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CHARACTERISTIC FUNCTIONS AND DILATIONS
OF NONCONTRACTIONS

BRIAN W. McENNIS

1. INTRODUCTION

In a series of papers in Acta Sci. Math. between 1953 and 1966, B. Sz.-Nagy
and C. Foias developed a theory of contractions on Hilbert space. This theory is
presented in the book [19], where references to these papers can be found. The ori-
ginal paper [18] by Sz.-Nagy proved the existence of a unitary dilation of a con-
traction, and this forms the basis of the Sz.-Nagy and Foias theory.

In 1970, Ch. Davis [8] proved that every closed operator T has a dilation which
is unitary with respect to an indefinite inner product (see Sec. 2 below), and .in [9]
Davis and Foias study the relationship between this dilation and the characteristic
function (see Sec. 6 below). We continue this study in this paper, generalizing some
of the work of Sz.-Nagy and Foias for contractions.

2. KREIN SPACES. DILATIONS

Here is a summary of some of the notation and results that will be used in this
paper (see [3], [13], [14], [15]).

An indefinite inner product space is a complex vector space " on which is defined
an inner product [.,.] that is not assumed to be positive, i.e., it is possible for [A, ]
to be negative for some 4 €4". We call #" a Krein space if there is an operator J
on X such that J2 =1, J = J* (i.e., [Jh, k] = [h, JKk]), and the J-inner product

(2.1) (h, k) = [Jh, k]

makes & a Hilbert space. Such an operator J is called a fundamental symmetry.
(See [3], Chapter V.)

In Krein spaces, the emphasis is always on the indefinite inner product, with the
J-norm ||h|; = [Jh, h]** serving mainly to define the topology (the strong topology).
Accordingly, if 4 is a continuous operator between Krein spaces 5" and #~, we use
A* to denote the adjoint of A with respect to the indefinite inner products.
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Different fundamental symmetries J on a Krein space define different J-norms,
but the strong topologies obtained coincide (see [13], Sec. 1.4; [3], Corollary 1V.6.3,
Theorem V.1.1). Thus we can talk about the strong topology on a Krein space.

If [h, k] = O then we write A_I_k. If &/ and # are two subsets of 7", then we
writte h 1. Bifh L kforallke®,and o | #ifh 1L B forall he o If £isa
subspace of a Krein space ¢, and if

FLr=thet h 1 &},

then & is called non-degenerate if & n &+ = {0} and regular if ¥ @ LL ="
(where @ denotes an orthogonal direct sum).

A projection on a Krein space is a strongly continuous operator P satisfying
P? = P* = P. Associated with every regular subspace % of a Krein space 4" is a
projection Pg(the projection of A" onto &%) which annihilates #L and has range &.
In fact, the regular subspaces are precisely those that are the ranges of projections.
See [15]), Sec. 4.)

An operator U from A" to A is called an isometry if it is continuous and
[Uh, Uk] = [h, k] for each h, ke". The condition that a continuous operator U
be an isometry is equivalent to U*U = I. An isometry is called unitary if it is surjective.
As in Hilbert space, the unitary operators U are characterized by the relations
U*U = I and UU* = I. (See [15], Sec. 5.)

Let T be a bounded operator on a Hilbert space #. Then there exist a Krein
space X, containing 5 as a subspace, and a unitary operator U on & such that

T"=PeUrl# (n=1,2,...).
(## is necessarily regular, since Py, the projection of 2 onto s#, is just the adjoint
of the injection map of o into J#.) Also,
(2.2) VvV Ut =X,
H=—0a

where V denotes closed linear span. (See [8].) We call U a minimal unitary dilation
of T. Note that the strong topology and inner product [.,.] on 4 must restrict to
the strong topology and inner product (.,.) on the Hilbert space . Thus we have

2.3) [Urh, k] = (T"h, k)
forall h kes#, n=0,1,2, ... .

3. THE GEOMETRY OF THE DILATION SPACE

Let 27 be a Hilbert space with inner product (.,.), and let T be a bounded
operator on .
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As in [9] we make the following definitions:
Jp = sgn(l — T*T), Qr = |[ — T*T|'7,
Jre = sgn(l — TT*), Q- = |I — TT*['?,
Dy =JpH, D = I .

