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CHARACTERISTIC FUNCTIONS AND DILATIONS
OF NONCONTRACTIONS

BRIAN W. McENNIS

1. INTRODUCTION

In a series of papers in Acta Sci. Math. between 1953 and 1966, B. Sz.-Nagy
and C. Foias developed a theory of contractions on Hilbert space. This theory is
presented in the book [19], where references to these papers can be found. The ori-
ginal paper [18] by Sz.-Nagy proved the existence of a unitary dilation of a con-
traction, and this forms the basis of the Sz.-Nagy and Foias theory.

In 1970, Ch. Davis [8] proved that every closed operator T has a dilation which
is unitary with respect to an indefinite inner product (see Sec. 2 below), and .in [9]
Davis and Foias study the relationship between this dilation and the characteristic
function (see Sec. 6 below). We continue this study in this paper, generalizing some
of the work of Sz.-Nagy and Foias for contractions.

2. KREIN SPACES. DILATIONS

Here is a summary of some of the notation and results that will be used in this
paper (see [3], [13], [14], [15]).

An indefinite inner product space is a complex vector space " on which is defined
an inner product [.,.] that is not assumed to be positive, i.e., it is possible for [A, ]
to be negative for some 4 €4". We call #" a Krein space if there is an operator J
on X such that J2 =1, J = J* (i.e., [Jh, k] = [h, JKk]), and the J-inner product

(2.1) (h, k) = [Jh, k]

makes & a Hilbert space. Such an operator J is called a fundamental symmetry.
(See [3], Chapter V.)

In Krein spaces, the emphasis is always on the indefinite inner product, with the
J-norm ||h|; = [Jh, h]** serving mainly to define the topology (the strong topology).
Accordingly, if 4 is a continuous operator between Krein spaces 5" and #~, we use
A* to denote the adjoint of A with respect to the indefinite inner products.
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Different fundamental symmetries J on a Krein space define different J-norms,
but the strong topologies obtained coincide (see [13], Sec. 1.4; [3], Corollary 1V.6.3,
Theorem V.1.1). Thus we can talk about the strong topology on a Krein space.

If [h, k] = O then we write A_I_k. If &/ and # are two subsets of 7", then we
writte h 1. Bifh L kforallke®,and o | #ifh 1L B forall he o If £isa
subspace of a Krein space ¢, and if

FLr=thet h 1 &},

then & is called non-degenerate if & n &+ = {0} and regular if ¥ @ LL ="
(where @ denotes an orthogonal direct sum).

A projection on a Krein space is a strongly continuous operator P satisfying
P? = P* = P. Associated with every regular subspace % of a Krein space 4" is a
projection Pg(the projection of A" onto &%) which annihilates #L and has range &.
In fact, the regular subspaces are precisely those that are the ranges of projections.
See [15]), Sec. 4.)

An operator U from A" to A is called an isometry if it is continuous and
[Uh, Uk] = [h, k] for each h, ke". The condition that a continuous operator U
be an isometry is equivalent to U*U = I. An isometry is called unitary if it is surjective.
As in Hilbert space, the unitary operators U are characterized by the relations
U*U = I and UU* = I. (See [15], Sec. 5.)

Let T be a bounded operator on a Hilbert space #. Then there exist a Krein
space X, containing 5 as a subspace, and a unitary operator U on & such that

T"=PeUrl# (n=1,2,...).
(## is necessarily regular, since Py, the projection of 2 onto s#, is just the adjoint
of the injection map of o into J#.) Also,
(2.2) VvV Ut =X,
H=—0a

where V denotes closed linear span. (See [8].) We call U a minimal unitary dilation
of T. Note that the strong topology and inner product [.,.] on 4 must restrict to
the strong topology and inner product (.,.) on the Hilbert space . Thus we have

2.3) [Urh, k] = (T"h, k)
forall h kes#, n=0,1,2, ... .

