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ERGODIC ACTIONS OF COMPACT ABELIAN GROUPS
DORTE OLESEN, GERT K. PEDERSEN and MASAMICH! TAKESAKI

1. INTRODUCTION

A few years ago Stormer raised the question whether a von Neumann algebra
¢ 1s finite, if it admits an ergodic representation «: G — Awt(.#) for some compact
group G. He showed in [28, 3.4] that the answer is yes if G is abelian. Well-aimed,
but unsuccessful attempts at a positive solution of the general problem (cf. [10] and
[1]) made it clear that the question is hard, and the answer may, in fact, be negative.

By contrast, the abelian case is relatively straightforward and, as we shall
show, it 1s possible to give a complete description of the finite von Neumann algebras
Z appearing in the ergodic representations «: G — Aut(.#) of some fixed compact
abelian group.

Given such a von Neumann algebra .# one first observes that it has a complete

set {u(p) | p€ G} of unitary eigenoperators for the action o and that the eigenspaces
are all one-dimensional and span .#. This means that p — u(p) is a projective repre-
sentation of G, and we are led to consider the 2-cocyle m(p, ¢} = u(p)u(g)u(p +q)*

with values in the circle group T. Thus our algebra .# is a crossed product of G and
C over the 2-cocycle m, as described by Zeller-Meier in [34]. The next observation is

that the group %, of all unitary eigenoperators is an extension of T by G (with the
map p — u(p) as a cross-section for the quotient map of ¢, on G). Classifying group
extensions is a well-known exercise in homological algebra, the invariants being

the elements in the second cohomology group H*G, T). Since G is discrete, and T
is a direct summand in any abelian locally compact group in which it is a closed

subgroup, one may describe H2(é, T) as the set X 2(GA, T) of symplectic bicharacters
X :éx é—> T. Alternatively, Xz(é, T) is the set of homomorphisms y: (A] — G for

which {(x(p),p> =1 for every p in é Thus the pair (A, o) is completely
determined (up to conjugacy) by the corresponding symplectic bicharacter

xaonGAxG,
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In [9] it was shown that corresponding to each factor there is a unique ergodic
flow, the flow of weights, and that the flow of weights on a tensor product is construc-
ted by simple arithmetics from the flows of weights on the components. In this paper
we show that the exact same arithmetics gives rise to a binary operation in the cate-
gory of ergodic actions of G, and that the operation turns out to give a commutative
group structure on the set [G] of conjugacy classes in the category. Furthermore,
we topologize the subcategory of ergodic actions of G on von Neumann algebras

on a fixed Hilbert space (take e.g. L‘“’(&)), using pointwise convergence on the set
of unit balls with the strong topology. Giving [G] the quotient topology, we find that
it is compatible with the group structure, so that [G] becomes a compact abelian group
isomorphic to X2(GA, T), the compact group of symplectic bicharacters on Gx G
with pointwise product and convergence. The unit in [G] correspond to the translation
action of G on L*®(G), and the inverse of a class [x], corresponding to an action «
on -7, is given by taking « acting on the opposite algebra of .#. We should like to
point out here, that the topology mentioned above, on the set of all von Neumann
algebras on a fixed Hilbert space, is quite badly behaved. For instance it is not Ty
and the isomorphism classes are not closed. However, on the subset of von Neumann
algebras which admit an ergodic action of G the topology is Hausdorff and each
conjugacy class is closed.

Given an ergodic representation « : G — Aut(.#), let y, : é — G be the asso-

ciated element in X 2(&, T).If za(a) = {0} then .# = L*(G) with « acting as transla-
tion. The other extreme occurs when y, is injective (equivalently, has dense range),
and corresponds to the case where .# is a factor. We show that any representation
is induced from an ergodic representation B: G»— Aut(#"), where 4" is a factor and
Gy is the kernel of « restricted to the center of .4/, Therefore, assuming that G is
second countable,

M = L=G[Gz) @ N';

and since .# is injective, A is either M, (if .#is of type I) or the hyperfinite II,-factor.

A similar theory of ergodic representations of G on C*-algebras is possible,
and runs parallel with the von Neumann theory. Indeed, there is a bijective corres-
pondence between ergodic representations of G on C*-algebras and on von Neumann
algebras. However, a simple description of the C*-algebras that occur in the repre-
sentations is no longer possible; though they are all induced from subrepresentations
B: Gz— Aut(#), where 4 is a simple, nuclear C*-algebra with unit and unique trace.

Our theory can be applied to certain ergodic representations of non-compact
abelian groups. Such almost periodic representations «: G — Aut(.#) can be extended

to &: G — Aut(.#), where G is a compactification of G (arising as the dual group
of the pure point spectrum for «). In this way we obtain a non-commutative generali-
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zation of von Neumann’s classification of ergodic transformations with pure point
spectrum.

The paper uses the combined knowledge of its authors, but is written in order
to match their combined ignorance. Therefore most of the arguments are self-con-
tained, even though they are not all original. In particular, the arguments in Section
3 can presumably be found in any standard text on homological algebra, and some
results overlap with [1] and [3]. The paper is neatly complemented by the recent
work of V. F. R. Jones ([16], [17]), classifying all actions of a finite (non-abelian)
group on the hyperfinite II;-factor.

All three of us have enjoyed the warm hospitality of professor D. Kastler and
his colleagues, and acknowledge with gratitude the support from Université d’Aix-
-Marseille I1, Luminy, where this work was carried out. Thanks also go to Professor
H. Araki in Kyoto for his hospitality towards the last named author during the
final stages of the work, and to A. Kishimoto for pointing out an error in the first
version of the paper.

2. G-SYSTEMS

2.1. Let G be a fixed compact abelian group with normalized Haar measure.
A pair (A, a) consisting of a von Neumann algebra .# and a faithful, ergodic,
continuous representation « : G — Aut(.#) will be called a G-system. The continuity
requirement on « is that each function s — a(x), x€ 4, is o-weakly continuous from
G to .#. Thanks to the Haar measure on G this is equivalent to the demand that
each function s — (o)), @€ 4, is norm continuous from G to ., although
the two conditions correspond to different topologies on Aut(.#).

2.2. We say that two G-systems (&, a) and (¥, B) are conjugate (and write
(A, a) ~ (AN, B)) if there is an isomorphism @ : .# — A" such that

Dog,o Pl =f,, s€G.

The conjugacy class of (.#, ) is denoted by [a] and the set of conjugacy classes
of G-systems is denoted by [G].

Define a product of two G-systems (.#, &) and (4", B) as follows: Take the
actiona ® fof G X G on A @A and note that (Z/ @A, o ® f)isa G X G-system.
Let 2 denote the fixed-point subalgebra of .# ®.4" under the action o, @ f_,,
S€ G, and consider the action y, = o, ® 1, t€ G, on £. It is elementary to check
that (2, 7) is a G-system. We call it the product and denote it by (A, a) X (A, f).

In general no G-system is a unit for the product (which is clearly associative
and commutative) so that we only obtain a semi-group structure on the set of G-
-systems. However, if (#;, &) ~ (4", B) via a conjugacy @, : A, - &, for i = 1, 2,
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LY

then ¢, ® ¥, is an isomorphism of .#,®.#, on 4", @ A, intertwining 1@ x2
with ! ® f° Consequently

(o) X (Ayy @B ~ (V7 B X (A, BP).

Thus the definition Ja!} . [4%] = [« % «?] gives a well-defined product in [Gl. As we
snall sec later (4.5) this product gives a group structure on [G].

A
2.3. Given a G-system (-7, %) take p in G and for each x in .« put

A N

x{p)=- §a(3(,‘:) (s, py Cs.
« A . . - ~ A
Thaen :f‘(\\p)) {s. pyx(p) for all s in G. Consequentiy, if x, v€ .7 then x!{p)r{p}*
wxedpoint for &, hence a scalar muﬂtﬁpﬂe of 1. Thus if » (p) ¢ 0 then o p)

~ . // e}

(p)i 1X(p)is unitary and for eoch yin 4, »ip)is a scalar multinle of #(p).
The cxistence of unmitary eigenoperators for « shows immediaicly that the

a fix
i Q

Arveson spectrum, Sp(x) is a subgroup of G (see [24, 8.1.€]). But

So(a)l -+ {s€ G 2y: = i),

nd since % is assumed to be faithful, Sp()t = {0}, i.e. Sp(2) - G. We can therefore
choose a compiete set {u(p) p€ G} of unitary cigenoperators for % such that.#
is the o-weakly closed linear span of the u(p)’s.
2.4. Prorosrtion (cf. [2, T, 3.3]). If (-4, ) is a G-system then % is a maximally
ubelion subgroup of Aut(. 7).
Proof. Let o be an automorphism of .7 commuting with «,. Then o(§(p))

a{x)"(p) for all x and p. Choosing u(p), p€ 2}, as in 2.3 it follows that o(u{p))e
€ Cu(p). Since ¢ is an automorphism this implies that the map p — a(u{p)u(p)*

is a character on G. Thus there is an s in G with

a(u(p)) = s, p) u(p) = 2 (u(p))
for all p. Since the u(p)’s generate .# it follows that ¢ = «,, whence 2, is maximaily
abelian in Aut(.#).

