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ELEMENTS OF SPECTRAL THEORY FOR
GENERALIZED DERIVATIONS

L. A. FIALKOW
1. INTRODUCTION

Let # denote an infinite dimensional complex Hilbert space and let #(#)
denote the algebra of all bounded linear operators on #. For 4 and B in Z(¢)-
let 7 45 (or simply J7) denote the operator on Z(#°) defined by I 5(X) = AX — XB.
In the present note we characterize the Fredholm essential spectrum of 9~ and we
present several necessary or sufficient conditions for the range of 4 to be norm closed.

In order to state our results in detail and place them in perspective, we first
recall some pertinent terminology and results from the literature. Let £ denote an
infinite dimensional complex Banach space and let #(%) denote the algebra of all
bounded linear operators on . For T'e (%), let o(T), o(T), and ¢,(T) denote,
respectively, the spectrum, left spectrum, and right spectrum of 7. M. Rosenblum’s
fundamental result states that

o(T) < 6(A) — o(B) = {a — f:aca(d), Bca(B)}

[22], and the identity ¢(7) = 6(4) — 6(B) is contained in [17], Theorem 10. Thus
J is invertible if and only if 4 and B have disjoint spectra.

Following [7], let 6,(T) and 64T) denote, respectively, the approximate point
spectrum of T and the approximate defect spectrum of T, i.e.,

6s(Ty= {Aeo(T): T — A is not surjective}.

(For Te #(#), 0(T)=0,(T) and ¢ (T) = 04(T).) In [7],C. Davis and P. Rosenthal
characterized the approximate point and defect spectra of  as follows:

0'7[(9-) = O'"(A) - GJ(B)
and

05(T) = a5(A) — a.(B).

Thus J is bounded below (resp. surjective) if and only if 6,(4) n os(B) = & (resp.
o5(4) n o.(B)= ). Subsequently, the author proved that ¢47) = o(7J) and
a.(7) = o,(7) [10]. Furthermore, the range-of J is norm dense in £ () if and only
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if 6, (4) n 0, (B) = & and there exists no nonzero trace class operator X such that
BX = XA [11], Theorem 1.1 (see beloew for notation).

For an operator T € £(Z), let ker T and %(T) denote the kernel and range of T.
Following [16], let nul T = dim ker T and let def T = dim(%Z/%(T)") (where 2(T)"
denotes the norm closure of #(T)). For x € Z, let [x] denote the image of x in #'/2(T)".
An operator T'is semi-Fredholm if 2(T) is closed and either nul T < co or def T < oo ;
in this case the index of T is defined by

ind7T =nulT — def T.

T is Fredholm if Z(T) is closed and both nul T and def T arefinite. Let o (T) denote
the Fredholm essential spectrum of T, i.e.

0 (T)={A€C:T — 1 is not Fredholm}.

‘Thus ¢ (T) coincides with the spectrum of the image of T in the quotient algebra
LX) A (X), where A (Z') denotes the ideal of all compact operators on 2 (see [18],
Chapter VII, Theorem 2, page 120).

Our principal result (Theorem 3.1) is the following characterization of the
essential spectrum of I 4

07 ) = (6.(4) — o(B)) U (s{4) — 0 (B));
thus 4 is Fredholm if and only if
o(4) n o(B)=0(4) n o (B)=C

(Corollary 3.2). We prove this result in the setting where 4 and B act on possibly
different Hilbert spaces, 5, and 3, respectively, and where .~ acts on Z(#,, ;).
Moreover, the inclusion

0 (T < (6.(4) — 0(B)) U (o(4) — 0 (B))

is valid when 4 and B are Banach space operators (Theorem 3.7). Since our proof
of the reverse inclusion in the Hilbert space case depends ultimately on Voiculescu’s
‘Theorem [25], Theorem 1.3 and its important consequence due to C. Apostol [3],
Lemma 2.2 (see Lemma 2.10 below), we have not been able to extend this direction
to the Banach space case. Section 2 contains a number of preliminary results used
in the proof of Theorem 3.1; the reader may prefer to refer to section 2 only as
needed in sections 3 and 4.

Several authors have studied the problem of characterizing when the range
of  is norm closed in #(5#). One type of result in this direction shows that 7
has closed range if the spectra of A and B are suitably separated. Rosenblum’s
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Theorem [22], and the results of C. Davis and P. Rosenthal [7] for the cases when
is bounded below or surjective, are of this flavor. Moreover, J. Anderson and
C. Foias proved that if 4 and B are normal, then J has closed range if and only
if 6(4) n o(B) contains no limit point of 6(4) U o(B) ([1], Theorem 3.3).

Considerable attention has also been devoted to the case 4 = B, in which
case J is called the inner derivation induced by 4, which we denote by 6,. J. G.
Stampfli treated the case when A4 is hyponormal [23], and C. Apostol and J.G.
Stampfli studied the cases when A is spectral, compact, nilpotent, or a weighted
shift [5]. Subsequently, C. Apostol proved that %(3,) is closed if and only if A is
algebraic and 2(p(A4)) is closed for every polynomial p(z); equivalently, #(J,) is
closed if and only if A4 is similar to a Jordan operator ([3], Theorem 3.5).

In section 4 we obtain several general conditions which imply that %(J) is
not closed. We apply these results to cases when A4 and B are compact, hyponormal,
or nilpotent of order two, and we thereby recapture and partially extend analogous
results of [1], [5], and [23].

We conclude this section with some additional terminology. Let () and
U(H#) denote, respectively, the groups of all invertible and unitary operators in
Z(#). For T in Z(#), let

FL(T) = {(XTX: Xe S(H#)}
and

UT) = {U*TU: UecUK)}
denote, respectively, the similarity and unitary orbits of 7. In the sequel we rely
on certain extensions of similarity and unitary equivalence. Operators T and S in
L(H) are approximately similar (T ~ S) if there exists a sequence {X,} < L(H)

such that sup [|X, ]| < oo, sup || X7l < oo, and lim {|X,;}TX, — S|| = 0[13). Tand
S are approximately unitarily equivalent (T & S) if w(T)” = u(S)~ [13], [25].
Approximate similarity and approximate unitary equivalence are equivalence rela-
tions in #(s#). If an operator S acts on a space 4 isomorphic to 5, the notation
S € %(T)~ means that there exists a sequence of isomorphisms U,: # — " such that
U,TU* — S; equivalently, S is unitarily equivalent to an operator S’ € #(3#) such
that T ~ S’ in the above sense. Thus, whenever S € #(T)~, we may assume that S
and T act on the same space.

For k> 1, let{e, ..., ¢,} denote the standard orthonormal basis of C¥,
and let g, denote the operator on C* defined by the following relations:

qk(ei) = €1 (2 i< k)y i€y = 0.

Let g, denote the zero operator on C!. For a cardinal number « > 1, let ¢ denote
the orthogonal direct sum of « copies of g,. We denote ¢{* by i (=¢,®¢® ...).
A Jordan nilpotent operator is a finite direct sum of the form

4’ ® .. D g,
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13

n
A Jordan operator is a finite direct sum of the form Y, @ (41x, + N), where N,
i=l1
is a Jordan nilpotent operator on the Hilbert space #, and 1; is a complex
scalar (see [3]).
For a Banach space operator 7, let 0,(T) denote the point spectrum of T.
In the Hilbert space case, A € 6 (T) is a reducing eigenvalue for T if

dim(ker(T — 1) n ker((T — A)*)) > 0.