3. THE GEOMETRY OF THE DILATION SPACE

Let 27 be a Hilbert space with inner product (.,.), and let T be a bounded
operator on .
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As in [9] we make the following definitions:
Jp = sgn(l — T*T), Qr = |[ — T*T|'7,
Jre = sgn(l — TT*), Q- = |I — TT*['?,
Dy =JpH, D = I .

As well as considering 2, and 9. as subspaces of the Hilbert space #, we will be
considering them as Krein spaces with the inner products [.,.] = (Jr.,.) and
[.,.]=(Jr .,.), respectively. Note that J. and Jr- are fundamental symmetries on
the Krein spaces 2, and 27+, respectively.

Let U be the minimal unitary dilation of 7 constructed in [§8], acting on the
Krein space . Then there is a fundamental symmetry J on J which satisfies,
for hes## and n=0,1,2, ..., Jh=h, JU(U — T)h=U"U — T)J;h, and
JU(U* — T*)h = U*(U* —T*)Jr-h. It is not difficult to show (see [13], Theorem
1I1.3.3), using techniques similar to those used in [19], Theorem I.4.1, that these
conditions (with the minimality condition (2.2)) uniquely determine the dilation (up:
to isomorphism: cf. [19], Sec. 1.4.1; [13], Sec. [11.1). In this paper we will be consider-
ing only this dilation.

Let us define the subspaces

P =(U—-T)#, %*=U*—=TH#, and £, = UZL*.

Then (see [8]) £ and Z* are regular subspaces which are wandering for U, i.e.,
Ur® 1. U% and UL, 1 Ui¥ , for all integers p and g, p # ¢. There is a unitary
operator ¢: ¥ — %P such that

(3.1 o(U — T)h = Qrh (he ),
pJ| &L = Jro,
and
el =il (e £).

Similarly, £* is isomorphic to 2y, with the isomorphism intertwining J|#* and
Jr-, but it is more convenient to define the unitary operator from & (=UZ*)
to @+ There is a unitary operator @4 : £, — D+ such that

@I — UT®h = JpQr-h (hest),

(p*UJU* l g* = JTt(p* N
and

@slill = 1Ll (U € L ).
(See [8]; [13], Sec. I11.8.)
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Note that & is a Krein space with fundamental symmetry J |#, and £, is
a Krein space with fundamental symmetry UJU *| & . In general, &, is not inva-
riant for J.

Let us make the definitions

MP) =\ U2,

n—=-—oo

M(2) = \yU"®, and MA(L)= \ U'L.

n=0 n=-oco

We define M(Z,), M, (Z,), and M_(&,) similarly. The dilation constructed in
18] has the property that the space o#” can be decomposed into the orthogonal direct
sum

3.2) H=M(ZL,)®H & M (L),
and thus M_(%,) and M (%) are regular.

If 4, = \/ U'5#, then we also have

n=0

(3.3) H, =H & M (ZL).

Let .# denote any one of the subspaces M, (Z), M(Z), or M_(Z). If he 4.
then the Fourier coefficients of h in 4. are

(3.4) I, = PU*"h,

where P is the projection of /" onto & (see [15]). In (3.4), n is an integer satisfying
0<n<o,—w <n<ow,or—w <n < —I1,according to whether £ is M, (ZF),
M(Z), or M_(Z), respectively. The Fourier coefficients for M, (¥,.), M(# ), and
M_(%£,) are defined similarly, using (3.4) with P = Py .

For any bounded operator T there is a maximal subspace #; in 5 reducing
T to a unitary operator (see [1] and [10]), and this can be given explicitly in terms of
the dilation:

(3.5) He= (M U,
where &/ =3 © (9 \/ D1+). (See [8], Sec. 4.) If #, = H# © H,, then T|5#, is
completely non-unitary, i.e. there is no non-zero subspace of #; which reduces T'

to a unitary operator.
We have the following extension of [19], Proposition 1I.1.4:

THEOREM 3.1. M(ZL)\/ M(ZL,) =X © .
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Proof. Let #y = (M(ZL) YV M(ZL,))t. From (3.2) it follows that #; < 4.
Suppose k2 € #;. Then, since h I U™1.%, we have for all i’ € o (using (2.3))

0=1[h UNU— T)h] = (h, I — T*T)i') =
= (I — T*T)h, I).

