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THE EXT GROUPS OF THE C*-ALGEBRAS ASSOCIATED
WITH IRRATIONAL ROTATIONS

SORIN POPA and MARC A. RIEFFEL

Let 6 be an irrational number, and let 4, denote the crossed product C*-al-
gebra [9] for the action of the group of integers, Z, on the algebra of continuous
functions on the circle by powers of the rotation of angle 2x6. It is important for
this note that 4, is isomorphic to the C*-algebra generated by any two unitaries U
and ¥ which satisfy VU = AUV where A = e*“. This can be seen by associating
to such U and V the unitaries ¥ and v in A corresponding respectively to rotation
by 276 and to the ““identity’’ function which embeds the circle as the unit circle in
the complex plane. The purpose of this note is to calculate the Ext groups (3], [1]
of the A, and of the n X n matrix algebras over the A,. For related considerations
see [14].

It is known that the A4, are simple [7], [L5]. Furthermore, they are strongly
amenable, hence nucltear [17], so that their Ext semigroups are, in fact, groups [6], [1].
In addition, the A, are quasi-diagonal. This follows from results announced by
Hadwin, and also from the stronger fact obtained in [13] that the 4, can be embedded
in AF algebras. This quasi-diagonality is important to us since it enables us to use
the homotopy results from [12].

Let L/K(H) denote the Calkin algebra for a separable Hilbert space H, and
let Ext(A4,) and Ext,(4,) denote the strong and weak Ext groups of 4, whose ele-
ments consist of equivalence classes of unital x-monomorphisms (called extensions)
of A, into L/K(H). Observe that there is a bijection between extensions and the
pairs (U, V) of unitaries in L/K(H) satisfying VU = AUV. Observe also that if ind
denotes the index function on unitaries in L/K(H), and if w is a unitary in 4,, then
ind(t(w)) depends only on the class, [7], in Ext{A4,) of the extension 7. It follows
casily that the map ¢ from Ext(4y) to Z X Z defined by

o([t]) = (ind(t(u)), ind(z(v)))
is a well-defined group homomorphism.
THEOREM. The map ¢ defined above is an isomorphism. Furthermore, weak

equivalence classes are strong equivalence classes, so that Ext(A,) and Ext, (4,) coincide.
The Ext-group topology on Ext(Ag) and Ext,(Ay) is the discrete topology.
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Let M, denote the algebra of # x n matrices, so that M, ® A, is the algebra
of n X n matrices over 4,. An easy application of {8], Proposition 2.2 or [11], Fro-
position 4 then yields:

CoOROLLARY. Ext(M, ® Ap) = Z X Z X Z, where Z, is the cyclic group of
order n, while Ext, (M, @ A,) = Z < L.

It follows that for fixed 6 the M, ® 4, are non-isomorphic. This also follows
from Theorem 3 of [16].

Proof of the Theorem. To see that ¢ is surjective, let H be a Hilbert space
with orthonormal basis {e,}, ¢, let S be the unilateral shift on H defined by Se, ==¢,.,
for all n, and let M be the multiplication operator defined by e, = i'e, for all ».
Then MS = ASM, so that we can define an extension, 7, by setting t(#) ~ 7(S)
and 1(v) == n(M), where = is the quotient map from the algebra of bounded operators
to the Calkin algebra. It is clear that o(fz]) = (1, 0). Similarly we can define an exten-
sion ¢ by a(u) = n{(M*) and o(v) == n(S), so that ¢([c]) = (0, 1).

