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SIMPLEXES OF STATES OF C*-ALGEBRAS

C.J. K. BATTY

1. INTRODUCTION

The state space S(A4) of a unital C*-algebra 4 becomes a compact convex
set when equipped with the weak* topology, and this fact has been the motivation
for much of the general theory of compact convex subsets of locally convex spaces{1].
The outstanding problem of which compact convex sets are affinely homeomorphic
to state spaces of C*-algebras has recently been solved by [Alfsen and Shultz [3],
but for Choquet simplexes the solution has long been known — a simplex is the state
space of a C*-algebra if and only if it is a Bauer simplex (i.e. its extreme boundary
1is compact), in which case the C*-algebra is commutative. However other simplexes.
may occur as closed faces of state spaces. Among the properties of state spaces
observed by Alfsen and Shultz and inherited by their faces is the' ““3-ball property™,
namely that the face generated by two pure states of a C*-algebra is either their
-convex hull.or is affinely isomorphic to a 3-dimensional Euclidean ball. In the
reverse direction, it is immediately apparent that any simplex has the ‘1-ball pro-
perty”, i.e. the convex hull of any two extreme points is a face.

- I many physical applications, a restricted class of states of the C*-algebra
is'of spécial intérést, and attempts to decompose these into extremal states involve
determining whether the class forms a simplex. For example, if 4 is the C*-algebra
of observables of a quantum system, the symmetries of the system are represented
by a group G of *-automorphisms of A, and the space S;(A4) of G-invariant states
fnerits special attention. Various notions of “‘asymptotic abelianness’ were intro-
duced, which ensure that S;(4) forms a simplex [10], [11], [12], [13], [18], [24], [25],
[31]. Lanford and Ruelle [19], [25], [26] considered G-invariant states ¢ with asso-
ciated covariant representations (4, n,, u,), which are G-abelian in the sense that
m,(A)" restricts to an abelian von Neumann algebra on the space H'§ of u,-invariant
vectors in J,. They showed that any G-abelian state is represented by a unique
maximal measure on S;(4), and that #°S is one-dimensional whenever ¢ is ergodic
and G-abelian. The one-dimensionality of #°¢ is known to be equivalent to the
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“weak cluster™ property, namely

inf {ip(a’b) — p(a)p(b)} =0

I

for all @ and b in A, where the infimum is taken over all @’ in the convex hull of the
G-orbit of a. Subsequently Dang-Ngoc and Ledrappier [7], [8] obtained global
converses of the results in [19]. Specifically they showed that if Sy(4) forms a
simplex, or if A is separable and every ergodic state is weakly clustering, then every
G-invariant state is G-abelian.

For quantum dynamical systems, the group G is a strongly continuous one-
-parameter group {a(r) : t€ R} representing time evolution, and the ground states
of the system [4], [29], [30] form a class S, of special significance, not only physically
but also in terms of the geometry of S(A), since S, is a closed face of S(4) contained
in §,(A). The results and methods of [7], [8], [19] are immediately applicable in
this setting, so it can be deduced that S, forms a simplex if and only if every ground
state is G-abelian, or equivalently (at least if A4 is separable) every extremal ground
state is weakly clustering.

This paper originated out of an attempt to obtain an abstract approach which
would determine which faces F of S;(A) are simplexes, and an earlier version was
written from this point of view. This contained theorems which immediately gave
the results of [7], [8], [19] on putting F = S;(4), but also included the case when
G is trivial and Fis a face of S(A). The referee then showed that S;(4) is canonically
affinely homeomorphic to a face of the state space of the C¥-crossed product G % A.
Therefore the results about faces of S;(4) could be deduced from the special case
when G is trivial. Thus the primary objects of study in the version presented here
are closed faces F of S(A).

In § 2, we introduce the notion of F-abelian states akin to that of G-abelian
invariant states. Theorem 2.5 presents the main characterisations of faces which
are simplexes, valid in all separable and some non-separable cases. Some of thesi
are expressed in terms of F-abelianness or multiplicity conditions on the represen-
tations (#,, n,). However it is also shown that in order for F to be a simplex, it is
sufficient that F should have the 1-ball property.

In § 3, we extend a result of Alfsen and Shultz [3] by showing that the convex
hull of any set of pairwise inequivalent pure states is a face of S(A4), and we consider
some circumstances under which its closure is also a face. Methods are given to
construct simplicial faces with non-compact extreme boundary. In § 4, the results
of §2 and §3 are converted into theorems about S;(A) by means of the crossed
product, and in the final section they are applied to ground states. In this latter
setting, no separability conditions are needed, and one of the equivalent criteria
for S, to be a simplex is that every extremal ground state is a physical ground state
in the terminology of [29], [30]. A method will be given to construct uniformly
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continuous one-parameter automorphism groups on simple C*-algebras whose
ground states form simplexes of any given finite dimension. Since such systems
have non-unique physical ground states, this answers a question of Sakai [29].

I am deeply indebted to the referee for several perceptive comments on the
original version of this paper, and in particular for providing Theorem 4.2. I am
also extremely grateful to O. Bratteli for providing background information on the
subjects discussed in this paper, especially for making available a preprint of [6]
and drawing attention to [4] and [g].

2. ABELIAN FACES

Throughout the paper, A will be a unital C*-algebra with state space S(4),
which will be considered to have the weak* topology in which it is a compact convex
subset of A*. Alfsen and Shultz [3, Corollary 3.4] have shown that S(4) (and hence
all its faces) has the ““3-ball property”, i.e. the face of S(4) generated by any two
distinct pure states is either their convex hull or is affinely homeomorphic to a 3-
-dimensional Euclidean ball. Moreover the first possibility occurs precisely when
the given states are inequivalent (i.e. their associated irreducible representations are
not unitarily equivalent). In Proposition 3.1 we shall extend one half of this result
to larger sets of inequivalent pure states.