A complex number 4 is a reducing essential eigenvaiue for T if there exists an ortho-
normal sequence {e,}% , < 4 such that

lim [[(T' — Ae,|| = lim ||(T' — A)*e,l| = 0

[24]. Following [24], let R (T) denote the set of all reducing essential eigenvalues
of 7. For T in (), let T denote the image of T in the Calkin algebra L (#)/4 (57).
A hole in 6 (T)(= a(f’))isabounded component of C\¢, (T) ([19], page 2). Let o, (T')
and g,(T) denote, respectively, the right and left essential spectra of T, i.e. ¢, (T) =
= gr(f‘) and 01,(T) = o(T). Thus R.(T) < 6,(T) n 061(T); note, however, that
R (T) may be empty ([24], Theorem 5.3).

In the sequel we will use the following results about hyponormal operators.
without further reference. If T'e #(s#) is hyponormal, then ¢(T) < ¢(T) and
01(T) < a,,(T); in particular, 0,.(T) = R(T) ([24], Theorem 3.10). Moreover, if 4
is an isolated point of a(T), then ker(T — 1) reduces T and ker(T — A) coincides
with the Riesz subspace for T corresponding to {1}, i.e.

ker(T — A) = {xes: (T — Ay'x|"" - 0}

(see [9], Section 4 for a discussion of these facts and additional references).

Acknowledgement. The author wishes to thank Kung-Wei Yang and Domingo
A. Herrero for several helpful discussions.

2. PRELIMINARIES

Let 2 denote a complex Banach space and let T’ be in #(%). Following 3],
we define :

WT) = inf {||Tx||: x€ & and dist (x, ker T) > 1};

for several equivalent formulations of y(T), see [16], Chapter IV, page 231. The
range of T is closed in & if and only if y(T) > 0 ([16], Chapter IV, Theorem 5.2).
Let 5#, and 37, denote Hilbert spaces of arbitrary dimension and let & = L{(#, #1).
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For Ae £(#,) and Be L(H,), let T =9 45 L(%). We begin this section by
recording some facts about y(7 ,5) that will be useful in the sequel.
LemMA 2.1. If J € FL(H#), then

T =1as, 8) < WIHITTH AHT 40)-

Proof. Suppose first that ||/ = 1. Let {X,} < L(#,, #;) be a sequence
such that

dist (X,, ker 7 5 = 1
and
14X, — X,Bl| < (T 45) - 1/n  for n > 1.

For Zeker J ;14 5, let Y =JZ; then AY = YB and thus [[X, — Y| = 1. Now
WX, — ZI| = [/, — DI = A/IVD X, — Y > 1,

and it follows that

dist(/ X, ker 7 ;-1 ;. 5) = L.
‘Thus
T y-ray,8) < AKX, — J7X,B|| <

< |V NAX, — XBl < W (T 4p) + Un)  forn= 1,
and so
T j=145,8) < HIWT 4p)-

For the general case, the preceding inequality implies that
W y=145,8) = YT (uir-y a2 8) < IVIHITTH (T 48)-
LEMMA 2.2. 9T 45) = Y(T prax).
Proof. Let {X,} « %(s#5, ) be such that

dist(X,, ker T 5} = 1
and
|AX, — X,B|| < ¥(7 4p) + 1/n for n > 1.

If Y € P(#,, #,) and B¥Y = YA*, then AY* = Y*B, so

X — Y| = IIX, — Y¥| > 1,
and thus
dist (X}, ker T gegx) = 1.
Now
1B* X3 — XFA*|| = |[AX, — X,B|| < (T 4p) + 1/n,
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and thus

T Bear) < VT 4p)-

The result follows from the last inequality by replacing B* by 4 and A* by B.
LemMma 2.3. If A ~ A" and B ~ B, then %(T 45) is closed if and only if
R(T 4.p)) Is closed.

Proof. We assume first that B = B. For y > 0, let
&, = {Se L(L(H,, H#1): ¥(S) > v};

[3], Lemma 1.9 implies that &, is norm closed. Since 4 ~ A’, there exists {X,}

< &(H,) and there exists M > 0, such that || X,|| < M and | X; Y| < M forn > 1,
and such that X,4X;! - 4’. Lemma 2.1 implies that

W xpaxi,p) = QHIXGIHIX D V(T 48) = M) Y (T 4);

thus I x ax2,p€Z, for y = (1/M)YT 45). Since T x ax71p— F 45 and &L, is
closed, it follows that if #(7 ,5) is closed, then so is #(7 4.p), and the converse
follows by symmetry. The general case follows from the preceding case and
Lemma 2.2 via the following sequence of implications:

W up) > 0= UT 1) > 0= T geyn) > 0 YT gugs) > 0
< YT 45) > 0.
Formal repetition of the preceding argument in the case of approximate
unitary equivalence yields the following result.
CoOROLLARY 2.4. If A =~ A’ and B = B, then y(T 48) = (T 45)-
LEMMA2.S5. If A'€ #(A) and B’ € &#(B), then nulT ,z=nul T .. and
def T 5 = def T 4.5

Proof. Let Ue ¥(#,) and Ve £(s#,) be invertible operators such that
A’ = U7AU and B’ = V1BV. The mapping X — UXV™ is an isomorphism of
ker 7 4.5 onto ker 7 p. Similarly, the mapping [Y] —» [UYV"] is an isomorphism
of corange 7 ,.5. onto corange 7 ,p.

The following examples show that the preceding lemma cannot be extended
to the case A" € %(A)~ or B' € U(B)".

ExampLE 2.6. Let B =04, and let 4 denote an injective, non-invertible normal
operator; thus 0 e R (4). Let ## denote a separable, infinite dimensional Hilbert
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space and let A’ € #(#,) denote an operator unitarily equivalent to 4 @ Ou.
Lemma 2.12 (below) implies that A’ € %(A)~. It follows readily that nul 9,z = 0
and nul ;.5 = oo.

ExaMpPLE 2.7. Let 4 be as in the preceding example. Let B denote a normal
operator such that 0eo (B), o.(4) n 6 (B)=F, and o (A)no(B)=. It
follows from [7], Theorem 5 and [11], Proposition 4.2 that the range of 4,z is proper
but norm dense, so that def J ;5 = 0. On the other hand, 4 @ O0» ~ A € U(4)",
and since 0 € 6,(4") n o,(B), [11], Prop. 4.2 implies that the range of J .5 is not
dense. Thus def 7 5 = 0 < def I 5. (We note that [7], Theorem 5 implies that
if 7 ,p is surjective and A’ € %(A)~, B' € U(B)~, then J .5 is also surjective.)

Despite the preceding examples, we do have the following stability result.