2.5. ProposITION (see [28], [15], [10], [1]). If (., %) is a G-system then the unigue
G-invariant state T on A is a faithful, normal trace.

Proof. Identifying C with C1 we define

T(x) = So:s(x)dx =2(0), xe 4.
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Then 7 is a faithful normal G-invariant state on .#, and clearly the only one.

A
To show that 7 is a trace, choose unitary eigenoperators {u(p) | p€ G} as in 2.3.
Since the u(p)’s generate .4 linearly it suffices to show that

(u(pyu(q)) = w(u(q)u(p))

for all p, g in é Butif p 4+ g # O then

~

(u(p)u(g))= 3 (s, p+ gy u(pyu(gyds = 0 ;

whereas if p + g =0 we have

u(pulg) = 21 = ulgyu(p) ,

from which the result follows.

2.6. If (A, o) is a G-system with trace T we use the GNS construction to obtain
a Hilbert space $, with a unit vector ¢, and a unitary representation A* of G on §,
such that we may regard .4 as a von Neumann algebra on $, with

[

ax) = A()xA(—s) and  1(x) = (x¢[<))

for all x in . We shall call this the standard representation of (M, o).

2.7. Let (A, o) be a G-system and denote by &, the set of unitaries u in ./
such that u*ea(u)€ C for all s in G. 1t is easy to verify that ¢, is a group, and clearly
every unitary eigenoperator belongs to ¢, , so that 4, = .# by 2.3. On the other

A
hand, each u in ¢, is an eigenoperator corresponding to the eigenvalue #(v) in G
determined by
s = w¥a(u) = (s, n(u)), s€ G.

The map = : 4, - G is a homomorphism and the faithfulness of « implies that =
is surjective. Since o i1s ergodic the kernel of = is the circle group T, so that we have a
short exact sequence

1> T, -G~ {0}

In other words, %, is an extension of T by G, and this extension is an invariant for
(4, a). This observation motivates our little excursion into algebra in the next
section.
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Note that if (.#, «) and (A", ) are conjugate via @ and if %, and %, are the
associated extensions then &(%,) = %;. Since of course @ is the identity map on T
it follows that 4, and %, are equivalent extensions in the natural sense.

2.8. We topologize the set of von Neumann algebras on a Hilbert space 9,
using elementwise convergence in the strong topology on the unit balls. Thus if
4 < B(9) a subbasis for the neighbourhood system of .# is given by sets of the
form

U, x)={¥ <= B®)|Iye Nyl <1, j(x—»éll < 1},

where £€ § and x€ .# with |x||< 1. It follows that a net {4";} of von Neumann
algebras converges to .# if for each x in ./ there is a net {x;} converging strongly to x
with ||x;| < |lx| and x; in 4", for all i. The topologyisnot T} since every set #(Z, x)
contains all von Neumann algebras larger than.#. It is, however, T, so that points
can be separated.

Let now (u, H) be a faithful continuous unitary representation of G and denote
by G(u, $) the set of G-systems (.#, «) for which .# < B(9) and « = Ad u. Consider
G(u, H) with the topology described above. Thus if a net {(.#,, &')} converges to
(4, ) there is for each x in .4 a net {x;} converging strongly to x with |lx;]| < ix]
and x; in .#, for all i. However, for each ¢ in $ the set {u(s)¢ |s€ G} is compact.
We may therefore assume that ol(x;) — «(x) strongly, uniformly on G. But then by

integration {&i(p)} converges strongly to x(p) for each p in G and I %Pl <lixl.

2.9. LeMMA. A net {(#;, &)} in G(u, H) converges to an element (M ,x)
if and only if for each v in G, there is a net {v;} of unitary eigenoperators for u conver-

ging strongly to v, such that v,€ 9 ; and n(v;) = n(v) in G for all i.

Proof. Tf (M, &) — (M, 0) in G(u, H) and vE ¥, with n(v) = p in G there
is by 2.8 a net {x;}, where x;€ ., and || x,(p)l| < 1 for all i, such that {X,(p)} conver-
ges strongly to o( p) = v . Since the norm is strongly lower semi-continuous it follows
that [[x,(p)ll = 1. Set v, = X (p)|"*x {p) and note that v;€ ¥ ; with n(v;)=p, and

that v; - v strongly.
Conversely, assume that the net satisfies the conditions in the lemma and

take x in .# with ||x] < 1. Put

1
y=0+ 1 —xx*))"x
so that

x=2(1 4+ ")y = 2y(1 + y*»)1.

The linear span Lin(%,) of 4, is a =-algebra which is strongly-xdense in .# (cf. [31,
2.2]). Moreover, since the involution is strongly continuous on the unitary group
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of B($), each element in Lin(%,) can be approximated in the strong-= topology by
elements from Lin(% ;). It follows that there is a net {y;} converging strongly-= to
y with y, in ., for each i. Set

x; =21 + yp*) ty;
and observe that ||x;| < 1. Moreover, by Kaplansky’s argument from the density
theorem ([31, 2.4.8])

1 .
gy (x; —x)=0 +yy*) "y, —y(1 + y*y) =

= (1 + y) @i = A 4 o)+ (0 4+ vy wGF — vyl + y ),
so that x; — x strongly. Since x was arbitrary, (.#;, &) - (M, a) in G(u, H).
2.10. PROPOSITION. The topological space G(u, H) defined in 2.8 is Hausdorff.
Proof. Suppose that a net {(.#,, a’)} converges to both (#, «) and (¥, f) in

G(u, 9). For each v in 4, choose w in %, such that n(v) = n(w) in é By 2.9 there
are nets {v;} and {w;} converging strongly to v and w, respectively, with v; and w,
in ¢ ; and 7(v) = n(v), n(w;) = n(w) for all i. But then n(v;) = n(w,), whence
v; = Aw, for some scalar 4; with |4;j = 1. It follows that A, — 1 and that v = Aw.
Since v is arbitrary, 4, < ¥4, whence 4, = 4, by symmetry. Thus .# =" and since

o = Ad u = B we see that (A, a)=(A4", ) in G(u, ) which is therefore & Hausdorff
space.

2.11. Analogously to the von Neumann algebra case define a C*-G-system
as a pair (&, «), where & is a C*-algebra with unit and « : G — Aut (&) is a faithful,
ergodic, continuous representation of G. The continuity requirement here is that
each function s - ax), X€ .2, is norm continuous.

Given a G-system (#, o) let #¢ denote the set of elementsx in # for which
the function s — «,(x) is norm continuous. Then .#¢ is a weakly dense G-invariant

C*-subalgebra of .# generated by elements of the form x = Sas(y)f(s)ds, J€ LY(G),
y€ M (cf. [24, 7.5.1]). 1t follows that (¢, a|.#¢) is a C*-G-system. As we shall
see (6.1) any C*-G-system has this form. By direct verification we see that for any

C*-G-system (o, o) there is a complete set {u(p) | p€ é} of unitary eigenoperators
for o in &/ such that o/ is the norm closed linear span of the u(p)’s. Thus 2.4, 2.5
and the group extension %, in 2.7 have direct analogues for C*-G-systems.

3. GROUP EXTENSIONS

3.1. Let I" be a discrete abelian group and T the circle group. An extension of T
by I is a topological group ¥, necessarily locally compact but not necessarily abe-
lian, for which we have a short exact sequence.

(}>TS>g5T > {0,
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Let p — u(p) be a right inverse for 7 (a cross-section). Then the function m(p, q) =
== u(pu(qu(p + g)"* on I X I takes values in 1(T) (identified with T) and satisfies
the 2-cocycle equation

() (g, rym(p, g -\- r) = m(p + q, rIM(p, q).

Conversely, given a 2-cocycle /1 we obtain an extension ¢ by defining a product
on T I by

() (s, p)(’s f]) = (’"(P: ‘I)STaP + q) .

Let Z3(T, T) denote the compact abelian group (under pointwise multiplication)
of all 2-cocycles from I’ X I' to T and denote by B%(I', T) the closed subgroup of
2-covoundaries in Z¥TI", T) i.e. elements of the form m(p, q) = fAp)f(g)fip + q) *for
some function f: I' - T. Thus the second cohomology group

HYL, T) = ZXI, T)/BXT, T)

is & compact abelian group. It is well-known (and easy to prove) that two extensions
of T by [ are equivalent in the natural sense if and only if m;m, 1€ B¥I", T) for some
(hence any) 2-cocycles m,, m, determining the extensions. Hence H¥I", T) is a com-
plete invariant for the (classes of) extensions of T by T

Due to the special choice of T as the subgroup in the extensions, a more trac-
table description of H¥XI", T) can be given.