As well as considering 2, and 9. as subspaces of the Hilbert space #, we will be
considering them as Krein spaces with the inner products [.,.] = (Jr.,.) and
[.,.]=(Jr .,.), respectively. Note that J. and Jr- are fundamental symmetries on
the Krein spaces 2, and 27+, respectively.

Let U be the minimal unitary dilation of 7 constructed in [§8], acting on the
Krein space . Then there is a fundamental symmetry J on J which satisfies,
for hes## and n=0,1,2, ..., Jh=h, JU(U — T)h=U"U — T)J;h, and
JU(U* — T*)h = U*(U* —T*)Jr-h. It is not difficult to show (see [13], Theorem
1I1.3.3), using techniques similar to those used in [19], Theorem I.4.1, that these
conditions (with the minimality condition (2.2)) uniquely determine the dilation (up:
to isomorphism: cf. [19], Sec. 1.4.1; [13], Sec. [11.1). In this paper we will be consider-
ing only this dilation.

Let us define the subspaces

P =(U—-T)#, %*=U*—=TH#, and £, = UZL*.

Then (see [8]) £ and Z* are regular subspaces which are wandering for U, i.e.,
Ur® 1. U% and UL, 1 Ui¥ , for all integers p and g, p # ¢. There is a unitary
operator ¢: ¥ — %P such that

(3.1 o(U — T)h = Qrh (he ),
pJ| &L = Jro,
and
el =il (e £).

Similarly, £* is isomorphic to 2y, with the isomorphism intertwining J|#* and
Jr-, but it is more convenient to define the unitary operator from & (=UZ*)
to @+ There is a unitary operator @4 : £, — D+ such that

@I — UT®h = JpQr-h (hest),

(p*UJU* l g* = JTt(p* N
and

@slill = 1Ll (U € L ).
(See [8]; [13], Sec. I11.8.)
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Note that & is a Krein space with fundamental symmetry J |#, and £, is
a Krein space with fundamental symmetry UJU *| & . In general, &, is not inva-
riant for J.

Let us make the definitions

MP) =\ U2,

n—=-—oo

M(2) = \yU"®, and MA(L)= \ U'L.

n=0 n=-oco

We define M(Z,), M, (Z,), and M_(&,) similarly. The dilation constructed in
18] has the property that the space o#” can be decomposed into the orthogonal direct
sum

3.2) H=M(ZL,)®H & M (L),
and thus M_(%,) and M (%) are regular.

If 4, = \/ U'5#, then we also have

n=0

(3.3) H, =H & M (ZL).

Let .# denote any one of the subspaces M, (Z), M(Z), or M_(Z). If he 4.
then the Fourier coefficients of h in 4. are

(3.4) I, = PU*"h,

where P is the projection of /" onto & (see [15]). In (3.4), n is an integer satisfying
0<n<o,—w <n<ow,or—w <n < —I1,according to whether £ is M, (ZF),
M(Z), or M_(Z), respectively. The Fourier coefficients for M, (¥,.), M(# ), and
M_(%£,) are defined similarly, using (3.4) with P = Py .

For any bounded operator T there is a maximal subspace #; in 5 reducing
T to a unitary operator (see [1] and [10]), and this can be given explicitly in terms of
the dilation:

(3.5) He= (M U,
where &/ =3 © (9 \/ D1+). (See [8], Sec. 4.) If #, = H# © H,, then T|5#, is
completely non-unitary, i.e. there is no non-zero subspace of #; which reduces T'

to a unitary operator.
We have the following extension of [19], Proposition 1I.1.4:

THEOREM 3.1. M(ZL)\/ M(ZL,) =X © .
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Proof. Let #y = (M(ZL) YV M(ZL,))t. From (3.2) it follows that #; < 4.
Suppose k2 € #;. Then, since h I U™1.%, we have for all i’ € o (using (2.3))

0=1[h UNU— T)h] = (h, I — T*T)i') =
= (I — T*T)h, I).

Hence Qrh = 0, and so, by (3.1), Uk = Th. Since M(¥) and M(Z,) reduce U,
so does ', and the above calculation shows that 5#§ reduces T to a unitary. Hence
Hy < H,.
Conversely, we know by (3.5) that 5, reduces U and, by (3.2) (since #, = #),
that #, L & and #, | Ur¥,. Hence #, L (M(ZL) V M(Z,)), i.e., # =H.
We conclude that 3¢, = 5, and the theorem is proved. 77

COROLLARY 3.2. If T is completely non-unitary, then M(CEWN M(ZL ) = A". 7

4, THE RESIDUAL AND DUAL RESIDUAL SPACES

The residual spacé and dual residual space are defined by
R = ML) and R, = M(ZL),

respectively. Since M(¥,) and M(%Z) reduce U, so do # and £#,. Note that, by (3.2)
and (3.3), Z< A", , and so # may be written as the space M, (% ,)*, considered as
a subspace of o,. (We could also make the obvious dual comments about %,.)