ProposiTION 2.8. If A" ~ A and B’ ~ B, then T ,5 is semi-Fredholm if and

J
only if T g is semi-Fredholm, and in this case nul I 5 = nul T 45, def T 5 =
=def T 45, and Ind T 43 = ind T 4y

Proof. There ‘exist uniformly bounded sequences {X,} = S(#,) and {Y,} <
o P(#,) such that {X;'} and {Y,'} are uniformly bounded, X,'AX, - A,
and Y, 'BY, » B'.1f J ,.p is semi-Fredholm, then since I x;ix,, visy, — 7 45

it follows that for a sufficiently large value of n, 7 x;-14x,, yi sy, is semi-Fredholm and
nul I xx, vy, < nul T 4 g,

def T x;14x,, vitey, < def T 4
and
ind g_Xn_lAX,., Y:IBY,. = lnd yA,B'

([16], Chapter IV, Theorem 5.22, page 236). Lemma 2.3 and Lemma 2.5 now imply
that 7, is semi-Fredholm and that

nul J 5 = nul I x;uax,, vitey, < nul J 4.,

defffAB = defyx:lAmen‘lgy" < defﬁ'A’B,,
and

ind fAB = ind 7,\',’,"1;4)(", Y BY, = ind fA’B’;

the result follows by symmetry.

LemMA 2.9. nul F 3 = nul T yu» and def T 5 = def T g po. Moreover, T 4
is semi-Fredholm if and only if T e, is semi-Fredholm, and in this case ind T 4 =
== lnd g’B*A"'
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Proof. The mapping X - X* is a conjugate linear isomorphism of ker 7 4
onto ker J . .. ; similarly, the mapping [¥] — [Y*]is a conjugate linear isomorphism
of corange J 5 onto corange J g.,.. The result follows from these observations and
Lemma 2.2.

The next lemma is essentially due to C. Apostol ([3], Lemma 2.2).

LemMma 2.10. Let o# be an infinite dimensional Hilbert space and let T be in
L(H).

1) If 0 € a|(T), then either nul T > 0, or 0€ 6,(T); if 0€ 6 (T), then there
exists S € U(T)” such that nul S = oo ;

iy If 0 e 6 (T), then either nul T* > 0, or O0c 6, (T); if 0o, (T), then there
exists S € U(T)~ such that nul S¥ = co.

Proof. 1) If 0 € 6(T) and T is injective, then (T) is not closed. Thus 0 € ¢(T)
and the result follows from [3], Lemma 2.2.

ii) Apply 1) to T%.

LemMa 2.11. Let 5# be an infinite dimensional Hilbert space, let T be in ¥ (),

and assume R(T) # . Then there exists a separable subspace MR < A such that
M reduces T and R(T|IM) = R(T).

Proof. Let {;}icq denote a finite or denumerable sequence that is dense in
R,(T). For each i€ 8, let {e;}7.,; denote an orthonormal sequence in 5# such that
lim (T — A)ey || = lim |[(T — A)*eul| = 0.

k—oo k00
Let M, denote the closed subspace spanned by all vectors of the form p(T, T*)e,,,
where k> 1 and p(x, y) is any non-commutative polynomial with rational coefficients.

Let®t = \/ Mt;; M is a separable reducing subspace for T, and since R (T|M) is
i€9y
closed ([24], Theorem 4.3), it follows readily that R (T'|M) = R (T).

The following lemma extends a result of N.Salinas ([24], Corollary 4.9) from
the case of separable Hilbert spaces to the non-separable case.

Lemma 2.12. Let 5 be an infinite dimensional Hilbert space, T € ¥ (), and
R(T) = . If N is a normal operator on a separable Hilbert space and 6(N) = R(T),
then T® Neu(T)".

Proof. Let M be as in Lemma 2.11. It follows from [24], Corollary 4.9 that
(TP ® Neu(T|M)~, and thus

T@N=TW) o TIM & Neu(TIM) & (TIM)” = «%(T)".

COROLLARY 2.13 (cf. [24], Theorem 4.6) Let H# be an infinite dinensional Hilbert
space, Te L(#), and ). € R(T). Then there exists S € U(T)™ such that

dim (ker (S — A)* n ker (S — 1)) = oo0.
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We conclude this section with a known folk-type result; the proof, which is
based on the Riesz decomposition theorem [21], ([20], Theorem 2.10), will be omitted
(cf. the proof of [8], Theorem 7).

LemMA 2.14. Let 3# be a Hilbert space and let T be in £(3#). If o(T) = L"J g;,
i=1

where each o; is a non-empty closed subset of o(T) and o; n o; = & for i # j, then

there exists an orthogonal decomposition H =0 ... ®H, and operators
T;e L(3), such that o(T;) = o, (1 < i < n) and such that T is similar to T, ® ...
. T,

3. THE ESSENTIAL SPECTRUM OF 7 4p

Unless otherwise noted, &, and 5%, are infinite dimensional Hilbert spaces,
Ae P(#,), Be L(Hy), and T 4(X) = AX — XB for X L(#,, ). The main
result of this section is the following description of the Fredholm essential spectrume
of T 45

THEOREM 3.1. 6 (7 4p) = (0.(4) — 0(B)) U (0(4) — 0.(B)).

COROLLARY 3.2. .y is Fredholm if and only if 6(A) n o(B)= & and
a(4) n o (B) = .

Before proving Theorem 3.1, it is convenient to treat the special case when
A = 0 or B=0, and we now consider this case. In the following lemma J, is an
arbitrary Hilbert space.

LeEMMA 3.3, If B = Ox,, then (T ) is closed if and only if #(A) is closed

Proof. Suppose that %#(4) is closed. If P denotes the orthogonal prOJectlon
of #, onto (ker A}, then A = AP, and there exists L € £ (o) such that LAP = P.
If {X,} €« L(H,,H)), YeL(H,,#,), and AX,— Y, then PX,= LAPX, =
= LAX,— LY, and so AX, = APX,— ALY. Thus ¥ = ALY and it follows that
R(T) is closed.

For the converse, we assume that %(4) is not closed. Thus there exists
{x,} « #,andye#,, |yl=1,such that Ax, » yand y ¢ Z(A). Let Ue L(H,, # )
be an operator whose range contains y and let z, € 5, satisfy Uz, = y. Define
X, X, € P(H,, H#,) by the formulas Xz = (Uz, p)y (z€;) and X,z = (Uz, y)x,
(ze#,) for n= 1. Since Ax,— p, it follows that 4X, — X. If Re L(H#,, )
satisfies AR = X, then

ARz, = Xz, = (Uzy, y)y = |Iy|Py = »,

which contradicts the fact that y ¢ #(4). Thus X ¢ #(J), so the proof is complet
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In the sequel, 5#, is again infinite dimensional.
LemMa 3.4. If B = Osx,, then 0 (7) = a(A).

