1 op%lmggfg '_I“IZ-IIEORY © Copyright by iNcresT, 1980

AN EXTENSION OF SCOTT BROWN’S INVARIANT
SUBSPACE THEOREM: K-SPECTRAL SETS

JOSEPH G. STAMPFLI

Recently, Scott Brown showed that every subnormal operator has an invariant
subspace. Similar techniques can be used to show that every operator in #(s),
the algebra of bounded linear operators on a separable Hilbert space 5, for which
a(T) is a K-spectral set also has an invariant subspace. This result has been proved
by J. Agler [30], when o(T) is a spectral set for 7. There are more differences
between spectral sets and K-spectral sets than might be apparent at first glance.
First, dilation theory is available in the former case but not in the latter. Second,
orthogonality disappears in several places as one moves from spectral to K-spectral
sets. Third, there are several interesting special cases such as polynomially bound-
ed operators and unitary p-dilations which are not covered by spectral sets.

DerinITION. The compact set M o o(T') is a K-spectral set for T € L(#) if

IADI < KIIflI%
for all fe R(M) where

IFlé5 = sup {|f(2)|: zeM}.

(R(M) denotes the uniform closure of the rational functions with poles off M.)

To begin with, we need an extension of the orthogonal direct sum decompo-
sition for operators proved independently by Mlak [21] and Lautzenheiser [17]
in the spectral set case. It should be mentioned that although K-spectral sets are
never mentioned in [17] and only very briefly in [21], still many of the techniques
carry over from their work. (See also [23)).

THEOREM 1. Let T'e L (#). Assume M is a K-spectral set for T. Let G;, G,, . ..

be the nontrivial Gleason parts of R(M). Then there exists an invertible operator Q¢
such that

OTQ ' =5=® S

i=0
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where S, is normal and 6(S)) < G; for i = 1,2,... . Thus T= 4 T; (direct sum).
(Note: Some of the terms may be absent.)

Because of its length we have relegated the proof of Theorem 1 to the Appendix.
However, we will invoke the notation and techniques in Proposition 5.

From now on we will be using K-spectral sets M where R(M) is a Dirichlet
algebra (see [10] for a definition). It is well known (see [24], Lemma 4.1 that the non-
trivial Gleason parts of R(M) in this case are Gy, Gy, ... where the G;’s are the
components of intM. (The G;/’s must be simply connected). Combining these facts
with Theorem 1 we obtain the following:

COROLLARY. Let M be a K-spectral set for T € L(#) where R(M) is Dirichlet.

Let G, Gy, ... be the nontrivial Gleason parts for R(M). If o(T) n G; # O for two
distinct j’s then T has a complemented invariant subspace.

Let o(T) be a K-spectral set for T. We wish to develop a functional calculus
for T, and to do so, we must choose a more tractable spectral set than o(7) itself.
The next lemma selects such a set which is both topologically nice and analytically

minimal. Parts of the proof are taken from [4].
LeEMMA 1. Let o(T) be a K-spectral set for T and assume T has no comple-
mented invariant subspaces. Then there exists an open connected, simply connected set

G, such that G > o(T), R(G) is Dirichlet and

Ailleo = sup {lAD[: Lea(T) n G}  for all he H(G).

Proof. To facilitate matters, we begin by listing the results we shall need.
Throughout, M is a compact set in C.

PROPOSITION 1. Let M be a K-spectral set for T where R(M) is a Dirichlet
algebra. If o(T) & [int M] then T has a complemented invariant subspace. In parti-
cular, if int M = @ then T is similar to a normal operator.

Proof. R(M) Dirichlet implies R(OM) = C(0M). Thus, if o(T)¢ [int M]
then there exists a disc D, such that ’

R(Dy N o(T)) = C(Dy N o(T)) # B.

Thus the techniques of [7] apply.
ProrosiTionN 2. ([11], Cor. 9.6) Let M, be compact, and M, > M,,, for

(o]

k=1,2,... . If R(M,) is Dirichlet, then R( A Mk) is Dirichlet.

k=1

ProposiTION 3. ([11], Theorem 9.3) R(M) is a Dirichlet algebra if and only if:
i) the components of int M are simply connected
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and
¢ Gz ONM)

1)
(y is the analytic capacity).

ii) lim in >0  for all zedM.