3.2. PROPOSITION. Given m in Z3(I', T) define m* by m*(p, g) == m(q, p) * and
let XU, T) denote the subgroup of Z3(I', T) consisting of the symplectic bicharacters
on I X I'. Then the endomoirphism i — mut™ of ZXI', T) has BN, T) as its kernel
and XAI",'Y) as its range. In particular HXT', T) is isomorphic to X*(I", T).

Proof. Since m — m* is an automorphism of Z*I", T) and m* = m" ! for each
min BT, T) it follows that m — mn7* is an endomorphism with BXT", T) in its kernel.
However, if mm™® = 1 then m is symmetric, so that the corresponding extension ¥
is abelian (cf. (%) in 3.1). The identity map of T is a character on the closed subgroup
1(T) of @ and can therefore be extended to a character on ¢. Thus 1 has a left inverse
which means that the sequence splits, i.e. ¥ =T @ I". Consequently me BX I, T)
so that B¥I', T) is equal to the kernel of the map m — mm™.

Let X, denote the closed subgroup of Z¥I', T) consisting of elements mm™,
From the preceding we know that

Xy = ZXI', T)/BXI, T) = HXI', T).

Take y = mm™ in X,. Clearly x(p, ) = x(q, p)™*, i.e. x is a symplectic form. To show
that y is a bicharacter let % be the extension and ;' -» #(p) the cross-section of I" in
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@ given by m, cf. 3.1. Thus m(p, q) = u(p)u(q)u(p + ¢)7*, whence x(p, 9)= u(p)u(g)
u(p) u(g)~*. Consequently
xp + g, r) = u(p + Qu(r)u(p + q) 'u(r)™ =
= m(p, 9) " u(pu(@Qu(r)u(p + @) u(r) =
= m(p, @)~ u(p)x(q, u(r)u(@u(p + q) " u()™ =
= m(p, @)~ 2(p (g, Nu(ulpyul@u(p + @)~ u(r)™ =
= m(p, @~ xp, Nxlg, Nu(rIm(p, Qu(r)™ = 7(p, 1)3(g, 7} -

Thus y(-, ¢)is a character on I" and since y is symplectic it is a bicharacter. It follows
that X, < X¥I', T).

To prove the reverse inclusion take y in X*{, T). Let ( 2, m) be a pair such
that X is a subgroup of I' and me Z¥3, T) with mm* = y|Z X Z. Iff ae I\2Z
we shall extend mto 2, X 2;, where I, = Za + X, such that mm* = y| I; X X,.

To do so note first that Za n 2 = Zb for some b. Then let % be the extension of T
by Z given by m and consider the short exact sequence

->T595z2-(0).
Define a group structure on ¢ X Za by
(u; p)(v, ) = (xlp, n(V)) uv, p + ¢) .
With 7 =1 x 1and & = = X 1 we then obtain a short exact sequence
I oT5¢x 245 3@ Za— {0},

Choose anelement ¢ in @ with n(c)=45. If nb=0 then ¢"€ Ker n =T. Replacing ¢ by
07'¢, where € T such that 6" = ¢", we may assume that b and ¢ have the same order.
Now consider the subgroup of ¥ x Za given by

€ = {(c", — nb) | ne Z}.

Since y = mm* it follows that if u, ve ¥ then uvu™" = y{n(u), =(v))v. From this we
see that for any pair (v, p), (v, q) in % X Za,

(u, p) (v, q) (u, p) ' =
= (x(p, n(v)uv, p + q) (((p, n@W)u*, —p) =
= (y(p, n(V))x(p, 7W))x(p + g, n(u Nuvu?, g) =
= (x(p, m(v)x(m(w), @)x(n(w), n(v))v, ) =
= (XUp, g + (=), ¢ + (), q) =
= (x(p + =), g + n(v))v, q)

7 = ¢c2119
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{note that X(p, g) =0, since p, g€ Za). Replacing (v, g) with (¢*, —nb) it is immediate
that ¥ belongs to the center of % X Za; in particular ¢ is a normal subgroup. Clearly
7€) (viz. {(nb, —nb) | n€ Z}) is the kernel of the natural homomorphismof ¥ ® Za
onto X, (= X + Za), and since ¢ and b have the same order, AT) N € = {1} so
that we have an exact sequence

o T59x Zajg 55, 10},

Choose my, in Z*Z,, T) associated with this extension. The computation above can
be rewritten as

(u, p) (v, 9) (W, p)™* = (x(p(u, p), p(v, v, q) .

Thus for any pair 4, e in ¢ X Za/% we have

ded ' = y(p(d), p(e))e .

It follows that mh™ = y | X; X X,. Since therefore m and m, | ¥ X X have the
same image in H%(Z, T) there is a function f : ¥ — T such that

m(p, 9) = fP)(@)f(p + @) *mo(p, 9)

forallp,gin . Let f; : £; — T be any extension of f'and define

my(p, 9) = L(PUDAP + @7 m(p, 9)

for all p, ¢ in Z,. Then the pair (£,, m,) extends (I, m) and mm¥ ==y | 2, X %,
since mymgt € BYXy, T). Applying Zorn’s lemma to the set of pairs (Z,m) in
their natural ordering we find a pair (I, m.,), i.€. an element m,, in Z¥TI", T), such
that meme™ = y. This establishes the equality X, = X, T) and completes the
proof.

4. CLASSIFICATION OF G-SYSTEMS

4.1. LemMa. Ler (4, Lz(é)) denote the regular representation of G on L2(é)
given by

(X)) (p) = s, p) &(p), E€ LAG).

For each m in Zﬁ(GA, T) there is a canonical G-system (M ,,, &™) in G(4, L2(&)) (cf. 2.8)

A A
and a cross-section p — v(p) from G into G m such that the extension G n of T by G
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described in 2.7 is given by m. Moreover, the map m — (M ,, &™) is continuous from
Z¥G, T) into G(, LXG)).

Proof Let {n,|p eAG} be the vsual basis for L2(é)(=12(6)) and define uni-
A
tary operators v(p), p€ G, by

(*) U(p)rlq = m(pa (I)rlp+q H qE G.

Elementary computations using the cocycle equation () in 3.1 show that
v(p)o(g)v(p + g)* = m(p, q).

Since As)v(p)A(—s) = (s, py v(p) for all s and p it follows that o = Ad 1
is a faithful representation of G as automorphisms on the von Neumann algebra
J#,, generated (linearly) by the v(p)’s. If x is a fixed-point for G in .# ,, there is a net
{x;} of linear combinations of the v(p)’s converging strongly to x. But then ¥,0)—

- §c(0) {=x) strongly (cf. 2.8), and since 3ci(0)€ C1 it follows that x€ C1; so that

(A, a™) is a G-system. Clearly p—~uv(p) is the cross-section from & to 4 , that
defines m, so that ¢ ,, is the extension of T by é given by m.

If m; > min Zz(é, T) then clearly v'(p) — v(p) strongly on L2(é) for each p
(cf. ()), whence (& ,,, a™) — (M, a™) by 2.9.

4.2. LEMMA. Given a G-system (M, o) let y, denote the symplectic bicharacter
associated with the extension 9, of T by é {identifving H 2(GA, T) with X 2(GA, T) by 3.2).
For all (A, o) in G(A, L2(é)) the map (M, o) — ¥, is continuous.

Proof. Suppose that (A;, &) — (M, o) in G(1, Lz(&)). Take any cross-section
p —> u(p) of & in ¢, and note that y,(p, ) = u{pyu(q)u(p)*u(g)*. For fixed p andg

in G there are by 2.9 nets {u(p)} and {u,(g)} converging strongly to u(p) and u(g),
respectively, with u,(p) and u(¢) in #; and n(u{p)) = p, n(uq)) = ¢ for all i. Con-
sequently

1:(p> @) = uPulPup)*ulg* - 1(p, q) ;
whence y; — y pointwise on (A; X é

4.3. LEMMA. Every G-system (M, a) is conjugate to an element in G(A, LQ(é)).

Proof. Given (A, a) choose a cross-section p — u(p) from G into 4, as des-
cribed in 2.3 and 2.4, and let m be the corresponding element in Z“‘(&, T). Taking
(#, &) in the standard representation (cf. 2.6) we note that the system {u(p)¢ | peé}
is an orthonormal basis for §,. Define an isometry w : $, — L2(&) by wu(p).=n,
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for all p. Now let (.#,,, ) denote the G-system in G(4, Lz(é)) defined in 4.1 together
with the cross-section p — v(p). A straightforward calculation gives

wu(pw™ = v(p) and wi*(s)w* = As)

for all p and 5. Conscquently, with @ = Ad w we get (#, &) ~ (H,, 2™).

4.4, PROPOSITION. If (4, =) and (A", B) are G-systems then [o] == [f] if and
only if y, == yp.

Progf. (7, 2) ~ (A7, B)then ¥, ~ ¥, by 2.7 whence y, == y, by 3.2.