Proof. Since ¢,(7) < o(T) = o(A), it suffices to prove that if 0 € o(4), then
0eo,(2). From Lemma 3.3, we may assume that 2(4) is closed, and thus #(7) is
closed and dim ker A> 0 or dim ker A*> 0. Let {¢,}>, = #, denote an ortho-
normal sequence. We consider first the case dim ker 4> 0; let x €, denote a
nonzero vector inker 4. For n>= 1, define X, e £(#,, #) by X,v=(v,e)x
(ve#,). It follows readily that {X,} is an independent sequence in ker 7, so I
is not Fredholm. For the remaining case, let y e #,0%(4), y# 0. For n > ldefine
Z,€ L(H,y, 1) by Z,v= (v,e,)y (veH,), and let [Z,] denote the image of Z,
in L(Hy, #1)/R(T). 1t is easily verified that {[Z,]} is independent, so def I = oo
and the proof is complete.

COROLLARY 3.5. If A =0 or B=0, then
0, (7) = 0d(J) = o(4) — a(B).

Proof. The case when B = 0 follows from Lemma 3.4 ; the case when 4 = 0
follows from the first case by an application of Lemma 2.9.

Proof of Theorem 3.1. By virtue of Corollary 3.5 we may assume that 4 and B
are nonzero. In the first part of the proof we prove that

(6.(4) — o(B)) U (6(4) — 0 (B)) = 0(7).
Note that
T ap—(@— p)= T 4-a,B-8>

it thus suffices to prove that if 0 € (¢ .(4) n 6(B)) U (6(4) n 6.(B)), then 0€ 6 (T ,p).
We consider several special cases.

i) 0e (o, (A na(BYU (6,(4A)n o, (B)). Lemma 2.10 implies that there exists
A'€U(A)~ and B €%(B)~ such that dimker 4" > 0, dimker B’ > 0, and
dim ker A’ = co or dim ker B’ = co. From Proposition 2.8, it suffices to prove
that 0o ("), where ' = J 4p.

Relative to the decompositions #; = ker 4" @ (ker A)* and #, = ket B’ @
@ (ker B')L, the operator matrices of A" and B’ are, respectively, of the form

(0 A12) and (0 Blz) .

0 A, 0 B,

For Ve Z(ker B, ker A'), let M(V) € L(# 5, H#;) denote the operator whose matrix
(relative to the above decompositions of 5#; and ;) is of the form

(o o)



ELEMENTS OF SPECTRAL THEORY 99

let M denote the subspace {M(V): Ve ZL(ker B’, ker A')}. Suppose there exists
X e P(H o #;) such that A'X — XB' = M(V); a matrix calculation shows that

T'(AX)=AA'X — AXB' = A'(A'X — XB') = A/M¥V) = 0.

Since A'X — XB' = M(V), a calculation implies that the matrix of A'X(e ker )

is of the form
V *
(0 *)’

and it follows that nul ' > dim (M n Z(T")).

We may thus assume that n = dim (M n #(9)) < oo and that #(T") is
closed, for otherwise 0 € 0 (7). We claim that def " = o0 If n > 0, let {V;}I_, <
< P(ker B’, ker A') be such that {M(V)}7_, is a basis for M n #(J ). Since ker 4’
or ker B’ is infinite dimensional, so is #(ker B’, ker A"). Thus there exists {W;}22, <
< & (ker B, ker A') such that {V;} U {W;} is independent. For Se L(#,, #)),
let [S] denote the image of S in L(H#,, #)/R(J "), and note that {[MW )]},

m
is independent. Indeed, if ¢y, ..., ¢, are scalars such that Y, oIM(W )] = 0, then
j=1

M (Z chj) €#(J7) n MM, and thus there exist scalars d,, ..., d, such that

Jj=1
m n
Z C}WJ = Z d‘-Vi.
Jj=1 i=1

Since {V;} U {W}} is independent, each ¢; = 0. Thus def I’ = oo and 0 € 0 (7).
The case when n = 0 is treated similarly.

ii) 0 e (o (4) n 0(B)) U (0y(4) n 0,.(B)). As in the preceding case, we may
assume (via Lemma 2.10 and Proposition 2.8) that dim ker A> 0, dim ker B*> 0,
and dim ker 4 = oo or dim ker B* = oo. Relative to the decompositions #; =
= ker 4 @ (ker A)* and #, = ker B* @ #(B)~, the operator matrices of 4, B,
and X € Z(s#,, #,) are of the form

0 A,
(0 An)’

B=(° 0 y
By By

X = (Xll Xlz) .
X21 X22

A

I

and
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A matrix calculation shows thatif X;,, X5, Xs are zero operators, then AX — XB =0.
Thus

nul 7 > dim % (ker B*, ker 4).

Since the hypotheses on A and B imply that #(ker B¥, ker A) is infinite dimensional,
sois ker 7, and thus 0 € (7).

iti) 0 € (o,.(4) n 6(B)) U (6.(4) n 6,(B)). From Lemma 2.10 and Pro-
position 2.8 we may assume that dim ker A*>0, dim ker B>0, and dim ker A*=c0
or dim ker B = co. With respect to the decompositions #; = ker A* @ #(A)”
and s, = ker B @ (ker B)*, the matrices of A4, B, and X e .Z(#,, #;) are of

(0‘4 “4‘“’) (00 BB2)
a1 22 22

(Xll X12 .
XZ]. XEZ

The matrix of AX — XB assumes the form

and

It is clear that def 9 > dim Z(ker B, ker A*) = o0, s00€ g (7).

If we apply Lemma 2.9 to case i) (above), the conclusion that 0 € (") may
be extended to the following case:

iv)0e (o (4) n 0. (B) U (0,.(4) n 0(B)).

Cases 1) — iv) imply that

(0(4) — o(B)) U (6(4) — 0 (B)) = 6(7).
To prove the reverse inclusion it suffices to prove that if
o(4) n o(B)=0(4) n 0(B) = I,

then 5 is Fredholm. If the spectra of 4 and B are disjoint, then J is invertible
[22], so we may assume that K = o(4) n o(B) # &J; moreover, the hypotheses
imply that

K = (6(A)\o (4)) n (¢(B)\o(B)).

We claim that if A € K, then A is an isolated eigenvalue of A with finite multi-
plicity or A is an isolated eigenvalue of B with finite multiplicity. Suppose the claim
is false. Since 1€ g(4)\o,(4) and A is not an isolated eigenvalue of A4, there exists
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a hole H in o,(A4) such that 1 € H and Hca(A4) ([19], Proposition 1.27). Similarly,
since A € 6(B)\o,(B) and Ais not isolated in o(B), there exists a hole L in g (B) such
that Ae L and L < a(B). H and L are bounded, open, connected sets and H n L #
# . If L & H, then bdry(H) n L # . Since bdry(H) = ¢,(4) and L < ¢(B),
it follows that ¢ (4) n o(B) # &, which is a contradiction. If H ¢ L, then

(B} n a(4) > bdry(L) n H # J,
which is impossible. In the remaining case, H = L; thus
bdry(H) = bdry(L) < ¢,(4) n ¢.(B),

which again contradicts the hypothesis. The proof of the claim is complete.
Since each point in K is isolated in o(A4) or a(B), it follows that K is finite.
Denote the distinct elements of K by

K={o,...,0,} U {By oo Bohs

where o; € o(4)\ o (A4) is an isolated eigenvalue for 4 with finite multiplicity and
;€ 0(B)\o (B) (1<i<n), and B; € 6(B)\o.(B) is an isolated eigenvalue for B with
finite multiplicity and B; € a(4)\o.(4) (1 <j < p). (In the sequel we assume that
both «;’s and B;’s are present; if instead, K consists entirely of «;’s or entirely of
B;’s it is necessary to make certain obvious modifications in the following argument.)

