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A NEW PROOF OF THE SZEGO LIMIT THEOREM AND
NEW RESULTS FOR TOEPLITZ OPERATORS WITH
DISCONTINUOUS SYMBOL

E. BASOR and J. WILLIAM HELTON

§ 1. INTRODUCTION
The Strong Szegé Limit Theorem computes the limit as N - oo of
DN[¢] = det PNT(pPN

after appropriate normalization. Here T, is the Toeplitz operator with (nice) gene-
rating function ¢ and Py is the projection onto the first N + 1 coordinates. To an

operator theorist the result seems strange since Toeplitz operators are not generally
determinant class operators or even close to them. Thus even existence of the limit
seems bizarre. In this paper we show that PyT,Py has a direct connection with a
determinant class operator and, in fact, splits into two canonical and extremely
stable parts. From this we can swiftly obtain the Strong Szegd Limit Theorem.

The basic argument which illustrates the above claim is as follows. Suppose

1 .
s——¢€ H*. Then T, = Tw_Ta,%_. Now it is very
Py O-

¢ = ¢.p_ where @, @_,
simple to verify that
PyT,, = PyT, Py and T, Py = PyT, Py.
Thus, if the order of T,,_T,,, in Dy[¢p] were reversed we would have
det PNT|,,+T9,_PN = det PNT,,,+PN det PyT, Py.
Let f; denote the k'™ Fourier coefficient of the function f. Then the above term is
easily computed to be [¢,,0—]¥*L. The order, however, can be reversed if we are

willing to compensate with a multiplicative commutator. To wit,

P\T Py = PNT¢+PNT,;: T¢_T¢+T;_1PNT¢_PN.
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Note that the middle term is a multiplicative commutator, namely, it has the form
{4, B} = ABA'B™* = I + [A4, B]JA*B™'. Furthermore, multiplicative commu-
tators of Toeplitz operators with smooth generating function are determinant
class since [T,, T,] is trace class. Therefore,

Al,im Dy[o)/[@4op—o]V+: =

(1.1) = lim det Py{T;!, T, _}Py =

N-oco

= det {Tw_l, T, }.

+

This argument gives us existence of the limit provided a nice outer factorization
@ == @, p_ exists,

Furthermore a general theory of traces of additive commutators and deter-
minants of multiplicative commutators was developed in {H-H] which gives broadly
applicable formulas for computation. In particular, the simple computation for addi-
tive commutators done in § 1 [H-H] and the fact that invartants for multiplicative
commutators actually reduce to ones for additive commutators give immediately
Szegd’s classical explicit formula for the limit. The fact that multiplicative invariants
reduce to additive ones was conjectured by Helton and Howe and proved by Pincus
([P], § 10 [H-H], [Bn]). Also Berger and Shaw [B-S] proved a special case of the
additive formula for Toeplitz operators and used it very effectively for other purposes.
The first application of [H-H] to the Szegd Limit Theorem was made by Widom
[W1].He showed the limitin (1.1) is det T¢T¢_1 and expressed this directly as an expo-

nential of a trace of a sum of commutators of Toeplitz operators. This establishes
the connection and computes the limit explicitly. Earlier Gohberg and Feldman
[G-F] used a consideration involving additive commutators to obtain the original
version of Lemma 3.4 herein; then this was used to obtain the ¢, term in (1.1).
The main idea of our paper is that working directly with multiplicative commuta-
tors gives a saving which becomes dramatic when applied to Toeplitz operators with
matrix or with discontinuous symbol.

In this paper we apply the argument above to two different situations. In
Section 2 we use i to give a very fast proof of the Widom-Szeg6 Limit theorem for
Toeplitz operators with matrix symbol. In Section 3 we apply it to Toeplitz operators
with discontinuous generating function. This is of interest in studying the Ising
model at a phase transition and most treatments of the problem are in the physics
literature, cf. [M-W]. Our results simplify existing approaches and add considerably
to what is known.
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Now we set notation and terminology. The Hardy space H? is defined by
Hr = {fe L/(T)|f, = 0,k < 0}.

We will be most concerned with H? in what follows. The projection from L? to H?
is continuous for every co > p > 1 and it will be denoted by P. The dependence on
p will be clear from the content.

The operators that will appear in the next sections will generally be either
Toeplitz or multiplication operators. If ¢ € L, they are defined classically as
follows:

M,: L* > L?, M,f) = of (multiplication)
T,: H:—> H? T,(f) = P(ef) (Toeplitz).

