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POSITIVE DIAGONAL AND TRIANGULAR OPERATORS

A, R. SCHEP

INTRODUCTION

In this paper we study two classes of order bounded operators on a Dedekind
complete Riesz space. In Section 1 we consider order bounded operators with a
strong local property, the so called orthomorphisms, which have been studied
by several authors (see e.g. [3], [11], [22] and [23]). For a Dedekind complete Riesz
space L the collection of all orthomorphisms is equal to {I}%, the band generated
by the identity operator in the Riesz space of all order bounded operators on L.
Hence every positive linear operator 7: L — L has a unique decomposition 7 =
=T, + T, with 0 < Ty€ {I}* and 0 < T,€ {I}. One can now consider 7 as
the diagonal component of 7" and some of the results in Section 1 have been moti-
vated by this point of view. In Section 2 we prove a continuity theorem for the spec-
tral radius of a certain class of positive operators on a Banach lattice. In Section 3
we study a class of operators, called triangular here, which generalize the classical
Volterra integral operators. An operator is called triangular if it has a maximal
chain of invariant bands. An important result is then, that every positive order
continuous triangular compact operator with diagonal component zero is quasi-
nilpotent. We also study the case that the diagonal component is not zero and prove
that in that case the spectrum of the triangular operator is equal to the spectrum
of its diagonal component. The author wishes to express his gratefulness to the referee
for supplying shorter proofs for Lemma 2.3 and Theorem 2.4.

1. ORTHOMORPHISMS

Let L be an Archimedean Riesz space (for terminology not explained here,
see [14] and [19]). A positive linear operator T from L into L is called a positive
orthomorphism if 0 < w,ve L and u A v =0 implies Tu A v = 0. A linear map
from L into Lis now called an orthomorphism, if itis the difference of two positive
orthomorphisms. The set of orthomorphisms from L into L shall be denoted by
Orth(L). The main result about Orth(L) is that it is a commutative f~algebra with
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respect to pointwise defined product, supremum and infimum (see [3], [13] and [22}]).
An important subalgebra of Orth(L) is the ideal centre Z(L) of L, consisting of
all T€ Orth(L) for which there exists a real number A such that —A7 < T < AL
In case L is a Dedekind complete Riesz space Orth(L) is equal to {I}%?, the band
generated by I in the space Z£,(L, L) of all order bounded operators from Z into L.
From this it follows that every positive linear operator 7': L — L has a unique
decomposition T == T; -+ T, with 0 < 7)€ {I}*= Orth(L) and 0 < T, € {I}".
The next theorem gives a new formula for T3.

THEOREM 1.1. Let L be a Dedekind complete Riesz space and 0 < Te & (L, L).
Then the component T\ € {I}%! of T is given by

inf (\i:i PTP,:0 <P, <I P:= p‘.,'g P = 1).

1

Proof. For each 0 < T € ¥, we denote by E(TI") the infimum of the set
(2 PTP,:0< P, <I PP=P,, Y Pi= I). We shall prove that & is the pro-
i1 i

i=1
jection of £, onto Orth*+(L). One easily verifies that the set of which 2(T) is the
infimum, is directed downwards. It follows from this observation that € is additive
on Z;i. We now show that @(7T)€ Orth+(L), i.e., that €(T) leaves every band in L
invariant. Let therefore B be a band in L with bandprojection P and let 0 < u€ B.
Then

PTPu + (I — P)T(I — Pyu = PTPu
implies that
@(T)u < PTPuc B, so S(T)(B) < B.
For 0 < T€ Orth(L) and }; P; = I we have

ZPiTPi=ZP?T=ZPiT=T,

so that @(T) = T for 0 € T€ Orth(L). It follows that for 0 < Te ¥, we have
that 2(T) = £(T))= 2(T), i.e., 2= T on ¥, . It isalso clear,that0 < F(T) < T
for all Te % and we conclude that € is the projection of #; onto Orth*(L) and
the theorem is proved.

We present an application of the above theorem. First we recall, that if L is
a Dedekind complete Banach lattice and if 7€ %, then ||T|, denotes the opera-
tornorm of |T.