A

Conversely, if y, = y, and if p — u(p) and p — v(p) are cross-sections for &
in 4, and %,, respectively, then the associated 2-cocycles are homologous by 3.2.

here is thercfore a function f: G — T such that
mip, q) = w(pyu(giu(p -~ g7 - fPWOfp -~ @) e(p)(gie(p - g)*.
Replacing #(p) by fAp)u(p) we sec from the proet of 4.3 that (.7, «) and (7, i) ave
both conjugate to the G-system (. #,,, ¥™) in G(4, L¥G)).
4.5. THEOREM. Let [G] denote the set of conjugacy closses of G-systems equipped

with the product defined in 2.2 and the quotient topology obtained from G(i, LG
under the equivalence map. Then [G) is ¢ compact abelion group and the map (.7, 2} -»

— 1, defined in 4.2 gives an isomorphism of [G] onto X 2(&, Ty (= H 2(&, T) .

Proof. Consider the diagram
22G,T) — X¥G,T)
1
|
lf h
g
4
G(%, L(G)) —> [G] .
r

Here n and p are the quotient maps (and p is surjective by 4.3) and f, g and /i are
the maps defined in 4.1, 4.2 and 4.4, respectively. It is immediate from the definitions
that the diagram is commutative, and we know from 4.4 that / is a bijection.

If 7, » x in Xz(é, T) we can find m; > m in Z2(é, T) with n(m;) = X, and
n(m) = %, because r is an open map. Since both fand p are continuous it follows that
XY = h(X). Thus h is a continuous bijection and therefore a homeomorphism,
since X% G, T) is compact.
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Take G-systems (47, a) and (4", B) and choose cross-sections p — u(p) and
p — o(p) for G in ¥, and ¥, respectively. Then the function p — u(p) ® v(p) isa

cross-section for (:7 in %,z (cf. 2.2). It follows that

Luxp (P> @) = (u(p) ® v(P)u(g) @ v(@)u(p) ® wWp)*ulg) ® v(g)* =
= Xaz(pa q) [[; (pa q)

Since the product respects conjugacy by 2.2 we see that
AH({ed(BT) = A7 (o < By == b X ([ ([BD) -

Consequently [G] is also algebraically isomorphic to Xz((i T) and thus a compact
abelian group.

4.6. COROLLARY. If (.#, o) is a G-system let 4"~ denote the opposite algebra
(i-e. Xy =(yx)") and define & (X)==(ay(x))~. Then (&~ &) is a G-system and [& ]=[x] "
in [G). In particular, [¢] = 1 if and only if # is abelian.

Proof. Since X~ = X! we see from 4.5 that [a]==[x]". If .# is abelian then

M = M~ whence [a]=1. Conversely, if X, = 1 then %, is abelian because u(p)u(q)
u(p)*u(g)* = 1 for all p, g in G, so that .4 is abelian.

4.7. PROPOSITION (cf. [20, HI. 5]). Let (#, ) be a G-system and B a perturbed
action of a :ie. f; =(Ad w(s)) e o, 5 € G, for some 1-cocycle w in M with respect
to o. Then (M, ) is a G-system conjugate to (M, ).

Proof. Let " = # ® M, and define the action & of G on .4 by

(%) &, (xll le) - ( a(x)  ot(xae) W(S)*)

w(s) o (xXz1) B(xs0)

o1 Xog

(cf. {24, 8.11.3]). Since & is exterior equivalent with o« ® 1 (via the l-cocycle w(s) =
= w(s) ® e + 1 ® ey) we know that the three crossed products

GxuN, G XN, (G x #) R M,

a@e &

are isomorphic. As I'(x) = (:‘ and o is ergodic on the center of .# it follows from
[9, IIL. 3.4] thatG X . is a factor, whence G X ./ is a factor. Let p be the function

p(s) =1 on G, identified with a projection in G X 4" and check that

[+

PGCXN)yp=NCp~ 1€
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(or use [9, III. 2.15]). We conclude that 4% is a factor. There is 2 unique normalized
trace on #°C given by

7o(x) = % (eCrn) -+ 1Gxae))s x = (xy) € A7,

Since ey, and e,, belong to #°C with 14(ey;) = to(es0)( = 1/2) it follows thate;; ~ eps
in .47¢. This implies the existence of a partial isometry v = u ® e,;in 47 such that
¥y = wu* = 1in 4. Thus u = w(s) a(u); 1.e. w(s) = uor (u*¥) so that wis a coboun-
dary. From the formula

B (x) = ua u*xu) w*, s€ G, xe

it follows immediately that B is faithful and ergodic, so that (.#, B) is a G-system,
Taking ® = Adu we have ;= & oa o 1 whence (M, a) ~ (M, B).

4.8. REMARK. The stability result in 4.7 (any cocycle cobounds) remains valid
for an action o of a compact group G provided that .# is finite and I'(x) = G. A
proof can be obtained by disintegrating -# into components .# (1) on which G acts
centrally ergodic. Then G x .#(]) is a factor and using the proof above we obtain

a unitary u(4) in.# (1) such that u(}) = w(s)(}) a(u(2)). Taking u= Su().)d/". the result

follows. The stability result even extends to non-abelian compact groups (and finite

algebras) provided one replaces the spectrum condition I'(x) = E? by a suitable
condition which guarantees non-degeneracy of the action — for example the factor
property of G X ..

4.9. REMARK. If (. , ) is a G-system and ¢ is an automorphism of G then, defining
acg by (a°0), = t,,, we obtain a G-system (&, a0 a). If X, is the symplectic
bicharacter associated with [o] then (p, g) — Xa(é (p), 6(q)) is associated with [o © o].
Motivated by this observation we say that two G-systems (.#, «) and (4", B) are
weakly conjugate if there is an isomorphism @ :.# — 4" and an automorphism ¢
of G such that @eaog = fo @,

At first glance, weak conjugacy may seem a more natural concept than mere
conjugacy. After all, changing « by an automorphism of G has no effect on .« and
is just a ‘“‘change of scale’” on G. Indeed, the simple G-systems for a finite group
are usually not all conjugate, but they are weakly conjugate by 5.9. This fact is a
special case of the so-called “uniqueness of the Weyl relations”, and the reader will
recall that the relations are in fact only unique up to automorphisms of the group.

The objections to the use of weak conjugacy are, first, that the group structure
of conjugacy classes is lost. Second, and more important, the classification space is
no longer smooth. A few examples will illustrate the problem.
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4.10. ExampLE. Let G = T" so that AG = Z". Any bicharacter on Z" x Z"
is given by

X(p,q) = Ma’®, p,qez”,

for some n X »n matrix 4 = (a;;) with entries in T. Moreover, £ is symplectic if
a;; = aj'. Thus y is determined by the upper triangular part of 4 and, product
of y’s corresponding to elementwise product of A4’s, we conclude that

Xz(Zn’ T) == r(r—1/2 .
An automorphism of Z" is given by

a(p),= Z bipy» peZ”,

for some invertible # X n matrix B = (b;;) with entries in Z; composition of auto-
morphisms corresponding to multiplication of matrices.

Given y and o corresponding to matrices 4 and B as above let ¥ denote the
transformed bicharacter and A its corresponding matrix. Thus

)?(p, q) = X(o(p), o(q)) = [1 a‘zfp)i o@; __

bueprkbjpy ~ DK D1
= IIaij ’ - H akl )
where

~ bub it
Q= IT a; -

If n = 1 there are no symplectic bicharacters. If n = 2 we have X¥Z2, T) = T.
This case is extremely interesting (see 6.8 and 6.9) but does not help us to understand
weak conjugacy. Indeed, since s — s and 5 — s7! are the only automorphisms of T
it folows that the set of weak conjugacy classes of T2-systems is isomorphic with
the unit interval (identifying s and s™* in T). Now consider T? where X%Z3, T) = T3,
An explicit isomorphism from the 3 X 3 matrices A4 = (g;;), corresponding to ele-
ments in X3(Z3, T), onto T? is given by

@A), = a;, where i<jand m=i+4+j—2.

Take y, g, ¥ and 4, B, A as above (but forn = 3). Thenifk <landr=%k +1—2
we have

o(A), = d = IL a7 = IT o(a)]™,
m

i<j

putting ¢, = byb;, — bjxb;,. The last expression is the typical form of an automor-
phism 6 of T? (compare with the automorphisms of Z%). We may therefore write
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A= @t e o o p(4). Consequently the set of weak conjugacy classes of Té-systems
is isomorphic to the set of automorphism classes of T3. This space is notsmooth.
Indeed Aut(T?) is a countable group (isomorphic with GL(3, Z)}, but contains erge-
dic elements. Thus thers are dense orbits in T° under the action of Aut(T®), yet the
action is not transitive.

5. STRUCTURE OF G-SYSTEMS

5.1 1 (&, w) is a G-system let X, (or just X) denote the associated symplectic
bicharacter (cf. 4.5). There is then a unique homomorphism ¥:G - G such that

(p) ,py =:1forallpin G. The bijective correspondence X —  is given by

) dy = 1(p,9) > pra€G.

