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SPECTRAL MULTIPLICITY FOR DIRECT INTEGRALS
OF NORMAL OPERATORS

EDWARD A. AZOFF and KEVIN F, CLANCEY

INTRODUCTION

The theory of spectral multiplicity solves the unitary equivalence problem for
normal operators. Briefly recalling the theory, one associates with each normal
operator N a subset o(N) of C, a measure v on C, and a multiplicity function m
defined on € and taking values in the extended natural numbers. The ordered triple
consisting of ¢(N), the equivalence class [v], and the equivalence class [m], then pro-
vide a complete set of unitary invariants for N. The statement that this set of inva-
riants “‘solves’’ the unitary equivalence problem for normal operators requires these
invariants to be ‘“‘computable”.

Suppose now that (X, u) is a probability space and N is the operator of multi-
plication by a bounded Borel function ¢ : X - C. Then ¢(/N) is the essential range
of ¢ and the scalar spectral measure v is g o ¢ 1, both of which can be regarded
as computable. In their work [1],[2], B. Abrahamse and T. Kriete consider the
problem of computing the multiplicity function for N. The folk intuition is that
m(A) should be the cardinality of the preimage ¢ *(1), but Abrahamse and Kriete
provide several illuminating examples to show that this intuition is not correct
even when p is Lebesgue measure on [0, 1] and ¢ is smooth. They then introduce
the notion of the essential preimage ¢ *(1) and show that the function A1— card ¢ A
is a multiplicity function for N. The definition of ¢ (1) depends on a limiting process
so that the Abrahamse-Kriete multiplicity function, though concrete, is somewhat
removed from the original function ¢.

The function m,=card ¢@~1(-) is in general too largeto be a multiplicity
function for N; Fowever; it is always possible to find a Borel function ¢,
agreeing with ¢ almost everywhere so that m,, does provide a multiplicity
function. This result, which was independently derived by J. Howland [8),
appears as Theorem 4.1 below. This description of multiplicity seems quite
natural in view of the fact that ¢ and ¢, induce the same multiplication operator.
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Multiplication operators are direct integrals of operators acting on one-dimen-
sional spaces. In Theorem 5.2 of this paper, we generalize Theorem 4.1 by showing
how to compute the multiplicity function for a direct integral of normal operators
in terms of the multiplicity functions of the direct integrands.

The structure of the remainder of the paper is as follows. The first three sections
treat preliminaries in measure theory, direct integral theory, and multiplicity theory
respectively; with the possible exception of Proposition 2.1, this material is well-
known. In Section 4, we study multiplicity functions for multiplication operators.
The main result of this section is Theorem 4.1 discussed above. Several applications
of this result are then presented, including some guidance in identifying the modified
function ¢, and a discussion of the relationship between the unitary equivalence
of multiplication operators and the quasi-equivalence of the underlying measure
spaces.

The final section of the paper deals with direct integrals of normal operators.

Given such a direct integral N = S@ N(x)du, we first construct a special model for N
v
which simultancously represents N and the {N(x)} as multiplication operators;
in a special case, this model is similar to one constructed by J. Ball in [3]. This model
is then used to describe the scalar spectral measure and multiplicity function for V.
As a simple application of this multiplicity theory we show that self-adjoint Toeplitz
operators based on the half-plane always have uniform infinte multiplicity. The
paper closes with an alternative derivation of a multiplicity function for direct
integrals which was introduced by Ball [3].

1. MEASURE-THEORETIC PRELIMINARIES

Throughout this preliminary section X, ¥ will denote complete separable
metric spaces (Polish spaces). A probability measure on X or Y will mean a (regular)
Borel probability measure. The measure will automatically be completed.

Let i be a probability measure on X. A field of probability measures x — u,
on Y will be said to be u-compatible in case for each Borel set B = Y the function
x — p{B) is u-measurable.

The following pair of propositions show how fields of compatible measures
are related to measures on the product space X X Y.

If E is a subset of X x Y, then we will use the standard notations £, -~
—={y€ Yi(x,y)€ E} and E*={x€ X|(x, y)€ E}. The projections of E onto Xand
Y will be denoted by n,(E) and ny(E), respectively. If fis a function on X X ¥, we
denote the corresponding functions f(x, -) and f(-, ») of one variable by f, and f?,
respectively.

The first result is a generalization of Fubini’s Theorem.
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PROPOSITION 1.1. Ler {1} ey be u-compatible field of probability measures on Y.
Theie is a unique probability measure p on X X Y such that

(L1 0 fdo— Sx[g 1. du,\} dr

Jxny

Jor every non-negative Borel function on X X Y. Moreover, formula (1.1) continues
to hold for all complex-valued p-integrable functions on X X Y.

Proof. let E= AxB < XxY where A <« X and B < Y are Borel. Then
x — u(E,) is u-measurable. Standard techniques can be used to show that

p(E) :S HAE)dp
X

extends to a Borel probability measure on X X Y. The fact that p satisfies (1.1)
is established in a routine manner. We omit the details.

®
We will use the notation S i du for the measure p constructed in the preced-.
X

ing proposition. The measure p will be called the direct integral of the measures
{1ts}re x With respect to p.

Let p be a probability measure on X x Y. Then the probability measure
w(A) = p(A x Y) is called the X-marginal measure of p.

The following proposition is a special case of the theorem on disintegration
of measures (see, for example, [2], [5] in particular, Theorem V 8.1 in [5]). It should
be regarded as a converse to Proposition I.1.

PROPOSITION 1.2. Let p be a probability measure on X X Y and y the X-marginal’
measure of p. Then there exists a p-compatible field of measures {ii.}, e x such that

@
p = g U, dui. Moreover, the measures 1, are uniquely determined almost everywhere
X

with respect to ut.
The two following propositions will be applied in the sequel.

PROPOSITION 1.3. Let pbe a probability measure on X and {1t} e x a u-compatible
field of probability measures on Y. Then there is a Borel set S < X X Y such that
for u-almost all x, S, is the closed support of ..

Proof. Let U,,n=1,2, ... be a base for the topology of Y. The set E, =
= {x€ X : u(U,) = 0} is p-measurable. Choose a Borel set F,< E, with u(E,\F,) =

®
= 0. Let §= XxY\[U (F,xU,)]. Obviously, S is Borel and with p:S . du,
n X

p(S) == 1. Thus s(ny(S)) = 1 and for p-almost all x, u (S,)=1. It is casily verified
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that when x ¢ [X\7,(S)Ju[U (E,\F))] and u(S,) =1, then S, is the closed
support of u.. This ends the proof.