(3.2) implies that M_(%,) is regular. If M (%) is also regular, then so is
M(Z,) ([15), Theorem 10.1 and Theorem 4.6). Consequently, in this case we have

H=MZL) DR and A, = M,(%,) ® R.

However, as the following example shows, M, (#,) is not always regular and the
geometry of the dilation space can be quite different from that described above.

ExampLE 4.1. Let 5 be the one-dimensional space of complex numbers, and
let T be multiplication by the complex number o, |x| > 1. Then a vector in ",
may be represented as a sequence /1 = {,}nx0, where A, € # foralln> 0, and

hje = golh,,lz < oo.

The inner product on £, is given by

[h, k] = hoky — Y ke,
! n=1
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and the dilation U satisfies (for he )
ahy (n=0),

Uh), = {(af2 — D20y (n=1),

ey (n>1).

.. is spanned by the vector /, with [, = (Ja|2 — D%, I, =7, and [, = O for n>1.
We then argue, as in [15], Example 6.4, that M, (%)t is spanned by the vector r,
with ro= (J¢|> — 1)7*2, and r, = a " for n> 1, and that r ¢ M, (Z..). Hence, M, (¥ ..)
is degenerate.

(Note: [15], Example 6.4 is the case « = 2.) 77

We have the following useful representation of the residual space. (The dual
residual space has the obvious dual representation, but this will not be needed.)
Observe that, since Z < £, it suffices to consider only vectors k € ', in the follow-
ing theorem.

THEOREM 4.2. A vector k € X', isinR if and only if there is a sequence {h,},>o0
of vectors in K such that

(1) ho is the projection of k into ',

(i) Thyyy = h,(n = 0), and

(iii) {(U — T)hyi1}no0 is the sequence {I,}a>0 of Fourier coefficients in M, (£L)
of the projection of k into M, (Z).

The sequence {h,},~o and k uniquely determine each other.

Proof. By (3.3), every ke, has a unique representation of the form
k = hy + m, where me M (%) and h, is the vector in # satisfying (i). Suppose
k e ,, and assume that conditions (ii) and (iii) are also satisfied for some sequence
{h,}n>0. We know (by (3.2)) that M_(#,) L M, (%), and thus for N> 0 we have
UNZ,. L UNFIM, (Z). Also, since {/,},=0 is the sequence of Fourier coefficients of
m in M, (&), wehavefor N> 0

N
m— Y U, e UNVIM,(2)
n=0

see [15], Sec. 7), and thus we deduce, for all /,, € &#.. and N = 0, the equation

4.1) (k, UNL] = [he + m, UM, ] =

N
= [hy, UML) + ZO[U"I,,, UML).
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Let us compute this for a dense set of [, 'in &, namely for [/, = (I — UT*)h,
where s € #. Using (iii), we then obtain, for0 < n < N — 1,

[Usl,, UNLY = {UNU — T)h, .y, UNI — UT*h] =
= [Ayqy, UNT" YW — UT*YH] — [Thy, 1, UV~ — UT*h] =
= (Myy1, TV YL — TT¥R) — (Thy iy, TV — TTH)A).
By successive applications of (ii), we can write /1, =T~ """y, and it follows that
(U, UMY = (hy, (T*N-nATN-n=L _ T*N=n TN~ay (] — TT*) h).
We therefore have a telescoping series, and can deduce the formula
4.2) "NEOI[U"I,,, UML) = (hy, (I — TT*h) — (hy, T*NTN(I — TT*)h).

We also have the following (using the fact that s# | U'.&,, (from (3.2)), and
thus U I Z,):

@43 (UNly, UML) = Ty, L] = (U — e, (= UT*)H] =
= —(Thy,y, (I — TT*)h) =
= —(hy, (I — TT*) h).
Computing the final term in the expression in (4.1) gives us
4.4 [Ae, UL = [hy, UN(I — UT*)h] = (hy, TN(I — TT*)h) =

= (h,, T*NTN(I — TT*) h).