It follows from Lemma 2.14 that there exists an orthogonal decomposition

K= @ ... 0 M, ® My,

and operators 4;€ Z(M;) (1 < i < n+ 1) such that the following properties hold:
1) dmM; <o (1 <i<n);
i) o(4) = {n} (1 <i<n);
]") G(An+1) n {ala M an} = Q;
iv) Aissimilarto ' = 4, ® ... ® A1
(The finite dimensionality of ¥R ;in i) results from the fact that 9, is the Riesz subspace
for A’ corresponding to {a;} and the fact that «; € a(4)\o (4) = o(4')\a (4').)
Similarly, there exists an orthogonal decomposition

Hoa=H1® .. @A) D K p

and operators B; € L(A;)) (1 < j < p + 1), such that:
v)dim#; <oco (1 <j<p);
vi) o(B) = {B;} (1 <j<p)
vii) O'(Bp+1) n {ﬁl, ey ﬁp} =
viii) Bissimilarto B’ =B, @ ... @ B,
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Note that since 6(4) N 6(B) = o(4) n o(B’) = K, iii) and vii) imply that ¢(4,.,) n
N o(B) =
By virtue of Proposition 2.8, it suffices to prove that 7 ., is Fredholm. Let
= (XijJ1<i<n+1, 1 j<p+1 denote the operator matrix of an element X e L(Hy, Hy)
relatlve to the above decompositions of #, and 5#,. A matrix calculation shows that
the operator matrix of 4A’X — XB' is of the form (A4 X,
Thus the ij entry of I 4.5.(X) is equal to T 4,5,(X;).

It is straightforward to verify that if each T 4,8, is Fredholm (as an operator
on Z(A;, M), then I 45 is Fredholm. Since dim M; < oo (1<i<n and
dimX’; < oo (1 <j < p), it is clear that I~ T 48, is Fredholm for 1 <i < n and
1 <j < p. Moreover, since a(4,,,) N o(B,+1) = &, Rosenblum’s Theorem {22]
implies that J~ Ans+ 1By, 18 Invertible. For the remaining operators 7 4,3 N (R )]
and 7 4,, 8, (1 < j < p), we rely on the following lemma.

iXij — XiiBicicn+1,1¢j<psre

LeEmMMA 3.6. Let 5 be an infinite dimensional Hilbert space and let #, be a
JSinite dimensional Hilbert space. If A is a Fredholm operator in (), then the opera-
tor on L(Hy, #) defined by T(X) = AX is a Fredholm operator.

Proof. Since A has closed range, Lemma 3.3 implies that 2(7) is closed. We
next show that def J~ < 0. Since 4 is Fredholm, there exist operators R, F e Z(#),
with F finite rank, such that AR = F + 1 ([18], Th. 2, pg. 120). Let P denote the
(finite rank) projection onto # © ker F, and let {Xj, ..., X;} denote a basis for
the finite dimensional space L(s#,, P#). For X in #(#,,#) we have ARX =
= FX + X = FPX + X. Since PXe P(#,, P#), there exist scalars ¢, ..., ¢,

k
such that PX = Y ¢;X;. Let [X] denote the image of X in L(#,;, #)/R(T).

i=l1

Thus [X] = [4RX]— [FPX] = — i c,[FX;). 1t follows that {[FXy], ..., [FX.]}
=1
spans L(#,, #) A(J) and thus def T < co.

To complete the proof it suffices to show that nul 4 < co. Suppose to the
contrary that nul 7 = co. Let X, eker 7, X; # 0, and let ¢, e 5#, be such that
Xt # 0. Since ker 9 is infinite dimensional and Z(#,, #(X1)) is finite dimensional,
there exists X, € ker 7 such that Z(X;) & R(Xy); let t, €4, be such that Xor, ¢
¢ #(X;). Proceding inductively, it follows that there exist sequences {X,} < ker &

n—1

and {t,} < o, such that X,t, ¢ \/ Z(X;). Clearly {X,t,}5°, is independent and
i=1

AX,t, = 0 for each n. Thus ker 4 is infinite dimensional, which is a contradiction.

Returning to the proof of Theorem 3.1, we now consider the operators
T 4,.,8;(1 < j < p). Since A — B; is Fredholm, then A4’ — B; is Fredholm, and thus
Ay — B; is also Fredholm. Since dim.J/’; < co, Lemma 3.6 implies that
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T 4ner-850 18 @ Fredholm operator on £(4";, M,,,). Thus there exists §; > 0
such that if Se £(x;, M,,) and

IS — T tpur-ppoll < 9
then § is Fredholm ([16], Ch. 1V, Th. 5.22, pg. 236). Since o(B;) = {8}, B; — B;
is nilpotent; thus there exists an invertible operator X; € #(’;) such that

X571 (B; — Bl < 6.

It follows that S = J 4, s, x78,~px; 18 Fredholm, and Proposition 2.8 implies
that g-AnHvBl = -7-,4”+1_pj, B;—B; is Fredholm.

Finally, we consider the operators J 4, 8,,, = 7 ama;, Bpr—o, (1 < I < 1),
Since B — «; is Fredholm, so is B,,, — «; and thus also (B,,, — «;)*. Lemma 3.6
implies that 7 (s, ,, -4+, o (acting on L(M;, 4 ,,.,)) is Fredholm, and since (4; — a;)*
is nilpotent, the preceding argument implies that I, —ay*, (4;—0y* is Fredholm.
An application of Lemma 2.9 implies that 7 4,_s, B,4,-«, is Fredholm, which com-
pletes the proof.

Although we are primarily concerned with the case when 7 acts on L (#,, H#,),
we note that part of Theorem 3.1 has an analogue for the case when the underlying
spaces are Banach spaces. Let 2y and &, denote infinite dimensional complex Banach
spaces, and for 4 € (%) and Be P(X,), define T € (L ( Xy X)) by T(X) =
= AX — XB.

THEOREM 3.7. 6(7) c (6(4) — 6, (B)) U (6.(4) — o(B)); in particular, T
is Fredholm if 6(4) n o (B) = ¢, (4) n ¢(B)= .

Rather than prove Theorem 3.7 in detail, we will merely sketch the appropriate
modifications of the proof of Theorem 3.1. As in Theorem 3.1, it suffices to assume
that

0(4) N 6(B) =0a(4) n 6 (B) = I,

and to prove that J is Fredholm. Let K = a(4) n o(B). The proof that each point
in K is an isolated eigenvalue of 4 or B with finite multiplicity depends on the follow-
ing fact: if & is a Banach space, T € #(%), and A is a non-isolated point of ¢(T)\
o (T), then there is a hole H in ¢ (T) such that A € H and H<o(T). The proof of
this fact follows the same method as in the Hilbert space case ([19], Proposition 1.27),
but using [16], Ch. IV, Th. 5.31, page 241, which is the Banach space analogue of
[19], Proposition 1.25.