Hence Qrh = 0, and so, by (3.1), Uk = Th. Since M(¥) and M(Z,) reduce U,
so does ', and the above calculation shows that 5#§ reduces T to a unitary. Hence
Hy < H,.
Conversely, we know by (3.5) that 5, reduces U and, by (3.2) (since #, = #),
that #, L & and #, | Ur¥,. Hence #, L (M(ZL) V M(Z,)), i.e., # =H.
We conclude that 3¢, = 5, and the theorem is proved. 77

COROLLARY 3.2. If T is completely non-unitary, then M(CEWN M(ZL ) = A". 7

4, THE RESIDUAL AND DUAL RESIDUAL SPACES

The residual spacé and dual residual space are defined by
R = ML) and R, = M(ZL),

respectively. Since M(¥,) and M(%Z) reduce U, so do # and £#,. Note that, by (3.2)
and (3.3), Z< A", , and so # may be written as the space M, (% ,)*, considered as
a subspace of o,. (We could also make the obvious dual comments about %,.)

(3.2) implies that M_(%,) is regular. If M (%) is also regular, then so is
M(Z,) ([15), Theorem 10.1 and Theorem 4.6). Consequently, in this case we have

H=MZL) DR and A, = M,(%,) ® R.

However, as the following example shows, M, (#,) is not always regular and the
geometry of the dilation space can be quite different from that described above.

ExampLE 4.1. Let 5 be the one-dimensional space of complex numbers, and
let T be multiplication by the complex number o, |x| > 1. Then a vector in ",
may be represented as a sequence /1 = {,}nx0, where A, € # foralln> 0, and

hje = golh,,lz < oo.

The inner product on £, is given by

[h, k] = hoky — Y ke,
! n=1
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and the dilation U satisfies (for he )
ahy (n=0),

Uh), = {(af2 — D20y (n=1),

ey (n>1).

.. is spanned by the vector /, with [, = (Ja|2 — D%, I, =7, and [, = O for n>1.
We then argue, as in [15], Example 6.4, that M, (%)t is spanned by the vector r,
with ro= (J¢|> — 1)7*2, and r, = a " for n> 1, and that r ¢ M, (Z..). Hence, M, (¥ ..)
is degenerate.

(Note: [15], Example 6.4 is the case « = 2.) 77

We have the following useful representation of the residual space. (The dual
residual space has the obvious dual representation, but this will not be needed.)
Observe that, since Z < £, it suffices to consider only vectors k € ', in the follow-
ing theorem.

THEOREM 4.2. A vector k € X', isinR if and only if there is a sequence {h,},>o0
of vectors in K such that

(1) ho is the projection of k into ',

(i) Thyyy = h,(n = 0), and

(iii) {(U — T)hyi1}no0 is the sequence {I,}a>0 of Fourier coefficients in M, (£L)
of the projection of k into M, (Z).

The sequence {h,},~o and k uniquely determine each other.

Proof. By (3.3), every ke, has a unique representation of the form
k = hy + m, where me M (%) and h, is the vector in # satisfying (i). Suppose
k e ,, and assume that conditions (ii) and (iii) are also satisfied for some sequence
{h,}n>0. We know (by (3.2)) that M_(#,) L M, (%), and thus for N> 0 we have
UNZ,. L UNFIM, (Z). Also, since {/,},=0 is the sequence of Fourier coefficients of
m in M, (&), wehavefor N> 0

N
m— Y U, e UNVIM,(2)
n=0

see [15], Sec. 7), and thus we deduce, for all /,, € &#.. and N = 0, the equation