ProrosiTiON 1.4, (Principle of measurable choice). Let u be a measure on
X and suppose E is a Borel set in X X Y. Then ny(E) is p-measurable, and there is
a Borel set F < E such that no F, contains more than one point and F is non-empty
Jor p-almost all x€ ny(E). In particular if u(ny(E))=1, there is a Borel function
X = Y such that for p-almost all x, (x, f(x))€ E.

A proof of Proposition 1.4 is given, for example, in [4, p. 332].

2. DIRECT INTEGRALS OF HILBERT SPACES

In this section we recall some terminclogy and background information con-
cerning direct integral theory. The main reference is [4].

Let X be a Polish space and p a probability measure on X. A field of Hilbert
spaces is an association x — J#(x) of a non-trivial separable Hilbert space #(x)
with each x€ X. A function (section) f: X — |_) 3#(x) satisfying f(x)€ #(x) is

XEX
called a field of vectors. A measurable field of Hilbert spaces is a field {3 (x)} cx of
Hilbert spaces and a given distinguished subspace & of fields of vectors satisfying:

(i) For each f€ &, the function x — | f(x)] is y-measurable.

(ii) If g is a field of vectors such that x — {f(x), g(x)) is u-measurable for
all fe &, then g€ &.

(ili) There is a countable set P = & such that for each x€ X, {f(x) fe P}
spans #(x).

The elements in & are called measurable fields of vectors.

A field fe & is called square integrable if S If(x)I*dp < co. The collection of

u-equivalence classes of square-integrable measurable fields of vectors furnished

with the inner product

(frg) = SX (), g(x)) du

®
forms a Hilbert space denoted byS H(x)du and called the direct integral associated
X

®
with the field {o#(x)},cx. We give the usual caution that the notation S H(x) du
X

does not make explicit the dependence of the direct integral on the subspace & of

measurable fields of vectors.
Two examples of this construction are important in the sequel.
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1. Assume all the spaces #(x) (x€ X) coincide with a fixed Hilbert space
H,y Let &, be the set of vector fields f such that x — (f(x), g) is u-measurable
(g€ #,). Clearly, &, satisfies (i)-(iii). In this case the measurable field of Hilbert
spaces {#(x)}.cx will be said to be given by the constant fields of vectors. The
associated direot integral space in this case is usually denoted by L,(i) ® #.

2. Let Y be another Polish space and {u,},cy be a u-compatible field of pro-
bability measures on Y. Set #(x) = L,(du,). Let &, be the collection of fields of
vectors x — f(x)€ Ly(dp,) such that for every Borel set U < ¥,

x = {f), 1p) = S FO0) di(y)
U

is u-measurable. Since {u,} e y Is p-compatible, it is plain that &, possesses property
(ii). If {U,}., isa base for the topology ¥ and {¥,}%., isan enumeration of the collec-
tion of finite unions of the U,’s, then the measurable fields of vectors g,(x) = xv,
have the property that for every x€ X, {g,(x)ln =1, 2, ...} span L*duy,). Thus &,
has property (iii). Further, if we apply the Gramm-Schmidt process pointwise to the
g.(x), then we obtain a sequence {@,} of measurable fields of vectors such that for
each x€ X, {@,(x)} is a basis in L*(du,). These fields of vectors ¢, have the form

(Pn(x) = Z aj('")(x) XVj)
=1
where a{™, ..., a{ are scalar p-measurable functions. Clearly, if f€ S, then
IfCONZ = lim %} IKf(x), @,(x))1
=1

is u-measurable. This shows &, has the structure of a subspace of measurable fields

@
of vectors. Accordingly, we have the direct integral Hilbert space S LAdp,) dp.
X

The collection %; of measurable fields of vectors described above is the same
as the subspace of measurable fields of vectors employed in [2]. It is interesting to
observe that the elements in &, can be considered as sections of measurable functions
on X X Y. More precisely, we formulate the following:

PROPOSITION 2.1. Let {ii.}.cx be au-compatible field of probability measures
on Y and let & be the subspace of measurable fields of vectors defined above. Denote
by &y the collection of fields of vectors f for which there is a Borel functiongon X X Y
such that for p-almost all x, f(x) equals the u, equivalence class g, ThenS; = &,

Proof. Suppose first that f€ &, and chose a Borel function g on X% ¥ such
that f(x)=[g,],, for p-almost all x. Thus if U is a Borel subset of Y, the function
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sending x to (f(x), yy» agrees u-almost everywhere with the function sending x to
S Xy g.du, which is p-measurable by Proposition 1.1. Therefore f€%,.
Y

Conversely, suppose f€ &,. By changing f(x) for x in some p-null set, we
can assume that the function x «—|[f(x)}| 2, s finite-valued and Borel. Since &, and
&, are both invariant under multiplication by scalar-valued Borel functions on
X, we can assume that [|f(x)|lrz,,, < 1 for all x. Define a complex measure p on
X X Yby

5= | [gy 1605, ) SX)0) dux(y)] du.

XL

®
Note that g is absolutely continuous with respect toS wduandlet g : Xx¥- C
X

be a Borel representative of §p Fix a basis {U,} for the topology on Y. Then
f(x) # [g.),, if and only if

S FOG) du, g g(x, y) dp,
U

n Un

for some integer n. The integrals appearing in the latter inequality are measurable
functions of x. If the equation f(x) = [g.],, did not hold almost everywhere with
respect to yu, there would therefore exist an integer 7 and a Borel set 4 < X for which

SA [SU f(x)(J/)d,Ux] dps SA [Sung(x, ») d/.lx:i du.

n

But the latter two integrals are p(43< U,) and S g dp respectively which are
AU,

equal by definition of g. Thus f{(x) doces equal [g,

pect to u so f€ %, and the proof is complete.

1., almost everywhere with res-

@
It follows immediately from the preceding proposition that Lg(p)( p= S uxd;()
X

~

®
and 5 L2(p,)dyu are naturally isomorphic. Indeed, if f€ L%(p) and g is a Borel repre-
X

sentative of f, the field of vectors Uf(x)=[g],, is square integrable and its equivalence

®
class in S L*u,)dy, which we still denote by Uf, satisfies ||Uf] == |f]]. The result
X

in Proposition 2.1 makes it clear that U is a unitary mapping from L2(p) onto
®
S L) dy.

X
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We conclude this section with some remarks on decomposable operators.

Let {#(x)} ex and {#(x)},ex be two p-measurable fields of Hilbert spaces
given, respectively, by the subspaces & and & of measurable vectors. The associated
6%(x)d,u and # = seyf(x) du.