Therefore, we have from equations (4.1) — (4.4) the result that [k, UNL, ] =0
for all N> 0 and for a dense set of vectors [, in &,.. Hence, k | M, (%) and (since
we have assumed k €.%7,) it follows that k € Z.

Conversely, suppose k€. We will define the sequence {4,}.>0 inductively.
Let 4, be defined by (i) and suppose that, for some N = 0, /i, hy, ..., hy have been
defined so that (ii) and (iii) are satisfied. Equations (4.1), (4.2), and (4.4) remain
valid, and thus we have (since k € ),

4.5) 0 = [k, UN,] = (hy, I — TT*)h) + [ly, L] »

where [, = (I — UT*)h. From (3.2) we obtain [ly, ( — TT*)h] = 0, and from this
it follows that

[IN’ l*] = [1N7 (U -— T)T*h].
Consequently, we obtain from (4.5)

(hy, I — TT*Y b)) = [I, (U — T)T*h].
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Consider the continuous operator Q:# — &£ defined by Qh = (U — T)h
(h € #). We can then write the previous result in the form

(( = TT*) by, B) = [y, OT*h) = (TQly, h),
and hence we have
(I — TT*) hy = TQ*1 .
Therefore, if we define Ay, , by
hyer = T*hy + Q*ly ,
then we conclude that Thy,, = /iy, and (i) is satisfied. We also have
I — T*T)hN+1 = hN+1 — T*hy = Q*IN >
and it then follows, with the help of (2.3), that for all h € 5#
Uy, (U — T) h] = [Iy, Qh] = (Q*ly, h) =
=(I — T*Dhyyr, ) =
= [(U — Dhysr, (U —T) Al
Therefore, Iy = (U — THhy,,1, and (iii) is satisfied. This completes the inductive
definition of {,}, and it remains to prove the uniqueness assertion.
Suppose 4, = 0 for all n> 0. In particular, /i, = 0 and thus k € M, (¥). {I,},>0
is the sequence of Fourier coefficients of k in M, (%) and, by (iii), I, = 0 for all

n> 0. Since M, (%) is regular, [15], Theorem 7.2 shows that k = 0, and thus {A,}.~0

uniquely determines k.
The sequence {/,},>0 is uniquely determined by %, so by (i) and the recurrence
relation /1,,, = U*(l, + h,) (easily derived from (ii) and (iii)), k uniquely determines.

5. POSITIVITY OF THE RESIDUAL SPACE.
A SUFFICIENT CONDITION FOR £ = {0}

If [k, k] = O ([k, k]> 0) for all nonzero k in a subspace, then that subspace is
called positive (positive definite).

THEOREM 5.1. & is a positive subspace. If T is power bounded, then & is positive
definite.

Proof. Let k be a vector in &, and let {A,},50 be the sequence of vectors in H#°
corresponding to k, defined by Theorem 4.2. (We will use throughout this proof
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the notation of Theorem 4.2.) Then we have, by the definition of the inner product
in [8] and by (2.3), the following:

[k, Kl = ol + ¥, T 1] =
n=0
= Iollt + 3 LU = Ty (U — Tpa] =
n=0 .

= ol + 3 (= T*Thyin, fs).
n=0

Theorem 4.2(ii) implies that, for 0 < n < N — 1, h,yq = TV""1h,. We therefore
obtain the chain of equalities

N1
im Y, (I — T*T)TV " hy, TN " hy) =

|
N-oo ,"9o

[k, k] = [lho|* +

—00 n=0

N-1
= Pll+Jim (5, T TTTY )
= [lholl* + lim (hy — T*NTVhy, hy) =
N-co
— il + Jim (vl — 7],

But T™hy = h, (Theorem 4.2(ii)), and thus we have
5.1 [k, k] = lim ||y = O.
Nooo

Hence £ is positive.
Now let us suppose that [k, k] = 0; it follows from (5.1) that lim 4y = 0.

N-oco

For each n> 0 and N> n, we have

[Aall = NTN="hnll < NTV="]] [y .
Therefore, if T is power bounded, 4, = 0 for each n> 0, and so k = 0. Hence we
conclude that if 7" is power bounded, 2 is positive definite. 7

COROLLARY 5.2. &, is a positive subspace. If T is power bounded, then &, is
positive definite. 7/

COROLLARY 5.3. If T is power bounded, then M(Z) and M(XZ ,) are non-dege-
nerate. 7,
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COROLLARY 5.4. If k € R, then the sequence {h,}n~0 of vectorsin# defined by
Theorem 4.2 is bounded.

