closed
sets S such that S; = S < o(T) and T is S-decomposable. If there exists S* e 2
such that $¥ — S for any S e &, then S* is called the spectral residuum of T.

Note that this notion of the spectral residuum is different from that given by
F.-H. Vasilescu in [15].

6. THEOREM. The spectral residuum exists for each operator T € #(X).

Proof. Since o(T) belongs to 2, the family 2 is nonempty. Let {S.; ac A}
be a totally ordered (with respect to the relation <) subfamily of 2 and let S, =
= N{S,;ae 4}.If F = Cis a closed set disjoint from S, then, since ¢(T) is compact,
F n S, is void for some a € A. Hence an Sy-covering of o(T) is an S,-covering of
o(T) for some ac A. Since T is S,-decomposable, it is also S,-decomposable. By
Zorn’s lemma, there is a minimal element in 2. We shall show that if §;, S, €2
and S= S, n S,, then Se 2, which will complete the proof.
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Let (G; Gs) be an open S-covering of ¢(T’). Then there exist open sets G,, Gs,
(k =1, 2) with the following properties (cf. [9]):

Gs, o S UGs(k=1,2) and Gs, n Gs,= Gs;

Gic G, GNS,=0 and G,UGs, > G (k = 1,2). Thus (Gy; Gs,) is an open
Sj-covering of a(T). Hence there is an open set Gg, such that Gs, © Gs, and (G,; Gs,)
is an S,-covering of ¢(7T). Since T is S,-decomposable, we have

X = X(T, Gs) + X1(Gs,).

Since T is S;- and S,-decomposable and G N $ =@, a part of the proof of [9],
Theorem 1 shows that the spectral maximal space X(T, G) exists. Since G, < G,
we obtain

[9)) X = X(T, G) + X(G%,).

Now put F = G5, n o(T) and Gy = G5, N Gs,. Then X(T, F) exists (see [2], Theo-
rem 1.5), and

S, F < Gs,n Gs, = Gy < Gy;
furthermore

G UGy 2 (GLUGs)NGs, > a(T)n F=F.

Hence (G,; Go) is an open S, N F-covering of F such that G, N S, = @. Since}j T
is S;-decomposable and the set X defined by K = G, n G, is disjoint from S,, we
can apply almost all of the proof of Lemma 3 to the present situation and obtain
the following statement: If x € X(T, F), then

x:x1+xo+)’,

where ye X(T, K) and yi(x;) « H; U K with H; = F\G, (j,k=1,0; j# k)

Since S, S;€2, we have S;c= S, n S,. Hence o/()) c KUS; <« KU
U (S, F)  G,. Since (Gy; Gy) covers F, we obtain o7(xp) = HoU KU Sy < G,
and y(x;) © H, UK < G,. Thus [14], Theorem 4.2 implies that x, € X (T, G,) +
-+ Xr(S7). Hence

X(Gs,) = X(T, F) < X(T, Gy) +'X1(Gy) = X(T, G) + X7(Gs).
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By (2) we obtain

X = X(T, G) + X;(Gy),

thus T is (S, 1)-decomposable. An application of Theorem 4 ends the proof.

7. REMaRkS. The author does not know whether the above results generalize
to the case when 7T € ¥(X). Since an operator T in ¥(X) is strongly (S, n)-decompo-
sable if and only if for any spectral maximal space Y of T the restriction Ty is (S, n)-
decomposable (cf. [4]), the following Theorem 8 needs an independent proof only
when T is not in #(X); otherwise it follows from Theorem 4.

Moreover, in the case T e #(X) we can deduce the asseriion of {9], Theorem 1
from Theorem 6, i.e. we can prove that there is a smallest one (called the strong
spectral residuum) among the sets S for which T is strongly S-decomposable. Indeed,
let the latter class of sets be denoted by # = Z(T). It is easily seen that the inter-
section of sets in a totally ordered subclass of & also belongs to . Further, if S,
S, e and Y is a spectral maximal space of T, then S,, S, € 2(Ty) and Theorem 6
implies S, N S, € 2(Ty). Hence S, n S, € #(T), which completes the proof.

Let O(T), S(T) and V(T) denote the spectra! residuum, the strong spectral
residuum, and the spectra! residuum in Vasilescu’s sense ([15], p. 385), respectively,
of the operator T If T e B(X), then O(T) = S(T). If T is the decomposable operator
in (1], Theorem 2.1, then this inclusion is proper; further S(T)=V(T), by [9], Theo-
rem 2. If Te #(X) then Theorem 4 and [16], Theorem 2.10 imply O(T*) = O(T),
where 7% is the adjoint of 7.

8. THEOREM. If T e ¥(X) is strongly (S, 1)-decomposable, then T is strongly
S-decomposable.

Proof. First we show that if (G4, ..., G,; Gg) is an S-system of open sets, then

3) Xr (L”J Gk) < XH(Go)+

k=0

E XT,G:-

k=1

Assume that n =1 and xe X (G, U Gy). Let ¥ = Xy(o,(x) US); then Y is a
spectral maximal space of T, by [2}, Theorem 1.5. Hence Ty is (S, 1)-decomposable.
Since o(Ty) < 6p:(x)U S < Gy U G;, the system (G;; Gy) is an open S-covering
of o(Ty). Thus there exist spectral maximal spaces ¥, < D(Ty) and Y, of Ty such
that

Y= Y,+ ¥, and o(T|¥) = G, (i=0,1).

Hence x € ¥ « Xo(Gy)+ X, &, which proves (3) for n = 1. If (3) is valid for a fixed n,
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and an S-system of n -+ 2 sets is given, then we obtain

n+1 n n
XT(U Gk)—_— XT((U Gk) U G,;+1) - XT(U Gk) 4 X, ©
k=0

k=0 k=0

n+1

< X1(Go) + Y} Xr -
k=1

Thus (3) is proved by induction.

Now let Z be a spectral maximal space of T and let (G, ..., G,; G,) be an
open S-covering of ¢(T;). By assumption, T, is strongly (S, 1)-decomposable (cf.
[4], Proposition 4). Thus the preceding paragraph yields

7 = ZT\Z(U Gk) o ZTIZ(50)+ Z ZT[Z, G <2,
k=0 k=1

Hence T, is S-decomposable, so T is strongly S-decomposable.

REMARK. The above proof is an extension of a proof of S. Plafker [11] for the
case S = .

Acknowledgement. The referee has kindly informed me that the equivalence of
bounded (S, 1)- and S-decomposable operators has also been obtained by I. Bacalu.
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