4.1) (k, UNL] = [he + m, UM, ] =

N
= [hy, UML) + ZO[U"I,,, UML).
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Let us compute this for a dense set of [, 'in &, namely for [/, = (I — UT*)h,
where s € #. Using (iii), we then obtain, for0 < n < N — 1,

[Usl,, UNLY = {UNU — T)h, .y, UNI — UT*h] =
= [Ayqy, UNT" YW — UT*YH] — [Thy, 1, UV~ — UT*h] =
= (Myy1, TV YL — TT¥R) — (Thy iy, TV — TTH)A).
By successive applications of (ii), we can write /1, =T~ """y, and it follows that
(U, UMY = (hy, (T*N-nATN-n=L _ T*N=n TN~ay (] — TT*) h).
We therefore have a telescoping series, and can deduce the formula
4.2) "NEOI[U"I,,, UML) = (hy, (I — TT*h) — (hy, T*NTN(I — TT*)h).

We also have the following (using the fact that s# | U'.&,, (from (3.2)), and
thus U I Z,):

@43 (UNly, UML) = Ty, L] = (U — e, (= UT*)H] =
= —(Thy,y, (I — TT*)h) =
= —(hy, (I — TT*) h).
Computing the final term in the expression in (4.1) gives us
4.4 [Ae, UL = [hy, UN(I — UT*)h] = (hy, TN(I — TT*)h) =

= (h,, T*NTN(I — TT*) h).

Therefore, we have from equations (4.1) — (4.4) the result that [k, UNL, ] =0
for all N> 0 and for a dense set of vectors [, in &,.. Hence, k | M, (%) and (since
we have assumed k €.%7,) it follows that k € Z.

Conversely, suppose k€. We will define the sequence {4,}.>0 inductively.
Let 4, be defined by (i) and suppose that, for some N = 0, /i, hy, ..., hy have been
defined so that (ii) and (iii) are satisfied. Equations (4.1), (4.2), and (4.4) remain
valid, and thus we have (since k € ),

4.5) 0 = [k, UN,] = (hy, I — TT*)h) + [ly, L] »

where [, = (I — UT*)h. From (3.2) we obtain [ly, ( — TT*)h] = 0, and from this
it follows that

[IN’ l*] = [1N7 (U -— T)T*h].
Consequently, we obtain from (4.5)

(hy, I — TT*Y b)) = [I, (U — T)T*h].
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Consider the continuous operator Q:# — &£ defined by Qh = (U — T)h
(h € #). We can then write the previous result in the form

(( = TT*) by, B) = [y, OT*h) = (TQly, h),
and hence we have
(I — TT*) hy = TQ*1 .
Therefore, if we define Ay, , by
hyer = T*hy + Q*ly ,
then we conclude that Thy,, = /iy, and (i) is satisfied. We also have
I — T*T)hN+1 = hN+1 — T*hy = Q*IN >
and it then follows, with the help of (2.3), that for all h € 5#
Uy, (U — T) h] = [Iy, Qh] = (Q*ly, h) =
=(I — T*Dhyyr, ) =
= [(U — Dhysr, (U —T) Al
Therefore, Iy = (U — THhy,,1, and (iii) is satisfied. This completes the inductive
definition of {,}, and it remains to prove the uniqueness assertion.
Suppose 4, = 0 for all n> 0. In particular, /i, = 0 and thus k € M, (¥). {I,},>0
is the sequence of Fourier coefficients of k in M, (%) and, by (iii), I, = 0 for all

n> 0. Since M, (%) is regular, [15], Theorem 7.2 shows that k = 0, and thus {A,}.~0

uniquely determines k.
The sequence {/,},>0 is uniquely determined by %, so by (i) and the recurrence
relation /1,,, = U*(l, + h,) (easily derived from (ii) and (iii)), k uniquely determines.