We have included Proposition 3, because it makes transparent why the next
proposition is true.

ProrosiTION 4. Let Ny, N,, ... be the components of int M where R(M) is
Dirichlet. Then R(M\N,) is Dirichlet.

Proof. Tt follows immediately from Proposition 3 if one notes that y(F)>
>(diam E)/4 for E connected. See also Cor. 9.7 of [11].

Proof of Lemma 1. Suppose we begin with a compact K-spectral set M for T

N
where R(M) is Dirichlet. For example, take M = o¢(T), the polynomially convex

hull of ¢(T'). We may assume that o(T’) <int M by Proposition 1. Let Ny, N,, . . .
be the components of int M. By Theorem 1, we may assume that at most one com-
ponent, say N;, meets (7). Set M, = M\N,, M, = M,\N,, and so on. Then
R(M;) is Dirichlet for each j, and hence R( N M) is Dirichlet. Let E = n M;. Then
we are reduced to the following situation: Eis a K-spectral set for 7T, R(E)is Dirichlet,

o(T) < int £ and int E has just one component, say U.
We now ask whether

Ihlles = sup {lA(z)|: z€ o(T) 0 U}

for all h e H*(U). If yes, we are done and set G = U. If no, we proceed as follows.
Let R4 be a conformal map of the unit disc D onto U For he H®(U) = H®(my)

set /‘(z) = h(¢(z)) for ze D. Then he H*(D) and Hh”m = ||A)l- By assumption,
sup {[(2)]: p(z) € T) N U} <

for some f? e H*(D). Thus, by well known properties of radial limits, there exists
a set @ < [0,2n] of positive measure such that for each 6 € O, there is a segment
L, = [rse®, ¢) where ¢(Ly) = UN\a(T). Choose a 6 where lim @(re®) exists and

r—1
call the limit a € @E. Note that ¢(L,) is contained in a component C of E\o(T),
which extends to 0E. The set C must be simply connected else o(T’) is disconnected.
Since U was simply connected to begin with and C extends to JF, the components
of int EN\C must be simply connected. It follows from Proposition 3, by arguing
as in Proposition 4, that R(E™\C) is Dirichlet. (See also Cor. 9.7 of [11].) Note that
int ENXC need not be connected.
We may now start our reduction all over again with M replaced by E\C,

and argue by transfinite induction. We may assume int EN\C > ¢(T), by Propo-
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sition 1. Note that at each step, we obtain a compact set M;, where o(T)= M;

and R(Mj;) is Dirichlet. Note that ¢(T) = int M at every stage, by Proposition 1.

By construction M;> M, for 6 < B. If M;,, has an immediate predecessor M;

we show R(M,,,) is Dirichlet by Proposition 4. If My is a limit ordinal

(M= ﬂ M;) then we show R(M;)is Dirichlet by Proposition 2. Note that at
<

every step Ms;\M;,, is a nonempty open set. Thus, the process must terminate at
some countable ordinal « and M,,, = M, for that «. We then set G == int M,.
For this choice of G, it follows that

o = sup {IK(z)|: z € o(T) 0 int M,}

for all h e H*(int M,). The proof is complete.

The proof obviously follows that of Theorem 2 of [24] in shape and form.
Unfortunately, there seems to be no way to apply that theorem directly.
In Theorem 1 we developed a functional calculus for functions in R(M).

We next extend this to H* furctions. Let G be as in Lemma 1. Since R(G) is Dirichlet,
H>(G) = H®(m) where mg is harmonic measure on 0G and

H>(mg) = H¥mg) N L®(mg)

(see [28], Section 8 for details). Observe that R(M) is pointwise boundedly (sequen-
tially) densein H*(G)in the weak-* topology by [11], Theorem 5.1. (Actually, more
is true—see [24], Lemma 4.3.) The functional calculus begins with:

ProrosiTION 5. Let G be an open, connected simply connected set where G is
a K-spectral set for T, and R(G) is Dirichlet. Assume T has no complemented invariant
subspaces. Then there exists a homomorphism I' of H¥(G) into L (3¢) where I': h— h(T)
and |\WT)|| < K| hlle for all h e H®(G).