Instead of orthogonal decompositions, we use the Riesz functional calculus
to obtain Banach space direct sum decompositions of 2, and %, corresponding
to the a;’s and f;’s. (In fact, even in the Hilbert space case it is not necessary to use
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orthogonal decompositions based on Lemma 2.14, although it seems convenient
to do so.)

There is a technical difficulty near the conclusion of the proof due to the fact
that J ... acts on L(Lf, ¥); moreover, we are unable to prove that p(J ;) =
= P(7 gess). Instead of relying on an analogue of Lemma 2.2, we give separate
arguments to prove that 7,4, », and 7 4, ,,, are Fredholm. To do this, we rely on
the following analogue of Lemma 3.6: if  is an infinite dimensional Banach space,
% 1s a finite dimensional Banach space, and 4 € #(%) is Fredholm, then the opera-
tors 7 (X)) = AX (X € L(Z1, &) and T ,(X) = X4 (X e (¥, &,)) are Fredholm
operators on £ (%, &) and L (4, &',) respectively.

Finally, the direct analogue of Proposition 2.8 for Banach spaces is valid and
its proof depends on analogues of Lemma 2.3 and Lemma 2.5. Since the reductions

based on Lemma 2.2 are not available, these results can be proved directly, using the
following extension of Lemma 2.1:

WT s-1a1, k-181) < ||| V7 KN KT 4)-
QuesTioN 3.8. In the Banach space case, is

(0(4) — a(B)) U (6(4) — 0 (B)) = 6(7)?

4. CLOSURE PROPERTIES OF THE RANGE OF J 45

In this section we give several necessary or sufficient conditions for 7 45 to
have closed range. Except as noted, 5, and s, denote arbitrary Hilbert spaces.

LeEMMA 4.1. Z(S40s) is closed if and only if R(0 4), R(0p), R(T 45), and R(T p4)
are closed.

Proof. Let # = H#, ® #, and denote the operator matrix of X e L(#)
relative to this decomposition by (X;;);<i, j<2. A matrix calculation shows that
d40p(X) has the form

( o) T AB(X12)) )
T paXa)  0p(Xs5)
the result follows directly.

LeMMA 4.2. If (5 ;) and R(5g) are closed, then B(T 4g) is closed.

Proof. C. Apostol’s theorem ([3], Theorem 3.5) implies that 4 and B are similar
to Jordan operators. Thus A @ B is similar to a Jordan operator, and [3], Theorem
3.5 implies that §4gp has closed range. The result now follows from Lemma 4.1.

COROLLARY 4.3, If A and B are similar to Jordan operators, then (T 4p) is
closed.
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The next two results will be cited frequently in the sequel in cases where 7 ,,
does not have closed range.

LemMMA 4.4. 1) If there exists A€ C such that #(A — 1) is not closed and
ker (B — A) n ker((B — A)*) # {0}, then R(T 4p) is not closed.

ii) If there exists € C such that ker (A — A) n ker((4 — A)*) # {0} and
R(B — A) is not closed, then (T 4p) is not closed.

Proof. Since ii) follows from i) by an application of Lemma 2.2, it suffices
to prove i). Since (4 — 1) is not closed, there exists {z,} < (ker (4 — 1))} and
y ey such that (4 — Az, » y and y ¢ #(4 — ). Let e € #, denote a unit vector
such that (B — A)e = (B — A)*¢ = 0. For nz1, define U, L(#,, H#,) by the
following relations: U,e = z,; U,z = O for each z in &, such that (z, e) = 0. Define

W e L(H,, H#,) as follows: We = y; Wz = 0 whenever ze#, and (z,e) = 0.
We will show that W € Z(F )" \Z(T). Let heH,, ||h]| = 1;thush = ae 4 f
with (e,f) =0 and |«|% + ||f]|? = 1. Now

(AU, — U,B — W)h = A(az,) — U,B(ee + f) — ay =
= a((4 — Dz, — y) — U,Bf.
Since
(Bf, e) = (f, B*e) = A(f, ) = 0,
then U,Bf = 0, and so
14U, — U,B — W)h|| < (4 — Dz, — y|| = 0.

Thus W € Z(J)~; suppose there exists X € L(H,, #1) such that AX — XB = W.
It follows that, y = We = AXe — XBe = (A — A)Xe, which contradicts the fact
that y ¢ Z2(4 — A). Thus #(J) is not closed.

COROLLARY 4.5. i) If there exists A€ C such that #(A — A) is not closed and
A€ R.(B), then B(T 4) is not closed.

i) If there exists A e C such that 1€ R(A) and #(B — 1) is not closed, then
R(T 4g) is not closed.

Proof. 1) Since A€ R,(B), Corollary 2.13 implies that there exists B’ € %(B)~
such that dim (ker(B’ — 1) n ker((B’ — A)*)) = co. Thus Lemma 4.4 1) implies
that Z(7 ,5-) is not closed, and the result follows from Lemma 2.3.

ii) Apply the preceding case to J g+4+ and then apply Lemma 2.2.

REMARK. If we assume that £(A) is not closed but only assume that nul B=
= nul B* = co, then it may happen that Z(J ) is closed. For example, let 4 be
an operator such that A2 = 0 and #(4) is not closed, and let B = ¢{®. Although
y(4) = 0 and nul B = nul B* = co, 7 45 does have closed range (see Proposition
4.18).
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In [5], Theorem 2, C. Apostol and J. G. Stampfli proved that if 4 is compact,
then 2(d,) is closed if and only if A has finite rank (i.e. 4 has closed range). We
extend this result as follows.

THEOREM 4.6. If A and B are compact, then (T ,p) is closed if and only if A
and B are finite rank operators.

Proof. If A and B are finite rank operators, the conclusion that 4 has closed
range follows from Corollary 4.3. Suppose A is not finite rank; since 4 is compact,
then 2(A) is not closed. Since Bis compact, 0 € R (B), and thus Corollary 4.5 implies
that 7~ does not have closed range. If B is not finite rank, then the preceding argument
and Lemma 2.2 imply that

WT ap) = V(T poa)=0,

so Z(J") is not closed in this case either.

We next consider the case when 4 and B are hyponormal operators.

LEMMA 4.7. If A is hyponormal and 1 is a limit point of o\(A4), then (A — 1)
is not closed.

Proof. We may assume that 2 = 0. Let {1,} < o,(4) be a sequence of distinct
nonzero points such that 4, — 0. If for some n, A, ¢ 6,.(4), then nul (4 — 1) >0
and ker (4 — 4,) < (ker A)L. Thus, if 1, ¢ 0.(4) for infinitely many values of n,
it follows that A|(ker A)! is not bounded below, and thus #(4) is not closed. We
may therefore assume that {1,} < 0,,(4) = R,(4). Let D denote a diagonalizable
normal operator whose eigenvalues are precisely the A,’s (each with multiplicity
one). Lemma 2.12 implies that A’ = A@D e %(A4)~, and y(4’) = 0 since 1, — 0.
Corollary 2.4 and Lemma 3.3 imply that y(4) = y(4’) = 0, so the proof is complete.