5. POSITIVITY OF THE RESIDUAL SPACE.
A SUFFICIENT CONDITION FOR £ = {0}

If [k, k] = O ([k, k]> 0) for all nonzero k in a subspace, then that subspace is
called positive (positive definite).

THEOREM 5.1. & is a positive subspace. If T is power bounded, then & is positive
definite.

Proof. Let k be a vector in &, and let {A,},50 be the sequence of vectors in H#°
corresponding to k, defined by Theorem 4.2. (We will use throughout this proof
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the notation of Theorem 4.2.) Then we have, by the definition of the inner product
in [8] and by (2.3), the following:

[k, Kl = ol + ¥, T 1] =
n=0
= Iollt + 3 LU = Ty (U — Tpa] =
n=0 .

= ol + 3 (= T*Thyin, fs).
n=0

Theorem 4.2(ii) implies that, for 0 < n < N — 1, h,yq = TV""1h,. We therefore
obtain the chain of equalities

N1
im Y, (I — T*T)TV " hy, TN " hy) =

|
N-oo ,"9o

[k, k] = [lho|* +

—00 n=0

N-1
= Pll+Jim (5, T TTTY )
= [lholl* + lim (hy — T*NTVhy, hy) =
N-co
— il + Jim (vl — 7],

But T™hy = h, (Theorem 4.2(ii)), and thus we have
5.1 [k, k] = lim ||y = O.
Nooo

Hence £ is positive.
Now let us suppose that [k, k] = 0; it follows from (5.1) that lim 4y = 0.

N-oco

For each n> 0 and N> n, we have

[Aall = NTN="hnll < NTV="]] [y .
Therefore, if T is power bounded, 4, = 0 for each n> 0, and so k = 0. Hence we
conclude that if 7" is power bounded, 2 is positive definite. 7

COROLLARY 5.2. &, is a positive subspace. If T is power bounded, then &, is
positive definite. 7/

COROLLARY 5.3. If T is power bounded, then M(Z) and M(XZ ,) are non-dege-
nerate. 7,
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COROLLARY 5.4. If k € R, then the sequence {h,}n~0 of vectorsin# defined by
Theorem 4.2 is bounded.

Proof. By (5.1), im ||A,|]? exists. 7
n—-co

iz

THEOREM 5.5. If lim T%" =0, then M(%,) = X

n-—o0o

Proof. Suppose k € # and let {#,},~0 be the sequence of vectors in 5 defined
by Theorem 4.2. For each n>>0, N>n, and s € &#, we have

|(hay D) = [(TV="hy, )| = |(hy, T*N""h)| <

< Vil IT*N="h].

By Corollary 5.4, the sequence {A,},»0 is bounded. Hence if lim T*¥= 0, then we

N-ooo
obtain (/1,, &) = 0 for all n=>0 and for all # € #. Consequently, /1, = 0 for all n > 0,
and so, by Theorem 4.2, k=0. We therefore conclude that 2={0}, i.e., M(&L ,)=A"7 2
COROLLARY 5.6. If lim T" =0, then M(¥L) =A". 7}

n—o0

COROLLARY 5.7. If a vector he # satisfies lim T#"h = 0, then he M (% .).

Proof. Suppose k € Z. Then, as above, we have (since A, is the projection of
k into )

[k, h] = (ho, h) = 0.

Thus & | #, and using (3.2) we can deduce that he M (¥,). %/

REMARK. We could, if we wished, deduce Theorem 5.5 from Corollary 5.7,
since if # < M(Z,) then the minimality of the dilation implies M(Z,) = A .
CoROLLARY 5.8. If a vector h € 3 satisfies lim Tth = 0, then he M_(¥£). %

n—oo

When T is a contraction, the condition lim 7%" = 0 is equivalent to

M(Z ) = A ([19], Theorem I1.1.2). The following ex;_gple shows that the converse
to Theorem 5.5 is not valid for a general bounded operator T. However, in Sec. 8
it will be shown that an extra condition on T (namely the boundedness of its cha-
racteristic function) enables us to obtain the converse.