We will, however, be concerned with two different generalizations of these operators.
The first concerns the matrix-valued symbol case. For a matrix valued function ¢,
T, is defined on

HAC)=H*® ... @ H?

in the obvious way. The matrix P,T,Py is then block Toeplitz and the (i — j)*" block
is @

The other generalization will be used in the third section and it will allow us
to consider T, for ¢ € L?. In fact, if we define

T,: B » H', T,(f) = Pof),

it is easily verified that this definition yields a bounded operator as long as

_1_>_1—+landoo>t> 1.If e L? and y € L%, then T,T, is a bounded

t s P

. 1 1 1 1
operator from H* —» H* provided — > — + — 4+ — - The above remarks can
t

s p q
also be made to apply to multiplication operators.
T 1 )
The notation ¢ will indicate ¢ (—) = pe~") for any @eL? and the
z
unitary operator «: L? — L? (or H? — H?) is defined by «(¢) = .
Finally, we end the Introduction with some remarks on the geometric mean.
For a function ¢ € L? such that log ¢ € L! the geometric mean G[o] is classically

defined as exp [—I-S
2n

-7

log ¢(6) de]- If a function is matrix valued then Gp] is

l T
defined as exp [2—S log det <p(6)d0] - We will define the geometric mean of
N /g
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a function ¢ with a factorization ¢_¢, by det(p,,) det(p_,). This definition
agrees with the classical definition when ¢ has a L' logarithm and it is more
convenient for our purposes.

§2. MATRIX-VALUED SYMBOLS

A variant of the basic idea described in §! gives Widom’s theorem for block
Toeplitz matrices immediately.

THEOREM 2.1 (Widom [W1)]) Suppose ¢ and ¢~1 € Lcn(T) satisfy either
(a) ¢ has a factorization ¢ = @, @_ such that

@15 0%, 031, @*~" € Hen(T),
or
(b) the Toeplitz operators T, and T, are invertible and the matrices Ay =

= PyT,-\Py satisfy | ANY|| < M where || | denotes the usual operator norm on Hes(T).
If [Ty, T,) is trace class (which is true if ¢ and ¢ € C? or if ¢ is an invertible
element of K,, the Banach algebra of all nxn matrix valued functions { satisfying

esssup ||f(e®)]| +- { 2.0 3 ||fk”2}% < ©0), then

k= —c0o

lim Dy(@)GpiN Y = det (T, T,-),

=00

where Glp] = det (@) det (o).

New proof under hypothesis (a). The difficulty with block Toeplitz matrices
is that T,, does not factor as T, T, as it does for scalar ¢. However, T,-: factors

as T, T, Thus
PyT, Py = PyT, +T¢;1T¢T¢:1T¢;1T¢+T¢_PN =

= PyT, PxPyT,:T,T,~T, PyPyT, Py,

and so
det PyT,Py = Glo, [Vt2 det PNT‘,,:T,,,T,I,-IT‘,, +P~G[(p_.]N +1,

The conclusion of the theorem is now immediate.
New proof under hypothesis (b). Write

PyT,Py = PyTypsT,~T,Py =

= PyTom(l + F)Py ,
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where ¢ is trace class. This has the form

PyT,Py = PyT,~iPy(Py + Gy 2 Py),

where Gy = (PNT(;;—I'IPN)_IPNT ;1. Soon we shall show that Gy — 7 strongly from
which one can easily check (cf.[W1], Prop.2.1)that Gy #Py — # is trace norm.
This implies

lim det PyT, Py

— = det ( 4+ = det (T,-1T,) =
n->00 det ‘PNTW_IPN ( j ( @ @

= det (T‘PT —1).

To check that Gy really makes sense, to check that Gy — I, and to evaluate

det PNT;ixPN we resort to factoring ¢ as ¢, ¢_. It is well known (cf. [W2], Theorem 1)
that T, and T,-: invertible imply that such a factorization exists with

(P+, th, (P;1a (le* € Hé"(T)

Since these functions are in L2,
(PNT;_‘PNX5 ¥) = (PyT,_Pyx, PNT:Z_PNJ’),

for all x, y despite the fact that 7, and T, o, Ay be unbounded. Since P, isfinite
rank we get

PNY;_IPN == PNT¢+PNPNT(P_PN’

and consequently the argument in part (a) applies to give det PNT;—llPN = Glp].
Moreover, the identity implies readily that (PNT;—lIPN)_l = AF! exists. Also since

Ay— A =T, . strongly and || A5![| < M we also have A5z' — (T,=)™ strongly and
thus Gy — I strongly. To see this write

ANix = A AA X — AGYAxA™1%) + AF'(Ayd7Ix) =
— A7k — ARNA — Ay) (A1),

The strong convergence follows from this identity.