Proof. It follows from Theorem 1 that our decomposition for T contains only
a single term. Thus if u(x, y) is an elementary measure then u(x, y) < < mg for all
x,y € #. For h € H®(G), choose rational functions g, € R(G) such that g,~» / weak-=
(that is pointwise boundedly in G).

Set

(W(T)x, y) = § R du(x, y) = lim S g du(x,y)  for x,ye #.
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It is easy to see that (4(T)x, y) is well defined and the resulting operator is linear.
Since

[(W(T)x, p)| < S (i) d]uCx, p)| < ikl KN X101

it follows that
(D] < KilAlloo-
For the multiplicativity of I', first show that I'(fg) = I'(f) I'(¢) for f€ H*(G) and g

a rational function. Then handle the general case by approximating ge H*(G)
weak-* by rational functions g,.

From now on we assume G has the properties assigned it in the last proposi-
tion.

LeEMMA 2. ([4], weak form of Lemma 4.2). Let T be as in Proposition 5. Let
Aeo(T)NG. Let he H*(G). Assume |T — MNx|| < & where xe # and | x| = 1.
Then,

| ((T)x, x) — h(D)| < 2ed K|kl

where d = dist [A, 0G). In particular, if (T — Ax,|l— 0 for a sequence of unit
vectors, then

lim (A(T)x,, x,) = h(A).

Proof. We may write h(z) — h(1) = (z — A)g(z) where ge H®(G). By the
maximum modulus principle, it follows that

lglleo < 2[lAlloed ™.
Thus
[((W(T) — HA)x, x| = [ @THT — x, x)| <
< (T — Dx| lig(Dy*x|l < 2ed 2K ||A]] || 2leo-
The second statement is obvious.

COROLLARY. Let h € H®(G). Assume o(T) is all approximate point spectrum.
Then

Al < (D] < Kljh]lco-
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Thus, I' is bounded above and below.

Proof. We already know ||i(T)|| < K[{h]le- Let A € H*(G) and choose Aeo(T) N G
such that

1l < B + e.

Then, choose a unit vector x € 5 such that

[A(A)] < | ((T)x, x)| + &.
Hence

Rl < (((T)x, x) + 28 < W(T)|| + 2e.

Since ¢ is arbitrary, we are done.

If 6(T) is not all approximate point spectrum, then standard arguments show
that T has an invariant subspace; so we can make the following:

Assumption. From now on we will assume o(7T) is all approximate point spec-
trum.

Notation. Let #; denote the weak-xclosure of the rational functions in T
with poles off G = M. It is easy to see that I’ maps H*(G) into #r.

LemmMA 3. Let T be as above. Then I’ maps H®(G) onto %y.

Proof. We will need the following theorem of Banach ([2], page 213). Let M
be a linear manifold in a separable Banach space. Let M* =AM and for each count-

able ordinal a let M* be the set of weak-* limits of convergent sequencesin {_} M?*.
pB<a

Then the weak-x closure of M equals | JM* and the M* are all equal from some
countable ordinal on.

To apply the theorem, we set M* = rational functions in T with poles off G.
Let B = lim ¢,(T), g, rational. Since ||q,(7)]|< ¢ (c constant) it follows that ||g, |l <c¢
for all n. Choose a weak-+convergent subsequence of {g,} (still denoted by {g,})
which converges to 4 € H°(G). Then for every x, ye 5,

(h(T)x, y) = S  du(x, y) = lim S g.dulx, y) =

= lim (¢,(T)x, y) = (Bx, y).

Thus, B = A(T) so M* < I'(H®(G)). The rest of the transfinite induction proceeds
in the same way if we appeal to the Corollary to Lemma 2.
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We summarize the preceding lemmas.

COROLLARY. Let T be as in Proposition 1. Then I’ maps H*(G) onto Ry and the
norms are equivalent.

Notation. For Ae G set C,(h(T)) = h(%) for WT) e R;. Then C, is clearly a
weak- continuous linear functional on %;. By (x ® y) we denote the linear functional
defined by (x ® y)(B) = (Bx, y) for Be £(#). By || ||« we denote the norm of
a linear functional in %, restricted to %, (¥, = trace class). An excellent discussion
of the duality between %, and £ () and the norm || ||, can be found in [4].

We may now go back and strengthen Lemma 2 as follows.