ExAMPLE 5.9. Let 5# be a two-dimensional space and define T on # by
the matrix
( 1 0
1 0 )

Suppose k € #; then the sequence {A,},>0 of vectors in # defined by Theorem 4.2
is a constant sequence, since we have T2 = T and h, = Th,, for all n > 0. Con-
sequently, the sequence {/,},~0 in Theorem 4.2 is also constant (I, = (U — T)h,,),
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and since, by the definition of the norm in [8], ¥} ||4,]* < oo, we conclude that [, = 0

n=0
for each n > 0. We have Q, = [, and hence, by (3.1), U — T is injective. It therefore
follows that {/,},50 is the zero sequence, and hence k = 0. Thus # = {0}, while
lim T%" = T* # 0. %

n—oo

6. THE CHARACTERISTIC FUNCTION.
FOURIER REPRESENTATIONS

The characteristic function of T is the operator valued analytic function
(6.1) O, = [T/ + ArQr-(I — AT*) U7 Q1|

O4() is defined for those complex numbers A for which 7 — AT* is boundedly
invertible, and takes values which are continuous operators from 2, to Zr-. (See,
for example, the following: [2]1, [4], [5], {61, (71, [9], [L1], [12], [13], {14], [16], and
(191)

We will be assuming for the remainder of this paper that # is separable and that
T has bounded characteristic function, i.e.,

6.2) sup {||@+D)]|: 1A < 1} = C < oo.

Suppose he M(Z ), and let {/,} be the sequence of Fourier coeflicients (3.4)
of /1 in M(%Z,). It is a consequence of the definition of the norm in [8] that
2 I1L,]|? < oo. Also, it is shown in [9] that if @ is bounded then 2 11?2 < oo.

n=— 00 n=0
Therefore, when @ is bounded, we can define P, the Fourier representation of

M(£Z,), by
@)= ¥ e,

where @, is the unitary map from £, to %7« discussed in Sec. 3. ®¢, is a unitary
operator from M(Z,) to L¥@Pr+), the Krein space of square integrable @r--valued
functions with inner product

[, o] — 1/27 Sz" [w(®), o(0)dt, (4, v L3 (D))
0

(cf. [19], Sec. V.1; [13], Sec. IV.1).
Similarly, if he M(¥) and {l,} is the sequence of Fourier coefficients of /

in M(¥), then p [l < oo whenever @, is bounded. We define &4, the Fou-

rier representation of M(%¥), by

@B D)= Y, "ol

n=— 0Q

D4 is a unitary operator from M(Z) to LA D).
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Note that the Fourier representations take their values in 2, (for M(#)) or
Dy (for M(Z.)), and not in & or Z,. In this respect we are following [9] instead
of [19]. Also note that from [9], p. 135 we can deduce that the Fourier representa-
tions and their inverses have norms less than or equal to (2C2 + 1)!2, where C is
given by (6.2).

When # is separable and @7 is bounded, then the strong limit

O7(e") = lim O(re'")
r—>1-

exists almost everywhere, and we obtain a bounded operator @y: LY %Dy) » LXDr+)
defined by

(Orv) (1) = Or(e*)v(?) ae. (ve LXDr))

(cf. [19], Sec. V.2). With our definition of @(1), we then have, fork € M(¥) and
h:k € M(g:.k)>

(6.3) [h, 1] = [O1Beh, B h,).

This result appears in [9], Sec. HI.1, with a slightly different definition of ©;. Also,
in [9], (6.3) is proved for M, (%) and M, (£.,) only, but it is not difficult to generalize
the arguments in [9] to establish (6.3) for all he M(¥) and h, € M(Z.) (see [13],
Sec. IV.6]).

An alternative formulation of (6.3) is

(6.4) 018y = By PIM(Z),

where P is the projection of £ onto M(Z,).