Proof. By (5.1), im ||A,|]? exists. 7
n—-co

iz

THEOREM 5.5. If lim T%" =0, then M(%,) = X

n-—o0o

Proof. Suppose k € # and let {#,},~0 be the sequence of vectors in 5 defined
by Theorem 4.2. For each n>>0, N>n, and s € &#, we have

|(hay D) = [(TV="hy, )| = |(hy, T*N""h)| <

< Vil IT*N="h].

By Corollary 5.4, the sequence {A,},»0 is bounded. Hence if lim T*¥= 0, then we

N-ooo
obtain (/1,, &) = 0 for all n=>0 and for all # € #. Consequently, /1, = 0 for all n > 0,
and so, by Theorem 4.2, k=0. We therefore conclude that 2={0}, i.e., M(&L ,)=A"7 2
COROLLARY 5.6. If lim T" =0, then M(¥L) =A". 7}

n—o0

COROLLARY 5.7. If a vector he # satisfies lim T#"h = 0, then he M (% .).

Proof. Suppose k € Z. Then, as above, we have (since A, is the projection of
k into )

[k, h] = (ho, h) = 0.

Thus & | #, and using (3.2) we can deduce that he M (¥,). %/

REMARK. We could, if we wished, deduce Theorem 5.5 from Corollary 5.7,
since if # < M(Z,) then the minimality of the dilation implies M(Z,) = A .
CoROLLARY 5.8. If a vector h € 3 satisfies lim Tth = 0, then he M_(¥£). %

n—oo

When T is a contraction, the condition lim 7%" = 0 is equivalent to

M(Z ) = A ([19], Theorem I1.1.2). The following ex;_gple shows that the converse
to Theorem 5.5 is not valid for a general bounded operator T. However, in Sec. 8
it will be shown that an extra condition on T (namely the boundedness of its cha-
racteristic function) enables us to obtain the converse.

ExAMPLE 5.9. Let 5# be a two-dimensional space and define T on # by
the matrix
( 1 0
1 0 )

Suppose k € #; then the sequence {A,},>0 of vectors in # defined by Theorem 4.2
is a constant sequence, since we have T2 = T and h, = Th,, for all n > 0. Con-
sequently, the sequence {/,},~0 in Theorem 4.2 is also constant (I, = (U — T)h,,),



DILATIONS OF NONCONTRACTIONS 81

and since, by the definition of the norm in [8], ¥} ||4,]* < oo, we conclude that [, = 0

n=0
for each n > 0. We have Q, = [, and hence, by (3.1), U — T is injective. It therefore
follows that {/,},50 is the zero sequence, and hence k = 0. Thus # = {0}, while
lim T%" = T* # 0. %

n—oo

6. THE CHARACTERISTIC FUNCTION.
FOURIER REPRESENTATIONS

The characteristic function of T is the operator valued analytic function
(6.1) O, = [T/ + ArQr-(I — AT*) U7 Q1|

O4() is defined for those complex numbers A for which 7 — AT* is boundedly
invertible, and takes values which are continuous operators from 2, to Zr-. (See,
for example, the following: [2]1, [4], [5], {61, (71, [9], [L1], [12], [13], {14], [16], and
(191)

We will be assuming for the remainder of this paper that # is separable and that
T has bounded characteristic function, i.e.,

6.2) sup {||@+D)]|: 1A < 1} = C < oo.

Suppose he M(Z ), and let {/,} be the sequence of Fourier coeflicients (3.4)
of /1 in M(%Z,). It is a consequence of the definition of the norm in [8] that
2 I1L,]|? < oo. Also, it is shown in [9] that if @ is bounded then 2 11?2 < oo.

n=— 00 n=0
Therefore, when @ is bounded, we can define P, the Fourier representation of

M(£Z,), by
@)= ¥ e,

where @, is the unitary map from £, to %7« discussed in Sec. 3. ®¢, is a unitary
operator from M(Z,) to L¥@Pr+), the Krein space of square integrable @r--valued
functions with inner product