LemMA 2'. ([4], Lemma 4.2). Let A€o(T) n G. Let (T — A)x,|l - O for a
sequence of unit vectors x, € #. Then

[1Cs — (%, ® Xl = 0.
Indeed,
IC: — (x ® X)|lx < 2d7K||(T — Dx|i.

The rest of the argument for the main result follows [4] very closely. However,
to overcome one difficulty we will have to switch back to the disc and appeal to a
clever result from [5].

To this end we first note that H®(G) and H*(D) are clearly isometrically
isomorphic. Let ¢ be a conformal map of D onto G and set ¢t = . Set S = (7).
Since ¥ € H(G), W(T) is well defined. '

LeEMMA 4. Let S, T, Y, ¢ be as above. Then

1) S has the disc D as a K-spectral set.

2) If Aeo(T) N G then Y(1) € 6(S).

3) @(S) = T and S and T have the same invariant subspaces.
4) For every he H*(D)

112 = sup {Jh@)]: z€ o(S) N D}.

5) Ry is isomorphic to H®(D) and the norms are equivalent.
6) Rs = Rr.
Proof. 1) Let p be a polynomial. Since I': 4 — A(T) is a homomorphism for
he H*®(G) it follows that
12O = llpe W(T)|| < Klp¥|§ = K| pl2

proving 1).
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2) Let yeo(T) N G and assume (T — Zo)x,|| — O for a sequence of unit
vectors {x,} (not necessarily orthogonal). Set

V(A — Y(d) = (4 — 4 g(4).
Then

(S — ¥(o))xall = |lg(TUT — Ao)x, || <
< g (T — Ao)x, [l - O.

This result does not depend on the Assumption. Indeed, if (T — 4,) is bounded
below we turn our attention to (T"— Ay)* which can not be bounded below. Since
the conjugate set G is a K-spectral set for T* we may define S* in analogous fashion
and repeat the proof above.

3) If fe H*®(D), then the composition law f(S)= fo y(T) is valid. This is easy
to check if f is a polynomial and therefore holds in general by weak-x«continuity
(see [23], page 298). In particular, ¢(S) = T, which implies that .S and T have the
same invariant subspaces.

4) Follows immediately from 2), the fact that
S, = sup {|k(A)|: A€ a(T) NG} for all i€ H*(G)

and the isometric isomorphism between H*(G) and H*(D) induced by ¢ (or ).
5) Follows from 2), 4) and the first part of this paper.
6) Follows from the relations Y(T) = S, ¢(S) = T.

LemMa 5. (4], Lemma 4.3.) Let o, 8 € o(T). Let {x,}, {y.} be mutually ortho-
gonal orthonormal sequences where (T — a)x,|| — 0 and ||[(T — B)y,\l = 0. Assume
T has no invariant subspaces. Then

a) [Ix, ® Yulle » 0
b) {Ix, @ wll. > 0  for all we 5#
c) [iw® x,ll. =0  for all we #.

Proof. Parts a) and b) follow directly from [4] or one may imitate the proof
in Lemma 2.

Part c) is considerably more difficult in the present context and we appeal to
an ingenious argument from [5]. Since &5 = %, we may assume S is our primary
operator if we wish. Part c¢) simply asserts that the linear functional (w ® x,) —» 0
on Zg. Our operator S has no invariant subspaces by 3) of Lemma 4. Thus the proof
of Lemma 4.5 of [5] applies verbatim to prove c). We observe that the only pro-
perty of the sequence {x,} used in the proof of c) is weak convergence to 0. We also
remark that although the authors of [5] consider contractions S rather than power
bounded operators; their proof handles the latter case.
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ReEMaRrk., We introduced S and returned to the disc solely to facilitate the
proof of part c¢) above. With that out of the way we focus on T.

LemMA 6. ([4], Lemma 4.4.) Let
n — weak-%
B = {Z #,C;,0 3 lo; =K and ;€ o(T) 0 G}
1

Then B’ > unit ball (%),.