THEOREM 1.2. Let L be a Dedekind complete Banach lattice andlet T€ ¥ (L, L).
Then T 2 0forallt 20 ifandonly if T+ ||T|I = 0.
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Proof. Assume first that T+ ||T)|,/ = 0. Then
EHITloD = 1 L (T TI D)+ . > 0

for all £ =0. Since T and I commute we have e/ @+l = etliTlr o7, 50 T = g=*/I7Tll-,
-e!T+UTIrD =0 for all £>>0. Assume now that e/7>0 forall :>0.Let0<¢p€ L* and
0 < ue L. Define g(t) = ¢(e'Tu) for r€ R. Then g(¢) is differentiable and g'(f) =
= @(Te'"u), in particular g'(0) = @(Tu). We have now g(¢) = 0 for ¢t > 0 and
£2(0) = @(u). We conclude from this that if ¢(u) = g(0) = 0, then @(Tk) = g'(0) = 0.
Let now 0 < P < I be a bandprojection in L. Then for 0 < Q@ < I— P, Q% = (,
we have Q*@(Pu) =0, so Q*p(TPu) > 0 by the above argument applied to Q%¢
and Pu. It follows that ¢(QTPu) =0 for all ¢ > 0 and u> 0, so QTP = 0 for all
bandprojections P and Q with 0 < Q < I— P. Decompose T'= T, + T, with
T,€ {I}¥ and T,€ {I}*. Then QT,P =0 for all bandprojections P and Q with

0<Q9<I—P, soalso QT,P = 0 for all such P and Q. Let now I= PR
i=1

P} = P;and0 < P; < I.Thenitfollows that }, P,T\P; > 0, so

i#]

T, = Y PT\P,+ ¥, PTY P, —
i=1

i#J

PTrP, > — ¥ PTP,
i=1 i=1

]
Hence

T, > sup (~— Y PTr P, : ¥ P = 1) =— &(T7) =0,

i=1 i ;

by Theorem 1.1. We conclude that T = T, + T,, with T,€ Orth(L) and 0 < T} €
€{I}¥, so T+ |Toll = Ty + (Ty + | Tu|I) > 0. From |T| = T, + |T,| it follows
that ||T,)} < ||T|l, and so aiso T + || T}, = O.

REMARKS: (i) The above result is related to a recent result of D. E. Evans and
H. Hanche-Olsen [9]. Part of their results can be described as follows. Let £ be a
partially ordered real Banach space with the property that for all xe E there exists
Y€ E* such that dist(x, E*) = ||x — y|}. Let T : £ —» E be a norm bounded opera-
tor. Then ¥ > O for r = Oifand only if (A — 7)™ = Oforall X > | T.

It follows easily from 7T -+ |T|I = 0 that (Al — T)~* = 0 for all A > || T,
but the converse seems less obvious and might be false in general.

(ii) The referee included in his report a better result than Theorem 1.2. He
proved that if 7' is a norm bounded operator from L into L, then T > 0 for all
t > 0if and only if T+ || 7| I > 0.

CoROLLARY 1.3. Let L=R” with the canonical basis and order and let T : L — L
be a linear operator with matrix [t;;]. Then e > 0 for all t = 0 if and only if t;; >0
forall i #j.
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We shall now present a number of properties of orthomorphisms on Banach
lattices. The following theorem is essentially known (see e.g. [22]), but the technique
used in the present simple proof will be used further on.

THEOREM 1.4. Let L be a normed Riesz space and let 0 < T€ Orth(L) be norm
continuous. Then there is a positive number ) such that T < M. Moreover |T| =
=inf(d : T < AI).

Proof. Assume (T — AI)* > 0 for some 1, > 0. Then there exists 0 < u,€ L
such that vy = (' — ApI)*u, > 0. Since Orth(L) is an falgebra, this implies that

(T — ZoD)vg = {(T — AoD)*}Pu, = 0

s0 Ty = Ayv,. Hence ||T]| = Ay. It follows that (7' — AD* =0 for all 2 > ||T|,
ie.,T < Al forall A > ||T|. This implies thatalso T< || T||I andso inf(A : T < A<
< ||Tl| since the converse inequality is obvious, it follows that inf(A : T < Al) =
= ||T].

CoroLLARY 1.5. If L is a Banach lattice, then
Orth(L) = Z(L) = {Te L,(L,L) : — Al < T < Al for some 2}.

Recall now that u€ L+ is called an atom if 0 < v < u implies that v = Au
for some A > 0. The main step in the following theorem is due to T. Ando ([2]).

THEOREM 1.6. Let L be a Banach lattice and let T: L — L be a positive coinpact
operator. Then S€ Orth(L) and 0 < S < T imply that S is compact.