The preceding discussion simplifies much of the literature for a function ¢
that is sufficiently nice, at least in the case where [T,—s, T,] is trace class. The results
of Widom in [W1] for ¢ in Hén -+ Cen do not require the invertibility conditions of
Theorem 2.1 (b). One could extend Theorem 2.1 to that case by using the density
arguments in [W1].
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§3. SINGULAR GENERATING FUNCTION

The main result is a simple formula which computes how ¢ and ¥ interact
in the asymptotic expansion of Dy[py/], even when ¢ and ¥ have (disjoint) rough
places. What we see is that ¢ and ¥ don’t interact in the highest order terms of the
expansion, so these expansions have a “‘local” character. Let us begin by describing
precisely the classes of functions we study, then we give the main theorem.

DEFINITION. &, is the class of measurable functions which factoras ¢ = ¢, ¢
with @' € HP and ¢! € H?. The singular points of ¢ are
closure {e” e T: one of p3' do not belong to C near e*}.
Various descriptions of this class will be given later. Note if ¢ € &, then there is a
determination of the r™ root ¢+ which is in &,,. So if ¢ is in any &, class a root of
itisin a high one.

THEOREM 1.1. If @ and  in &, for p sufficiently large (p > 50 will do) have
disjoint singular points, then

Diloy]
—— e . == d T Py .
i D] det {T,_, T, } det {T, , T, }

The multiplicative commutators each have the form I 4 t where 1 is a trace class
operator on H?. Thus the determinants make good sense; also they can be computed,

to wit
i
) ,
4

where the [I;, {;] are any intervals so that each one contains no singularity of ¢3!, all

det {Tw_, T¢+} =

n Y U 3y’
— exp—— Y (S ?—*1n1/1_d9——§ PV o, 40 —In o, In Y
27 2\ 0. o Y-

singularities of . are contained in\ J [l;, {Jand I, = 0, l,,, = 2n. Here arg(y_(0))
j=1

and arg 0 7Y0) are taken to be in (—m, n).

The theorem reduces the problem of computing asymptotic expansions for
any function ¢ in &5, to computing the contribution of each singularity alone. More-
over, since Theorem 3.1 gives C? ““locally” at an isolated singularity z, (if ¢ does not
vanish) only behavior of the first two derivatives of ¢ and their jumps at z, can
contribute to the high order terms of the expansion of Dy[e]. Thus Theorem 3.1
reduces the problem of computing expansions for non-vanishing ¢ in &,, with iso-
lated jumps, at which ¢ and all of its derivatives have finite right and left limits to
computing the asymptotics of Dy[¢] for ¢ of the form

o) =(z—a)(z—b"(z— o),
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where the branch cuts all pass through one point z, on the circle.
Our result was motivated originally by a conjecture of Hartwig and Fischer
[H-F]. They were concerned with functions of the form

3.0 o(0) = 1(0) ﬁ (1 B —;) @+ fr (1 B i) ar—'ﬂ,-,

r=1 r z

where 7(0) is a sufficiently nice function and z, is on the unit circle. If &, = 0, then
@(0) is piecewise continuous and if f, = 0, then @(6) has possibly zeros and/or

singularities. Hartwigand Fischer conjectured the form of the answer and in particular
gave a complete characterization of how the factors (l — i), ( 1— i) should
z z
interact in the asymptotic formula. The conjecture was proved for some values of
a, and B,, see {L], [H-F], W3], [Ba]. The authors noticed how these formulas could
be written in terms of determinants of multiplicative commutators and this led to
Theorem 3.1. Notice that Theorem 3.1 gives information about the conjecture of
Hartwig and Fischer for complex values of a, and B,. In particular Theorem 3.1

implies that the high order asymptotics of D[] for ¢ of the form (3.0) with la,|

r

1 . .
and |B,| < Mcan be computed provided one can compute expansions for each

o+ fr 4 —pr
D, [ ( 1 — _Z_) ( |2 ) ] individually.
z, z

In many cases an analytic continuation argument will probably allow us to
extend the decomposition above to much larger classes of o, and §,. The point is
that Theorem 3.1 establishes such a decomposition for an open set in C2" of «’s
and f’s and that forces uniqueness of any analytic continuation which might exist.
This observation applies much more generally as we now describe. Suppose ¢, € &,
for some p. Then roots ¢, Y° exist and Theorem 3.1 applies and says that Cy(¢, s)=
_ D)