Proof. Same as [4]. It is here that the comparability of |kl and [[A(T)l| is
important. Note the K in the definition of B,

LemMa 7. ([4], Lemma 4.5) Let s,,s,€ # where ||Co— (5,®@5) [, < 57"
(Cy = C; for some A G). Then there exist s,..y, Sp+1 € H such that

1) 15, = el < K27 and I, — sl < K27
2) |Co — (Sps1 ® Spa)lly < 272040,

Proof. Same as [4]. The proof involves a choice of many orthonormal sequen-
ces {x;} where lim |(T — 4))x;{| » 0. We choose them mutually orthogonal in

view of Lemma 5.

THeOREM 2. ([4], Theorem 4.6). There exist vectors u, vE€ H such that
CD = U ® V.

Proof. Let u =lims, and v = lim ;.
We are now in a position to prove the main result.

THEOREM 3. Let o(T) be a K-spectral set for T. Then T has an invariant sub-
space.

Proof. Let
M =clm{(T — DYuk=1,2,...}
for the u of Theorem 2. Then
(T — D u,vy = Col(z — ) =0

for k > 1.
Since # = 0 implies (' — Au == 0, the proof is complete.

COROLLARY 1. Let T be a polynomially bounded operator with 6(T)> D. Then
T has an invariant subspace.

REMARK. T is polynomially bounded if
(D)l < Kliplio

for all polynomials p, where ||p|l,, = sup{[p(z)|: | z] <1}. Note that the conclusion
of Lemma 1 is automatically satisfied.
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COROLLARY 2. Let T e L () satisfy the conditions
1) 0D c o(T) =« D
1
dist[4, a(T)]

) WT—-HH < Jor A ¢ o(T).
Then T has an invariant subspace.

Proof. 1t follows from condition 2) that T'€ C, (in particular, in C,), and thus
T is similar to a contraction S ([27]). Thus, dD < o(S) = D and 2) becomes

Ko
dist [4, a(S)]

S — ™Y < for 1 ¢ a(S).

In the framework of Lemma 1 we take G = D, If
lleo = sup{|h(2)]: z € 6(S) n D} for all he H®(D),

then we are done since the remaining lemmas and theorems are valid in this context.
Assume therefore there exists an &z € H*(D) such that

sup{|h(z)|: z€ a(S) N D} < ||hll— &.

Then there exists a set @ < [0,2n] of positive measure such that for each 0 < 6O,
there is a segment L, = [ree'’, €®) where Ly = D\ o(S) and

lim [A(re®)] > ||All, — %

r—

Since D\o(.S)has only countably many components, there is some component C which
contains two Ly's; say L, and L,. (This part of the proof follows {31}, Theorem 3.)
We connect r,e' to r,e'® by a Jordan arc  lying in C. Let y==L,U L, U . Thus, 7
separates D into two components each of which intersects o(S). Let K, and K,
denote the kite shaped regions at e'® and €', respectively, where « = =/2. Then it
follows from Theorem 1.3 of [9], that

o(S) N[K, U K;)]=0

near 3 D. Given the separation of the spectrum induced by K, and K, it is possible to

integrate around the spectrum on y plus anything reasonable outside D to produce
invariant subspaces. The details of the integration are carried out in Examples 1
and 2 following Theorem 1 of [25]. (In that paper one integrates across the spectrum
at one point rather than two as here, but the details are the same.)
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eiﬂ

&

. COROLLARY 3. Let T € £ () be a hyponormal operator and assume 8D < o(T) <
< D. Then T has an invariant subspace.

DeriNITION. Let I' be a Jordan curve. For any two points z,, z, € I' set

diam 71z,
iam z;z
0(zy, z3) = i

[z; — 23]

when 2\22 is that arc of I'\{z; U z,} of the smaller Euclidean diameter. If
Q(z1, 25) < C for some constant C and all z;, z, € I', then I' is of bounded turning
{or cusp free).

I would like to thank Glenn Schober for pointing out the role of quasi-confor-
mal mappings in problems such as this and for suggesting the argument in the next.
COROLLARY 4. Let Te ¥(#). Assume

1) p(T) is hyponormal for all polynomials p and

A~
2) 86(T) is a cusp free (or bounded turning) Jordan curve I.
Then T has an invariant subspace.

Proof. Tt follows immediately from 1) and ([16], p. 106) that M = a/(?) is a
spectral set for T. Let G = int M. We consider two cases.
Case 1.