X N

The fields of Hilbert spaces {#(x)},cx and {L;f?(x)}xe x are called isomorphic
in case for each x€ X there is a unitary operator U(x) from #(x) to #(x) such
that P = {UX) ()} exIfEL}. A resultin [4, p. 145] establishes thatevery measurable
field of Hilbert spaces {#(x)},c x satisfying dim #(x) = constant is isomorphic to
a measurable field of Hilbert spaces given by the constant fields of vectors.

An operator A : # — 3 will be called decomposable in case for each x there is
an operator A(x) : H#(x) — J?(x) such that

@) For f= {{(D}heexin &, {AR()}eey is in 2,

(ii) p-ess sup [|A(x)|| < oo, and

(iii) for f€ #, Af is the p-equivalence class of {A(x)f(x)},ex in H#.

direct integral spaces will be denoted by # = S

®
We write in this case A4 =S A(x) du.
X

® ® ~
Two decomposable operators A:S A(x)dy on ## and B= S B(x)dy ons#
X X
are called isomorphic in case there is a decomposable unitary transformation

U :# — # such that UA=BU. It is a useful result that the pointwise unitary equi-
valence of A(x) and B(x) insures that 4 and B are isomorphic. This is the content
of the following well-known proposition. We include a proof for completeness.

® @
PRroOPOSITION 2.2. Let A = S A(x)du and B = S B(x)du be decomposable
X x

@ ~ @ ~
operators onH = S H(x)dy and H = S H(x)du respectively. If for p-almost all

X x
x, the operator A(x) is unitarily equivalent to B(x), then 4 and B are isomorphic.

Proof. Consider first the case where for all x€ X, Ji;;(x) =#(x) =H and
the subspace & of measurable fields of vectors in both {4#(x)}.e x> {%(x)}xex is
given by the constant field of vectors. If we equip the unit ball in the algebra £ (#,)
of bounded operators on #, with the strong operator topology, then Ball[# (o))
is a Polish space. We may assume the fields of operators {4(x)},ex, {B(x)}.ex are
Borel functions from X to Ball[Z(#,)]. Then the set

E = {(x, U)\UA(x) = B(x)U, U-unitary}

is a Borel set in X'x Ball[#(#,)]. Applying Proposition 1.4, we obtain a Borel
mapping U : X — Ball[.Z(s#,)] such that for p-almost all x, (x, U(x))€ E. Clearly,

@
S U(x)du(x) is the desired decomposable unitary.
X
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The general case can be reduced to the case of constant fields by appealing to
the result in [4, Prop. 3, p. 145]. This completes the proof.

3. THE SPECTRAL MULTIPLICITY THEOREM

In this section we briefly formulate the spectral multiplicity theorem for a
single normal operator. This secticn contains nothing new. It is presented only to
prescribe standard notations and terminology.

Let N be a normal operator on the separable Hilbert space 3 and let N -

=z S/IdE(},) be the spectral resolution of N. A probability measure v on C is called

a scalar spectral measure for N in case E(S) = 0 if and only if w(S) =0, for S a
Borel set in C. :

Let v be a probability measure on C with compact support. Let {#(H)}iec

®
be a v-measurable field of Hilbert spaces andS H(A)dv the associated direct integral
C

®

space. There is a natural decomposable normal operator M, defined onS JH(A)dv
c

by M, f(%) = f(4). The measure v is a scalar spectral measure for M, .

TueoreM 3.1. (Spectral Multiplicity Theorem). Let N be a normal operator
on K. There is a probability measure v supported on the spectrum of N, and a v-inea-
surable field of Hilbert spaces {#(%)},c c such that N is unitarily equivalent to M, on

®

S H(A)dv. Moreover, the measure v is unique modulo mutual absolute continuity and
c

the v-measurable field {#(})}iec is unigue up to isomorphism.

The spectral multiplicity theorem provides a complete set of unitary invariants
for normal operators. This set of invariants is the pair ([v], [m],), where [v] is the
equivalence class of scalar spectral measures for N and [m], is the [v]-equivalence
class of the function m(4) = dim (1) such that N is unitarily equivalent to A4,

@
on S H(A)dv. We will refer to [m], as the multiplicity class of N. A representative of
c

the multiplicity class will be called a multiplicity function for N.

We outline a proof of the existence assertion in Theorem 3.1; this construction
generalizes the usual proof that every normal operator having a cyclic vector is uni-
tarily equivalent to a position operator, and will be used in Section 5.

Choose an orthonormal set {e,}5_, (1 <p<oo0) in S such that the smallest

14
N-cyclic subspaces .#, containing e, are pairwise orthogonal with 5 - = @4,

g-=1
We define a measure u on the Borel subsets S of Cx N as follows
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If p < o0, then

/l(s) = l~ ﬁ (E(Sq) € eq)

P og=1

and when p = oo

1(S) =%, ;{7 (E(ST) ey e,).

g=1+

It is easily seen that the operator N is unitarily equivalent to M, on L2(u), where
M;f(4, n) = Af(4, n). Further the C-marginal measure v of u is a scalar spectral mea-

®
sure for ;V and the disintegration u:S 0, dv provides a v-measurable field of Hilbert
C

@
spaces {L¥0,)},cc such that N is unitarily equivalent to M, on S L¥0,)dv as des-
c
cribed in Theorem 3.1. For a proof of the uniqueness of the field {H(1)};ec the
reader is referred to [4].

Finally we remark for later use that if v is a given scalar spectral measure and
m a given multiplicity function for N, then it is possible to construct a model for N
more directly. Indeed, for 1 <p < oo, let E, = {1€ C|m(A)=p} and define
a measure fi, on C X N by

1~
; Y W(SNE,), I<p<oo
g=1
1y(S) = .
2 27 V(Sanoo)ﬂ b = o0,

g=1

Take t = Y, [i,. The operator N is unitarily equivalent to M, operating on L%ji)

Igp<oo

4. MULTIPLICITY FUNCTIONS FOR MULTIPLICATION OPERATORS

Let X be a Polish space and p a probability measure on X. As usual L>®(u)
will denote the collection of p-equivalence classes of essentially bounded complex
valued functions on X. Each element &€ L*(u) gives rise to a bounded normal ope-
rator M, defined on L*(u) by M [f], = [@f],, where we have used the notation ¢
for any representative of ®& L*(u). Usually, it is not crucial to distinguish between
an element in L*°(u) and its various representatives, however, here this distinction
will be most important.