Dy(¢") Dy(¥)
analytic a normal families argument implies that a subsequence converges to a
function C’ on any region where the Cy are uniformly bounded. Our theorem forces

each C/ to agree with C on a small open set. Thus we may conclude lim Cy exists
N-—oo

has a limit C(z,s5) for small enough ¢, s. Since each C, is

on any region where it is uniformly bounded (and computed thereby analytic
continuation).

The analytic continuation argument just described relies on Theorem 3.1
holding for @,y in &, with some p < co. For p = co the theorem is much easier
to prove because T, are bounded on H?2, Our main technical innovation here is to
develope H? arguments for dealing with T, for y in L". Thus the basic Hilbert space
tools involving determinant class and trace class operators must be extended to
Banach spaces and to nuclear operators.
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Suppose E and F are Banach spaces. Recall that 4: £ — F is nuclear if it has
the representation 4 = Yz ®y;, where z* € E* and y, € F and

i=0

A o
s(A)= Z lz¥lles || yille < o0.

i=1
Here ® is defined by
(2 ® y)(x) = zF(x)y;,

for all x in E. Call any s(4) gotten as above a bound for A. Let|| 4|\ ,r) denote the
usual operator norm for 4. For details about nuclear operators see [B]. The next
proposition is a straightforward generalization of Proposition 1.1 in [W1].

Lemma 3.2. Let A: E » F be a compact operator (the norm limit of finite rank
operators) and suppose

Cy:D—> E and By: F- G.

If By converges strongly to B and Cj;: E* — D* converges strongly to C*, then

(a) ByACy — BAC in the ¥ (D, G) norm,

(b) if A is nuclear, if both By, C¥ are uniformly bounded and if either of them
converges strongly to zero, then there is a sequence of bounds s(ByACy) on ByACy
which converges to 0.

Proof. Choose a finite rank operator

=

(3.1 J=Y 2z ®y;

i=1

Ii

so that |4 — Jl|l¢@,rn < & Then
[[ByJCy — BJC] x|l = ||[(By — B) JCyx + BJ(Cy — O)xllg

and which is less than

I1xllp Y5 zillz |1 Callz,el| By — B) yille + 1%l 3, (CF—C*)zH)llp» | Byille-

t

The strong convergence hypothesis says that for fixed X each of these two terms
converge to zero. This proves (a).

To prove (b) represent A as in (3.1) with X = co. Then

oo

ByACyx = Z‘ ZF(Cn(x)) Byy;;

3
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set

s(ByACy) = Z 1CHz¥ le= | Bayille-

o] K
Split Y, into Y, + Y, where K is chosen large enough to make Y, less than 58
1

K+ K+1
K
independent of V. Strong convergence of C¥ or By to zero implies that Y, converges

to 0 as N —» oo and so it is eventually less than —; So for large enough N

S(BNACN) < E.

In addition to Toeplitz operators T,, and multiplication operators M, we shall
need Hankel operators H, defined by M,-.-«-(Mz; — T ) where « and @ are ‘as
defined in the Introduction. Note ¢ and ¢ have singular points which are complex
conjugates of each other. Basic facts about Toeplitz and Hankel operators are
summarized in

LEMMA 3.3. Let ¢ € L? and define t by

1 1
-_:__}_.__.
t p w

Then
(@) T,: H” —» H'is bounded whent # 1, 0o ; also | T,||w.n < Kol
(b) H,: H” — H' is compact if w> t > 1.
(c) (T,)*: H' — HY equals T;on H' n H'.
Q) If ¢,y € L??, then

Toy — T,T, = H Hy

on HY provided w > p'. Consequently if ¢ € H? and V€ H*, then T,, = T,T,.
() If ¢ € C3, then H,: H* — H® is nuclear for any w > 1.
(&) If ¢ in L? and in L? have disjoint singular points, then H,Hy : H* — H* is

