ON TOEPLITZ OPERATORS WITH LOOPS

DOUGLAS N. CLARK

INTRODUCTION

For $F(e^{it})$ a bounded measurable function on $[0, 2\pi]$, define the Toeplitz operator T_F on H^2 by

$$T_F x = \mathbf{P} F(e^{it}) x(e^{it})$$

where **P** is the orthogonal projection of L^2 on H^2 . In a recent paper [1], we obtained a rather simple representation for T_F , up to similarity, in case F(z) is rational and maps the unit circle **T** to a simple closed curve. In the present paper, more complicated behavior by the rational function F(z) is permitted.

To be precise, let F(z) be a rational function with no poles on |z|=1. Label as \mathscr{L}_i the bounded components of the complement $\mathbb{C} \setminus F(\mathbb{T})$ for which the index $(=N_i)$ of $T_F - \lambda I$ is positive and as ℓ_i those for which that index $(=v_i)$ is negative. The \mathscr{L}_i and ℓ_i will be referred to as the *loops of F*. We make the following assumptions, which will hold throughout this paper.

- (I) The intersection of the closures of any two loops consists of a finite set of points (called the *multiple points of F*).
- (II) The boundary of each loop is an analytic curve except at the multiple points, where it is piecewise smooth, with inner angle θ satisfying $\theta \neq 0$, π , 2π . No (distinct) arcs of $\partial F(T)$ meet at angle $\theta = 0$.
- (III) No multiple point of F is the image $F(z_0)$ of a point $z_0 \in T$ where $F'(z_0) = 0$.
- (IV) F never "backs up": if τ_i is the Riemann mapping function from |z| < 1 to ℓ_i , we assume the argument of $\tau_i^{-1}(F(e^{it}))$ is a monotone decreasing function and, if T_i is the Riemann mapping function to $\widehat{\mathcal{L}}_i$, we assume the argument of $T_i^{-1}(\widehat{F}(e^{it}))$ is monotone decreasing.

An arc of $\partial \mathcal{L}_i$ or $\partial \ell_i$, one endpoint of which is a multiple point, will be referred to as a branch of F(z).

Throughout, f(z) denotes $F(z^{-1})$, so that $T_f = T_F^*$. The sets σ_f and σ_F denote the unions

$$\sigma_f = \cup \ell_i \quad \sigma_f = \cup \mathscr{L}_i.$$

The main result is

THEOREM 1. The operator T_F is similar to

$$\sum \oplus T_{r_i} \oplus \sum \oplus T_{T_i}^*$$
 on $\sum \oplus H_{-r_i}^2 \oplus \sum \oplus H_{N_i}^2$

where H_v^2 is the vector H^2 space based on a Hilbert space of dimension v.

Two immediate consequences of Theorem 1 are worth recording. Let \mathcal{M}_i denote the closed span of the eigenvectors of T_F corresponding to eigenvalues in \mathcal{L}_i and let m_i denote the closed span of the eigenvectors of T_f corresponding to eigenvalues in $\overline{\ell}_i$ (a bar over a set always denotes complex conjugation). It is easy to see that $\mathcal{M}_i \perp m_i$ for any (i,j).

COROLLARY 1. The intersection of any two of the subspaces in $\{\mathcal{M}_i, m_i\}$ is $\{0\}$.

COROLLARY 2. The (direct) sum

$$\sum \mathcal{M}_i + \sum m_i$$

is all of H^2 .

We conclude the introduction by giving two examples of the theorem and corollaries.

EXAMPLE 1. $F(z) = a(z^{n+1} - z^{-(n-1)})$. F(T) is the classical N leaved rose of analytic geometry. If n is odd, there are n leaves (loops) ℓ_i , each with $v_i = -2$ and if n is even, there are 2n leaves ℓ_i , each with $v_i = -1$. By Theorem 1, T_F is similar to

$$\begin{cases} T_{\tau_1} \oplus T_{\tau_1} \oplus T_{\tau_2} \oplus T_{\tau_2} \oplus \ldots \oplus T_{\tau_n} \oplus T_{\tau_n}, & n \text{ odd} \\ T_{\tau_1} \oplus T_{\tau_2} \oplus \ldots \oplus T_{\tau_{2n}}, & n \text{ even} \end{cases}$$