As discussed in [2], it is easy to obtain a direct integral decomposition for M.
The following proposition presents this construction from a slightly different pers-
pective.
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PROPOSITION 4.1. Let @ be a representative of the element € L>(u). Let p

®
be the measure p = S Ogpndu on X > C.
x

(1) The operator Mgy is unitarily equivalent to the operator M, defined on
L¥p) by M;f(x, 2) = (x, 2).

(2) The measure v defined for Borel sets B = C by v(B) = p(X X B) = u(¢~YB))
is a scalar spectral measure for M.

®
B) Ifp= ‘ v, dv(d) is the disintegration of p with respect to v, then m(l) =
-c
= dim L*(v,) is a multiplicity function for M.

Proof. (1) As we observed in the discussion following the proof of Proposition

. . . @ .
2.1 there is a natural unitary map carrying L¥(p) ontoS L2($(xy) du(x) which shows
x

that M, is pointwise unitarily equivalent to the decomposable operator M, on L2(u).
Asaconsequence of Proposition 2.2, the operators M and M, are unitarily equivalent.

®
(2), (3). The natural unitary map between L2(p) ands L?(v,)dv(4) sends
c

®
M, into the operator M, onS L2(v,)dv(4). Thus (2) and (3) are obvious. This
C
completes the proof.

We remark that the measures p, v appearing in Proposition 4.1 are clearly
independent of the representative .

The result in Proposition 4.1 cannot be regarded as a computation of the
multiplicity function of M, since disintegration of measures is not a constructive
process. Nevertheless, it does provide information in certain cases. For example,
if p is totally atomic, it is not difficult to see that each v, is totally atomic with
dim L%*(v;) equal to the number of atoms in ¢~1(4). In particular, M, willhave uni-
form multiplicity one if and only if some (hence every) representative of @ is one-to-
-one off a set of measure zero. The next theorem shows that a similar analysis can
be made in the general case.

Suppose ¢ : X —»C is a Borel function. We will write m, () for the number of
points in @ }(1). We use the convention m,(4) ==co unless ¢ () is a finite set,
The following lemma when applied to the graph of ¢ shows that m,is universally
measurable.

LemMA 4.1. Let X and Y be Polish spaces and v a measure on X. Suppose E
is a Borel set in X X Y. For each integer n, the set of x€ X such that E, contains exactly
11 points is v-measurable.

Proof. Let E, = {x€ X|E, contains at least n points}. It clearly suffices to
show that each E, is v-measurable. That E, = ny(E) is v-measurable follows from
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Proposition 1.4. Let F < X be a Borel set chosen as in Proposition 1.4, and set
G==E\F. Then for each n = I, the sets E,,, and G, ={x ¢ X |G, contains at least n
points} differ by a v-null set. Thus an easy induction argument shows E, is v-mea-
surable for all #» and the proof is complete.

THEOREM 4.1. Let $&€ L¥(u), let v be the scalar spectral measure v = po @1
of the multiplication operator My, on L*(1t), and let my be one of its multiplicity functions.
If @ is any Borel representative of ®, then for v-almost all 1, my(A) <my(R). There is
a Boxel representative @, of ® such that m, is a multiplicity function for M.

@
Proof. Let ¢ be any Borel representative of ¢. Define p=S Syydp as in
X

®
Proposition 4.1 and disintegrate p with respect to v. Thus p = S v,dv. Since pis
C

supported on the graph of ¢, for v-almost all A, the measure v, is supported on
@~ X2). Since dim L2(v,) equals the cardinality of the closed support of v,, we have
for v-almost all 4, my(4) < m,(4).

To complete the proof it suffices to construct a Borel representative ¢, of @,
such that for v-almost all A, my(d) =m,(1). Let ¢ be a fixed Borel representative

@
and define p =S v, dv as above. Applying Proposition 1.3, we know there is a Borel
c

set £ € X x C such that for v-almost all A, the set £% is the closed support of v;-
Let G be the intersection of E and the graph of ¢. Since G is Borel and ny: G- X
is one-to-one, G is the graph of a Borel function, namely, ¢ restricted to D =n,(G).
As p is supported on G, we have u(X\D) = 0. Choose a A€ C with v(l,) =0
(any A, with |4, > [|[®] will do). Define ¢, : X — C by

y_ je(x), x€D
o) { Aoy,  XE€ X\ D.

Then ¢, is a Borel representative of ¢. Moreover, for v-almost all A, the closed
support of v, contains ¢g'(4). This shows m(l) > m, (1) for v-almost all 4, and
completes the proof.

COROLLARY 4.1. Let & be in L=(u). The following are equivalent :
(1) The multiplication operator M,, on L*(u) has uniform multiplicity one.
(2) Every representative of & has a one-to-one restriction off a set of u-measure

zero.
(3) There is a one-to-one Borel representative of ®.

Proof. The implications (1) = (2) and (3) = (1) are trivial consequences of
Theorem 4.1. We show (2) = (3).

Let ¢ be a Borel representative of @. From (2) we learn there is a Borel
set A < X with u(4) = 0 off of which ¢ is one-to-one. Let B = {Ai€ C||A]| > @)}
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and C = A U ¢ Y(B). Since v(B) = 0, we have u(C) = 0. There is an one-to-one
Borel map y of C into B. (See e.g. [S, Theorem 2.12, p. 14]). Let ¢, agree with v
on C and ¢ off C. Then ¢, is a one-to-one Borel representative of @. This completes
the proof.

RemARkS (1) If ¢ is merely assumed to be a u-measurable representative, the
function m, can fail to be v-measurable. However the inequality in Theorem 4.1
still holds, i.e., {A[my(2) <m,(4)} is v-measurable of measure I.

(2) If v is not totally atomic, every Borel multiplicity function for M, is of
the form m,, for a suitable Borel representative ¢ of @.

(3) The usual well-ordering on N, = {0,1,2, ... oo} induces an order <
on the collection of v-equivalence classes of v-measurable functions from C to
Ne. Theorem 4.1 expresses the multiplicity class of M as

inf{[m,},.p is a Borel representative of @}
<

with the infimum in question being attained. The interplay between functions and
equivalence classes is critical here; the pointwise infimum of {1, ¢ isa Borel repre-
sentative of @} is almost never a multiplicity function for M,

We now turn to a couple of applications of Theorem 4.1. The following defi-
nition and theorem make this easier.

Let @ be in L®(y) and m a multiplicity function for Af,. The Borel represen-
tative ¢ of @ is called distinguished provided whenever E is a Borel set in X with
p(E) == 0, then {i€ @(E)|m(l) < oo} has v-measure zero.