For notational simplicity we shall drop the tilde and identify7 and X.

Throughout this section we denote by Z the center of the von Neumann algebra
MLV & = 4 we say that the G-system is abelian (cf. 4.6), and if & = Cl, l.e. .# is
a factor, we say that the system is simple.

5.2. PRoOPOSITION. [If (#,a) is a G-system and A is a (globally) G-invariant
von Neumann subalgebra of # let G- = ker(a|A"). Then (N, &) is a G/G.,-systent (4

A A
denoting the quotient map) and ¥ is the restriction of X, to G4 X GL in G X G,
The map A& — G is a bijective order reversing corresponderice between G-invariant
von Neumann subalgebras of . and closed subgroups of G.

Proof. 1t is clear from the definition of G- that (4", a)isa G/G ;-system. Choose
A
a cross-section p — u(p) of G into ¥, and note that
Gi o {peé(u(p)exi/'}.

On the other hand, since (4", 2) is a G/G.»~system, .¥"is spanned by unitary eigenopera-
tors v(p), p € (G/G+)" = G, and since the eigenspaces in .# are one-dimensional
we must have

G = {pEéf[l(p)E./V}.
Thus for p, g in G4, we have
%5 (p, ) = u(p) u(q) u(p)* u(@)* = %,(p, q) -

Conversely, if H is a closed subgroup of G let .#*# be the von Neumann algebra
generated by {u(p)|p e H*}. Then .4*" is G-invariant and is a G/H-system. Also
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4 s precisely the fixed-point algebra for H. Evidently the maps 4" — G, and
H — .7//" are the inverse of each other.

5.3. ProposITiON. Let (A, o) be a G-system and N a G-invariant von Neumann
subalgebra of 4 corresponding to the closed subgroup G, of G (cf. 5.2). Then V" is
maximal abelian in A if and only if /" n 4, is maximal abelian in9, and again if’
and only if G4 is the closure of X (G%) in G.

Proof. If 4" is maximal abelian in 4 then clearly %, = A4 0 ¥, is maximal
abelian in 4,. The converse follows from the fact thatif x € /™ n % then f\'(p) e I

foreach p in G' by the G-invariance of 4”. Thus the relative commutant of .} is
spanned by the commutant of %, in ¥,.
Suppose now that %;is maximal abelian in %, and take u(p), u(q) in %, with

images p, g in G. Since u(p) and u(g) commutes if and only if (X, (p), g» =1 it
follows immediately that

Gy = X (GE)L ie Gy ==1,(GL) .

Conversely, if G is the closure of X,(G4) then u(g) € %; if and only if g € G}, and
since %, is the inverse image of G4, in %, by 5.2 this shows that %, is maximal abelian.

5.4. PROPOSITION. Let % denote the center of 4. Then (¥, a)is a G/Gx-system
conjugate to

(L2(G/Gz), Ad 2),
A denoting translation on L*(G|Gy).

Proof. With 9, =¥, 1 & the short exact sequence
{1} > T > %, - (G/Gx) > {0}

splits, since ¥, is abelian. Thus we may assume that p — u(p), p € G%, is a faithful
unitary representation. Since furthermore d (u(p)) = {s, p) u(p) for every s in G/G
it follows that Z={u(p)}"’ is isomorphic with L®(G/Gz) and that the natural iso-
morphism carries the action of & into translation of functions on G/Ge.

5.5. COROLLARY. All abelian G-systems are conjugate to (L*(G), Ad 4).

5.6. LEMMA. Given a G-system (M ,a) choose a cross-section p — u(p) 0]'&

in9,. Then the map & : p — Ad u(p) is a representation of é in Aut( M), independent
of the choice of the u(p)’s. Moreover & == o o X and (denoting by Sp(¢.) and I’ (@) the

v
Arveson and Connes spectra of o)

I(#) = Sp() = Gy = 1(G)" .
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Proof. Since p — u(p) is a projective representation of é it follows that

» — Ad u(p) is a representation of é in Aut(.Z) (even in Aut(B(9))). Changing the
u(p)’s by scalar multiples from T makes no difference in Ad u(p), so the representation
a is independent of the choice of the u(p)’s.

For all p, g in é we have
% (u(q)) = u(p) u(q) u(p)* = <X(p), q) u(q) = oxm(u(g)) -

It follows that o?,, = 0y, Whence & = a0 X. By [7, 3.4.3] this implies (since Sp(x) == C:‘)
that

Sp(x) = XU(Sp(a))” = X(G)" .

Clearly « » = 11if and only if u(p) € &, which by 5.2 means that p € G&. On the
other hand, if & » + 1 then u(p) ¢ Z. Consequently, Sp(¢) = G. The set of fixed-
points under & is & and for each non-zero central projection z we have & A2U(q)) =
= (X(p), q) zu(g). Therefore

Sp(a | z4) = Sp(&)
for all z. By the very definition of the Connes spectrum [7, p. 174] we obtain
(@) = Sp(a) = Gz = X(G)".

5.7. PROPOSITION. Let (#, o) be a G-system and y the associated homomorphism

of é\ into G. Then

X(CA;) = {s€ G|a,= Ad w, w unitary in M} .
Proof. From 5.6 it is immediate that every a; where s = X(p) is inner. Indeed
as = Ad u(p).

Conversely, if a;, = Ad w for some unitary w in % then x, = Ad o (w) for
every ¢ since G is abelian. But then with p — u(p) the usual cross-section,

w(pyu(g) = Sa,(W)u(q) {1, py dt = a(u(g)) w(p) =
= (s, q) u(g) w(p) = {s, q) X(q, p) w(p) u(q) ,

since w(p) € C u(p). Consequently,

w(p) = s, @) X(—p, g) w(p) = {s — X(p), > W(p)
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for all p and ¢g. Choosing p such that vAv(p) # 0 it follows that s = y(p), as desired.

5.8. THEOREM. Let (M, o) be a G-system and X the associated homomorphism
of G into G. The following conditions are equivalent:

(i) X is injective.

(ii) X(G) is dense in G.

(iil) (A, o) is a simple system (i.e. 4 is a factor).

Proof. (i) < (ii). Since a is faithful we see from 5.6 that

ker(X) = ker(&) = Sp(&i )t = X(G)* .

(i) < (iii). From the definition of & we have ker(x) = {plu(p)e }. Thus
% =Cl if and only if « is faithful, i.e. X is injective.

5.9. THEOREM. Let (M, o) be a simple G-system for some finite group G.
Then G = T X I and M = M,, where n* is the order of G. Moreover, (M, &) is conju-
gate to the Weyl system (M, Ad 4 x Ad i), where . and . are the regular represen-
tations of I' and r on IYI') as translation and multiplication operators, respectively.

Proof. Since G is a finite abelian group, any cyclic subgroup G, = Zs;, whose
order k is maximal among all orders of cyclic subgroups of G, is a direct summand.
Indeed, if p, is a character on G such that {s,, p,) = exp(2ri/k), then (s, p;) is a
power of exp(2rni/k) for all s in G, since otherwise we could find a cyclic subgroup
with higher order than k. Consequently, G, = ker p, is a subgroup of G with
G, ® G, =G.

By 5.8 we know that X : G- G is an isomorphism. Choose s; and p, as above
and put t, = x(p)). If s€ Zs, n Zt,, say s = rs; then since {y(p,), p,) = 1 we have

1 = {s, py) = expnirfk),
whence r = 0 (modulo k), i.e. s = 0. Thus if we write G = G, @ G, then Zt, < G,
and, being of maximal order k, it is a direct summand of Gy; whence G=Zs, @

@® Zt; ® G. Put g, = X\(s) so that G = Zp, ® Zg, @ 1-(G). Since X = — X
(x being symplectic) we have

{ty, ‘h> = <X(P1)a X'1(51)> = <51’ P1>_1 = exp(2rifk)"!,

from which we conclude that X~YG’) = (G')". Consequently the whole argument
can be repeated with G’ in place of G. After a finite number of steps we arrive at
decompositions

G=@ Zs, ®2t,): G=@ (Zpn ® Zq,),

" m
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satisfying the relations
Z(pm) = r"! H Z(qlﬂ) = Slﬂ ?
<Sin’ pli1> = <tiﬂ’ qlﬂ>—l = exp(zﬂl/k(in)) b

for all m, where k(i) is the common order of 5., 7,,, p,, and ¢,,,.
Both I' == @ Zp,, and I" = @ Zg,, correspond to maximal abelian subalge-

bras of .# by 5.3. We can therefore choose a cross-section p — u(p) of G onto ¥,
such that «[lI" and w{I" are unitary representations and u(p + p’) == u{pyu(p')if

pel, p'el”. Define the isomorphism ¢ : " — f“ by {p, o(p’)y = 7(p, p’) and put
Hp) = u(p), p € T5 i(p) = ulo™(})), b € I Then

Ap) AP 2oy ApY* = x(p, o™ Xp) = {p, ) -

A
Consequently 4 and A satisfy the Weyl commutation relations and are therefore

(up to unitary equivalence) equal to the regular representations of I" and Ton 3I).
In particular # = M, where n is the order of I'.