The result of Alfsen and Shultz shows that compact convex sets without the
3-ball property can never be affinely homeomorphic to faces of S(A). In this section
we shall give algebraic and geometrical characterisations of closed faces of S(4)
which are Choquet simplexes. We shall say that a convex set has the 1-ball progerty
if the convex hull of any two of its extreme points is a face. Any simplex has the
1-ball property, but there are elementary examples (even in R®) of compact conve-
sets with the I-ball property which are not;simplexes. We shall however see in Theox
rem 2.5 that a closed face of S(4) with the 1-ball property is a simplex, provided
certain separability conditions are satisfied. Thus there is a further class of metrisable
compact convex sets which can never be affinely homeomorphic to a closed face
of S(A), at least if 4 is separable,

For ¢ in S(4), let (#,, 1, £,) be the associated Hilbert space, representation
and cyclic vector, and for 1 in #°, let w}, be the functional in A* defined by

wia) = {m (@) n,n) .

It is well-known [9, Proposition 2.5.1] that there is a linear order-isomorphism
0,, of the self-adjoint part of ,(4)" onto the space J, of functionals ¥ in 4* satisfying
—Ap < Y < Ao for some scalar L = 0, given by

Op(x)(a) = (mpxEy, o
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Thus J, n 5(4) is the smallest face of S(4) containing ¢. -
Now consider a closed face F of S(4), and let

F={lp:2>0, peF},

so that F is a weak® closed order-ideal in the positive cone of A*. For ¢ in'F, let

= {ne H#, : w3 €F}.

For u and #’ in #E, 2" is dominated by 2(w7-+w?), and therefore belongs to F.
Hence #°% is a closed linear subspace of # , containing ¢, whose dimension will be
called the Fmultiplicity of ¢. The orthogonal projection of #,, onto H#% will be
denoted by pZ.

LEMMA 2.1. For ¢ in F, p§ belongs to m(A)".
Proof. For x in n,(4)" and 5 in #'§, w3 is dominated by |'x|*w? and therefore
belongs to #f. Thus #°F is n,(A)-invariant, so p} e n,(4)".

It follows from Lemma 2.1 that for ¢ in F, pv,nq,(A)" Fis a von Neumann
algebra. We shall say that ¢ is F-abelian if p5n (A)"p% is abelian, and that Fiis abelian
if every state in F is F-abelian.

PROPOSITION 2.2. The set of F-abelian states is a a-convex face of F.

Proof. Suppose that ¥ is a state dominated by Z Ap, where A, 20, ¥ 4, < o0
=1 n=1

and ¢, is F-abelian. Then =, is unitarily equlvalent to a subrepresentation of @ngn

By Lemma 2.1, #7 is a subspace of @4#4,, and pwnw(A)”pf; is a subalgebra of a
”

restriction of @ pg“nan(A)"pgn, which is abelian.
R

LeMmMA 2.3. For ¢ in F, the following are equivalent:
(i) @ has F-multiplicity 1.
(ii) @ is pure and F-abelian.
(ili) @ is pure and F contains no other state equivalent to @.

Proof. Suppose ¢ is of F-multiplicity 1. Lemma 2.1 shows that for x in 7,(4)’
xé,=7i¢, for some scalar A. Since &, is separating for n,(4), ,\—/1#0’, 50 m,(A),
is one-dimensional, and ¢ is pure.

Now suppose ¢ is pure. Then pin,(4)"pf contains all bounded linear ‘operators
on #%, and the equivalence of (i) and (ii) follows immediately. Also, for any unit
vector 7 in #% other than a scalar multiple of £, there is an operator a in 4 with
I (@]l < 1/2and ||z, (@), ]| > 1/2. Hence } is distinct from ¢. The equivalence
of (i) and (iii) follows.
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In Lemma 2.4 and the proof of Theorem 2.5, we shall consider a Radon pro-
bability measure u on S(A) representing a state ¢ in the sense that

SW) du(¥) = o(a) (@€ A).

Here p is to be regarded only as a Baire measure, and the phrase “u-a.e.” is to be
interpreted as “‘except on a p-null Baire set”. Similarly the statement that a function
f defined p-a.e. is py-integrable indicates that f is Baire measurable. For the general
theory of representing measures and Choquet simplexes, the reader is referred to [1].

LemmMA 2.4. Let p be a Baire probability measure on S(A) representing a state
¢ of A, n be avector in# , and a,, be a sequence in A such that ¥, ||z, (a,)¢, — || < oo.

Then m,(a,)$, converges y-a.e. to a vector vy, in 3#,. For b in A, - a);’}/’(b) is p-inte~
grable and

{@p¥ @) duth) = wy®).

If a, is another sequence in A such that Y, |in,(a)¢, —n||< oo, then my(a)&, con-

verges to n, p-a.e.. In particular, if n=m,(b) £, for someb in A, then n, =mn, (b)¢,
p-a.e. .