Finally, note that when @, is bounded, M(¥) and M(%,) are the ranges of
the unitary operators % and &%, respectively. Thus, by [15], Theorem 5.2, M(%)
and M(¥.) are regular (cf. [9], Sec. I11.2).

7. THE RESIDUAL AND DUAL RESIDUAL SPACES AS HILBERT SPACES.
SOME SIMILARITY RESULTS

We again consider the spaces # and £, introduced in Sec. 4. When @y is
bounded, M(&) and M(¥.) are regular, and thus £ and £, are also regular. We
can then strengthen Theorem 5.1 and Corollary 5.2:

THEOREM 7.1. If @O is bounded then, with the inner product [.,.}, # and X.,
are Hilbert spaces. The intrinsic topologies on & and R., (defined by |h|| = [h, h]'”2)
coincide with the strong topologies (defined by \|h)| = [Jh, h]'%).

Proof. Since & and £, are regular, [3], Theorem V.3.4 implies that they are
Krein spaces. But # and ., are both positive subspaces (Theorem 5.1 and Corollary
5.2), and so they are Hilbert spaces.
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The intrinsic and strong topologies coincide by virtue of [3], Theorem V.5.2. 7

If /" is considered as a Hilbert space with the J-inner product (2.1), then the
operators U|# and U[Z, are not unitary, but they are similar to unitary operators
when @ is bounded. This is proved in [9], p. 137, using the theorem of B. Sz.-Nagy
[17], but we have here an explicit realization of this result. Indeed, simply renorming
% and £, with the equivalent norm |/4]| = [/, A]'? makes the operators unitary.
This observation leads us to a simple geometric interpretation of the similarity results
of Sahnovi¢ [16] and Davis and Foias [9].

THEOREM 7.2. ([16], Theorem 1) Consider A as a Hilbert space with the J-inner
product. Then, if Oy is bounded, U is similar to a unitary operator (on a Hilbert space).

Proof. Since M(%,) is regular, every vector e is of the form h=m + r
(me M(Z,), r € #). We can thus define a norm on 4 by

[Al* = |Gz ml|? + Ir, r].

By Theorem 7.1 and the continuity of @  and ¢3!, this norm is equivalent to the
J-norm. Since @, UPZ! is multiplication by e on L%(ZP1-), we clearly have

|UAlL = [IA
for all 1 € . Therefore, with this norm, U is unitary. 7

COROLLARY 7.3. ([9)) If Oy is bounded, T is similar to a contraction.

Proof. (cf. [16]) The operator U, = U|A + is similar to an isometry, and
T*=U%|H#. Y

8. THE OPERATOR F.
SOME RESULTS ON RESIDUAL SPACES

Let us denote by G the operator @% , considered as mapping LA(Dr+) to A ,
and let F be the operator G*, mapping # to L%Zy-). Then, if P is the projection of
A onto M(#,), we have

F= @4 P,
and hence FG = I and GF = P.

Theorem 3.1 shows that " is spanned by M(%), M(.%,), and #,, where #’,

is the maximal subspace of # reducing T to a unitary operator. Since F is continuous,

it is determined by its values on these three subspaces. This representation is simple
to write down, using (6.4) and noting that 3£, = % (Theorem 3.1):

FIM(Z) = 0,0y,

FIM("g:{:) = (p,‘?,s
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and

Fl#, = 0.

We also have the following explicit representation of F.

THEOREM 8.1. For h €X', the function Fli € L¥(D1+) has Fourier series

[ze]
FW) (D)= Y, ©"p.Pe U™,

n=—00

where Pg_ denotes the projection of # onto & .