Identifying é =T @I with I' x 1: via the isomorphism ¢ :p -+ p' —
— (—p, o(p’)) we compute the dual isomorphism @ :I' X I' = G(=%(G)) as
o(p, p) = x(p + 67(p)). Indeed,

{lp + 74P, g+4) = Kp, q') X(g, 67H(p)) * =
={p,0(q) ) <g )" =, ), (=4, 6(@))) =
= {(p, p)s (q + d)) -
Thus if s = $(p, p) then by 5.6

oy = g1y = Ad u(X7Hs)) = Ad u(p + o7(p)) =
= Ad u(pule H(p)) = Ad Ap) A(p).

Consequently 2 $ = Ad / x 4, as desired.

5.10. Suppose that (", B) is an H-system for some closed subgroup H of G.
Define .Z as the von Neumann subalgebra of Lo(G) ® A4 (= L=(G, .¥")) consisting
of functions x : G — A" such that

x(s — 1) = B(x(s)), se G, t € H.
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With o« : G - Aut(A#) defined by translation, i.e.
(D)) =x(r —35), s,reCG,

it is readily verified that (4, o) is a G-system. We say that (#, «) is induced from
A, ), see [30, 10.2].

If (8, ) is a C*-H-system (cf. 2.11) we define the induced C*-G-system (o7, a)
in the analogous manner, replacing the o-weak by the norm topology.

5.11. LemMma. Given a G-system (A, a) take #¢ as in 2.11. There is then a
C*-Gy- system (B, (), where 7 is simple, such that (/°, a) is induced from (2, B).
Proof. The set of tracial states on .4 is a non-empty simplex (since it contains
7) and has thereforc an extreme point 7. Let (n,, 5y, o) denote the cyclic repre-

sentation of .Z° associated with 7, viathe GNS construction and put & = n,(4°).
Since 4 is extremal, 7, is a factor representation, in particular the center of 2 is Cl.

Ifte Xm((j?) then a,=Ad u{p) for some eigenoperator u(p) by 5.7. Since u(p) e . #¢
1" follows that, with 1, = 1, ° &, we have 1, =1, for all ¢ in Xa(é). As the map

s — 1, is weak® continuous this implies that 1, = 7, for every ¢ in Gy (zlz(GA)‘
by 5.6). A similar argument shows that if 4 is a norm closed idealin .#¢ then o(#)= .7
for all ¢ in Ge.

If # is strictly larger than ker ny, choose a positive element x in . \ ker 7.
Then

() z = SC o (x) dt e £\ ker x, .
Ty

However, from 5.2 we see that Z coincides with the Ga-fixed points (the integral
above is the center-valued trace on .#). Thus z € Z*. Since the center of & is trivial
it follows that my(z) is a non-zero multiple of 1, whence ny(F) = 4, i.e. F = 4.
Thus kermy is 2 maximal ideal so that & is simple.

Define a continuous unitary representation w of Gz on $, by

w(t) mo(x) &o = mo(0(x)) &9, 1€ Gz, x € MC.
This is possible only because 7, = 1, for all ¢ in Gz. Set f = Ad w and note that
(%) B(ro(x)) = w(t) mo(x) wt}* = mo(ar(x))

for allx in .#°. Since the center of & is trivial we see from (x) that (%, f) is a C*-G »-

-system.
Define a map & : .4° — C(G, &) by

D(x)(s) = mp(a_((x)), xe A°, s€G.
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Clearly @ is a morphism and since x € ker & implies a,(x) € ker 7, for all 5, whence
©(x)1 € ker my; we see that 7(x)=0, and thus @ is faithful. Let (Ind(#, B), & denote
the C*-G-system induced from (4, f) (cf. 5.10). Thus the elements in Ind(4, )
are the functions y in C(G, %) such that

s —t) = B(¥(s),seCG, teGe.
Since for each x in #°and r,sin G
Do, (X))(r) = mo(2,_{x)) = @(x) (r — 5)

we see from (=x) that @ is a covariant injection of .Z° into Ind(, f).
It follows from 5.4 that

(Z¢, 2) ~ (C(G/Gy), Ad 2).
Moreover, since (1, $y) is a factor representation there is an r, in G/Gy such that
P(2)(s) = my(a_(2)) = 2(rg — §)

forall zin Z¢and sin G.
Given y in Ind(#, ) and ¢ > O there is for each point s; in G an element x;
in ¢ and a neighbourhood Q; of s, such that

f¥(s) — &(x )| <e, seQ;.

Since G is compact we can choose sy, ..., s,suchthat U Q;, = G. Let {f; |1 <i < n}
be a partion of the unit on G/G» relative to the covering U (2;/G r). Identifying Z*
with C(G/G) as above we find elements {z; | 1 <7 < n} such that &(z;) = f; for all i.
Put x =Y, z,x; and take s in G. If s€ Q; + G, say s = r — #, then

[r(s) — @) = InB)3:(r) — SE)EN*] < &.
If s ¢ Q; + G then &(z,)(s) = 0. Consequently
1y(s) — BN = | T 2E))(s) — )N <
< Y fi)ly(s) — dx)s) < e
It follows that &(.Z<) = Ind(4, ) so that

(¢, o) ~ (Ind(Z, B), 2) ,
as desired.

5.12. THEOREM. Fach G-system (¥, 2) is induced from a simple G x-system (4", B).



ERGODIC ACTIONS 259

Proof. Choose (ny, Dy, &) as in the proof of 5.11 and put A" = wo(A“)”. Then
A" 1s a finite factor (with &, as trace vector) and with f, = Ad w,, ¢ € Gz, we obtain
a simple Gg-system (A", fi).

The morphism @ : #° — C(G, #) defined in 5.1 can be considered as a repre-
sentation of ¢ on L*G, 9,), where

(P(x) E)s) = P(x)$)E(s), seC .

If &, =1® & we have

@@@@F{@@@M@m:ymxmmzwx

since clearly Srs ds = 7. Let © be the closure of @(.Z)¢, in LG, H,). Then &, is a

cyclic vector for the representation (P, ) which is therefore unitarily equivalent
with the standard representation (x,, $,) of #¢, cf.2.6. Thus it extends by normality
to a faithful representation of .# onto the weak closure of ®(.#¢) in B(H).

The weak closure of ®(#°¢) in B(L¥G, 9,)) is evidently Ind(4", f). Moreover,
if y e Ind(", f8), regarded as a function from G to 4", there isaunique z in L2(G/G »)

such that
mw&ﬁmmm
x

Consequently,

wmm=gmwmww{ S(m~mmmﬁzg 2(5) ds .
G GlGy JGg . G/

Go

It follows that £ _ is a separating vector for Ind(4", ) so that the reduction from
LG, ) to © is an isomorphism. Thus @ is an isomorphism of .# into Ind(/", f8),
intertwining the actions « and &, and the proof is complete.

5.13. CoroLLARY. If G — G/Gx admits a Borel cross-section, in particular if G
is second countable, then

A = L2(G|Gy) @ N .

Proof. By assumption there is a Borel set R in G, isomorphic with G/Gg,
such that each point s in G has a unique representation s =r — t,r e R, t € Gz.
Foreach y in L®(R, .#") define an extension y in L*(G, A7) by ¥(s)=By(r)). Clearly
y € Ind (47, B). Therestrictionmap x — xR from Ind(4", B) to L=(R, #") is the
inverse for the map y — y and we conclude from 5.12 that

M = Ind(W, B) = LR, /) = L2(G/G2) @ A .
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5.14. TusoreM. The following conditions on a G-system (#, a) are equivalent:

) A = L(G|Gz) @ M,.

(i) 4 is of type 1.

(iii) 1(G) is closed in G.

(iv) Gz has finite order.
fin this case Gz == I' X I where I’ has order n.

Proof. (i) = (i) is trivial and so is (iii) = (iv) (given 5.6), since any discrete
subgroup of a compact group is finite.

{1i) = (iii). An automorphism of .# is inner if and only if it leaves & pointwise
fixed (sce c.g. [24, 8.9.21). Combining 5.6 and 5.7 it follows that

1(G) == G = 7,(G) .

(iv) = (i). Since G (== ZZ(GA)) is finite, each point in G has a neighbouriiood £
such that 7iQ is injective (r denoting the guotient map onto G/G ). Choosc a finitc
covering of G/Gy bysets (), ..., 7(2,) and put R = u Q) where Q; is deiined
inductively by

Q{ = le Q;u = Qm\ U (Q_; =+ GZ) .
Jj<m
Then n(R) = G/Gx and R is a cross-section for n. Thus 5.13 applies to show that
A== LR(G]G )@ A, where 4 is a factor. Moreover, from 5.12 we know that there

is an action f for which (¥, B) is a Gz-system. Since Gz isfinitewehave G == I' X[
and /4" == M, where 1 is the order of I', by 5.9.