REMARK. Elementary considerations with the adjoint of the unilateral shift
show that the analogue of Lemma 4.7 for co-hyponormal operators is false. The
example of the shift also shows that in the hypothesis of Lemma 4.7, ¢,(4) cannot be
replaced by o,.(4).

THEOREM 4.8. If A and B are hyponormal and o,(A) n o(B) contains a limit
point of 6,(A) U 0\(B), then R(T 4p) is not closed.

Proof. We first consider the case when there exists a point A such that 2 is
a limit point of ,(4) and 4 € g((B). If 4 € 6,(B), then 4 is a reducing eigenvalue for
B. Since Lemma 4.7 implies that (4 — 1) is not closed, it follows from Lemma 4.4
that (") is not closed. If A ¢ ¢,(B), then 4 € 6,(B)\o,(B), so Z(B—4) is not closed
and A €0, (B) = R.(B). Since #(A — ) is not closed, Corollary 4.5 implies that
the range of 7 is not closed.

In the remaining case, there exists a limit point 1 of ¢,(B) such that 4 € ¢/(4).
Lemma 4.7 implies that (B — 4) is not closed. Since 1 € 6,(4) = 0,(4) U R(4),
the result follows from Lemma 4.4 ii) and Corollary 4.5 ii).
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The following example, which is due to D. A. Herrero [15], shows that the
converse of Theorem 4.8 is false.

ExaMPLE 4.9. Let {e,}> _., denote an orthonormal basis for a Hilbert spaee
. Let T € L(H#) be the bilateral weighted shift defined by the followingrelations:
Te_,= (1/2Me_,.1 (n=21); Te, =e,,1(n = 0). Let S = (1/2)T. Familiar results
about shifts imply that 7 and S are hyponormal,
o(T) = {0} u {z: |z} = 1},
and

0y(S) = {0} U {z: |z] = 1/2}.
Thus

a(T) nay(S) = {0}
and 0 is isolated in o (T") U 5,(S). Nevertheless, Z(J rs) is not closed, because Z(T)
1s not closed and 0 e R (S) (Corollary 4.5).

In contrast to the preceding example, we next exhibit hyponormal operators
A and B such that ¢/(4) n o(B) = & and #(J) is closed, although J is neither
bounded below nor surjective.

ExAMPLE 4.10. Let Ue () denote the unilateral shift of multiplicity one,
let A =(1/2)U®2U, and let B= U@ U. 4 and B are hyponormal and

o(4) ={z:|z| <2},
o) = {z: 121 = 12} U {z: |21 =2},

o(B)={z:|z] < 1},

and
6,(B) = {z: |z] = 1}.
Since
o (A)no(B) = {z:|z] = 1}
and

oi(4) 0 0(B) = {z: |z| = 1/2},
it follows from [7] that J .5 is neither surjective nor bounded below; moreover,

oAy no(B)={z:|z] < 1}.

However,

a(A)no(B)= I,
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and we will show that J has closed range. Let X = (X))1<;, j<2 denote the matrix
of an operator X on # @ #. A calculation shows that the matrix of I z(X) is of
the form
(9'(1/2)0, v(X)  Tapwu (Xi)
T, v (Xe) Tw,u (Xy) ) '

The results of [7] imply that J (1ppyu, v is surjective and that Z y,y is bounded be-
low, from which it follows that J ,; has closed range.

The preceding examples suggest the following questions.

QuestioN 4.11. Suppose A and B are hyponormal operators such that
o(d) no(B) = {4, ..., 4,} and such that each 2; does not satisfy the hypothesis
of either Lemma 4.4 or of Corollary 4.5. Ts the range of J 45 closed?

QuesTiON 4.12. If A and B are hyponormal and 6{(4) no(B) = J, is the
range of J ,5 closed?

Using a spectral decomposition similar to that used in the following result,
it can be shown that the preceding questions are actually equivalent; however, we
omit the details of the proof of this equivalence. The next result provides a partial
(affirmative) answer to Question 4.12,

ProrosiTioN 4.13. If A and B are hyponormal and o(A) 0 o(B) contains no
limit point of 6(A) U 6(B), then #(T ,5) is closed.
Proof. From Rosenblum’s Theorem [22] we may assume that K= g(A4) n o(B) #
# &, and it follows that K is finite; we denote the distinct elements of K by
{4, ..., A,}. Since A4 and Bare hyponormal, each A, satisfies the following properties:
i) 4; is an isolated point in 6(4) and ker(4 — 4,) is a reducing subspace for 4
which coincides with the Riesz subspace for 4 corresponding to {1,};
ii) A; is an isolated point in o(B) and ker (B — A;) is a reducing subspace
for B which coincides with the Riesz subspace for B corresponding to {A;}.
Let &, = V ker(A — A), Ay =H O %, Ly = Vker (B—2)),and A y=

i=1

=H,(>) &, Relative to the decomposition #,; = 31 (-|}) Ay, A=A @ A,
where 6(4,) = K and d(4,) n 0(4,) = ¢F. Similarly, relative to #p = L ® Ay,
B = B,®B,,0(B,) = K,and a(B;) 0 0¢(B,) = . Itfollowsthato(4,) n ¢(B,) = .
For X e L(#,, #),), let (X;))1<i, j<2denote the matrix of X relative to the above
decompositions. The matrix of AX — XB is of the form

(Aan — XuB, A, Xye — X128, ) .
Ay Xo1 — X By ApXyy — XpoB,
Note that

a(4;) N 6(B,) = 0(4,) N 6(B) = (A} Na(By) = &
These identities, together with the fact that 4, and B, are normal operators with
finite spectra, readily imply that 2(7") is closed (see [22] and Corollary 4.3).
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REMARK. The reader will note similarities between the preceding proof and
the proof of one direction of [1], Theorem 3.3. Assume that 4 and B satisfy the
hypothesis of Proposition 4.13, so that #(J) is closed. A slight elaboration of the
above argument allows us to determine when J is semi-Fredholm and to calculate
the index. Let M; = ker(4 — A;) and 9; = ker(B — 4;) (1 < i < n). Relative to the
decompositions #; =M, @ ... @MW, and L. =D ... @ N,, the matrices
of A, and B, are of the form

Al - }'119311 @ PP @ )“'lli]l"
and
B, =Mly, @ ... ® Ala,

If (Y;)1<ij<n denotes the matrix of an operator Xy € £(¥,, Z,), then the
matrix of A,Xy, — X8 is of the form ((A;—A))Y;)1<i.j<n- It is now clear that

nul 7 = nul F 45, = Y, dim(L(R;, M,)) = def T 45, = def T
i=1

Since
dim(Z£M;, V) = nul(4 — 1)) nul(B — 1)),

1t follows that 7 is semi-Fredholm if and only if nul(4 — 4,) < oo and nul(B — 1,)<
< oo (1 < i < n); moreover, in this case, ind(7) = 0.

The next corollary recaptures a result of J. Stampfli, whose proof in [23]
differs from that below.

CoroLLARY 4.14. ([23], Theorem 1) If A is hyponormal, then R(d,) is closed
if and only if 6(A) is finite.