Proof. Let f, be the non-negative continuous function on S(4) defined by

f;r(')[/) = Hndz(an - an+1) én//” = [‘p((an - an+l)*(an - an'i-l))]]j'
Then

g £ duQp) = S W((@y — Gy ) (@ — Gyr)) du(y) =
= (p((an — an+1)*(an - an+1)) =
= ”n(c)(an - an+1)5(p”2'

Hence Y, f, is an absolutely convergent series in L2(u), and therefore in Li(w), so
Y /() < oo prace.. For any such y, 7y(a,)¢, converges to some limit n, in .
Let g,(¥) = [imy(b6a,)Sy |- Then |g, — g,4a] < [1B]lS;» 50 g, is a Cauchy sequence

in L*(u) converging pointwise to w;V'(b*b)“. Thus this function is square-integrable,
and

o @8 autw) = tim g, 09% duy) ~

= lim @(af b*ba,) = wi(b*b).



8 C. J. K. BATTY

Since A is spanned by its positive part, it follows that
S o"(b) duY) = Wli(b)  (BE A).

The same argument as in the first part of the proof shows that jin,(a,—a,)¢, -0
u-a.e., so my(a,)c, — n, p-a.e. . The last statement follows on taking a, = b.

We are now ready to state the main theorem of this section.
THEOREM 2.5. Let F be a closed face of S(A), and consider the following sta-
tements:
(i) F is abelia.
(i) For each ¢ in F, n,(A) is abelian.
(iii) F is a Choquet simplex.
(iv) Any factorial state in F is pure.
(v) No two distinct pure states in F are equivalent.
(vi) F has the 1-ball property.
(vii) Every pure state in F has F-multiplicity 1.
The following implications are valid:
(i) = (ii) = (ili) = (iv) = (v) < (vi) < (vii).
If F is a Gsset in S(A) (in particular if A is separable)}, then conditions (i) to (vii)
are equivalent.

Proof. (i) = (ii). Since n,(4) = (7,(4) U {pf})’ by Lemma 2.1, this follows
immediately from [26, Theorem 1.1].

(if) <> (iii). It is known that ¢ is represented by a unique maximal measure on S(A4)
(and hence on F) if and only if 7,(4)’ is abelian [6, Theorem 4.2.4].

(iti) = (iv). If m(4)" is abelian and a factor, then it is one-dimensional.

. . - . 1
(iv) = (v). If F contains distinct equivalent pure states ¢ and ¥, then £y (¢ -+ )

is a factorial state in F which is not pure [6, Proposition 2.4.26].
(v) <> (vi). This follows immediately from [3, Corollary 3.4].
(vi) <> (vii). This follows immediately from Lemma 2.3.

Now suppose that ¢ is a state in F, @ and @’ are operators in the unit ball of A4,
and 5 is a vector in #7Z. Let 1 be any Baire probability measure on F representing
¢ which is pseudo-carried by the pure states in F, in the sense that any Baire subset
of F containing no pure states is g-null. For example u might by any maximal measure
on F [l, Corollary 1.4.12] or the measure associated with a maximal abelian von
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Neumann subalgebra of n,(4) [26; 28, §3.1]. Let b, be a sequence in A4 such that
(mp(b), — |l < 27"t By Lemma 2.1, there are operators a, in A such that

n (a,ab,) ¢, — pEn (ay| < 27,
lmy(a,ab,)é, — phnla)n) <27,
@) < — ol < 27

By Lemma 2.4, there is a Baire subset £ of F with y(£) == 1 such that for y in F,
ny(b)ey, myla,ab,)é, and my(a,a’b,)é, converge to some limits #,, {, and {, res-
pectively in 5, and n,(a¥), converges to ¢,.

Next suppose that Fis a G; in S(A4), and for an integer 11; let

Qn = {p€A®T lp|| < n}.

Then F n 0, is a closed face and a Ggsubset of Q,. Let 8 be the mapping of E
into (A4*)* defined by 8()= co:f/'ﬁ. Since 0 is the pointwise weak* limit.of the sequence
of (weak*) continuous mappings ¢ — y(b%.b,), 0-%Q,) is a Baire subset of F.
and 0 is a Baire measurable function of 0-Y(Q,) into Q,. Hence 8-'(F) is a Baire,
subset of F. By Lemma 2.4, for any & in A,

E

{ dw®auw) < o @du) = o).
0-1(0,)

Thus the barycentre of the restriction v, to Q, of the image of ;2 under 0 is dominated
by ] and therefore belongs to the closed face Fqn Q, of Q,. Since v, is a Baire

measure, it is carried by the Baire set Fn Q,. Hence p is carried by 0—1(F), )
n,€ AL u-a.e. .

Applying similar arguments to {, and {,, we can find a Baire subset E; of F,
carrying p and contained in E, such that for ¢ in Ey, n,, {, and ) all belong to #F.
In particular if ¢ in £, has F-multiplicity 1, then

ny = (ys &y &ys
CW = <gl//’ éd’>€lﬂ = lim lib(anabn) éw 5
piny @ n, = {n@m,, &, &, = limyab,)E,.
But
W (ab, — a,ab,)| < |iny(a¥) ¢, — &) lall |jmy(b,) &l = O as 1 — 0o.
Thus
L= pimya@yn= (@) <ny» &) &y,
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and- similarly : '
G=v@) (s €4y
Hence

<7T¢(a’)c¢: ’7:1/> = Y(ap(a’), <77¢> §¢>|2 = <7‘c,,,(a) CJ, ’1¢>-

Finally suppose also that condition (vit) is valid. Then

{ye E : (ny(a){,, ’lz,u> # (my(@) &5, 1y )}

is a Baire subset of F containing no pure states, and is therefore y-null. By Lemma 2.4
and standard polarisation identities,

(mo@) pEr (a)n, n) = S (ryl@) Gy ) du() =
F

= S (ry(@) 8, 1) duW) = (my(@) pEr (@), ).