5.15. THEOREM. If G is second countable the following conditions on a G-system
(4, 2) are equivalent:
() A = L™G|Gz) @ &, where R is the unigue hyperfinite Il -factor.
(i) # is not of type L
(iii) Gz is infinite.

Proof. Clearly (i) = (i1), and since (ii) <> (iii) by 5.14 we only have to prove
(ii) = (i).

Since G is second countable we have
= L(G|Gz) ® A

for some factor 4" by 5.13, and by assumption .4 is not of type I, hence is of type II,
since . is finite by 2.5. Moreover, by 5.12 (4", B) is a Ge-system for some action f,
so it suffices to show that .# = # whenever (/#,a) is a simple G-system not of
type 1.
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Consider (., «) in the standard representation on %, (2.6) and choose a
cross-section p — u(p) of & in %, Then as in 5.6 the map o'f:p - Ad u(p)
is a representation of G as automorphisms of B(%,). Since {u(p)|p€ G} = #
it follows that theAﬁxed-point algebra of é under « is precisely .#’. Choose an inva-

riant mean g on G (which is possible since abelian groups are amenable), and define
n’ B(®,) - A by

(RE () = puls > @EXE I}, & ne D,

Then n” is a projection of B($,) onto %’ so that .’ is injective. Consequently .#
is an injective factor of type II, and by Connes fundamental result [8], # = A.

6. C*-ALGEBRAIC SYSTEMS

6.1. PROPOSITION. The map (M, a) = (MH*, o) defined in 2.11 gives a bijective
correspondence between the sets of (von Neumann algebraic) G-systems
and C*-G-systems.

Proof. Given a C*-G-system (&, a) let © be the unique G-invariant state of
o (deﬁned by (x) = Sas(.\‘)ds) and use T to construct a covariant representation

(m,, A, H,) of the C*-dynamical system (s, G, «). Since t is faithful, so is =n,, and
we may identify o with (o). Let .4 be the weak closure of .« in B($,) and consider
the extension of a to .4 given by «, = Ad A%(s). Since G is compact it is immediate
that (, o) is a G-system. Furthermore we see that the system is in its standard
tepresentation (cf. 2.6).

If (W, o) is a G-system then clearly .# is the weak closure of .#¢ in the standard
representation of .# on H,. Conversely, if (&, «) is a C*-G-system represented on
$.and if x is an element in the weak closure .« of & such that the function
5 = A*($)xA"(—s) is norm continuous, then x is the norm limit of the net {)2(9)},
where Q is afinite subset of G and x(Q) = Z)Ac(p), p€ Q. Butasin 2.3 we can choose
a complete set of unitary eigenoperators {u(p)|p€ é} for a in o/, whence x€ 7.
Thus 4 = &/, so that the correspondence & — 4 is bijective.

6.2, LemmMa (cf. [L1],[14]). If (&Z,a) is a C*-G-system then o/ is nuclear.

Proof. Consider & in its universal representation on a Hilbert space 9, and
choose a cross-section p — u(p) of 6 in%, Thend : p > Ad u(p)is a representation
of & in Aut B($,) and as in t}ge proof of 5.15 we obtain a projection of B($,) on

o/’ using the amenability of G. Thus &’ is injective, whence &' is injective. But
' = of**¥ so that &7 is nuclear; see [S], [6], [33].

8-2110
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6.3. THEOREM. Every C*-G-system (o, a) is induced from a simple GG »-system
(2, B). If Gy is finite then B = M, (n? being the order of Gz) and s is homogeneous
of degree n with spectrum G|Gz. If Gz is infinite B is a simple, nuclear C*-algebra
not of type I with a unique tracial state.

Proof. 1dentifying o with .#¢ for some G-system (.Z, o), the first statement
is immediate from 5.11. If G« is finite then & = M,, by 5.9 and we may realize ./
as the C*-subalgebra of functions x in C(G, M,) such that

x(s — 1) = B(x(5)), s€ G, 1€ Gy,

cf. 5.11. Consequenty, .522' is homeomorphic with G/G«# and &7 is homogeneous of
degree n, cf. Section 2 of [32].

If Gy is infinite we know from 5.11 and 6.2 that & is a simple nuclear C*-al~
gebra with a faithful, ergodic action  of Gz. Since 1€ & and 4 is infinite dimensiona
we see that 4 is not of type I. The uniqueness of the trace on 4 (as well as the simpli-
city) is [11, 32]. The argument goes as follows: Let 7, be a tracial state of # and
put t, == 7, ° f,. Since B, is inner for each ¢ in the dense subgroup ;(,,(GA,y) of Gr (5.7
and 5.8), and the function ¢ — 7, is weak*® continuous, it follows that t,(x) = 7,(x)
for every x in 4. Consequently 7, is Gx-invariant and thus unique.

6.4. LeMMma. (cf. [25,p. 281] and [4,4.4)). If (&, R, y) is a C*-dynamical
system with an invariant, finite trace t, then there is a complex homomorphisin A
on the group ¥ of invertible elements in o (or o @ Clif 1 ¢ o) such that A is constant
on the connected components of V.

Proof. (Oral communication by G. A. Elliott). Let 6 denote the infinitesimal
generator for y, so that d is a derivation (probably unbounded) on &/ with dense
domain Z(J). Set

A(w) = t(6(wu~Y), u€ ¥ n 20).
1t follows from the derivation property of ¢ that if u, v belong to ¥ n 2(5) then
A(uv) = A(u) + A(v).

If u = exp(x) for some x in 2(d) then since t is an invariant trace

A(u) = 1(8(exp(x)) exp(—x)) =
= 1(d(x)exp(x)exp(—x)) = 1(6(x)) = 0.

Since u — v}l < [lv~~t implies u = exp(x)v for some x in Z(J) it follows that 4
is locally constant on ¥" 0 2(6), in particular 4 is continuous. Extending 4 by
continuity we obtain a locally constant complex homomorphism on ¥,

6.5. THEOREM. Assume that G is second countable and let (s, a) be a C*-G-
system. Thea o/ is approximately finite dimensional if and only if G is totally discon-
nected.
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Proof. If G is totally disconnected then every element in G has finite order.

Otherwise G would have a non-zero countable, torsion free quotient which could be
embedded as a subgroup of R. The dual map would give a non-zero, continuous
homomorphism of R into G, hence a path-connected subset of G; a contradiction.
Thus G is the union of an increasing sequence {H,} of finite subgroups. Let
{u(p) | pe GA} be a complete set of unitary eigenoperators for « in & and let o7, be the
C*-algebra generated by {u(p) | p€ H,}. Then each &, is finite dimensional whence
&, being the closure of U &/, , is approximately finite dimensional.

Conversely, if G is not totally disconnected there is a non-zero, torsion free
quotient of é and thus, as we saw above, a non-zero, continuous homomorphism
B :R — G. Consider the C*-dynamical system (&, R,7), where y =« B, and

let 4 be the homomorphism constructed in 6.4. Since f is non-zero there is a p in G
such that

yu(p)) = {B(1), ppu(p) = exp(ist)u(p)

for all real ¢, with s 5 0. Consequently,

A(u(p)) = t(Ou(pHu(p)™) =is # 0,

and we conclude from 6.4 that the group of invertible elements in &/ is not connected.
Now in a finite dimensional C*-algebra the invertible elements form a connected

group (because every element has a logaritm), and the same is therefore true in
an approximately finite dimensional C*-algebra. Consequently &/ is not approxi-
mately finite dimensional.

6.6. REMARK. The argument in 6.5 also gives the following generalization of
(4, 4.4]: An approximately finite dimensional C*-algebra & can not be the cocycle
crossed product of a C*-algebra % with unit and a discrete abelian group H with
elements of infinite order.

Indeed, suppose that 8 : H — Aut(%) is an autcmorphic representation of H
and m : H X H— C,,(.%‘) is a 2-cocycle on H with values in the group of central
unitary elements of # (identified with C,,(ﬂ}) -~ the circle-valued functions on Q)
such that

A = H,m X B
B

(cf. Definition 2.24 of [34]). Denote by « : H— Aut(s) the dual action of j. Since
% has a unit and H is discrete, o/ has a unit. Being approximately finite dimensional
it therefore has a finite trace 7, and since }AI is compact we may assume that t is
a-invariant. Now use 6.4 to construct a complex homomorphism on the invertible
elements in & and, as in 6.5, use the unitary eigenoperators u(h), h€ H, arising
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from the embedding of H into ./ to show that the homomorphism is non-zero,
in contradiction with o/ being approximately finite dimensional.
6.7. REMARK. If (&, o) is a C*-G-system then the crossed product G X &

is isomorphic with ¥(L*(G)) by [18, 2], and if & denotes the dual action ofCA; onG X o
then by Takai’s duality result [24, 7.9.3], we have

A

A @ CLHG) = G X G % o = G X CUNG)).

A A
a ® a

Thus o/ is stably isomorphic to the crossed product of the compact operators by a
discrete group; from which we may again deduce the nuclearity of 7.