1 1
nuclear provided w > 1 and—l— > — -+ —-

s p q
Proof. a) If fe H” then Holder’s inequality says

i< (§em)" (Gor)™

Thus M, isin #(w, t). The projection P from L to H 'has norm K, provided ¢ # 1, co.
Thus T, and H, have norm bounded by X,.
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(b) If'y is a trigonometric polynomial then the range of H,, isfinite dimensional.
Any ¢ in L? can be approximated in || ||, by trigonometric polynomials, and since
| H, — Hylle < K/flo — ||, the operator H,,.is the norm limit of finite rank operators.

(c) is straightforward.

(d) First note that part (a) implies T,T,, T,y and H,H; are in Z(w,s)

provided s +—1— 4+ ~1— == —1— ; thus w > p’ insures s > 1. That the identity we
w 2p  2p s

wish to prove holds on PyH" is standard. So it holds on all H* by continuity.
For ¢ in H? the operator H, = 0.

(e) If ¢ € C3 then H, can be written as an integral operator with two times
differentiable kernel. In fact the operator H, can be written as

~ (1 ~
[ (3(5) -0
H)O =M=\ | —7— [fadz
- —z
Jr ¢
where I' is the unit circle. To see this recall H,(f)(¢) = M, é—l-a-(M; - TTp) ).

The operator
“‘(M; - T;)(f) =

=« (P(N) — PE()O) =

—_ ”.(LS ¢(é)f(€)_ (ﬁ(z)f(z)dz) — f()l' 'él <1

2niJr E—z

_ ( i S FOLE — PO + ONE) — RS dz) _
27 r é — 2z
= w. (%{1 Sr @) é——?iz»f @) dz) = (since f is in H?)
-1 o
27 _1_ _ )
r £

This kernel then will be C? if ¢(z) is C® and thus H, maps H! into C2. The imbedding
of C?in L for any r > 1 is well known to be nuclear. To check this one must show

o0 . + s .
that the operator } x; ® z/: C* - L™ is nuclear; there z/ = ¢ and x; is the

—00
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. 1 ¢~ .
linear functional on C? given by x;(f) = -Z—S fe~1%d0. Clearly ”ZfHL‘” =1and
T Jox
integration by parts gives

< J
| x{()] < [ || do?

]
[loo

X 152l < z—‘- < 0.

L

Thus

Thus H, : H' - H® is nuclear. Note, weaker conditions on ¢ would do.

(f) Choose smooth functions f, g such that f+ g =1 and both fp and gy
are in C3. Use part (d) to obtain

HHy = Togigy — ToTreeTy =
= Topy — ToyTy + Topy — T, Ty, — HHFT, — T, H Hy =
MH; —+ HwHy; - H«PHFTdI - TngH;'

The product of a nuclear operator with a bounded operator is nuclear so parts (¢), (a)
imply that each term of this last expression is nuclear from H” to H®. The
argument just given is a variant of one first given in [Wf].

The following more specialized fact about Toeplitz operators extends Theorem
1.1, p. 71 [G-F] (see also: Proposition 1.2 [W1]) to L? symbols.

LEMMA 3.4. Suppose ¢=!, p*' € H* and set ¢ = @, @_. Then
(a) Tylel: = PyT,Py is invertible for sufficiently large N and Ty[o]™: H” - H'
1
converges strongly to T,—T,-1. Here — = —5-—+ 1.
- t 4 w
(6) Tylo] = Tilo, ) (T, T, T, T, Tile_].

Proof. (b) See Introduction.

(a) First note that Ty[e,] x — Tq,—xx in the L* sense whenever x € H’ with

1
— ___i___..
s 2p

This is because Tylo,]tx = (T¢+PN)“1x = PNT(,:x and (Py — I) —» 0 strongly

in Ls. A similar statement holds for Ty[e_]™2. Part (a) follows from this and part (b)
provided we can show

PN{T(p;l’ T¢_}Pﬁl - PN{T ) Ttpr}PN -0,

1 1 1 1 4 1
in £u,l) where — =— + — and — = — + —-
u 2r w [ r u
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To prove the required convergence write
{T¢1l, T¢_} =TI+ [T‘P-'—_l’ Tw_]T¢+T¢:1 =144

where 4 = ——H,,,:H; T¢+T¢_1 by Lemma 3.3(d). By Lemma 3.3(a)(b) the ope-
rator A: H"— H? is compact. The operator I': H®* — H'defined by I = {T,, , T¢+}
is bounded and has the property I'(I + A): H” — H! is the inclusion map. Here