Proof. Assume first that L is Dedekind complete and assume S > 0. Then
S is the uniform limit of sums of the form V oP; with 0 <€ 2 P, S LT,

where the P;’s are bandprojections. The proof for this case will therefore be complete
if we show that each such P, is compact. Consider therefore a bandprojection P
with0 < P < T.If 2is not compact, then there exist0 < x,€ P(L) withx, A X, =0
for n 5t m and |x,| = 1 for all n. Denote by P, the projection on {x,}4¢. Then
0 < P, £ P < T for all n. The compactness of T’ implies that we may assume that

Tx,— y in norm for some y = 0. From 0 < Z P,y < Py it follows that
k=1
Py — 0 for (L, L*). 1t follows that TP,(y) —» 0 in norm and then the inequalities

0 < P,y ==PXy) < TP,y imply that also P,y — 0 in norm. Hence
1= [x,ll = [ 2,Px,| < IP,Tx,[l <Pyl + I1P(Tx, — P <
< ”Pny” + ”T‘Yn - y” -0

as i »co and we have a contradiction. This completes the proof in case L is Dede-
kind complete. The general case follows from 0 < S$* < 7% on L* and the
fact that S*€ Z(L*), T is compact and that L* is Dedekind complete.
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COROLLARY 1.7. Let L be a Banach lattice without atoms and let T: L — L
be a positive compact operator. Then S€ Orth(L) and 0 < S < T imply that S = 0.

Proof. Follows immediately from the above theorem and Theorem 7.2. of [16].

REMARK. If in the above theorem S is not required to be an orthomorphism,
then S need not be compact. It is however proved in [8], that S is compact, whenever
the norms on L and L* are order continuous, in particular when L is reflexive.

We shall now look at spectral properties of orthomorphisms. To this end
we consider a complex Banach lattice L and complex orthomorphisms. Then Orth(L)
is isometrically Riesz isomorph with C-(K), the space of complex valued continuous
functions on some compact Hausdorff space K. Let ¥ = #(L, L) denote the (com-
plex) linear space of continuous linear operators on L. Then the following theorem
was stated without proof in [21].

THEOREM 1.8. Orth(L) is a full sub-algebra of %, i.e.. if T~ exists in &, then
T-1e Orth (L).

Proof. Let T€ Orth(L) such that 771 exists in #. We shall then prove that
there exists a constant ¢ > 0 such that [T > c/. If this is not the case, then for
all n > 1 we have (I — n|T|)* > 0. It follows that there exist u,€ L* such that
v, = (I — njT)*u, > 0. Since |T| € Orth(L), it follows that

(I — niT)(,) = {I — nT)*}20, > O,
SO

v, = n|T|v, = 0.

From this we conclude that

loal = 1T2T0,l < 1772 1w, < 1772 DiTIed < 172 L o).
n

Hence |T7Y| = nforalln = 1, which contradicts T-1€ Z. It follows that |T| > I

for some ¢ > 0. Since Orth(L) = Cc(K) we conclude that T'is invertible in Orth(L),
which implies that 7' € Orth(L).

LemMMA 1.9. Let L be a Banach lattice with the property that 0 < u, < u,

n ==

u, = 0 a(L, L*), implies that |u,|| —» 0. Then L is atomic, i.e., there exists a
maximal disjoint system in L, consisting only of atoms.

Proof. Let 0 < u, < u€ L with v, A u,, =0 if n % m. Then u, » 0 o(L, L*),
so by hypothesis ||u,]| — 0. It follows from Meyer-Nieberg’s Theorem (see [19], 11
Lemma 5.13), that L has order continuous norm. From Theorem II 5.10 of [19],
it follows that [0, u] is weakly-compact for every u€ L+. By hypothesis it follows then

that [0, «] is norm compact for every u€ L*. From Theorem 4.9 of [16] it follows
that L is atomic.
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LeEmMA 1.10. Let L be a Banach lattice without atoms and B is non-zero band
in L. Then there exist 0 < u,€ B, |u,l| = 1 such that u, — 0 (L, L¥).

Proof. From the above lemma it follows that there exist 0 < u,€ B such that
u, =0 o(L, L*¥), but with 0 < lim sup |u,| < 1. By passing to a subsequence we can
assume, after normalization, that |u,| = 1.

THEOREM 1.11. Let L be a (complex) Banach lattice without atoms and let
T€ Orth(L). Then o(T) = o (T), where 6, denotes the essential spectrum of T.