EXAMPLE 2. $F(z)=z^2/(z-\beta), \frac{1}{2} < |\beta| < 1$. In this case $F(\mathbf{T})$ is a "figure 8", having loops \mathcal{L}_1 (with $N_1=1$) and ℓ_1 (with $\nu_1=-1$). By Theorem 1, T_F is similar to

$$T_{\tau_1} \oplus T_{T_1}^*$$
,

and the eigenvectors for T_F (for $\lambda \in \mathcal{L}_1$) together with those of T_F^* (for $\lambda \in \mathcal{L}_1$) span H^2 . This example, and the question of determining the span of the eigenvectors of T_F and T_F^* , was considered by Gambler [3]. Although [3] contains a number of interesting results, Gambler did not obtain a proof of Corollary 2, even in this special case. The question solved in Corollary 2 was first posed to this author in a conversation with R. G. Douglas in January, 1975.

To give an idea of the proof of Theorem 1, we outline it in the case of Example 2 with $\beta > 0$. In this case, F(z) has the two loops: ℓ_1 , the image under F of the arc

of the circle from $u_0 = (1 + \sqrt{1 - 4\beta^2})/2\beta$ to u_0 containing -1, and \mathcal{L}_1 , the image under F of the arc from u_0 to u_0 containing 1. The only multiple point is $\beta^{-1} = F(u_0) = F(\overline{u_0})$. The eigenvectors k_{λ} of T_F satisfying $k_{\lambda}(0) = 1$ are given by

$$k_{\lambda}(z) = (z^2/\lambda\beta - z/\beta + 1)^{-1}$$
 for $\lambda \in \mathcal{L}_1$,

and the eigenvectors $h_{\lambda}(z)$ for T_f are

$$h_{\lambda}(z) = (1 - \beta z) (1 - \lambda z + \lambda \beta z^2)^{-1}$$
 for $\lambda \in \overline{\ell_1}$.

We prove similarity with the direct sum of multiplication by z on $H^2(\ell_1)$ and the adjoint of multiplication by z on $H^2(\mathcal{L}_1)$.

Define $L_{0f}: H^2 \to H^2(\ell_1)$ by

$$L_{0f} x = (x, h_{\overline{\lambda}})$$
 $\lambda \in \ell_1$.

 L_{0f} intertwines T_F and multiplication by λ , since

$$L_{0f}T_{F}x = (T_{F}x, h_{\bar{1}}) = (x, T_{f}h_{\bar{1}}) = \lambda L_{0f}x.$$

The proof that L_{0f} is bounded is obtained by writing

$$h_{\lambda}(z) = c_1(\lambda)(1 - d_1(\lambda)z)^{-1} + c_2(\lambda)(1 - d_2(\lambda)z)^{-1}$$

where $d_i(\lambda) = 2\beta \lambda/(\lambda + (-1)^{i+1} \sqrt{\lambda^2 - 4\beta \lambda})$ and where c_1 and c_2 are suitably chosen. Then

$$L_{0f}x = \bar{c}_1(\bar{\lambda})x(\bar{d}_1(\bar{\lambda})) + \bar{c}_2(\bar{\lambda})x(\bar{d}_2(\bar{\lambda})) = T_1x + T_2x.$$

It can be seen that $|d_1(\lambda)| = 1$ on $\partial \ell_1$, so T_1 consists of a change of variable followed by a multiplication. We have $|d_2(\lambda)| < 1$ except at $\lambda = 1/\beta$, where $d_2(\lambda) = u_0$. This leads to a boundedness problem somewhat different from that considered in [2], where $|d_2(\lambda)| < c < 1$, or [1], where $|d_2(\lambda)| = 1$ at a boundary point λ , if and only if $d_1(\lambda)$ and $d_2(\lambda)$ coincide. The boundedness of T_1 and T_2 (and hence of L_{0f}) is proved in § 2 below.

Next we define an operator L_{0F} from $H^2(\ell_1)$ to H^2 by

$$L_{0F}p(\lambda) = \frac{1}{2\pi i} \int_{\ell_1} p(\lambda)/[-2/(\lambda + \sqrt{\lambda^2 - 4\lambda\beta}) + z/\lambda\beta] d\lambda$$

for $p(\lambda)$ a polynomial. The proof of boundedness for L_{0F} is similar to that for L_{0f} (the adjoint of L_{0F} is analogous to T_1 above). L_{0F} is related to the inverse of L_{0f} . $(L_{0F} = L_{0f}^{-1})$ in the case of only one loop [1].)