THEOREM 4.2. Let @€ L®(u) and suppose ¢ is a Borel representative of ®.
Then @ is distinguished if and only if m, is a multiplicity function for M.

Proof. Suppose ¢ is distinguished. Choose a Borel representative ¢, of ¢
such that m,, is a multiplicity function for M. Then the Borel set £ == {x & X @(x)3
# @o(x)} has p-measure zero. Thus {i€ @(£)|m,(1) <oco) has v-measure zero-
If 2 ¢ @(E), then ¢ 1(4) = @y '(4). Thus m,(4) < m,(4) off a set of v-measure zero.
This shows m,, is a multiplicity function of A,.

Suppose conversely that m, is a multiplicity function for My,. Let £ bz a Borel
set in X with u(E)==0 and choose 2y€ C with v({4}) = 0. Let ¢, be the Borel
function which sends E to 2, and agrees with ¢ off E. Then ¢g '(4) g @ Y2y for all
2 5 /g in @(F). Thus every A(#/7y) in @(E) for which ¢~*(1) is a finite set nas
1, (2) < m,(4). On the other hand {i'm, (1) < m, (1)} must have v-measure zero.
This completes the proof.

Let X;, X, be Polish spaces and y,,u, probability measures on X, X,, respecti-
vely. The measure spaces (X3, ;) and (X,, uy) will be said to be quasi-equivalent
in case there are Borel sets 4 < X, B < X, with u,(X;\4) = u,(Xy\ B) =
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and a Borel isomorphism #n : A — B such that £ = 4 is a Borel set with j,(E) = 0
if and only if p,(n(E)) = 0. The mapping # : 4 — B will be referred to as a quasi-
equivalence between (X7, pty) and (Xs, is).

PROPOSITION 4.2, Let $,€L>(n,), ®y€ L(u,) and suppose the multiplication
operators Mo, and Mg, have finite spectral multiplicity. Then the operators Mg, and
Mg, are unitarily equivalent if and only if there is a quasi-equivalence v : A— B between
(X3, wy) and (X,, w) with fo(n(x)) = fi(x) for p-almost all x€ A and f,, f; arbitrary
representatives of ®,, @, respectively.

Proof. Given the quasi-equivalence # : A — B, the map U : L*(u;) — L)
defined by
_ [ dug o T2
Uf:fo n 1(*{1_,___)

dps

defines a unitary equivalence between Mo, and Me,.

Suppose next that the operators Mo and Mg, are unitarily equivalent. Let
vy and v, be the scalar spectral measures for Mg, and Mg, as described in Proposition
4.1. These measures are mutually absolutely continuous. Let ¢,, ¢, be distinguished
representatives of @y, @, with m,,, m,, Borel. By Theorem 4.2 we know that m,,, m,,
are representatives of the multiplicity classes of Mg, Mo,

For each integer n, the set G, = {i| m, (%) = m (1) = n} is Borel and

o
LG, is a set of full v-measure. If for each »n, we can construct a quasi-equivalence

n=1
1, between @71(G,) and ®;Y(G,) (equipped with the corresponding restrictions of
1y and p, respectively), we can put the {x,} together to yield a quasi-equivalence 5
between X, and X,. It follows that there is no loss of generality in assuming Mq , Mo,
to have uniform multiplicity n < oo.

Applying Proposition 1.4 (several times) to the graph of ¢, we can find disjoint
Borel sets Ay, . . ., A, whose union is almost all of X; such that each restricted function
4].4,1s one-to-one. Choose B,, ..., B, similarly for ¢@,. Let #; : A;—B; be the com-

position of @, and the inverse of ¢,/s, and set n = |_J n;. If E isaBorelset in A;
j=1

with p;,(E) = 0, then since ¢, is distingvished, v,(@,(£))=0. Thus vi(py(£)) =

= (7 o (E))= 0. Since n(E)= @5 lop,(E), we conclude that u,(n(£))=0. Thus if £

is a Borel yy-null set, then#(E) is a g,-null set. Similarly, 1,(£)=0 implies j,(n Y E))=

= 0 and it follows easily that # is the desired map. This completes the proof.

REMARKS. (4) Let X; = X, = [0, 1], 4, be non-atomic and u, have countably
many atoms. Let M, be the operator of multiplication by the constant function 1
on L¥u) (i=1,2). Then N, and N, are unitarily equivalent; however, X; and X,
are not quasi-equivalent. Thus the hypothesis that M, and M, have finite multi-
plicity is necessary in the preceding proposition.
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D
[5S]
N

(5) The quasi-equivalence of (X;, ;) and (X3, 41,) is necessary and sufficient
for a star-isomorphism between the algebras L>=(y;) and L*(u,). In fact, every
star-isomorphism ¥ : L®(u,) — L*®(u,) is given by Pf(x) == f(y(x)), for some quasi-
equivalence # from (X, y;) to (Xs, us). This result is due to J. von Neumann and a
proof is given in Appendix IV of [4]. It is a corollary of Proposition 4.2 that if two
unitarily equivalent multiplication operators Mg , ®,€ L=(y;) and Mg, $2€ L=(uy)
have finite spectral multiplicity, then the algebras L*(y,) and L®(u,) are star-iso-
morphic.

(6) In general, the quasi-equivalence # between (X, i) and (X,, u,) which
appears in Proposition 4.2 is not a Borel isomorphism of X, onto X,. However,
if ¢, and p, are non-atomic then 5 can be modified to be a Borel isomorphisn: of
X, onto X,.

As a further illustration of the use of Theorem 4.1, we apply it to the discussion
in Section 5 of [2]. Recalling the setting, X = [0, 1], u is Lebesgue measure, ¢ is a
continuously differentiable real valued function on [0, 1] and @ is the equivalence
class of ¢ in L=(y). Set Z = {x€ [0, 1] : ¢'(x) =- 0}.

ProrosiTioN 4.3. If the boundary of Z has Lebesgue measure zervo or if o(Z£)
is countable, then m, is a multiplicity function for M.

Proof. Suppose first the boundary 9Z of Z has Lebesgue measure zero. Express
the complement of 9Z as the disjoint union of relatively open intervals {/,} and {J,}
such that each I, is contained in the complement of Z and each J,, is in the interior
of Z.

Assume E is a Borel set in [0, 1] with u(£) = 0. Note that ¢ is constant on each
J, so that for y€ @(J,), we have m,(y) = co. Write ¢, = ¢/, and let B:= {ye
€ (E)m,(y) < co}. Then

v(B) = pu(p™Y(B)) = ¥, (e 4(B)) + u(p™X(B) ndZ).