Proof. It is sufficient to prove that ¢(T) — o (7). To show this we have to
prove that if there exist a bounded operator S and a compact operator X such that
ST == I+ K, then T is invertible. If T is not invertible, then for all ¢ > 0 we have
(el — T;)~ > 0, by the same argument as in the proof of Theorem 1.8. Hence, if
we set B, = {(e — |T))~(L)}¥’, then |T'u < eu for all 0 < u€ B,. Let now ¢ —

= é— - |S}i-1. By the above lemma there exist 0 <u, € B, |ju,||=1 such that 4,—0

o(L, L*¥). Now

1= [lu,ll < I8Tu,|l + | Kuyll < IS & + [1Kuyll <— + [[Ku,|

1
2
for all », which is a contradiction, since || Ku,|| - 0.

We remark that the above theorem supplies an alternative proof for
Corollary 1.7.

2. A CONTINUITY THEOREM FOR THE SPECTRAL RADIUS

Throughout this section we shall denote by L a complex Banach lattice. Then
this section is devoted to prove the following result: If Ty, T, : L — L are linear
operators and if 0 < 7, * T, on L, ie., for all u€ L*, T.u 4 Tu on L and if T,
is order continuous and compact, then r(7,) T r(T,). With the additional hypothesis
|T, — Toll = 0 this would be an easy consequence of some simple facts of the opera-
tor calculus (see [15]). If L and L¥ have order continuous norm, in particular,
if L is reflexive, then 0 < T, t T, and T, compact, will imply that ||[T, — Tl = 0
([8]). The complications in the present general case arise from the fact that in general
without additional hypotheses |7, — T,|| does not tend to zero. We start with a few
simple lemmata.

LemMa 2.1. Let L be a Banach lattice and Ty, T, positive linear operators
Srom L into L such that T, T T, and such that T, is order continuous and compact.
Then for every u€ L+ we have that

I To(To — Tul | O.
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Proof. Let v, = (T, — T)u. Then v, | O in L, so Tyv, | 0. [From the pre-
compactness of {T,v,} and the fact that Tov, | it follows that {T,v } is a norm
Cauchy net. From this we conclude that [Ty, |0, ie., [To(Ty — THull | O.

LeEMMA 2.2, Let Ty, T, beas in Lemma?2.1. Then we havethat |To(Ty—T )T, | O.
Proof. Follows immediately from Dini’s Theorem and Lemma 2.1.

LeMMA 2.3. Let L be a Banach lattice and T,, T, positive linear operators
from L into L such that T, 1 T, and such that T, is order continuous and compact.
If Ay ¢ 6(To) and Ay > sup r(T), then sup |R(y, T)| < oo.

Proof.
TO{R('IO’ TO) - R("{O’ Tr)} =

= R(Ay, To) To(Ty — T,)-R(A4, T}) =
= Ay 'R, Ty) To(Ty — T)T,-R(Ay, T,) +
+ A5 R(Ag, Ty) To(Ty — T).
Suppose that sup [R(Z0, T)ll = co. Then
IR, THI * I To(To — T)Te- R(Ao, To) |l <

S | To(Ty — T)HT,| - 0 (by Lemma 2.2)

and
R4y, TON [ To(To — THI — 0.
Therefore
IRCo> T 1 To{R(Ro, To) — R(Ao, T} = 0,
hence

1 R(Z, TN I To" R(Zo, THI - 0,
which implies

| R(Ags TH| "1 I T, R(Ao, T)|| = 0.
But since

TrR(lO’ Tr) = -] _i_ }'OR(l()’ Tr):
this leads to a contradiction i, = 0.

THEOREM 2.4. Let Ty, T,: L — L be linear operators such that 0 < T, 1 T,
on L and such that Ty is order continuous and compact. Then r(T) 1 r(Ty).
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Proof. Suppose sup #(T) < r(T,). Since T, is compact, there exists i, ¢ 6(T})
such that sup #(T,) < 2y < r(T,). By Lemma 2.3 sup |[[R(4y, T) = M, < co.