Ihlle = sup{lAa(z)| : z € a(T) N G} for all he H*(G).
Since the conclusion of Lemma 1 holds, the rest of the proof goes through as before.
Case 2.
sup{|ho(2)|: z€ 6(T) N G} < [lholloo

for some sy € H®(G). Let ¢ be the conformal map of D onto G. Let hA(z) = h(p(2))
for z€ D and h € H*(G). Then h € H*(D) and ||%||, =|| |- Arguing as in Corollary
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2 and Lemma 1 we see there exists segments L, and L, such that

[o(L) U (L] N o(T) = O,

and ¢(L,) and ¢(L,) are in the same component of G\¢a(T). Thus, if K, and K,
are the kite shaped regions at e'“ and e'®, respectively, then ¢ ~X(a(T)) N [K, U K,]=90
near 0D, and hence [@(K) U @(K,)] N o(T) =9 near 0G. We must show that
©(K,) and ¢(K,) induce a separation of ¢(T).

Since I' is of bounded turning, it is quasi-conformal by [19], Theorem II 8.6.
Since I' is quasi-conformal, there exists a quasi-conformal extension ¢* of ¢ to a
domain D, > D by Theorem II 8.2 of [19]. Since ¢* is quasi-conformal, it follows
from Theorem 4, part i) of [1] that ¢ *(K,) and ¢ *(X,) both subtend positive angles
at @(e') and ¢@(e'®), respectively. Thus it is possible to join « = @(e®) and f =q(e'®)
by a polygonal arc y which lies in G U {«, 8} and which satisfies the condition

M < C, (constant)
dist[2, a(T)]
for all A € 9. Since I' is of bounded turning, it is easy to join « and § by a polygonal

arc y which lies in (G and satisfies a similar condition. It is now possible to cut
across (or integrate through) the spectrum of T on y U 9y’ precisely as in Example 1
to Theorem 1 of [25] to produce an invariant subspace for T.

ReMArk 1. While “bounded turning’ prohibits cusps on the curve I', such
curves need not be C* or rectifiable. Indeed, examples of nowhere locally rectifiable
curves of bounded turning may be found in [19], p. 104.

COROLLARY 4’ Let T € L (H#). Assume
1) p(T) is hyponormal for all polynomials p

and

P
2) 8o(T) is a rectifiable Jordan curve I'.
Then T has an invariant subspace.

Proof: Follows the lines of Corollary 4. Let ¢ be the conformal map of D onto

A~
G = intM where M = o(T'). Then ¢ extends to a homeomorphism of 4D onto 0G
and ¢'(e") # O a.e. on dD (see [14] X, 1.1 and X, 1.3).

Since we can omit the set where ¢'(e") = 0 (it has measure zero) and ¢ is

conformal on 0D on the compiement of this set, the proof in Corollary 4 goes
through as before.

COROLLARY 5. Let TeC, for p > 1 and assume o(T) > D. Then T has an
invariant subspace.
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Proof: If Te Ci.e., T"= p PU"|# forn = 1,2, ...) then ||p(T)|| <(2p — 1)
ilplles> for all polynomials p. One could also appeal to the Sz.-Nagy-Foiag [27] result
which says any C, operator is similar to a contraction.

COROLLARY 6. Let Te L(H#) be an essentially normal operator (that is,
T*T — TT* € A"; A" denotes the compact operators). Assume
dist[R(T), B\(#)] = 6 > 0.
Then T has an invariant subspace. (R(T) denotes the rational functions in T with
poles off o(T). By(o¢") denotes the compact operators of norm 1.)

Proof. We may assume ¢(T) = o,(T), the spectrum of the coset ]o‘ in the Calkin
algebra. Let f be a rational function with poles off ¢(T), and assume |f(T)| = 1.
Then it is easy to sez that

D)< 87T = 5 A™ =571 £l

Hence o(T) is a K-spectral set for T.

COROLLARY 7. Let T'€ L (H#), where o(T) does not separate the plane. Assume
Re a(p(T)) = a(Re p(T)) for all polynomials p. Then T has an invariant subspace.