Since ¢ is absolutely continuous, B has Lebesgue measure zero. Each ¢! is abso-
lutely continuous, so u(¢;*(B)) = 0. The fact that m, is a multiplicity function for
M, follows from Theorem 4.2.

If @(Z) 1s countable, express the complement of Z as the disjoint union of
relatively open intervals {/,} as above and again set ¢, = ¢/, . If £ is a Borel set
in [0, 1] and u(E) == 0, we set

B = {ye p(E)|m,(y) < oo}.

Then B is cssentially disjoint from @(Z). Therefore, v(p~YB)) == ¥, vip;(B)) =0
as above. This completes the proof.
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REMARK. (7) In Example D of [2], a continuous function ¢ on[0, 1] is construct-
ed such that m, is not a multiplicity function for the multiplication operator induced
by @ on L*y), with p equal to Lebesgue measure on [0, 1]. We note that with the
aid of Theorem 4.2 it is possible to take ¢ to be C*.

5. SPECTRAL MULTIPLICIY FOR DIRECT INTEGRALS
OF NORMAL OPERATORS

Let X be a Polish space and p a probability measure on X. Suppose for each
X€ X, #(x) equals a fixed separable Hilbert space o, and {#(x)}rex is the g-mea-
surable field of Hilbert spaces given by the constant fields of vectors. A decomposable

@
operatorN:S N(x)du acting on the associated direct integral space # =
X

®
::S H(x) dp is normal if and only if for p-almost all x the operator N(x)is nor-
X

mal on J#(x). In this section we will give a description of the spectral multiplicity
for N in terms of the y-measurable field of normal operators {N(x)}ex.

The results will be in two directions. First we provide a model (Theorem 5.1) for
N as a multiplication operator on ¥ X € x N (N = {1, 2, ...}). Second we investi-
gate (Theorem 5.2) the relation between the spectral multiplicity functions of N
and {N(xX)}.ex.

The “‘simplest” examples of direct integrals of normal operators are multi-
plication operators My, ®€ L>=(u), on L}(u). The results of this section are gene-
ralizations of those obtained in Section 4 for multiplication operators.

Throughout this section x — N(x), (x € X) will denote a fixed bounded Borel
mapping of X into the algebra #(s#,) such that each N(x) is a normal operator.

® ®
The operator N = S N(x)du will be considered on # = S H(x)du. The spectral re-
X X

solution of N will be denoted by N = S).dE().) and N(x) = S/ldEx(/l) will denote

the spectral resolution of N(x)(x€ X). The following simple lemma is proved by
appealing to Proposition 4 on page 160 of [4].

Lemma 5.1, Let B be a Borel set in C. Then x — E(B) is a Borel mapping

®
of X to L(Hy) and E(B)::S E(B) dy.

X

LEMMA 5.2. It is possible to choose a sequence e, = {e,(x)}cex of Borel measu.
rable fields of vectors satisfying the following conditions:

(1) The vectors e,(x), XE X; n= 1,2, ... are in the unit ball of .
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(2) For each x, the set {e,(x)} 1 is cyclic for N(x).
(3) For each x, the N(x)-cyclic subspaces generated by e,(x),es(x), ... are
mutually orthogonal.

Proof. Let {f,}® , be a complete orthonormal basis in #,. Let ey(x) = f,,
X€ X. Suppose Borel measurable fields of vectors ey, ..., e, satisfying (1), (3) have
been chosen. The collection of fields of vectors of the form

PN, N, = { p(N(x), N*(x)e(N}sex, k=1,....7m
where p(z, w) is a polynomial with (complex) rational coefficients form a countable
set. The Gramm-Schmidt process may be applied (pointwise) to this collection
of fields of vectors to obtain a sequence {g,}%., of Borel measurable fields of vectors.
For all x€ X, the sequence {g,(x)}7 ., is orthonormal (except for zeros) and span
the N{(x)-cyclic subspace generated by e;(x), ..., ¢,(x). We set

Jor1— ; Lovrs (X)) g (x)

€n+1(x) =

fusr = % hov N2l

where this makes sense and zero otherwise.
The sequence {e,}., of Borel measurable fields of vectors which is inductively

constructed as above clearly satisfies (1) and (3). That it satisfies (2) is due to the fact
that £, belongs to the span of e,(x), ..., ¢,(x), for all x€ X. This completes the proof.

Let {e,}, be a collection of fields of vectors constructed as in the preceding
femma. The sets X, (1 < p < oo) defined by

X, = {x€ Xispan{e,(x)}s>, is p-dimensional}

are Borel sets in X with | X, = X. By a slight redefinition of the {e,}, we
1<pg®™
can arrange it so that for x€ X, we have ¢,(x) = 0 iff n > p.
For each x ¢ X we define a measare p, on C X N as follows: If S« C X N
is a Borel set, we will write S = {i€ C|(4, g)€ S}. For x€ X,, (1 < p < o), we
define

(s.1) 1(S) = ;; T CE(Se 0, (0.
=1

For x€ X_,, we define

5.2) 1) = 3, CE(S e () e, ().

q-:1
It is clear from Lemma 5.1 that for every Borel set S « C x N, the function
X = 11,(S) is Borel measurabile.

@
The next proposition describes a scalar spectral measure forN::S N(x)du
e

which is obtained from a field of scalar spectral measures for {N(x)}.sex-
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PROPOSITION 5.1. For x€ X define the Borel probability measure v, on C by
v(B) = u (B X N), where B = C is Borel and p, is the measure defined on C X N
as in (5.1) and (5.2). Then {v.}iexis a u-compatible field of measures on C such that

for x€ X, v, is a scalar spectral measure for N(x) and v(.) = S v(-)du is a sca-
X
@ .
lar spectral measure for N :S N(x) dpu.
X
Proof. The fact that {u }.ex is p-compatible makes it clear that {v }iex is
p-compatible. For every x€ X, v, is a scalar spectral measure for N(x) by con-
struction. There remains only to see that the measure defined for B « C Borel by

v(B) = S v, (B) du is a scalar spectral measure for .
v

If B is a Borel set in C such that £(B) = 0, then by Lemma 5.1, E(B) =0
for p-almost all x& X. As a consequence, v (B) = 0 for u-almost all x& X. This

implies v(B) -—:S v(B)du == 0. On the other hand if v(B) :g v.(B)ydu = 0,

X X
then there is a Borel set A < X with p(A4) = 0 such that v (B) = 0 for all x ¢ A4.