[, o] — 1/27 Sz" [w(®), o(0)dt, (4, v L3 (D))
0

(cf. [19], Sec. V.1; [13], Sec. IV.1).
Similarly, if he M(¥) and {l,} is the sequence of Fourier coefficients of /

in M(¥), then p [l < oo whenever @, is bounded. We define &4, the Fou-

rier representation of M(%¥), by

@B D)= Y, "ol

n=— 0Q

D4 is a unitary operator from M(Z) to LA D).
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Note that the Fourier representations take their values in 2, (for M(#)) or
Dy (for M(Z.)), and not in & or Z,. In this respect we are following [9] instead
of [19]. Also note that from [9], p. 135 we can deduce that the Fourier representa-
tions and their inverses have norms less than or equal to (2C2 + 1)!2, where C is
given by (6.2).

When # is separable and @7 is bounded, then the strong limit

O7(e") = lim O(re'")
r—>1-

exists almost everywhere, and we obtain a bounded operator @y: LY %Dy) » LXDr+)
defined by

(Orv) (1) = Or(e*)v(?) ae. (ve LXDr))

(cf. [19], Sec. V.2). With our definition of @(1), we then have, fork € M(¥) and
h:k € M(g:.k)>

(6.3) [h, 1] = [O1Beh, B h,).

This result appears in [9], Sec. HI.1, with a slightly different definition of ©;. Also,
in [9], (6.3) is proved for M, (%) and M, (£.,) only, but it is not difficult to generalize
the arguments in [9] to establish (6.3) for all he M(¥) and h, € M(Z.) (see [13],
Sec. IV.6]).

An alternative formulation of (6.3) is

(6.4) 018y = By PIM(Z),

where P is the projection of £ onto M(Z,).

Finally, note that when @, is bounded, M(¥) and M(%,) are the ranges of
the unitary operators % and &%, respectively. Thus, by [15], Theorem 5.2, M(%)
and M(¥.) are regular (cf. [9], Sec. I11.2).

7. THE RESIDUAL AND DUAL RESIDUAL SPACES AS HILBERT SPACES.
SOME SIMILARITY RESULTS

We again consider the spaces # and £, introduced in Sec. 4. When @y is
bounded, M(&) and M(¥.) are regular, and thus £ and £, are also regular. We
can then strengthen Theorem 5.1 and Corollary 5.2:

THEOREM 7.1. If @O is bounded then, with the inner product [.,.}, # and X.,
are Hilbert spaces. The intrinsic topologies on & and R., (defined by |h|| = [h, h]'”2)
coincide with the strong topologies (defined by \|h)| = [Jh, h]'%).

Proof. Since & and £, are regular, [3], Theorem V.3.4 implies that they are
Krein spaces. But # and ., are both positive subspaces (Theorem 5.1 and Corollary
5.2), and so they are Hilbert spaces.
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The intrinsic and strong topologies coincide by virtue of [3], Theorem V.5.2. 7

If /" is considered as a Hilbert space with the J-inner product (2.1), then the
operators U|# and U[Z, are not unitary, but they are similar to unitary operators
when @ is bounded. This is proved in [9], p. 137, using the theorem of B. Sz.-Nagy
[17], but we have here an explicit realization of this result. Indeed, simply renorming
% and £, with the equivalent norm |/4]| = [/, A]'? makes the operators unitary.
This observation leads us to a simple geometric interpretation of the similarity results
of Sahnovi¢ [16] and Davis and Foias [9].

THEOREM 7.2. ([16], Theorem 1) Consider A as a Hilbert space with the J-inner
product. Then, if Oy is bounded, U is similar to a unitary operator (on a Hilbert space).

Proof. Since M(%,) is regular, every vector e is of the form h=m + r
(me M(Z,), r € #). We can thus define a norm on 4 by

[Al* = |Gz ml|? + Ir, r].

By Theorem 7.1 and the continuity of @  and ¢3!, this norm is equivalent to the
J-norm. Since @, UPZ! is multiplication by e on L%(ZP1-), we clearly have

|UAlL = [IA
for all 1 € . Therefore, with this norm, U is unitary. 7

COROLLARY 7.3. ([9)) If Oy is bounded, T is similar to a contraction.

Proof. (cf. [16]) The operator U, = U|A + is similar to an isometry, and
T*=U%|H#. Y

8. THE OPERATOR F.
SOME RESULTS ON RESIDUAL SPACES

Let us denote by G the operator @% , considered as mapping LA(Dr+) to A ,
and let F be the operator G*, mapping # to L%Zy-). Then, if P is the projection of
A onto M(#,), we have

F= @4 P,
and hence FG = I and GF = P.