Proof. Clearly we may assume o(7T’) is connected. Note that ¢(T) = a/(]\‘).
Given a polynomial p
oDl < Re p(D)| + |lIm p(D)|| <
< 2max{|o(Re p(T))|, lo(Im p(T))|} =
= 2 max{|Re o(p(T))|, [Im o(p(T))} <
< 2{o((p(T))) =
= 2 sup{|p(A)|: A € a(T)}.

Since P(a(T)) = R(a(T)), it follows that o(T) is a K-spectral set (K= 2) for T.

REMARK. A number of different conditions on 77 which imply that Res(T )=
= g(ReT) may be found in [3].

APPENDIX

Proof of Theorem 1. Parts of the proof are standard arguments by now and
certain parts follow either [17] or [21]. However, since the former may not be readily
available to some and since the latter is written in the language of representation
theory it seems best to at least sketch such features. Furthermore, working in the
context of representations, Mlak does not consider the normality of Tj,.
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Step 1. (Elementary measures) It follows from standard techniques that for
each x, y € # there exists a (finite regular Borel) measure u(x, y) supported on 0 M
such that

f(Dx, y) = Sfdu(x, »)

for all x, ye # and
lluCx, M < K {lx] {pll.

{These are termed elementary measures by Mlak.) For a fixed a; € G,, let m; be a
representing measure for i = 1,2, ... . As is well known the mjs are mutually sin-

gular. Fix x, y € #. Following Mlak, we next decompose u(x, y)=p as u = ¥, };
i=0

where p; < < m; for i=1,2, ... and y, is singular with respect to all m;’s. (See
{10], VI 2.3) Since f(T) € L () it follows that

1) [op(x, y) — plax, y)] L R(M) for all x,ye#; acC

2) {u(x + y, w) — [u(x, w) + u(y, w)l} L R(M)

3) {ux, y + w) — [u(x, y) + p(x, W} L R(M).
A. Lebow has coined the term conjugate linear modulo R(M) to describe any mea-
sure satisfying 1), 2) and 3).

We next show that the individual measures u,(x, y) in the decomposition are
also conjugate linear modulo R(M). To prove 2) note that -

Z {ux + y, w) — [pix, w) + iy, W)]} L R(M).

Thus it follows from the abstract F. and M. Riesz Theorem [13] that

{pdx + y, w) — [wi(x, w) + 2,(», W]} L R(M) for i=0,1,2... .
The proofs of 1) and 3) are left to the reader. Because each y; is conjugate linear
modulo R(M), if we set

(D% 3) = £ dux, )

for x,ye #, fe R(M) and i=0,1,2 ..., we obtain a well defined operator f(T)
where [[f(D)| < K|fllo. It should be mentioned that the measures u(x, y) are not
unique in general; but all choices lead to the same definition.

Step 2. (Multiplicativity) We wish to show that the map I';: f —f(T) is multi-
plicative. Observe first that

g f-g du(x, ) = ((D)(T)x, y) = (g(T)x, AT)*y) =

= S g du(x, AT)*y) = S fdu(g(T)x, »)
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for all x, ye # and f, g€ R(M) as is well known. Thus fu(x, y) —u(x, f(T)*y) L
__ R(M). But this implies the decomposed measures

[fulx, ) — ulx, AT)*»)]; L. R(M)  for each i= 0,1, ...
and thus
Sudx, y) — pilx, f(T)*y) L R(M).

The same argument shows

Sui(x, ) — w(f(T)x, y) L R(M).
Let g € R(M). Then

Sf-gdu,-(x, y) = Sfdu.-(x, g(T)*y) = (f(T)x, g(T)*y) =

= (g(T)fAT)x,y) = Sg du(f«(T)x, )

whence
™ Juix, y) — u(f{T)x, y) 1. R(M).

From (¥) it follows that the i** measure in its decomposition, namely fu(x,y) —
— 1{f{T)x, y) _LR(M). The essential elements are at hand. Thus,

((8)(T)x, y) = ng dui(x, y) = S fdugdT)x, y) = (f{T)g«(T)x, y)
and hence I'; is multiplicative. By repeating this argument, one shows
(FAT) ()%, ) = { duleT)x y) =0 for i),

Step 3. (The decomposition) Following Mlak, we next define operators F;

where

(Fix,y)zg 1du(x,y) for x,ye# and i=0,1,2, ... .