Thus E(B) == 0 for all x ¢ A. By Lemma 5.1, E(B) = 0. This completes the proof.

The following corollary is obvious.

@
COROLLARY 5.1, Let N = S N(x)du(x). If for p-almost all x, the scalar spectral
X

measure (class) of N(x) is absolutely continuous with respect to some fixed measure

Vo, then the scalar spectral measure (class) of N is absolutely continuous with respect
10 v,.

L
THEOREM 5.1. Let N= S N(xX)dp and {1}« e x be the p-compatible fields of mea-
X

' @
sures defined in (5.1) and (5.2). Denote by p the measure p = S wdu on XX CxN.
¥
Let M, denote the operator of multiplication by the function @(x, A, n)= 21 on
L%(p). Then N is unitarily equivalent to M.

Proof. For every x€ X the operator N(x) is unitarily equivalent to the multi-
plication operator M,, on L*(u,) where ¢ (4, n)==1 (see Section 3). As a consequence

® ®
of Proposition 2.2 the operator N is unitarily equivalent to S M, duon S LA(dp)dy.
x 7 X

@
The natural isomorphism between L2(p) andS L*(dp)dp described after the proof
X

®
of Proposition 2.1 implements .a unitary equivalence between M andS M, du.

X
This completes the proof.

62119
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REMARK. (1) When X is the interval [0, /], 4 is Lebesgue measure and N is a
direct integral of unitary operators, Theorem 5.1 becomes Theorem 8.1 of [3]. There
is an error in the proof of the latter. Namely, the set function ug[0, 27) defined on
page 51 of [3] need not be additive as a function of S. In fact, if U(¢) = I, then g0, 27) =
=1 for every set S of positive Lebesgue measure. The argument given in 3] can
easily be patched by deleting Lemma 8.2, defining the measure v, as

o <E1(S)ei,(l)5 ei(t)>

= B el + 11

and finally replacing I's by I' in the definition of ; ;.

We now turn to a discussion of spectral multiplicity functions for direct inte-

grals of normal operators.
We begin with a result on “double disintegrations’ of measures.

LEMMA 5.2. Assume X, Y, Z are Polish spaces and p is a probability measure
on X X Y X Z. Let u, o denote, respectively, the X and X X Y marginal measures

® @
of p. Let p :S wedu, p =S g, , do be the respective disintegrations of p.
X XxY

(]
Finally, assume o = S v, du is the disintegration of o with respect to u. Then for

X
u-almost all x, {0, ,}yev is av,-compatible field of measures on Z such that p, =
®
= S o,y dv,.
Y

Proof. Let f be a bounded Borel function on X X ¥ X Z. By Proposition 1.1
{ Sy, 9do,,
z

is g-measurable. Two applications of formula (i.1) imply

y ra0={ [Szf(x, » z)dax,y] do =

XxY¥YxZ

- SX[S[SZ fox, 3, z)dax,y] d] du.

SY[SZ fex, v, z)dox,y]dvx

(5.3)

The fact that
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is u-measurable is implicit in this last identity. In particular if B ¥ X Z is a
Borel set, the measures

s = [Szxg o, 2) dax,y] dv,

define a p-compatible field of measures {/i.},ey on Y X Z. For every bounded Borel
function fon X X Y X Z, it follows from (5.3) that

{ rao= S[SZ fx, v, 2) dﬁx]du -

XxYxZ

B SX{Sszf(X’ > Z)dlix] b

By uniqueness of disintegration of measures for g-almost all x, u, = g, and con-

]
sequently, . :S 6. »dv.. This ends the proof.
Y

We introduce the following definition. A Borel function n(x, 1) : X X C - N,
recall N, = {0, 1, ..., oo}) will be said to be a field of multiplicity functions for

®
S N(x)dp in case for p-almost all x, n(x, -) is a multiplicity function for N(x). If
X

®
n(x, A) is a field of multiplicity functions forS N(x)dy, then we define n,(1) =
X

= Y, n(x, 2). It follows from Lemma 4.1 that the function n, : C - N, is v-mea-
xeX

surable with respect to any Borel measure v on C.
The following result generalizes Theorem 4.1.

]
THEOREM 5.2. Let n(x, A) be a field of multiplicity functions for N = S N(x)du.
e

If v is a scalar spectral measure for N and my is a multiplicity function for N, then
Jor v-almost all A, my(1) < ny(4). There is a field of multiplicity functions m(x, 1) such
that m, is a multiplicity function jor N.

Proof. We will assume the model and notations of Theorem 5.1. We let o

@
be the X x C-marginal measure of p and p =S o, do the disintegration of p
XxC
with respect to ¢. Also, we take v to be the scalar spectral measure of N defined for

@
a Borel set B = C by w(B) :S v, (B)du(x) and let p :S 9,dv be the disinte-
X C

gration of p with respect to v. Note that v is the C-marginal measure of ¢ and

f.
my(L) = dim L2(0,) is a representative of the multiplicity class for N,
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Suppose first that n(x, 2) is a field of multiplicity functions for N. For each
x€ X, follow the construction described at the end of Section 3 to build a measure
it on € X N from the scalar spectral measure v, and the multiplicity function n(x, -).

- @
Form the measure p = S pydpon X x C X N, and let M, be the operator of
X

multiplication by ®(x, 4, n) == 1 on L*p). By construction, for p-almost all =,
N(x) is unitarily equivalent to Me_ acting on L%j,). Applying Proposition 2.2
®
L*a,)du (Proposition 2.1), we obtain
M
that N is unitarily equivalent to Mg on L¥p).
The set

and using the isomorphism of L2(p) withS

{(x, 4, 9)€ X X C X N g < n(x, 1)}

is a support set for g. It is thus easy to choose a Borel representative ¢ of & such
that for v-almost all 4, m,(1) = n(4). Applying Theorem 4.1, we conclude that
mg(A) < n.(4) for v-almost all 4.

Finally, we construct a field of multiplicity functions m(x, 2) with 1., a multi-
plicity function for &V. Choose a Borel set § « X x C x N such that for g-almost
ali {x, %), the section S, ;, = {1 (x, 4, m)€ S}isasupportsetfor o, ;. Similarly, let R
be a Borel setin X 3¢ € X Nsuch that for v-almost every 4, R* == {(x, n) (x, 4, )€ R}
is a support set for 0,. The existence of S, R is ensured by Proposition [.3. Set
Q — Sn R. Let m(x, 4) be the number of points in Q, ;, if this latter set is finite,
otherwise mi(x, 4) =: co. The function m : X X C — N, is Borel. It is easy to con-
clude that for v-almost all 2, Q* = R* satisfies 0,(0") == 1. Thus for v-almost all
2, m,(4), which equals the number of points in 0", also equals dim L%0,). Thus
m,, is a multiplicity function for N.