Theorem 3.1 shows that " is spanned by M(%), M(.%,), and #,, where #’,

is the maximal subspace of # reducing T to a unitary operator. Since F is continuous,

it is determined by its values on these three subspaces. This representation is simple
to write down, using (6.4) and noting that 3£, = % (Theorem 3.1):

FIM(Z) = 0,0y,

FIM("g:{:) = (p,‘?,s
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and

Fl#, = 0.

We also have the following explicit representation of F.

THEOREM 8.1. For h €X', the function Fli € L¥(D1+) has Fourier series

[ze]
FW) (D)= Y, ©"p.Pe U™,

n=—00

where Pg_ denotes the projection of # onto & .

Proof. If he M(Z,), then the vectors Py U*'h (n=0, 1, 4-2, ...) are the
Fourier coefficients of /z in M(Z ). It therefore follows from the definitions of ¢¢,
and F that

Y &, Py Ush = (D2 li)(t) = (FR) (2).

n= — 0o

Now suppose that /1 € . Since Z reduces U, we also have, forall n, U*"h € 4.
But £ is orthogonal to M(% ), and hence also to ., and thus Py U*" = 0. Con-
sequently we have

Z ﬁi"t(p*P}Z’.U*"h =0 = (Fh) (t)-

n= —o

The required result follows from the fact that o = M(ZL YD ZX. %5

i

COROLLARY 8.2. For he#, the function Fiie LXDr,) has Fourier series

EW) () = %, €Ty Qr-T*h.

n=0

Proof. Since # | M_(%..) (by (3.2)), we deduce that U*# | &, forn < 0,
and thus

PepU¥h =0 (hest, n <0).
When n>0, we can write

U*rh = UT#r+1) -+ Z U:::k([__ UT:&)T::m—k/,l'
k=0

Since U# 1. &, and U*¥, 1 &, for k=1,2,...,n, we deduce that

Py U*nh = (I — UT*)T*"h.
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Hence we have @ Py U*h = Jr«Qr-T*'h (see Sec. 3), and the corollary is.
proved. 7
COROLLARY 8.3. When Oy is bounded we have, for all h € 3,

(=2

Y W QrTHhi2 < 0. 7

n=0

The following extends [19], Proposition I1.3.1 from contractions to all operators.
T with bounded characteristic function.

THeEOREM 8.4. Suppose T has bounded characteristic function. Then, for he #,

Pah = lim UnT*"h, Py h = lim U*"T7h,

n—00 n—-00

and hence

[Prh, Pgh] = lim |T*"h|?, [Pg h, Pg h] = lim || T7A|?,

n-oo

PyPgh = lim T*T**h, PwyPg h = lim T*"T"h,

n=»00 h—00

Proof. Suppose the function v in L¥Pr+) has Fourier series

© .
v(t) = Yy, ea,

n= - 0

Since $;! = P% is continuous, and since for each M and N (with M < N) we have

N N

(D’;,' Z eiman = Z Un(pﬂ_clan,
n=»mM n=M

we deduce that

Go=~>0% v= Y U'pi'a,

n= — oo

Hence, with P denoting the projection of " onto M(Z,), Corollary 8.2 gives us
Ph = GFh = 2 U"(p;]'JT- QT'T*nh =
n=0

=Y, U"I— UT"T*%h =

n=0

(UnT*nh — Un+1T*n+1h) —_

it

— lim (h — U"T*"h).

n—+»o0
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Consequently we obtain
Pph = (I — PYh = lim U"T*").

n-oo

Similarly, we also have Pz /i = lim U%"T"}, and the remaining assertions of the

- 00

theorem follow immediately. ?

We can now prove the result referred to in Sec. 5, immediately prior to Example
5.9. For the contraction case, see [19], Theorem II.1.2.

COROLLARY 8.5. If @y is bounded, then
() M(&L.,) =X ifand only if im T*" =0, and

n-w

(i) M(Z) = if and only if lim T" = 0.