Foranym > 1

=1 "
'i 3 A5PTITE < R, TH < M,

l; n=0 i}

and foreachn > 1 T7 1 T§ so that

m—-1 m—1
To (): Agnl T{;) ¥ = lim TO( Z Ayn-l T;’) 9

n=0 n=0

because T is order continuous and compact. This implies

m-1 "

Y AN TR < 0 AT MIT) = M,

i n=0 “

Since

m—1

—inre =y 5 Tg)aol— T,),

n=0

we have
ATTITEN < 14 Mi(4y + 1T

hence

r(To) = lim | TF"H™ < Ao,

which is a contradiction.

COROLLARY 2.5. Let Ty, T, be asin Theorem 2.4. If Ay ¢ 0(T,) and 2y> sup #(T,)
then R(oy T.) 1 R(Z, To)- ’

Proof. The proof of Theorem 2.4 shows that Ay>r(T,) hence 2, >r(T,). Then

RO, Ty = ¥, 2" T

n=uv
hence
R(;'Os Tr) T R(;"(h TO)'

We give two examples to show that neither the order continuity nor the com-
pactness of T can be dropped from the assumptions in the above theorem.
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ExaMPLE 2.6. Let L = £, and let T, be the shift operator Ty(¢y, &s, .. .) =
= (0, &, &, ...). Denote by T,(r > 1) the operator T,(¢;, &5, ...) = (0, &, &,
ees £,21,0,0,...). Then 0 £ T, 1 T, and T, is order continuous, but »(7},) = 0
for all # > 1 and r(T,) = 1. Hence the compactness condition can not be omitted.

ExaMmpLE 2.7. Let L = /£, and let T, = ¢ ® e, where ¢ is a Banach-Mazur
V n-times
limiton/ ande = (1,1,1,...). Lete,= (1,1, ...,1,0, ... )and let T, =¢ ® e,.
Then 0 < T, 1 T, and T, is compact, but #(T;,) = O for all » and r(T,) = 1. Hence
the order continuity condition can not be omitted.

We conclude this section by remarking that a special version of Theorem 2.4
has been proven by H. Krieger [12]. The proofs and theorems in this section consti-
tute a generalization and clarification of his results.

3. TRTANGULAR OPERATORS

Let L be a Dedekind complete Riesz space and let (L) be the Boolean algebra
of (band) projections in L. A totally ordered subset of (L) is called a chain and the
set of all chains in #(L) is then partially ordered by refinement. Zorn’s lemma gua-
rantees then the existence of maximal chains in Z(L). We fix from now on one such
maximal chain IT, and we shall write IT, = {P_}.

DEFINITION. A linear operator from L into L is called triangular (with respect
to Iy) if P.TP, = TP, for all P.€ II,.

Let us look at two examples, which have motivated this definition.

ExampLE 1. Let L be an (order) ideal in the Riesz space of all sequences on N,
Denote by P, the projection on the first n components. Then IT, = {P,} U {0} u {/}
is a maximal chain in Z(L). If T: L — L is an order bounded order continuous
linear operator, then we can associate with 7" an infinite matrix [¢;;] such that T is
triangular with respect to I1, if and only if [¢;;] is upper triangular. By choosing a
different maximal chain we get the lower triangular matrices or some mixture of
the two.

ExaMPLE 2. Let L = L,[0, 1] be a Banach function space on [0, 1] with respect
to Lebesgue measure. Let P,(0 < ¢ < 1) denote the bandprojection corresponding
to multiplication by xo,q. Then I, = {P,} is a maximal chain in #(L). An ordet
bounded integral operator T with kernel T'(x, y) is triangular with respect to T,
if and only if T(x, y) = 0 a.e. on {(x, »)€ [0, 1]>: y > x}.

We return to discuss the general theory of triangular operators. If we restrict
ourselves to order bounded triangular operators, then it is easy to verify that the
set of triangular operators is a band in and a sub-algebra of .&,. We now look closer
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at maximal chains. In case L does not contain any atoms, then we have for each
P € II, that

P, =sup(Pe€Il,:P, < P,)=inf(P, €Il : P, > P;)
in 4(L). In case L does contain atoms, then it can happen that e.g.
P =sup(P,ely: P, < P,) < Py,

Pr

but this happens only if P,
dim(P,,— P (L) = 1.

. is an atomic projection, i.e., only if
LEmMMA 3.1. Let T be a positive linear operator from L info L. If T is triangular
and T A I==0, then T(P.(L)) = P; (L) for all 74€ {1}.