Thus ¢ is F-abelian.

When A is separable, Theorem 2.5 can alternatively be proved by means of
a direct integral decomposition with respect to the measure associated with a maximal
abelian von Neumann subalgebra of 7,(4) (cf. [7]). It seems likely that the condi-
tions (i) to (vii) are equivalent for any closed face, even if 4 is non-separable.

3. INEQUIVALENT PURE STATES

Any Bauer simplex (Choquet simplex whose extreme boundary is closed)
is affinely homeomorphic to the state space of the commutative C*-algebra of
continuous functions on its extreme boundary, and conversely the state space of a
C#-algebra 4 is a Choquet simplex only if 4 is commutative, in which case S(4)
is a Bauer simplex. In this section, we shall consider the general problem of finding
faces of S(A) which are simplexes. In view of condition (v) of Theorem 2.5, we
must consider sets of inequivalent pure states of 4. The following proposition extends
one half of {3, Corollary 3.4].

PropPesITION 3.1. Let P be a set of pairwise inequivalent pure states of A. Then
the convex hull coP, and the a-convex hull 6-coP, of P are faces of S(4).If ¥, 2.0, =0
n=1

o]

or some real numbers i, with ¥, |4,| < co and distinct states ¢, in P, then A, =0

n=1
Jor all n.
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. Proof. Any state ¥ in o-coP has the form
V=23 4o,
n

where 1, is a finite or infinite sequence of positive real numbers with sum | and
¢, is a sequence of distinct states in P. Let (A, m)= @ (#,,, 1, ). Since the repre-
n

sentations 7, are disjoint and irreducible, n(4)’ = @C-1,, where 1, is the identity
n

1
operator on #,, [9, Proposition 5.2.4]. Let & =@ A;¢, € #. Then the cyclic sub-
space [n(A4)£] associated with & satisfies

[(4)¢] = [n(4)"E) = @Ay, = H ,

so & is cyclic for n(4). Moreover {n(a)¢, &) =y(a) (a€ A), so (#y, 1y, &,) is uni-
tarily equivalent to (5, 7, £). Thus n,(4)" may be identified with @C-1, in such a

way that

1 1
@-p(@ )':xln) (a) = Z )“"l <7r¢,"(a) A”?é(ﬂnﬁ 136¢n> =
= Z }‘n}'r,lqon(a)‘

Furthermore O,(@ 4.1,) is a state if and only if 2; >0 and Y, 4,4,= 1, in which
case ©,(@4,1,)€ o-coP. Thus the face generated by any state in ¢-coP is contained

in o-coP, so o-coP is a face of S(A4). The same proof shows that coP is a face.
Now suppose that ¥, 4,0, =0 for some absolutely summable sequence 1,

and distinct @, in P. Let P, = {¢, : 4, > 0} and P, = {¢, : 2, < 0}. Since

Z ”{n(pn = E (—)'n) P>

A>0 Ap<0

P, is contained in the face generated by o-coP,. By the first part of the proof, g-coP,
is itself a face of S(4), so P, is contained in o-coP,. Since P, consists of pure states,
P, is contained in P,. But P, is disjoint from P,, so P; and similarly P, are empty.

Proposition 3.1 shows that one can construct n-dimensional simplexes as
faces of S(4) simply by taking the convex hulls of sets of (n + 1) pairwise inequi-
valent pure states. One might hope to construct infinite-dimensional Choquet sim-
plexes by taking the (weak*) closed convex hulls coP of certain infinite sets P of
pairwise inequivalent pure states. Effros [14] has shown that the norm-closure of
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a face of S(A) is a face, but the weak* closure may not be. In Theorem 3.2 below,
we obtain necessary and sufficient conditions for coP to be a face when P has a
unique limit point, and the subsequent corollaries show that this special case is
sufficient to include many examples both where coP is not a face, and where it is a
simplicial face with non-compact extreme boundary.

Let @ be a compact Hausdorff space, C(2) be the commutative C*-algebra
of all continuous complex-valued functions on , and K(Q) be the state space
S(C(Q)) of C(2) identified with the space of Radon probability measures on Q.
For w in @ and x in K(9), let

Coul @ {fe @ : fiw) = Sfdu}

and K,(2) be the state space of the order-unit space C,,(€2). If u is the point mass
&, at w, then K, (Q) is the Bauer simplex K(Q). Otherwise X, () is a Choquet
simplex with extreme boundary {6(e,) : '€ Q, ' # w} where 0 is the restriction
map from C(2)* into C,,(@)*. A typical point of K, () is uniquely of the form
O(v) where v is a measure in K(Q) for which w is not an atom, and the unique maxi-
mal representing measure of 0(v) is the image of v under the mapping ' — 0(e,,)
(cf. [I, Proposition 11.7.17]).

THEOREM 3.2. Let P be a set of pairwise inequivalent pure states of A with
a unique limit point ¢,. The weak™ closed convex hull coP of P coincides with the

a-convex hull of the weak* closure P = P | {@,} of P. Furthermore:

() If @o =Y, 2,9, for some @, in P and i, > 0 with ¥, A, =1, then ¢oP is

n=l H==1

i [>¢]
a face of S(A) affinely homeomorphic to K,, (P) where i = Z Ao
n=1
(i) If @4 is a pure state equivalent to no state in P, then coP is a face of S(A)
affinely  homeomorphic to K(P).
(ii1) If neither (i) nor (ii) applies, then co P is not a face of S(A).