Proof. 1t suffices to prove (i). If M(Z,)= A", then Pp=0. Hence, for h e s,
we have
lim T"T*")y = PypPyh = 0,

n—-Co

and it therefore follows that

lim [|T*"A)2 = lim (T"T*"h, h) = 0.

n—+co n—-0o

Thus lim T#%*h = 0 for all hes#, i.e., im T = Q.

n—co n—-»oo

The converse is Theorem 5.5. 77

COROLLARY 8.6. If Of is bounded, then avector heF# satisfies lim T*"h =0
ifandonly ifhe M,(2,), and lim Th = O if and only if he M(L).

Proof. It suffices to pro”v;oothe first assertion. If he M, (<), then Pyh=0
and the rest of the proof is the same as in Corollary 8.5. The converse is Co-

%5
rollary 5.7. 74

The results in this paper first appeared in the author’s Ph. D. thesis [13] at the Univer-
sity of Toronto, supervised by Chandler Davis. Additional work was partially supported
by a grant from the National Science Foundation.

REFERENCES

1. ArostoL, C., Sur la partie normale d’un ensemble d’opérateurs de ’espace de Hilbert, Acta
Math. Acad. Sci. Hungar., 17 (1966), 1—4.

2. BaLL, J. A., Models for noncontractions, Jour. Math. Anal. Appl., 52 (1975), 235254,

3. BOGNAR, J., Indefinite inner product spaces, Springer-Verlag, New York, 1974.



DILATIONS OF NONCONTRACTIONS 87

10.

11.

12

13.

14,

15.
16.

17.

18.

19.

. Bropskii, V. M., On operator nodes and their characteristic functions, Soviet Math. Dokl.,

12 (1971), 696—700 (Translated from Dokl. Akad. Nauk SSSR, 198 (1971), 16—19).

. Bropskii, V. M.; GoHBERG, I. C.; KrEiN, M. G., Determination and fundamental proper-

ties of the characteristic function of a Y-node, Functional Anal. Appl., 4 (1970), 78 —80.
(Translated from Funkcional Anal. i Prilozen., 4: 1 (1970), 88 —90).

. BrRoDSKI, V. M.; GOHBERG, L. C.; KrEiN, M. G., On characteristic functions of an invertible

operator (in Russian), Acta Sci. Math. (Szeged), 32 (1971), 141 —164.

. CLARK, D. N., On models for noncontractions, Acta Sci. Math. (Szeged), 36 (1974), 5—16.
. Davis, CH., J-unitary dilation of a general operator, Acta Sci. Math. (Szeged), 31 (1970),

75—-86.

. Davis, CH.; Foias, C., Operators with bounded characteristic function and their J-unitary

dilation, Acta Sci. Math. (Szeged), 32 (1971), 127—139.

DurszT, E., On the unitary part of an operator on Hilbert space, Acta Sci. Math. (Szeged),
31 (1970), 87—89.

HEeLTON, J. W., The characteristic functions of operator theory and electrical network reali-
zation, Indiana Univ. Math. J., 22 (1972), 403—414.

KuzeL, O. V., The characteristic operator-function of an arbitrary bounded operator, Amer.
Math. Soc. Transl., (2) 90 (1970), 225—228. (Translated from Dopovidi Akad. Nauk
Ukrain, RSR Ser. A., 1968, 233 —235).
MCcENNIs, B. W., Characteristic functions and the geometry of dilation spaces, Ph. D. thesis,
University of Toronto, 1977. ’
MCcENNIs, B. W., Purely contractive analytic functions and characteristic functions of non-con-
tractions, Acta Sci. Math. (Szeged), 41(1979), 161172,

MCcENNIs, B. W., Shifts on indefinite inner product spaces, Pacific J. Math., 81(1979), 113 —130.

SAHNOVIC, L. A., On the J-unitary dilation of a bounded operator, Functional Anal. Appl.,
8 (1974), 265—267 (Translated from Funkcional Anal. i Priloten., 8: 3 (1974),83 —84).

Sz.-NAGY, B., On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math.
(Szeged), 11 (1947), 152—-157.

Sz.-NAGy, B., Sur les contractions de I’espace de Hilbert, Acta Sci. Math. (Szeged), 15 (1953),
87—-92.

Sz.-Naay, B.; Foias, C., Harmonic analysis of operators on Hilbert space, North Holland,
Amsterdam-London (1970).

BRIAN W. McENNIS
Department of Mathematics,
The Ohio State University,

Marion, Ohio
U.S.A.

Received May 11, 1979; revised August 2, 1979.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