Proof. Let Ly = P.(L), L, = P, (L) and (P,, — P;)(L) = {le} for e > 0.
Then Ly = L, © {Ae}. Observe then that T(L;) = L, and T(L,) < L, so it suffices
to show that Te€ L,. Assume that Te¢ L,. Then Te = f+ Je for some A > 0
and some f€ L. Tt is then obvious that

0< MP,,—P)<T

on L, which contradicts the assumption that T A 7= 0.

THEOREM 3.2. Let L be a Dedekind complete Banach lattice and T:L — L
a positive triangular, order continuous compact operator with T A I=0. Then T
is quasi-nilpotent.

Proof. Define f:{z} > R* by f(r)=r(TP)=r(P,TP,). We note that f
is a monotone mapping and that f(z)€ o(T’) for each 7, since f(t) equals the spectral
radius of the restriction of T to P(L). Assume now that (T) > 0. The range of fis
at most countable, say {r,} with r, | 0. Thenr, = r(T). Let P,,= sup (P,: f(x) = r,).
From Theorem 2.4 it follows that f(z,) = r, < r(T). We consider now two cases:

(1) P, = P; for some 1, € {t} such that P, < P,,
Q) P., = inf(P, : P, > P,).

In case 1) there exists O # u€ L+ such that Tu = r(T)u and P, u = u, since f(t,)=
= r(T). By the above Lemma TP, (L) < P, (L), so u€ P, (L). This however implies
that f(t,) == #(T), contradicting the choice of 7,. It remains therefore to derive a
contradiction in case 2). In this case there exists 0 # u,€ P(L*) such that Tu, ==
= r(T)u, for all T with P_ > P,. We claim now that this implies that there exists
©’ with P,r > P, such that Tu,» = r(T)u,- and 0 # uy € P, (L), which gives then the
required contradiction f(ty) = r(T). Assume that this claim does not hold. Let
0 <u € L be such that Tw, = r(T)u;. Then P,u;, < uy, so there exists P, > Py
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such that P.u; < u,, since otherwise Py, = inf(Pu,: P, > P;)) = u;. Let now
0 < uy€ P, (L) such that Tu, = r(T)u,. Then again P u, < u,, so we can find P,
with Py) < P, < P, such that P, u, < u,. Repeating this argument we find 0 < #,€
€ P, _(L)ysuchthat Tu, = r(Tu,, P,,<P.,_ <P, ,<...<P, and P u, <u, Itis
clear from this construction that {uy, ..., u,} is linearly independent for all », which
contradicts the finite dimensionality of the eigenspace corresponding to r(T'). The

proof is therefore complete.

REMARKs. 1) In case L does not contain any atoms, then we can omit the
condition that 7 A =0 in the above theorem.

2) The above theorem was already proved by T. Ando [1] for reflexive Banach
lattices without atoms.

3) It is still an open problem, whether every positive quasi-nilpotent compact
operator is triangular with respect to some maximal chain IT,. It is known that
there exist positive quasi-nilpotent operators without non-trivial invariant bands
([19]), therefore the compactness assumption is essential. However in case the opera-
tor is a positive integral operator on a Banach function space, then the compactness
condition can be omitted and every positive quasi-nilpotent integral operator is
triangular with respect to some maximal chain. This is a consequence of the Perron-
Frobenius-Jentzsch theorem for integral operators (see [10]). We now recall some
definitions and notations. For T'e & (L, L) we denote by o4(T) the order spectrum
of T, i.e., the spectrum of T as an element of the Banach algebra %, (L, L). By
1o(T) we denote the spectral radius of T as an element of .#,(L, L). The order spec-
trum has been studied by H. H. Schaefer in [20]. In general we have ¢(T") < oo(T)
and if T = 0, then r(T') = ry(T).

THEOREM 3.3. Let L be a Dedekind complete Banach lattice and let T : L —» L
be a positive linear operator such that T = R + S with 0 < R compact and quasi-
nilpotent and with 0 < S€ Orth(L). Then o(T) = o((T) = o(S).