From the multiplicative properties proved above, it follows that F;-F; = J,F;.
Thus, the F;’s are pairwise disjoint idempotents. Clearly, Y F; converges to I. The
F; are not selfadjoint in general. However, for any subset Q of the positive integers
observe that

(% Foo )l =13, 51 dpi(x, )| < lletx » < iyl

2 —~ 1720
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Thus ||} F;|| < K, from which it follows that {F,} is a uniformly bounded Boolean
Q

algebra of projections or spectral measure in the language of Dunford. It follows from

a result of Mackey ([20], Theorem 55) that there exists an invertible operator Q such
that QF, Q™! = E, is selfadjoint for each k. Set S=QTQ™. Using the conjugate
linear relations from Step 2, we see that

(FA(T)x, y) = S 1 ¢, f(T)x, y) = S fdm(x, y) = S 1 dp(x, f(T)*y)=

= (Fx, f(T)*y) = (D) Fx, y).

In particular, T commutes with F, and hence S commutes with the E,. (It follows
also that fi(T) = f(T)F..) If we set #,= E, o and S, =S|, then S=@ S, on
@ #,. Define T, = f(T)F, | F, .

Step 4. (The spectrum). To see that ¢(T}) = G,, fix a k > 0. For A ¢ Gy, set
Bix, ) = | ¢ = D71dux, )
for all x, ye F, 2. It is easy to see that
(T = DB, 3) = (ditx ) = (Fx, ) = (5,9

Similarly, B,(T, — A)= I, the identity on F3#, hence A ¢ o(T}). Actually, with
some additional effort, it can be shown that G, is a K-spectral set for T;. The details
are carried out in [17].

Step 5. (Normality of S;) Consider the measure u,(x, y) for x, y€ Foof. As
shown above y, is conjugate linear modulo R(M). But p(x, ¥) is singular with respect
to the G;’s (or m;’s) and thus, by Wilken’s Theorem ([10], I 8.5), po(x, y) is conjugate
linear. This fact enables us to integrate something beyond rational functions.

Let y be a Borel set. Following Lautzenheiser, we set

B(x,y) = Sxy dpe(x, ¥) = po(x, P)(3)-

Since {u(x, )} is conjugate linear, B, is a bilinear functional on Fo#" X Fo#. Thus,
there exists an operator F(y) € £ (F,) such that

(F()J)x, y) = B.',(X, y) = .uO(x’ y)(y) fOr all X,y € FO‘%-

(See [15], Section 22.)



EXTENSION OF SCOTT BROWN’S THEOREM 19

Since

(Tyx, y) = S 2 dpg(x, y) = S 2 d(F()x, ),

to complete the proof, we need only to show that F(.) is a spectral measure in the
sense of Dunford.

We know that I’y is multiplicative on R(M), but that is not enough since we

wish to integrate characteristic functions. We reconsid er our earlier estimates. Recall
that

Vo =[fuo(x, ¥) — po(f(T)x, »)] L R(M)  for fe R(M).

But v, is singular and thus again by Wilken’s Theorem

ﬁ‘o(x; J/) - yo(f(T)x, y)
Let y be a Borel set. Then for x, y € Foof#
Sxy Fdug(x, ) = S 2, dio((D)x, ) = (FAT)x, y) =
= (f(T)x, F(y)*y) = Sfdu(x, F(y)*y).

Thus, X, po(x, ¥) — plx, F(y)*y) L R(M) and by the abstract F. and M. Riesz
Theorem and Wilken’s Theorem, we see that

Xytto(X, ¥) = polx, F(7)*y).

Let y, 6 be Borel sets. Then

Sxa-xy dp(x, y) = SXany dao(x, ¥) = (F( N p)x, »).

On the other hand,
Sxaxy due(x, ¥) = gxé dug(x, F()*y) =

= (F(0)x, F(y)*y) = (F(n)F(d)x, y).

Thus, F()F(8) = F(y n 6) and it follows that {F(-)} is a spectral measure or uni-
formly bounded Boolean algebra of projections since

[(F)x, )| = 'Sxydﬂo(X, y)] < K xlf Il
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Thus, T, is a scalar type operator (see [8]) and hence is similar to a normal operator.
(See [20], Theorem 55.) Consequently by modifying Q we can assure the normality
of S,. This completes the proof.
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