By similar considerations, for g-almost all (x, 2), m(x,4) equals dim L*a, ;).
Therefote, for p-almost all x,m{x, ) = dim L¥g,,), for v.-almost all A

®
This last remark uses the fact that ¢ :S v, dp. By Lemma 5.2, for p-almost
.

®
all x, u, = S g, ; dv.. Thus for g-almost all x, m(x, -) is a multiplicity function for

c
N(x). This completes the proof.

The following proposition is a simple but useful result on spectral multiplicity
functions for direct integrals of normal operators.

@
PRrOPOSITION 5.2. Let N = S N(x)dp be a direct integral of normal operators.

X
Suppose there is a fixed non-atomic probability measure vy on C such that for u-almost
all x, the scalar spectral measure v, is absolutely continuous with respect to vy. If u

is non-atonic, then N has uniform infinite multiplicity.
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Proof. We assume N is given by the model as described in Theorem 5.1 and

]
we use the notations of the proof of Theorem 5.2. In addition let ¢ = S 7, dv be

c
the disintegration of ¢ with respect to v.

A.® . . . .
From the representation g = § v dpe it is clear that o is absolutely conti-
X

. ! do . .
nuous with respect t0 04 = i X vy. Let = o Further, v is absolutely conti-
Oy

nuous with respect to v, (see Corollary 5.1). Set g == v and let G={A€ C g(1)s£0}.
dv ‘
® ® ’ ) )
Then o =g g(Mr,dvy == g f; udvy. By uniqueness of disintegration of mea-
C ‘c
surces, there is a set 4 « C with (X \ 4):= 0 such that g(Dr, = fiu, for all

I

Ac A. Then for A€ Gn A we have 7, = P fapt. Since v(Gn A4) =1, we learn
gt%)

that for v-aimost all 1, the measure 17, is non-atomic. From Lemma 5.1, for

®
v-almost all 1,0, =: g o, ;dt, and for such a 4, dim Z%0,) = co. This completes
e

the proof.

We give one application of Proposition 5.2. Let T denote the unit circle and

o denote normalized Lebesgue measure on T. Let P : L¥T) —» HXT) denote the
projection onto the usual Hardy space H*T). Each ¢#€ L>(T?) induces a Toeplitz

®
operator Ty defined on LA T) ®@ HYT)= S H3(T) dyg according to the formula
T

. Ty=({® P)M,.

PM o= dpg(®), where for |a|=1, ®* is the usval section ¢ (e")=
T
== @fe", o). Thus T is a direct integral of the Toeplitz operators Tg= on H*T).

COROLLARY 5.2. If @ is a real valued function in L™(T?), then the self-adjoint
Toeplitz operator Ty on LXT) @ H¥T) has uniform infinite spectral multiplicity.

Proof. A theorem of Rosenblum [6] implies that each T« on H¥T) which is
not a scalar multiple of the identity has a scalar spectral measure which is absolutely
continuous with respect to Lebesgue measure. The result now follows from Pro-
position 5.2.

Note that Ty, = S

ReMARK. (2) The conclusion of Proposition 5.2 does not hold if the v, are
assumed to be only non-atomic. For example, let I2 be the unit square

P={l=x+iy|l0<x<1, 0<y<1}
and let p denote Lebesgue measure on I2. If N is the operator M,f(4) = Af(%) on
L2(p), then N clearly has uniform multiplicity one. However, in the decomposition
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®
N= S N(x)dp (u = Lebesgue measure on [0, 1]) relative to the identification of
10, 1]

L¥(1%) with S@ L*(u)dp, the operator N(x) is the operator N(x)f(y)=(x +iy)f(»)
(0,11

on L*(u). The operator N(x) has scalar spectral measure absolutely continuous with

respect to linear Lebesgue measure on the line segment {ie C} 1= x - iy, y€

€ [0, 1}}. Appropriate modifications of this example in [7] show that the construction

of a multiplicity function for the tensor product of two normal operators can be a

delicate matter; in particular, the conjecture in §7 of [2] is false.

We close with a generalization of a result of Ball {3] which provides a multi-
plicity function for certain direct integrals of normal operators.

Assume X is an interval [0, /] in the real line and u is normalized Lebesgue
measure restricted to X. We will only discuss the case where the direct integral

®
N = S N(x)dp has the property that p-almost everywhere N(x) has uniform mul-
[0, 4

tiplicity one.
In the situation described above the model in Theorem 5.1 reduces to M,

®
on L*o) where o =S vidu and {v.}reo, n Is a p-compatible field of scalar
(]
spectral measures for {N(x)}xeo, 5-
Following Ball [3] we define for s€ [0, /] the measure 7, for Borel £ < C by

WB)=|  v.Ean
1. s1

Note that for all s€ [0, /], the measure 7, is absolutely continuous with respect to
vand 7, = v, where v is the scalar spectral measure for N described in Propo-
sition 5.1.

dr,
dv
Nikodym derivative of t, with respect to v. These representatives are chosen so
dr,

> 0 be a representative of the Radon-

For each rational r€ [0, 7] let

d dr,. . . dz s
that — <- T when r < r'. For s in [0, 1], set = lim —X where the limit is
dv dv dv  risdv
taken over rational r decreasing to s.
The following proposition provides a generalization (for the case of normal

operators) of Theorem 8.3 in Ball [3].
. . drg :
PROPOSITION 5.3. Let m(A) denote the number of jumps i . (2) as a function
‘7

of s if the set of values {:—Ts (,1)} is finite, otherwise m(1) = co. The function
v s€l0, 1
m is a multiplicity function for N.
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@
Proof. Let ¢ = S 0,dv be a disintegration of ¢ with respect to v. Then for E

c
a Borel set in C

1(E) = o([0, s] X E) :S 0.,([0, s]) dv.
E

dr,

The choices (4) made for rational re [0, /] will agree for v-almost all 1 with

9% () = 0,0, s]). The
dv

function my(4) = dim[L#6,)] is a multiplicity function for N. This function equals

0,({0, r]). Consequently, for v-almost all A and s€[0,/],

the number of jumps in 9& () if ; S]ls- (}1)} is finite and is otherwise infinite.
dv dv selo, 1]

This completes the proof.
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