Proof. By Proposition 3.1 any state i in 6-coP can be written uniquely as
¥ 2,(0)p where 4, is an absolutely summable function of Pinto [0, 1] with ¥}, 2,(p)=1.

veP 0EP
Let ¢, be a net in o-coP which is weak® convergent to a state  in S{4). Passing
to a subnet we may assume that 2, converges pointwise on Pto a summable function

A with ¥ (@) == % < 1. Let ¢/ - Y, A@)e + (1 — )po€ o-coP. For any convex
9EP pEP
circled, weak® neighbourhood U of ¢, in 4%,

w7—¢%=§z%ww——gzww——guﬁw)—zw»¢w=

= Y (v (@) — He)(P — @0) + ¥, (4 (0) — @)@ — @q)-
P\U 4 POU 7
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The second sum lies in 2(U — ¢,) for each y, while the first is (norm) convergent to
0 since P\U is finite. Thus y, is weak* convergent to ¢', so ¢= . This shows
that coP = a-coP.

If the condition (i) is satisfied, it follows immediately that co P = o-coP,
which 1s a face of S(4) by Proposition 3.1. Given [ in C‘,W(F), there is an affine
function @ on coP given by

alh)y =Y, Ay(@) fle).
P

For ¢ in P, a(¢) = f(p), and
ala) = X Afion) = |/ dp = f(n).
If ., ¥ and U are as in the first part of the proof, then
a(y,) — a(f) = ; Ay (@) flp) — fb_‘ Mol (p) — ZP (2o (0) — H@))f(@o) =
= Y, (4 (0) — M@ f(@) — f(9o)) +
TSN/
+ X (G () — Ae)(f(9) — f(9))-
rPAU 7

Since f is continuous, U may be chosen to ensure that this expression is small
for all large y. Thus a is continuous. It follows that the restriction mapping is an
isometry of the space of continuous affine functions on coP onto C,,,,,o(_f’), and hence
that coP is affinely homeomorphic to KM,O(P).
If the condition of (ii) is satisfied, then we can replace P by P and apply part
(i) with 4 = &,,. Thus coP = co P is a face-affinely homeomorphic to K”%(F)z K(P).
Now suppose that coP is a face, but neither the assumption of (i) nor (ii) is

satisfied. If ¢y = 1/2 (Y + ') for some ¢ and ¢’ in S(A4), then ¢ and ¢’ belong to
cOP = o-coP, so

oo (=]
=Y, s Y=Y Lo,
n=0

n=0
[e el
for some ¢, in P(n > 0) and non-negative scalars %, and A, (n> 0) with }, 2, =
n=0

= ¥ 4, = 1. Then

n==0

(1 20— 12 z:.) o= 122, +1}) 00
1

”n ==

Since (i) does not apply, Ay = o= 1, s0 y = ' = ¢,. Thus @, is a pure state. Since
(i1) does not apply, @, is equivalent to some ¢g in P. Since (i) does not apply, @,
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is distinct from @g. The set P, = P\ {¢,} has unique limit point ¢, and satisfies the
condition of part (ii). By the first part of the proof, ¢G0P, = g-coP, which is a face
of S(A4), where P,= P, U {p,}. Since ¢ is pure and does not belong to P,, it does
not belong to g-coP,. Since GoP is the convex hull of the face o-coP, and the pure
state @q, it is easy to see that the convex hull of ¢, 'and [y is a face of coP and

hence of S(A4). It follows from [3, Corollary 3.4] that ¢, and ¢ are inequivalent, which
contradicts the choice of ;.

The referee has pointed out that if the weak* closure of P is countable and
contained in the norm-closed convex hull coP of P, then o P coincides with coP,
and is therefore a face of S(4) (by Proposition 3.1 and {14, Corollary 4.7}).

The author is also indebted to the referee for observing that the following
two corollaries of Theorem 3.2 are valid for the given class of C*-algebras rather
than just UHF-algebras.

COROLLARY 3.3. Suppose A contains a maximal ideal M such that A/M is sepa-
rable and infinite-dimensional. Then there is a sequence of pairwise inequivalent pure
states of A whose (weak* ) closed convex hull is not a face of S(A).

Proof. Passing to the quotient 4/M whose state space may be identified with
a closed split face of S(A), we may assume that 4 is simple, separable and infinite-
-dimensional. Then any one equivalence class of pure states is dense in S(4) ([15],
Theorem 2; [9], Lemme 11.2.1), and there are infinitely many such equivalence
classes. (Otherwise A is of typ= I [16], and therefore has a composition series consis-
ting of C*-algebras with continuous trace [9, Théoréme 4.5.5]. Being simple, A is
then of continuous trace, and being unital, 4 has finite-dimznsional representatioﬁé,
which are necessarily faithful.) Since S(4) is metrisable, given any two distinct
states i, and ¥, of A and a in 4 with y,(a) < V»(a), it is possible to find inducrively
a sequence of pairwise inequivalent pure states ¢, which converge to 1/2 (¥, -~ ¥.)
but satisfy ¢,(a) < 1/2(y,(a) + .(a)). It follows immediately from Theorem 3.2(iii)
that ¢o {@,} is not a face of S(A).

CoroLLARY 3.4. Suppose A contains a maximal ideal M such that AJM is sepa-
rable and infinite-dimensional, and let u be any probability measure on the one-point
compactification N of N. Then there is a face of S(A) affinely homeomorphic to
KyalN).