For the loop \mathscr{L}_1 , we define operators analogous to L_{0f} and L_{0F} , with f and F interchanged; let L_{2f} be the operator corresponding to L_{0F} and $L_{2F'}$ the operator corresponding to L_{0f} . The operators $L = L_{2f}^* + L_{0f}$ and $L_1 = L_{2F}^* \oplus L_{0F}$ are bounded and L intertwines the operators T_F and $M_z^* \oplus M_z$ on $H^2(\mathscr{L}_1) + H^2(\ell_1)$. The proof is completed by showing that L has dense range and satisfies $L_1L = I$. The last fact is proved by setting up

$$(L_1L(1-\bar{v}z)^{-1},(1-\bar{u}z)^{-1}), |u|,|v|<1,$$

as an integral over $\partial(\mathscr{L}_1 \cup \ell_1)$ and by observing that this integral is the same as the limit of

$$\phi ((\lambda I - T_f)^{-1} (1 - vz)^{-1}, (1 - \bar{u}z)^{-1}) d\lambda$$

as the path of integration approaches $\partial(\mathcal{L}_1 \cup \ell_1)$ from outside $\sigma(T_f)$ (§ 3). The last contour integral is, of course, equal to $(1 - \overline{\nu}u)^{-1}$.

The proof we give of Theorem 1 uses the methods of [1], although only Part I of [1] is a prerequisite. In Section 4, we outline a version allowing for "backing up", i.e., removing assumption (IV) on F.

1. PROPERTIES OF f NEAR A MULTIPLE POINT

We need to extend certain results of [1] to the case where f(T) has multiple points. As in [1], write the rational functions

$$(1.1) \quad f(z) - \lambda = a(\lambda) \prod (1 - d_i(\lambda)z) \prod (1 - e_i(\lambda)z) \prod (1 - g_i(\lambda)z) / \prod_{i=1}^{m} (z - \gamma_i) \prod_{i=1}^{n} (z - \delta_i)$$

where $|d_i| < 1 = |g_i| < |e_i|$ and $|\gamma_i| < 1 < |\delta_i|$; and

$$(1.2) \quad F(z) - \lambda = A(\lambda) \prod (1 - D_i(\lambda)z) \prod (1 - E_i(\lambda)z) \prod (1 - G_i(\lambda)z) / \prod_{i=1}^{M} (z - \Gamma_i) \prod_{i=1}^{N} (z - \Delta_i),$$

where $|D_i| < 1 = |G_i| < |E_i|$ and $|\Gamma_i| < 1 < |\Delta_i|$. As noted in [1], the above functions of λ may be multiple valued, so we assume that we have renumbered them so that the functions in (1.1) [resp. (1.2)] are single-valued and piecewise continuous on $\partial \sigma_f \cup \partial \overline{\sigma}_F$ [resp. $\partial \sigma_f \cup \partial \sigma_F$] and that they are all analytically continuable across all multiple points (of course on the branches, some d_i or e_i change to g_i , etc.).

Let ℓ be a loop of $\partial \overline{\sigma}_f$. We begin with a characterization of the multiple points of $\partial \ell$.

LEMMA 1.1. A point $\lambda_0 \in \partial \ell$ such that λ_0 is not the image under f of any point on the unit circle where f' = 0 is a multiple point if and only if some one of the functions d_i or e_i has $|d_i(\lambda)| \to 1$ or $|e_i(\lambda)| \to 1$ as $\lambda \to \lambda_0$ along a branch of $\partial \ell$.

Proof. At each point of $\partial \ell$, there is at least one $g_i(\lambda)$ (since $\partial \ell \subset f(T)$). Let $g_1(\lambda)$ be a g_i on one of the branches of $\partial \ell$ near the multiple point λ_0 . We have that (the analytic continuation of) g_1^{-1} is the inverse of f(z) as a map from a neighborhood of $g_1(\lambda_0)$ to a neighborhood of λ_0 . On the other branch of $\partial \ell$ near λ_0 , this analytic continuation cannot have modulus 1, for then a part of $\partial \ell$ in a neighborhood of λ_0 would be the image under f of an arc of the unit circle, contradicting assumption (II) on $\partial \ell$. Thus some d_i or e_i (namely the continuation of $g_i(\lambda)$ on the other branch of $\partial \ell$) has the desired property.