Proof. If he M(Z,), then the vectors Py U*'h (n=0, 1, 4-2, ...) are the
Fourier coefficients of /z in M(Z ). It therefore follows from the definitions of ¢¢,
and F that

Y &, Py Ush = (D2 li)(t) = (FR) (2).

n= — 0o

Now suppose that /1 € . Since Z reduces U, we also have, forall n, U*"h € 4.
But £ is orthogonal to M(% ), and hence also to ., and thus Py U*" = 0. Con-
sequently we have

Z ﬁi"t(p*P}Z’.U*"h =0 = (Fh) (t)-

n= —o

The required result follows from the fact that o = M(ZL YD ZX. %5

i

COROLLARY 8.2. For he#, the function Fiie LXDr,) has Fourier series

EW) () = %, €Ty Qr-T*h.

n=0

Proof. Since # | M_(%..) (by (3.2)), we deduce that U*# | &, forn < 0,
and thus

PepU¥h =0 (hest, n <0).
When n>0, we can write

U*rh = UT#r+1) -+ Z U:::k([__ UT:&)T::m—k/,l'
k=0

Since U# 1. &, and U*¥, 1 &, for k=1,2,...,n, we deduce that

Py U*nh = (I — UT*)T*"h.
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Hence we have @ Py U*h = Jr«Qr-T*'h (see Sec. 3), and the corollary is.
proved. 7
COROLLARY 8.3. When Oy is bounded we have, for all h € 3,

(=2

Y W QrTHhi2 < 0. 7

n=0

The following extends [19], Proposition I1.3.1 from contractions to all operators.
T with bounded characteristic function.

THeEOREM 8.4. Suppose T has bounded characteristic function. Then, for he #,

Pah = lim UnT*"h, Py h = lim U*"T7h,

n—00 n—-00

and hence

[Prh, Pgh] = lim |T*"h|?, [Pg h, Pg h] = lim || T7A|?,

n-oo

PyPgh = lim T*T**h, PwyPg h = lim T*"T"h,

n=»00 h—00

Proof. Suppose the function v in L¥Pr+) has Fourier series

© .
v(t) = Yy, ea,

n= - 0

Since $;! = P% is continuous, and since for each M and N (with M < N) we have

N N

(D’;,' Z eiman = Z Un(pﬂ_clan,
n=»mM n=M

we deduce that

Go=~>0% v= Y U'pi'a,

n= — oo

Hence, with P denoting the projection of " onto M(Z,), Corollary 8.2 gives us
Ph = GFh = 2 U"(p;]'JT- QT'T*nh =
n=0

=Y, U"I— UT"T*%h =

n=0

(UnT*nh — Un+1T*n+1h) —_

it

— lim (h — U"T*"h).

n—+»o0
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Consequently we obtain
Pph = (I — PYh = lim U"T*").

n-oo

Similarly, we also have Pz /i = lim U%"T"}, and the remaining assertions of the

- 00

theorem follow immediately. ?

We can now prove the result referred to in Sec. 5, immediately prior to Example
5.9. For the contraction case, see [19], Theorem II.1.2.

COROLLARY 8.5. If @y is bounded, then
() M(&L.,) =X ifand only if im T*" =0, and

n-w

(i) M(Z) = if and only if lim T" = 0.

Proof. 1t suffices to prove (i). If M(Z,)= A", then Pp=0. Hence, for h e s,
we have
lim T"T*")y = PypPyh = 0,

n—-Co

and it therefore follows that

lim [|T*"A)2 = lim (T"T*"h, h) = 0.

n—+co n—-0o

Thus lim T#%*h = 0 for all hes#, i.e., im T = Q.

n—co n—-»oo

The converse is Theorem 5.5. 77

COROLLARY 8.6. If Of is bounded, then avector heF# satisfies lim T*"h =0
ifandonly ifhe M,(2,), and lim Th = O if and only if he M(L).

Proof. It suffices to pro”v;oothe first assertion. If he M, (<), then Pyh=0
and the rest of the proof is the same as in Corollary 8.5. The converse is Co-

%5
rollary 5.7. 74

The results in this paper first appeared in the author’s Ph. D. thesis [13] at the Univer-
sity of Toronto, supervised by Chandler Davis. Additional work was partially supported
by a grant from the National Science Foundation.
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