Proof. Suppose i = ¥, u,e, where g, >0, ¥, i, = 1. If po, = 1, then as in
neN neN .
Corollary 3.3, we can find inequivalent pure states ¢, (n€ N) such that ¢, converges
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to @ as n — oo. Otherwise, again as in Corollary 3.3, we can find inequivalent
pure states ¢, (n€N) such that

( ﬂj) P11 — Z wo; >0,
j=1

iz

SO ¢, converges t0 P = (1 — 1)~ Y] ;. In both cases, the mapping n — ¢,
j=1

(n € N) is a homeomorphism of N onto P, where P = {@, :n€ N}, and by Theorem
3.2, €0 P is a face affinely homeomorphic to Kum(ﬁ).

It is tempting to conjecture that every (metrisable) Choquet simblex is affinely
homeomorphic to a face of the state space of some (separable) C*-algebra. There
is a metrisable simplex whose extreme boundary is dense [22], and this simplex is

unique and contains every other metrisable simplex as a face (up to affine homeo-
morphism) [20]. Thus the separable version of the conjecture is equivalent to the

existence of a C*-algebra A and a closed face F of S(A) whose extreme points are
inequivalent pure states and are dense in F (by Theorem 2.5).

The referee has further conjectured that if 4 is any order-unit space such that
A** is isomorphic (as an order-unit space) to the self-adjoint part of a von Neumann
algebra, then the state space of A is affinely homeomorphic to a face of the state
space of a C*-algebra.

4. G-ABELIAN C*-ALGEBRAS

Now suppose that there is a group G acting on the C*-algebra 4 via a homo-
morphism a of Ginto the group of *-automorphisms of 4. The set S5(A4) of G-in-
variant states of 4 is a compact convex subset of S(4), and its extreme points are
known as ergodic states. For ¢ in S;(A), there is a unitary representation u, of
G on #, uniquely determined byjthe condition u,(g)¢, = ¢, and the covari-
ance relation

Uy(8) Tp(@, (g~ 1) = m((g)(@)) -

Let .}i’fj be the set of all u,-invariant vectors in #,, and p§ be the projection of H,
onto #'§. Then pSr,(4)’pS is a von Neumann algebra [13, Corollary 2], and ¢
is said to be G-abelian if pSn,(A)'pG is abelian. The*C*-algebra A is said to be
G-abelian if every G-invariant state is G-abelian.

LEMMA 4.1, For ¢ in Sg(A), A g is the largest closed linear subspace A~ of A,
containing ¢, such that ), is G-invariant for all n in A .

Proof. 1t is clear that y’i”g is a closed linear subspace containing ¢,. and that
o, is G-invariant for n in S, Conversely if 4 is such a subspace, then for a in 4,
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gin G,n in. ¥ and scalar 4,

(mol@) 1,(8) () + 2E,), up(g)ir + 2E,)) = ool o(a(g=1)(a)) =

— )" Pol@) = (r(@)n + AN 0 + i) .
Comparing coefficients of 1 gives

(my@) u (g, Spp = {mfam, &, -

Since £, is cyclic, it follows that  is u,-invariant.

It is known [6, Theorem 4.3.22] that .#'$ is one-dimensional if andion]y if
@ is weakly clustering in the sense that

inf [l@(a’b) — @(a)p(b); : a'€ con(G)(a)} = 0

for any @ and & in A.

Asin[32] or (21, § 7.6] w2 can form the crossad product of the discrete system
(A4, G, «). This is a C*-algebra G x 4 generated by 6(A4) and 6(G), where ¢ is a faithful
*-homomorphism of 4 into G X A and 0 is a unitary representation of Gin G X A
related by the covariance formula

0(g) a(a)0(g—1)=0(a(g) (a)).

There is a bijective correspondence between covariant representations of (4, G, &)
and non-degenerate representations of G X A, given by (&, m,u) = (#, 1 X u)
where

(z X u)(o(a)) = n(a),
(r X u)(0(g)) = u(g) .

There is also a bijective correspondence between the state space of G X A and the
set of all bounded functions @ from G into A* such that ®(e) is a state (where
e is the identity of G) and ¢ is positive-definite in the sense that

n

Y 2(¢gi'g) (g ") (GFa)) = 0

=1

for any @; in A and g; in G (1 < i < n). This correspondence is given by p —» @,
where

D,(g)a) = p(o(a)i(g))
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and is a homeomorphism for the weak* topology on S(G x A) and the topology
of pointwise weak™ convergence on the space of functions from G into 4%,

The following theorem is due to the referee.

THEOREM 4.2. Let F = F;(A) be the set of states p of G X A satisfying:
p(0{g)o(a)0(g2)) = pla) (g1 82€G, a€A).

Then F is a closed face of S(G X A), the mapping p — @ (e) is an affine homeomorphism
of F onto Sg(A), and for p in F,(# ,, H#}, n,, ¢,) is unitarily equivalent to (Jf,,,,%”g,
Ty X Uy, &), where @ = & (e).

Proof. Forpin F,gand hin G and ain A,

@ (&)@ (@) = p(0(h) a(a)0(h~"g)) = p(a) = P (e)(a).

Thus @,(g) = @,(e)€ S¢(4), so p — D (e) is an affine homeomorphism of F into
Sg(A4). Given a state ¢ in S;(A4), the function $(g) = ¢ Is easily seen to be positive-
-definite, so ¢ = &, for some p in S(G X 4). Now

p(0(g)a(a)0(gy) = P(g7'g:)(a(g)(@) = @(a) = p(a(a)),

so p belongs to F, and @,(e) = ¢.
The vector &, is clearly cyclic for (z,, X u,)(GX A) > 7,{A), and

{1y X u N o(@)0(£)) €y, &) = (Mp(@tp(§)E,s Ep) =
= ¢la) = p(c(@)0(g)) .