The primitive ideal space of &7 being Hausdorft (= G/Gz), it follows from
[22, 3.2) (or by passing to the von Neumann systems) that the Connes spectrum for
& is G_{.

Choose a unitary eigenoperator u(p) in & corresponding to p in & and define
a unitary v(p) in the multiplier algebra of G M 2 by v(p) = u(p)* ® d;. Then for

each x in C(G, /) (considered as a dense subalgebra of G X /) we have
(v(p)xo(p)*)(s)= SS o(pIr)odx(t — r)au(py(s — 1)dr dr ==

= u(p)*x(s)e(u(p)) = (s, p) u(p)*x(s)u(p) -
Thus if pe G% (i.e. u(p)e Z°) we have
v(P)xu(p)(s) = 2,(x) (5) ,

and the map p — v(p) is a unitary representation of G¥% into the fixed-points of
o in M(G X 7).

6.8. ExampLE. If G =T X I' then for any homomorphism ¢ T I we
obtain a symplectic bicharacter y : G — G by

2P, @) = (—o@), o(p)), p. g€ T,

where @ : r-r is the dual map of ¢. Since q?) is injective if ¢ has dense range we

see that y is injective if ¢ is injective with dense range. The C*-G-system (&, @)

corresponding to y can be described in terms of crossed products as follows:
Consider the action f of C(I') given by

B(x) () = x(s — p(p)), x€ C(I), pe I
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The translation action AdA of I on C(I') commutes with S8, hence lifts to an action
y of I" on the crossed product o = I' X C(I'). On & we also have the dual action
]

/;’ of I' and it is easy to verify that $ and y commute and that « = § X 7 is a faithful

ergodic action of G = I’ X I' on &. Realizing & as functions on I' with values in
C(I') we define elements

u(p, ) =0, ®(—q), p,ge I'.
Then for s, ¢ in I" we compute
o, (u(p, 4)) = B(0,) ® 7(—q) =

= <S: /)> 5() ® <[’ f]> (—‘[]) = <(Sa t.)a ([), {/)> U(P’ q) .

Thus the function (p, ¢) ~u(p, q) is a cross-section for G (= I X I')into %,. Having
verified the equation

u(p, u(p’, ") = {o(p), ¢ Yu(p+ p', g+ 9°)

it is immediate to see that the bicharacter associated with (&7, @) is

10 D) = (—o@), o), (5, T X I,

as claimed.

6.9 ExampLE. Taking G = T2 (i.e. I' = T) in 6.8, the symplectic bicharacters
described above are the only ones. Each homomorphism ¢ : Z —» T is given by
@) = 0" for some 0 in T, and there are thus an uncountable infinity of simple
T2-systems, parametrized by the irrational numbers (modulo 27) in R.

The simple C*-algebras arising in this way have been studied by Rieffel [26],
[27] who shows that they all contain projections and that there is an uncountable
infinity of non-isomorphic examples, in sharp contrast to the von Neumann algebra
case.

6.10. ExampLE. Every (UHF) Glimm algebra can appear in a simple C*-G-
product for some group G. It suffices to realize that if {7, o*} is a set of (simple)
C*-G,-systems, then with

‘-Q{:@"Oina G:HG”,OC=®(Z"

we exhibit (A, o) as a (simple) G-system. Taking o/, = M,, let G, = in e i,,, where
7., is the cyclic group of order n, and use 5.9 to find o making (M,, «") a G,-system.
Since the Glimm algebras are infinite tensor products of matrix algebras the claim
is established. Note that the group G is totally disconnected in accordance with 6.5.
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7. ALMOST PERIODIC G-SYSTEMS

7.1. From now on G is only assumed to be a locally compact abelian group.
We say that a continuous unitary representation (v, $) of G has pure point spectrum
f'$ has an orthonormal basis {{,[p€ S}, where § < G: consisting of eigenvectors,
ie. u(s)¢, = (s,p) &, forallp in S.

7.2. PROPOSITION. Let o : G — Aut(#) be a faithful, ergodic, continuous
representation of G as automorphisms of the von Neumann algebra /. The following
conditions are equivalent :

() 4 is generated by the eigenoperators for a and has a (necessarily unique)
normal G-invariant state.

(ii) -# has a normal G-invariant state t© and if (r,, 77, 9,) denotes the associated
covariant representation of (A, G, o) then (7, 9,) has pure point spectrum.

(iii) There is a compactification 1:G - G of G and a C?—system (A, &) such
that @, = o, for every s in G.

(iv) The commutant o of og in Aut(#)is compact (in any of the two topologies
on Aut(.#) mentioned in 2.1).

W hen these conditions are satisfied then the pure point spectrum Spy(at) of (A%, D,)
isa dense (discrete) subgroup of E? with G as its dual group, and ag = ag. Furthermore
T is a trace.

Proof. The uniqueness of 7 is a consequence of the ergodicity of «, see e.g.
24, 7.12.4].

(i) = (ii). Let {¢,|pe S} be a maximal family of unit eigenvectors for A°
corresponding to distinct p’s, and note that they form an orthogonal set. If # anni-
hilates all £, then for every eigenoperator x in .# we have (y/m(x)¢,) = 0, since
()€, is an eigenvector. As &, is cyclic and .# is generated (and, in fact, generated
linearly) by its eigenoperators it follows that # = 0.

(i1) = (iii). Let Spy(«) denote the subgroup of é generated by the pure point
spectrum and give it the discrete topology. Since a, hence also A7, is faithful, Spy(a)
is dense in é Thus if G denotes the compact dual of Spa(x) we have a continuous
injection 1 : G — G with dense range, i.e. G is a compactification of G. Define
i:G > B(®,) by i§ ), =<8, p> ¢, for all p in the pure point spectrum and note
that since the £,’s form an orthonormal basis for Do 7isa unitary representation
of G extending A°. Since 1(G) is dense in G and 1 is strongly continuous we see that

IS (AN—5) = n (i), §€GC .
Thus with & = Ad 7. we have a G-system (.#, &) such that &,,, = &, forall s in G.

(iii) = (i) is obvious from 2.3, since an eigenoperator for « is also an eigeno-
perator for «. At the same time we see that 7 is a trace (2.5) and that the eigenvectors
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for A" in §, are parametrized by the dual group of G, so that the pure point spectrum
is a subgroup of é (i.e. equals Spy()).

(iii) = (iv). Since G and G are abelian Gz cagc &é. However, by 2.4 a
maximal abelian in Aut(.#), whence ag = @z which is compact.

& is

(iv) = (in). Let G denote the closure of o in og. Then Gisa compact abelian
group containing G as a dense subgroup, and if « denotes the identity map on G
we have a G-system (A, a) extending (4, o).

7.3. We say that a pair (., o) satisfying the conditions in 7.2 is an almos
periodic G-system. We are indebted to T. Hamachi for drawing our attention to
condition (iv) in 7.2.

Given an almost periodic G-system (.#, o) we associate to it the group Spy(e)
and the symplectic bicharacter y, in X*Spy(«), T), corresponding to the E—system
(A, x). Furthermore, we define conjugacy for almost periodic G-systems exactly
as for G-systems (2.2).

7.4. THEOREM. Let (M ,0) and (N, B) be almost periodic G-systems and let
Spa(), Spa(B) and 4, xp be their associated pure point spectra and symplectic bicha-
racters. Then (M, o) and (N, B) are conjugate if and only if

Spa(®@) = Spy(B) and y, = Xg+

Proof. The necessity is trivial. Assume therefore that the conditions are satis-
fied. By 4.5 the G-systems (.#, &) and (4, B) are conjugate. There is therefore an
i somorphism @ : # — 4 such that

(poocs“_—¢O&x(s)~;.ﬁl(s)c¢:ﬁsoq’5

for all s in G, whence (A, o) ~ (A", B).

7.5. The result above is the generalization to non-commutative algebras of
the classification theorem by von Neumann on ergodic flows with pure pointspec-
trum. See [21, Sats 5], [13, p. 46] or [28, 2.6]. Clearly, when .# is commutative the
bicharacter y, is zero (4.6), so that Sp,(a) alone is a complete invariant.

7.6. Theorem 7.4 can be used to classify all ergodic almost periodic auto-
morphisms, up to conjugacy, of the hyperfinite II, factor #. The invariants are:

(i) A dense subgroup S of T.

(ii) An injective symplectic bicharacter in X%(S, T).

In the converse direction the result can be used to give examples of such
automorphisms. If namely G is an infinite compact monothetic group (i.e. G contains
Z as a dense subgroup or, equivalently, AG is a dense subgroup of T) and if we can
find a simple G-system, then by 5.15 it has the form (&, ). Now let ¢ : Z — G be
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an injection and let ¢ = a,,,. Then ¢ is an ergodic almost periodic automorphism of
A. The groups considered in 6.9 and 6.10 offer ample opportunities for using this
trick.

The research of the third author was partially supported by N.S.F.
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