Conversely, suppose $d_1(\lambda)$ has $|d_1(\lambda_n)| \to 1$, $\{\lambda_n\} \subset \partial \ell$, $\lambda_n \to \lambda_0$. Continuing $d_1(\lambda)$ into a neighborhood of λ_0 , we see that the continuation must have modulus 1 on some curve through λ_0 . This curve must be the image under f of an arc of T and it cannot coincide with both branches of $\partial \ell$ since (by definition of the d_i) $|d_1(\lambda)| < 1$ on at least one branch of $\partial \ell$. Thus λ_0 is a multiple point.

LEMMA 1.2. Suppose λ_0 is a multiple point in $\partial \ell$, and $d_1(\lambda)$ is as in Lemma 1.1 $(|d_1(\lambda)| \to 1 \text{ along a branch of } \partial \ell \text{ at } \lambda_0)$. Then $d_1(\lambda)$ tends to the unit circle nontangentially along that branch.

Proof. By hypothesis (and by (III)), $d_1(\lambda)$ is analytically continuable across λ_0 . By the proof of Lemma 1.1, (the continuation of) d_1 has modulus 1 on some branch β of $\partial \overline{\sigma}_f \cup \partial \overline{\sigma}_F$ at λ_0 . Thus (the continuation of) d_1 maps β to the unit circle and the branch β^1 of ℓ (on which $|d_1(\lambda)| < 1$) must meet β at an angle $\theta \neq 0$, π , 2π (by (II)). Since d_1 maps β^1 to a curve making angle θ with the unit circle, this proves the lemma.

We use the preceding lemmas to give a generalization of a result on L_{Γ} operators from [1]. Recall that if

(1.3)
$$\frac{\prod(1-\delta_i^{-1}z)}{\prod(1-d_iz)\prod_{i}(1-g_iz)} = \sum_{i}c_i(1-d_iz)^{-1} + \sum_{i}\xi_i(1-g_iz)^{-1}$$

where Γ is some set of the g_i , then, for x(z) a polynomial, we define

(1.4)
$$L_{\Gamma}x(e^{it}) =$$

$$= \rho(e^{it}) \left[\sum_{i} \overline{c}_{i}(a(e^{it}))x(\overline{d}_{i}(a(e^{it}))) + \sum_{i} \overline{\xi}_{i}(a(e^{it}))x(\overline{g}_{i}(a(e^{it}))) \right]$$

where ρ is a measurable function and a is a continuous function from |z| = 1 to $\partial \ell$, where ℓ is a loop of $\overline{\sigma}_{\ell}$.

LEMMA 1.3. Let Γ be a set of the $g_i(\lambda)$ on $\partial \ell$. Suppose a'(z) is continuous and non-zero except at those points u_0 such that $a(u_0)$ is a multiple point in $\partial \ell$, where

$$a(z) - a(u_0) \sim (z - u_0)^{\alpha}, |a'(z)| \leq |z - u_0|^{\alpha - 1}$$

and suppose that a is one-to-one on **T**. Let $\rho(e^{it})$ be bounded except at the points z_0 where $f'(z_0) = \ldots = f^{(\beta)}(z_0) = 0$ and the points u_0 above, and suppose ρ satisfies

$$|\rho(e^{it})| \le c|t-z_0|^{-\frac{1}{2}+[2(p+q)-1]/2\beta}$$

near the z_0 (where p of the $d_i(\lambda)$ and q of the $g_i(\lambda)$ agree at $f(z_0)$), and

(1.5)
$$|\rho(e^{it})| \leq c|e^{it} - u_0|^{(\alpha - 1)/2}$$

near the u_0 . Then L_{Γ} is bounded in L^2 norm.

Proof. We need only deal with $L_{\Gamma}x(e^{it})$ near a point u_0 where $\lambda_0 = a(u_0)$ is a multiple point; at all other points of $\partial \ell$, the results of [1, § 3] apply.