Proof. Recall that bdry (6(4)) < o,(4). Thus, if o(A4) is infinite, then it follows
from Theorem 4.8 that #(6,) is not closed. Conversely, if 6(A) is finite, then Pro-
position 4.13 implies that %#(3,) is closed. (Alternately, since 4 is a normal Jordan
operator in this case, Corollary 4.3 applies directly.)

Corollary 4.15. If A and B are hyponormal operators such that 6(A) = o,(A4)
and o(B) = o((B), then Z(T ,p) is closed if and only if a(A) n o(B) contains no limit
point of a(A) U o(B).

Proof. The result follows from Theorem 4.8 and Proposition 4.13.

Recall that T e £ () is non-quasitriangular if there exists A € C such that
T — A is semi-Fredholm and ind(7T — 1) <0[8]. (The converse is also true {4].)
Thus the hypothesis of Corollary 4.15 is satisfied if 4 and B are quasitriangular
hyponormal operators, and, in particular, if 4 and B are normal [14].

In [1], Theorem 3.3, J. Anderson and C. Foias proved that if 4 and B are
scalar operators on a Banach space, then #(J) is closed if and only if a(4) N a(B)
contains no limit point of a(4) U o(B). In the Hilbert space case, the scalar operators
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of [I} are similar to normal operators (see [1]), so in the Hilbert space case the result
of [1}, Theorem 3.3 is equivalent to the following result.

COROLLARY 4.16. If A and B are similar to normal operators, then %#(J 45)
is closed if and only if 6(A4) N 6(B) contains no limit point of o(A) U 6(B).

Proof. Apply Lemma 2.3 and Corollary 4.15.

Proposition 4.13 and the Remark following it, together with Corollary 4.15,
immediately imply the following result.

CorOLLARY 4.17. If A and B are hyponormal, ¢(A4) = o(A), and o(B)=0c(B),
then the following are equivalent :

1) I is semi-Fredholm;
ity I is Fredholm and ind 7 = 0;
i) I is Fredholm;

iv) a(4) n o(B) contains no limit point of a(A) U 6(B), and for each i € c(A) n
n o(B), nul(d — 1) < oo and nul(B — 1) < oo.

One of the themes of [1] is that if 4 and B are normal, then 4, enjoys several
properties of a normal operator on Hilbert -spacé. Suppose A and B are quasitrian-
gular hyponormal operators; the same is true for 4 — 4 (4 € C). Thus Corollary 4.17
implies that there exists no A € Csuch that 7 .53 — A (= F 4, p) is semi-Fredholm
with negative index. If 4 and B are normal, then J 5 is normal in the Banach
space sense (see the proof of [12], Corollary 6).

We conclude by briefly considering the case when 4 and B are nilpotent ope-
rators. For the case when 4 = B and A4 is nilpotent, it follows from [3], Corollary 3.4
that 22(5 ) is closed if and only if 4* has closed range for each k> 1 (cf. [5], Theorem
6). Suppose that 4 and B are nonzero operators such that 42 = B? = 0, and consider
the decompositions #, = ker 4 @ (ker A)! and 5#, = ker B ® (ker B)'. Let P
denote the projection of #, onto ker A and let Q denote the projection of #; onto
ker B. Let A, = PA|(l — P)s#, € &L ((ker A)+, ker A) and let B, = OB|(1 — Q)#'» €
€ Z((ker B)!, ker B).

PROPOSITION 4.18. 9 5 has closed range if and only if at least one of the
following properties is satisfied:

i) A, is invertible;
il) B, is invertible;
iii) A; and B, have closed range.

Proof. If iii) holds, then it follows from [5], Theorem 6 that §, and 6, have
closed range. Thus, Lemma 4.2 implies that 7 has closed range. Let (X, )i« j<2
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denote the matrix of an operator X € ¥ (#,, #,) relative to the above decomposi-
tions of #; and ;. A calculation shows that the matrix of 7 (X) is’equal to

b

(Alel Ay Xay — X By )
0 — X0 By

it now follows easily that 7 has closed range if 4, or B, is invertible.

For the converse, we assume that both 4, and B, are non-invertible and that
either 2(A4,) or %(B,) is not closed. We seek to show that %(7) is not closed, and
we first consider the case when #(4,) is dense. Since A, is injective and non-invertible,
it follows that %(4,) is not closed; thus %(A4) is not closed. We distinguish two
subcases.

i) Z(B,) is not dense. Relative to the decomposition #, = (QH#, © %(B,)) ®
@ (O n B(B)) ® (I — Q)#,, the matrix of B is of the form

0 0 O
0 0 =
0O 0 O

Thus B has a nontrivial reducing kernel, and since %#(4) is not closed, Lemma 4.4
implies that £(J) is not closed.

ii) #(B,) is dense. Since B, is non-invertible and injective, it follows that
Z(B,) is not closed. Thus Z(BY) is not closed, and [6], Corollary 2.4 implies that
there exists an infinite dimensional subspace M < Q#,, having an infinite dimensio-
nal complement ML = Q#, © M, such that K = Bf | M: M - (1 — Q) #, isa
compact operator. Relative to the decomposition #, = I @ M+ @ (1 — Q)H#,,

the matrix of B is of the form
0 0 K*
( 0 0 = ) :
0O 0 O

Since K* is compact, 0 € R (B), and since 2(4) is not closed, Corollary 4.5 implies
that (") is not closed.

We next consider the case when %(4,) is not dense, and it follows as in 1)
above that 4 has a nontrivial reducing kernel. We again examine two subcases.

1) #(B,) is not closed. Since 4 has a nontrivial reducing kernel and 2(B)
is not closed, Lemma 4.4 ii) implies that 2(7") is not closed.

ii") #(B,) is closed. Thus %#(4,) is not closed; moreover, since B, is injective
and non-invertible, then £(B,) is not dense. It follows as above that B has a nontri-
vial reducing kernel, and since %(4) is not closed, the result follows from Lemma 4.4.
The proof is now complete.
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In contrast to the close relationship between Theorem 4.6 and [5], Theorem 2
for the case of compact operators, the preceding result suggests that there is no
direct analogue of [3], Corollary 3.4 for the case when 4 and B are nilpotent. Further
progress in this direction seems to await a characterization of the nilpotent operators
T for which 0 e R (7). In this connection, we note that if 42 = 0, then 0 e R.(4)
if and only if the reducing kernel of A4 is infinite dimensional or the range of A is
not closed; the proof of this fact is largely implicit in the proof of Proposition 4.18-

Research supported by N.S.F. Grant MCS76—07537. : .
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Added in proof. In a forthcoming sequel to this paper, we determine the semi-Fred-
holm domain of 5. We prove that % 4p) is closed and def (¥ ,5) < oo if and only
if o, (A)Noy(B)= o0 {A)N 01(B) = O; F(TF 4p) is closed and nul (F 4g) < oo if and only if
01(A) N a(B)=0(A)N 0, (B)=0. As a consequence we prove that oge(F 4g)={1€C: .7,45——7‘
is not semi-Fredholm}=[(9,(4) — 6i(B)) U (0(A) — 0, (BY] 0 [(0,e(A) — 0\(B)) U(o(4) —
— 01(B)))-
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