Proof. First we prove o4(T) = o(S). Let 1€ ¢(S). Then, by Theorem 1.4,
IS — A0~ < (S — ADTHL

From
T—MN=R+S—M=RS -+ DS — )

we conclude that it is sufficient to show that (R(S — AI)™* + I) is invertible in
ZL(L, LY. From the inequalities

|R(S — A" < R|(S — AD™Y < (S — AD™YR

it follows that

ro(R(S — A1)7™Y) < ro(IR(S — AN < I(S — D7 ro(R) = 0,
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N

so I+ R(S — A~ is invertible in .Z,(L, L) and it follows that A ¢ ¢(T"). Hence
0(T) < 6(S). Let now A ¢ o(T). Then T — Al = R + S — Al implies that

I— (T — A)™R = (T — AD)™X(S — Al),

so it suffices to show that I — (7 — AI)~'R is invertible. Since ¢(S) = [0, co} we can
find 4, ¢ 6(S), e.g. 2,€ C\(R, such that 2, = 2 as n - oo0.Denote §,== (S—4,[}7'e
€ Orth(L). Then it follows from part 1 of the proof that

(T —2,0)r= SRS, + D).
For each n we have

IS/(RS, + D7'R| < |S,] (RS, + D7HR <
SIS+ RIS+ .. + RISDHF+ .. )R <
<HISHUI+RISH+ - + IS, I5R + .. )R =
=[Sy IR+ ... + [S,I*R + ...

It follows now from the spectral mapping theorem that the operator ||S,|R + ...
oo + IS, I*R* + ... is quasi-nilpotent, so also S,(RS, + I)"1R is quasi-nilpotent.
From

SRS, + )1 — (T — At

we conclude that
SRS, +I)'R - (T — A)"'R.

Since (T — AI)"'R is compact, it follows (see [15]) that also (" — AI)™*R is quasi-
nilpotent, so the operator I -+ (T — AI)"1R is invertible and the proof of the theorem
is complete.

REMARK. In case L does not contain any atoms, we can remove the positivity
condition: Let T'= R 4 S with R compact and ¢(|Rl) = {0} and with S€ Orth(L).
Then o(T) == 6o(T) = o(S).

Proof. The inclusion ¢o(T) = ¢(S) is proved in the same way as in the above
theorem. To prove o(S) < o(T') we use now Theorem 1.11 to get o(S) == 6,(S) ==
=0 (T) = o(T).

It is not clear whether one can remove the positivity condition in the above
theorem, in case L does contain atoms. We present as an application of Theorem 3.3
some examples.
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1
ExaMPLE 1: Let L = L,[0, 1] and Tf(x) = xf(x) + S f(»)dy. Then by theabove

X

theorem o(T') = o4(T) = ess range of x = [0, 1]. See also Sarason [18] for a discussion
of this operator.

ExAmpLE 2. Let L= L,[0,1],1 < p < oo and T': L - L given by

Tf(x) = g()f(x) + g T, /)y ae.

X

1
for some fixed g€ L*[0,1]. If [ i—->S T(x, y)f(y)dy defines a compact operator, e.g.

X

if T(x, y) is a Hille-Tamarkin kernel, then by the remark made after Theorem 3.3
we have that ¢(T) == ess range of g(x). We note that integral equations corresponding
to the operator T are sometimes called Volterra equations of the third kind.

We conclude this section with some bibliographical remarks.

1. There exist a more general theory of triangular operators on Banach and
Hilbert spaces (see [4] and [17]). There an operator is called triangular if it has a
maximal chain of closed linear subspaces. Our theorems do not follow from these
more general theories, since a maximal chain of bands is not always a maximal
chain of closed linear subspaces (in £* one can find counterexamples). Another
difference is that in these other theories one associates with compact triangular
operators diagonal values, which are then proved to be equal to the eigenvalues of
the operators. Here we associated with a triangular operator a diagonal operator
and proved, under certain conditions, that the spectrum of the triangular operator
equals the spectrum of its diagonal component.

2. InSection 1 of this paper we studied the projection 2 from £} onto Orth*(L),
where L is a Dedekind complete Riesz space. It is easy to see that for 0 < T, S€
e L (L, Ly we have that 2(7)2(S)<2(TS), but in general it is not true that Z(T'S)=
= 2(T)2(S). From the results in Section 1 we get equality in two special cases. In
the first place equality holds if T or S is a positive orthomorphism. This follows
immediately from Theorem 1.1. Secondly, equality holds wherever L is a Dedekind
complete Banach lattice without atoms and 7 or S is compact. This follows from
Corollary 1.7. The problem of the multiplicativity of diagonal maps, like €, has
been investigated in the more general context of partially ordered linear algebrag
by R. DeMarr and T. Y. Dai in a series of papers ([5], [6] and [7]). It seems now a
natural conjecture that the map € is multiplicative on the algebra of order bounded
triangular operators, but the author has not been able to prove this in the general
case, but only for special cases.
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