Hence (o, 7, £,) is unitarily equivalent to (3, 1, X u,, &,).

For a unit vector  in J¢,,

((my X ug) (0(g)o(@)0(g:))1, 1) = <uy(gr) m,(@) u,(g2)m, 1) -

Thus the vector state determined by # in #° belongs to F. Taking n=x¢,, for some x in
n(Gx A)’, it follows that F is a face of S(G x A). Conversely if the vector state
determined by n in J#, belongs to F, then on taking g, = g ' it follows that ] is
G-invariant. Finally it follows from Lemma 4.1 that the unitary equivalence takes
HF onto A48,

Two G-invariant states ¢ and Y of A are said to be covariantly equivalent
if (A, 7y, u,) and (', m,, u,) are unitarily equivalent. It is clear from Theorem4.2
that states in S;(4) are covariantly equivalent if and only if the corresponding states
in Fy(A) are equivalent.

CorOLLARY 4.3. The convex and o-convex hulls of any set of covariantly ine-
quivalent ergodic states are faces of Sg(A). The face generated by two covariantly

2-2238 3



18 C. 1. K. BATTY

equivalent ergodic states is affinely homeomorphic to a 3-dimensicnal Euclidean ball.
In particular, S;(A) has the 3-ball property.

Proof. This follows immediately from Theorem 4.2, Proposition 3.1 and [3,
Corollary 3.4].

COROLLARY 4.4. Consider the following conditions on (A, G, a):
(i) A is G-abelian.

(i) For each ¢ in Sg(A), n,(A) nu,(G) is abelian.

(iii) Sg(A) is a Choguet simplex.

(iv) Any state @ in Sg(A) for which w,(A) nu,(G) is a factor is ergodic.
(v) No two distinct ergodic states are covariantly equivalent.

(vi) S¢(A) has the 1-ball property.

(vii) Every ergodic state is weakly clustering.

The following implications are valid:

(1) = (i) < (ii)) = (iv) = (v) = (Vi) < (vii).
If A is separable, then all seven conditions are equivalent.

Proof. In the general case, the implication (iii) => (i) is proved in [8, Theorem 1]
and [6, Corollary 4.3.11], and the remaining implications follow immediately when
Theorem 2.5 is applied to the face Fy(4) of S(G X A) considered in Theorem 4.2.

If A is separable, then 2(G) is also separable in the strong operator topology.
Furthermore replacing G by a countable dense subgroup of «(G) (and « by the identity
representation) does not affect the validity of any of the conditions (i) to (vii). Thus
we may assume that G is countable, so that G X A is separable. Thus the equivalence
of all the conditions again follows from Theorem 2.5.

For the most part, Corollary 4.4 is not original, although the equivalence of
(vi) with (v) and (vii), and the equivalence of (iv) in separable cases, appear to be
new. Various parts of the rest of Corollary 4.4 may be found in [6], [7], 8], [19]-
[25], [28].

It seems likely that the conditions of Corollary 4.4 are all equivalent in general.
In fact if 4 is non-separable but G is 6-compact this can be proved by amending the

proof of (vii) = (i) in Theorem 2.5. One now takes u to be a maximal measure on
F == F;(A), and one can show that for any fixed g in G,

u‘pw(e)(g) Ny = y [l'a.e.(ll})

(cf. the proof of Theorem 5.1 below). Since Haar measure on G is o-finite, an appli-
cation of Fubini’s theorem shows that 1, €4 F n-a.e.. The proof is now completed
as in Theorem 2.5.

If F, is a closed face of Sg(4), then F, ={p€ F(4) : ®,(e)€F,} is a closed
face of S(G X 4). Identifying 5, with #, as in Theorem 4.2, it is easily seen that

HP = (nedS wl€ Fy} .
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Now Theorem 2.5 can be applied to F, to obtain seven conditions on £, and the
covariant representations associated with states in F,, all of which are equivalent,
at least if A is separable.

5. GROUND STATES

Now suppose that G = R, and that {a(r) : 1€ R} is a strongly continuous
one-parameter group of *.automorphisms of 4, whose generator § is a *-derivation
of A defined on a dense *-subalgebra 2(5) of 4. A state ¢ of A is said to be a ground
state if —ip(a*d(a)) = 0 for all a in 2(5). The compact convex subset of S(4) con-
sisting of all ground states will be denoted by S,(4, «) or simply S,.

The above definition of ground states is the one adopted in [6], [29], [30],
and various equivalent ones are known [6], [21], [23]. For example, ¢ is a ground
state if and only if ¢ is R-invariant and the strongly continuous unitary group u,
is generated by i, where £, is a positive (unbounded) operator on ., in which
case h, is affiliated with =,(4)” [6, Proposition 5.3.19]. Now for ¢ in S;, 7 in A}
and a in 9(6), n,(a)n belongs to #(h,) and ik, (a)y = n,(6(a))y. Hence

~i0a*5(@) = <hynylay, @) > 0.

In particular for x in 7,(4) < u,(R), x¢, belongs to AR and O, (x*x) =
= wfv’ € S,. Thus S, is a face of S(4), and the above argument shows that J#5® con-
tains #R. On the other hand, Lemma 4.1 shows that 4R contains #5¢.

THEOREM 5.1. Let {a(?) : t € R} be a strongly continuous one-parameter group
of *-automorphisms of A, and S, be the set of all ground states of A. The following
are equivalent:

(i) S, is abelian.

(1)’ Every ground state is R-abelian.

(ii) For each @ in Sy, m,(A) is abelian.

(iii) S, is a Choquet simplex.