1 1 1 1
_1_=—+— and—:—w—{—i- Now
v m P [ v p

PyI'Py(I 4 A)Py = Py + PyI'(Py — I)(I + A)Py =
= Py -+ Py['(Py — D)4 Py,
and (Py — 1)4: H™ —» H® converges in norm to O by Lemma 3.2. So
(3.2) Pyl Py(I + A)Py — Pyllgen, iy > O
This implies Py(I + A)Py' exists for sufficiently large N. Moreover, if
1Py + APi'llew,m < K < o0,

then we have )
| PyI'Py — Py(I + APy 2w, - 0

which proves the lemma.

Set Py(l + A)Py = Ry. We now prove [[Ry'llew,m < K < co where

1 1 2
=

m u D
I'gy = Pyf and I € Z(u, m)

- Consider || Ry'gy llw = | Pufll,, where gy = (I + A)Pyf. Since

ITgnllm < Kllgn .-
Thus
”RﬁlgN“m = “FgN”m < K”gN”u'
The bounded on Ry follows from this because (3.2) implies the Pygy are dense in
range Py.

Proof of Theorem 3.1. Begin by writing the analog of Lemma 3.3(d) for finite
Toeplitz matrices. Let ¢ € L?, Y € L7 then

(3.3) Tyloy] = TaleITyl¥] + PyH, HPy + OyHGH,Qy ,
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where On(ap, a5, -..) = (ay, Gy—15 . .., ). By Lemma 3.4(a) the operators Ty[o]
and Ty[y) are invertible and

ToYITWY]1  Thlel t = I + Ay -+ By =
(34 '
= (1 + AN)(I -+ Bzv) - ANBN’

where

Ay = PyH H;P T[] Tyle] ™
By = QyH;H,ONTNY] 2 Tye] ™.

Suppose ¢ and ¥ € £% and have disjoint singular points. First we show that
Ay converges to

A
A4 = H H;Ty 2Ty, T, T,
and that Q,B,Qy converges to
B =H;H,T;- T T Ty

in the trace norm on H2, By Lemma 3.3 (a, f) both 4 and B map H? into H? and are
nuclear (which implies they are in the H? trace class). Now we prove Ay —» A. Lemma
3.4(a) applied to the adjoint of

 TWY1 Talpl T H? — HW
implies strong qonvergence to the adjoint Qf'T,p:rlTl,,leq,;lTw:I. By Lemma 3.3(f}

10

H,Hy:H® — H®
is nuclear. So by Lemma 3.2 there is a sequence of bounds on
PyH Hy (TN Tle]™ — Ty 0Ty 2Ty 2Ty,

which converges to 0. It is easy to check that any bound s(w) on a trace class operator
is bigger than the trace norm of the operator w (cf. Theorem 27L[B]). So 4, - 4
in H? trace norm. The proof that QyByQy — B is similar once one observes.
ONT[f10y = Ty[f]and uses that to obtain

ONBOy = QL HH, Oy TylW1 On Oy Talo] Oy
3.4y

OvBOy = HzH, Ty[J] Ty[?1 ™.
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Next we prove AyBy — 0 in H? trace norm. First note that Qy: H* — H"
10

converges weakly to zero for any w # oco. By Lemma 3.3(f) H;H,: H® - H? s
compact so its adjoint must be also. Thus (QyH;H,Qy)* and consequently the
adjoint of By: H* » H* converges strongly. That (4y — A)By + ABy = AyBy - 0
follows from Lemma 3.2(b) and trace norm converge of Ay to A.

Use (3.4) to write

Dyloy]
3.5 _ Daloy] N
2 Dylo)Dy[v] det (/ + Ay) (I 4 By) det (I + Ey)

where Ey = (I 4+ Ay)AyBy(I + By)™. The det(I + E,) term converges to 1
because Ey: H2 — H? converges to zero in trace norm. Consequently the limit as
N — oo of (3.5) is det(I + A) det({ + B). To prove Ey — 0 we need only show that
I+ 4AN) e, 2y and [+ By) e = I + OnByQx) |2, 2 are uniformly
bounded. Since 4, B: H? —» H? are trace class, uniform boundedness will hold if and
only if I + 4 and I + B are invertible in £(2,2).