The hard part of the proof is to show that ¢ is injective. Since Ext(A4,) is a
group, it suffices to show that if 7 is an extension with ind(z(x)) = 0 = ind(t(v)}
then 7 is trivial. Let 7 be such an extension. Since t(v)7(#)t(v)* = At(u), it follows that
the spectrum of 7(«) is invariant under multiplication by 4, and so must be the
entire unit circle since 6 is irrational. Thus by the Weyl-von Neumann-Berg theorem
[2] we can find a unitary, U, on H such that n({)=1(u) and U is a bilateral shift
of infinite multiplicity, that is, U is of the form B ® I, for a decomposition
H == K ® L where L is infinite dimensional and K has a basis {f, : n€ Z} such that
Bf, == f,.1 for all u. Define W on H by W =W’ ® I, where W'f, = A"f, for all n,
so that WU = AUW. Let N’ be any unitary on L whose spectrum is the entire circle,
and let N ==1, ® N’, so that U/ and N commute and have as joint spectrum the
torus ST x S1. Then U and NW determine a trivial extension, t,, of 4,. By a theorem
of Voiculescu [18], [1], T @ 1, is then equivalent to 7, so that it suffices to show that
the extension T @ 7, is trivial. Let ¥ be any unitary on H such that (V) = 1(v),
and note that 7 @ 1, is determined by n(U @ U) and =n(V @ NW).

Note now that the two unitaries U @ U and VW* @ N (=(V @ NWYW*®
@ W), clearly commute modulo compact operators on H @ H and have as joint
essential spectrum all of S'x S*. Thus they define an extension of C(S! > S§Y),
the algebra of continuous functions on S$* x S. But any extension of this algebra
for which the two generating unitaries have index zero is trivial, as indicated in
§2 of [5] (and also 2.4 of [3]). Thus we can find commuting unitaries U, and X, on
H @ H which are compact perturbations of U @ U and VW* @ N. It follows that
(U @ U) and =n(X,(W @ W)) determine an extension equivalent to 7 @ o> and
that it suffices for us to show that this new extension is trivial.

Since X, commutes with U,, we can find a selfadjoint operator Ton H & H
such that exp(iT) = X, and T commutes with U,. Then exp(itT) will commute with
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U @ U modulo compact operators for every t€ [0, 1]. It follows that for every
1€ [0, 1] an extension o, of A, is determined by setting

o(u) =n(U @ U)
o(v) = nlexp(itTHn(W @ W).

Note that g, is equivalent to T @ t,, while g, is trivial. It is easy to see that r — a,(a)
s norm continuous for all a€ A,, that is, o, depends continuously on ¢ in the point-
norm topology. Since A4, is quasi-diagonal, it follows from the strong homotopy-
invariance property proved in Proposition 5.7(ii} and Theorem 5.12 of [12] that o,
is equivalent to o,. Thus © @ 7, is trivial as desired.

Note next that if 7 is any extension of A,, then ind(z(u)) and ind(r(v)) are
unchanged under conjugation by any unitary in the Calkin algebra. Since we have
just shown that these indices determine the strong equivalence class of the extension,
it follows that strong equivalence classes coincide with weak equivalence classes.

The Ext-group topology is defined, among other places, shortly before Lemma |
of [10]. If {z;} is a net of extensions of A, which converges to the extension 7 in that
topology, then it follows immediately from the definition that eventually ind(z u))
and ind(t(v)) must equal ind(z(#)) and ind(z(v)). From what we have seen above it
follows that the topology is discrete. Q.E.D.

Proof of the Corollary. Because of the fact shown above that strong equivalence
classes are weak equivalence classes, it follows imediately by [8], Proposition 2.2
or by [11], Proposition 4, that Ext(M, ® A,) is isomorphicto Z x Z x Z,. The
isomorphism is obtained by sending an extension 7 of M, ® A, to

(ind(to(1)), ind(zo(1)), [t:])

where 1, is the restriction of 7 to 7 ® A, t, is the restriction of 7 to M, ® / and
where we use the isomorphism of Ext(M,) with Z, and the fact that Ext(A4,) ~
~ Z X Z is torsion free.

The second part of the Corollary follows by the general fact (see for instance
[11], Proposition 4) that given an arbitrary separable unital C*-algebra A,
Ext, (M,® A) is naturaly isomorphic with Ext,(4). Anyway the preceding results and
the fact that Ext,(M,) = {0} give an explicit isomorphism of Ext (M, ® A4,) with
Z x Z. This isomorphism sends the extension 1 to

(ind(1e(w)), Ind(ze(v))). Q.E.D.
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