(iv) Every factorial ground state is a pure state.

(v) No two distinct pure ground states are equivalent.
(vi) S, has the 1-ball property.
(vii) Every pure ground staie has Sy-multiplicity 1.
(vii)" Every pure ground state is weakly clustering.

Proof. The equivalence of (i) with (i) and of (vii) with (vii)’ follow from
the fact that #R = #5°, together with [6, Theorem 4.3.22]. The implications
@) = (ii) = (iii) = (iv) = (v) = (vi) = (vii) follow from Theorem 2.5. To prove
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(vii) => (i) it suffices to observe that the corresponding proof in Theorem 2.5 applies
verbatim except for the section showing that 1, € #'s°p-a.e. . However we now have,
for any rational ¢,

" () B)) Ep — 1) = u () (M(by) €, — H)i< 277

By Lemma 2.4, n,(a(1)(b,)E, = uy(t)n,(b,)E, converges p-a.e. to i,. Thus u,(t)n,=-
= i}, p-a.c.. Since u, is strongly continuous, it follows that 5, €% = A peae..

Parts of Theorem 5.1 can be found in [4]. The implication (i) = {v) was first
proved by Haag [17].

Condition (iv) of Theorem 5.1 can be formally rewritten as:

(iv)’ Any ground state ¢ with U (R) N7, (4) n7,(4) one-dimensional is

ergodic.

Dang-Ngoc {7, Theorem 3] considered systems in which any G-invariant state ¢
with u,(G)' n 7,(4) n n,(4)" one-dimensional is ergodic, and showed that this
is equivalent (at least in separable cases) to other properties variously known as
“quasi-largeness’ [8] or “‘G-centrality” [6] of (4, G, «), which are known to be
strictly stronger than G-abelianness [13]. Thus Theorem 5.1 shows that the ground
states do not distinguish between R-abelian and R-central systems in the way that
the invariant states do.

Sakai has called a ground state of Sy-multiplicity 1 a physical ground state,
and raised the problem of determining when every pure ground state is a physical
ground state [29, Problem 9] and [30, Problem 6.4). Although Theorem 5.1 can be
regarded as giving an answer to this, it would be of more significance to find criteria
which depend only on knowledge of « (and therefore of the generator ¢) rather
than the whole structure of S,.

Sakai {29, Problem 10] has also asked whether any physical ground state is
necessarily unique when A4 is simple. Corollary 5.3 below shows that this is very
far from being the case.

A one-parameter dynamical system (4, R, o) is said to be inner if there is a
self-adjoint operator b in 4 such that «(¢)(a) = e*ae~* (a€ 4), in which case b
implements o. If A is simple, any uniformly continuous one-parameter system is
inner [27]. A system (4, R, %) is approximately inner if there is a net of uniformly
continuous systems (4, R, «.) such that

,(t)@) — 2()(@)] > (ac4, 1€R).
The approximating systems can always be taken to be inner, and if 4 is separabie,
the nct can be assumed to be a sequence [21, Proposition 8.12.7].

THEOREM 5.2. Suppose A is separable and F is a closed face of S(A). Then
F is of the form Sy(A, a) for some approximately inner system (A, R, «) if and only
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f F intersects every non-empty closed split face of S(A). In this case, « can be taken
to be inner.

Proof. Any non-empty closed split face F; of S(4) is the annihilator I* of
some closed two-sided ideal I of A [2, Proposition 7.1]. Now [ is invariant under
any uniformly continuous one-parameter system, and hence under any approxi-
mately inner system (4, R, «), so there is an induced approximately inner system
(AR, a;) given by

a(t)(m(@) = m(x(1)(@)) (a€ A, 1eR)

where 7, is the quotient map of 4 onto A/I. By [23, Theorem 2.3] this induced system
possesses a ground state @, and it is easy to see that ¢, o 7, belongs to F, N Sy(4, «).

Now suppose F is a closed face intersecting every non-empty closed split
face of S(A). There is a closed left ideal L of A4 such that F=L*[14, Theorem
491, so Fis semi-exposed. Since A is separable, I is exposed [I, Proposition I1.5.16],
so there is a positive operator b in A such that F= {p€ S(4) : ¢(b) = 0} (b is
a strictly positive element of L). For any proper closed two-sided ideal I of A, I*
is a closed split face which therefore intersects F. Hence m,(h) is not invertible
so it follows from [5, Corollary 2.4] and the Krein-Milman theorem that F is the
set of all ground states for the inner system implemented by 5.

CORCLLARY 3.3. Suppose A is simple, separable and infinite-dimensional. Then
ainy closed face of S(A) is the set of all ground states for some inner system (A, R, o).
For any positive integer n, there is an inner system on A whose ground states form
an (n—)-dimensional simplex with exactly n physical ground states. For any pro-
bability measure u on N, there is an inner system on A whose ground states form a

simplex affinely homeomorphic to K, (N) with infinitely many physical ground states

Proéf'. This follows immediately from Theorems 5.1 and 5.2, Proposition 3.1
and Corollary 3.4.

It may be noted that the separability of 4 was not used in the first half of the
proof of Theorem 5.2.

In view of Corollary 5.3, Theorems 2.5 and 5.1 are logically equivalent for
separable simple C*-algebras.
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Added in proof. Since completing this paper, the author has proved that the seven conditions
of Theorem 2.5 (and hence those of Corollary 4.4) are equivalent without the restriction
that F be a G5 or A be separable. Furthermore the conjecture of § 3 that every metrisable
simplex is a face of a state space is valid. Proofs of these results will be published elsewhere.
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