Now we analyze 7+ A and I + B. If xe H"

U+ Ax=1I+[T,, —T,T,] (T¢;1T¢:1T¢;1T¢:t)x =
= WTw:Td‘:‘Tw:TwZ'X =
- Txp_Tw_TerTdClTwI’Tw:lx'
These Toeplitz operators are viewed as bounded operators into successively larger

. 5 . .
H" spaces provided w > 7 to insure that these range spaces never get bigger than

H. One consequence of the formula is that (/ 4+ A)x is not 0 for any x in H2. Since
A is compact we conclude that 7+ A is invertible in #(2,2) as required in the preced-
ing paragraph. Another consequence is that T,—(I + A)T,_y equals the multipli-

. . 5 .
cative commutator {T, , T¢+}y onyin H!for I > i The same argument which
says that A4 is trace class implies that the operator T,,-tAT, maps H? to H? and
is also trace class. Thus

{T, , T,P+} =I+r,

where T is a H? trace class operator.
At last we compute

Qet(T, , T, } = lim det PyT, (I + AT, _Py =
= lim det Py(I + PyT, PyT,-A)Py =
Nooo - -

= lim det (7 + A).

N-oco
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The last equality holds because PyT, PyT,—1: H® - H? converges strongly and
A: H? - H? is nuclear, so the product converges in H? trace class to 4.

The analysis of det(Z + A) just completed applies to det({ 4 B). This proves
the basic formula of Theorem 3.1.

Now we obtain the explicit formula for det {7, , Tq,+}. To do this we ap-
proximate the H”? function ¢,(c’) by the function ¢, (re"%) for r < 1. Likewise

V (—1— ew) converges in L” norm to y_(e®) asr 1 1. Thereis a sequence r, T 1so
,

that none of the functions ¢, (r,e”)*! and Y_(re”)*' vanish. Abbreviate ¢, (r,e")
to ¢ (e”) and Y_(r,e"?) to (). Then sections 1 and 10 of [H-H] apply directly
to give

1 1 deo,
(3.6 det{T, , T, ———eprS — - In y,.
) ' Wk ‘/’k} 27“ circle (pk d0 l/lk
One can work through the proof that {T:,, T,,} is [+ trace class which we have
just given and obtain
{Ty, Tp} — {Ty, Ty} -0
in trace norm. Thus

det {ka’ ka} - det {T'l” T(P}

Next we must show that (3.6) converges to the integral in Theorem 3.1. Let
/> g be a smooth partition of unity on the circle with fq)+ and gy in C% Insert

f - g in the integral, integrate appropriate terms by parts, and let k — oo to get

1 ! ’
CXP_—'S qo—iflﬂl//—'—lplfglfl(/h +/f o, Iny_ .

circle P+

Let fand g approach functions which take only the values 0 and 1.

REMARK. The results of this paper apply to more general operators than
Toeplitz and more general situations. Basically one needs an operator T and pro-
jections Py so that T factors as T = T_T, where T_Py = PyT_Py and P,T, =
= PyT, Py and T3%! are bounded. Then

det PyTPy
det PyT, Py det P,T_P,

and det Py{T;', T_} Py

have the same asymptotics. Note that if T is a singular integral (order 0 pseudo-
differential) operator and H = Y 1,Ey is a first order selfadjoint elliptic operator
on a manifold M, then Py = E, + E, + ... Ey satisfies PyT, = PyT, Py if and
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only if the operator-valued function e—'H*T, ei¥* has an analytic continuation to the
upper half plane. In other words T, is what is commonly called an “‘analytic opera-
tor” for this automorphism group. So basically what one needs is an operator T
which factors as a product of an ““analytic and anti-analytic’ operator.

Now if T7'T_ — T_T;! is trace class, {T3!, T_} is determinant class so the
problem reduces to computing det{7T7!, T7_}. Whereas everything said so far is
obvious we now make a point which is specialized enough not to be widely known.
Namely, under many circumstances the results in [H-H] allow one to compute
det{T;', T_} explicitly even though T, are not Toeplitz. Also the techniques used
in this computation are general enough that they might apply even when the trace
class hypothesis isn’t met.

Research of the second author was partially supported by the National Science Foundation.
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