Near λ_0 , the proof of boundedness for the terms including g_i is the same as the proof of the inequality (3.5) of [1]. By hypothesis (III), none of the $d_i(a(u_0))$, $g_i(a(u_0))$, $e_i(a(u_0))$ coincide, so (in [1, (2.6)])

$$2(p+q)-1=2(0+1)-1=1=\beta$$

and [1, (2.6)] becomes (1.5) above.

Each term in (1.4) involving a $d_i(\lambda)$ such that $|d_i(\lambda)| < c < 1$ (i.e., those d_i not included in the conclusion of Lemma 1.1) represents an operator of finite Hilbert-Schmidt norm given by [1, (3.4)]. Thus, the methods of [1] prove such terms represent bounded operators.

It remains to prove the boundedness of the terms

$$x \to \rho(\mathrm{e}^{\mathrm{i}t}) \bar{c}_i(a(\mathrm{e}^{\mathrm{i}t})) x(\bar{d}_i(a(\mathrm{e}^{\mathrm{i}t})))$$

where d_i satisfies the conclusion of Lemma 1.1. To do this, we apply an argument identical to that following [1; Lemma 3.1]. Note that

$$c_i(\lambda) = \prod (1 - \delta_j^{-1} d_i^{-1}) / [\prod_{j \neq i} (1 - d_j/d_i) \prod_{j \neq i} (1 - g_j/d_i)]$$

is bounded, since none of the $d_j(\lambda)$, $g_j(\lambda)$ coincide with $d_i(a(e^{it}))$ near $a(u_0)$ (by III). Thus the bound on $\mu((r, 1))$ following [1, Lemma 3.1] is correct, with p = 1, q = 0 and $\beta = 1$. (Note that Lemma 1.2 above justifies the containment relations concerning the set S). This proves Lemma 1.3.

COROLLARY 1.1. Suppose in Lemma 1.3 that

$$a(z) = \tau(z)$$

the Riemann mapping function for the loop ℓ . Then (1.5) may be replaced by

$$\rho(\mathrm{e}^{\mathrm{i}t}) = \tau'(\mathrm{e}^{\mathrm{i}t})^{\frac{1}{2}} \rho_1(\mathrm{e}^{\mathrm{i}t})$$

where ρ_1 is bounded near $a(u_0)$.

Proof. The Riemann mapping function $\tau(z)$ satisfies the hypothesis on a(z) in Lemma 1.3 with $\alpha = \pi \div$ the inner angle of ℓ at $\tau(u_0)$. By [4, Theorem IX.8], $i|\tau'(z)| \leq c|z-u_0|^{\alpha-1}$ near u_0 .

2. Lof AND LOF

In this section, we deal with the part of T_F similar to a sum of analytic Toeplitz operators, T_{τ_j} . First note that T_{τ_j} on $H^2_{-\nu_j}$ is unitarily equivalent to multiplication by z on $H^2_{-\nu_j}(\ell_j)$, the closure of the $-\nu_j$ dimensional vector-polynomials in the norm

$$||p||^{2} = \int_{0}^{2\pi} ||p(\tau_{j}(e^{it}))||^{2} |\tau'_{j}(e^{it})| dt =$$

$$= \int_{0}^{2\pi} ||p(\tau_{j}(e^{it}))||^{2} |d\tau_{j}|.$$

We will actually replace $\sum \bigoplus H^2_{-\nu_j}(\ell_j)$ by an even more convenient H^2 space. Let ν denote the maximum of the $-\nu_j$ and let u_1, \ldots, u_{ν} be orthonormal vectors in some auxiliary Hilbert space. Let $H^2(\bigcup \ell_i^{(\nu_i)})$ be the closure of the functions of the form $p(\lambda) = \sum_{i=1}^{\nu} p_k(\lambda) u_k$ in the norm

$$||p||_{\nu}^{2} = \sum_{i} \sum_{k=1}^{-\nu_{i}} \int_{0}^{2\pi} |p_{k}(\tau_{i}(e^{it}))|^{2} |\tau'_{i}(e^{it})| dt.$$

We will use for our similarity the space $H^2(\bigcup \ell_i^{(v_i)})$. Indeed

(2.1)
$$H^{2}(\cup \ell_{i}^{(v_{i})}) = \sum \oplus H^{2}_{-v_{i}}(\ell_{i}).$$

To prove (2.1), all we need to show is that $H^2_{-v_i}(\ell_i) \subset H^2(\cup \ell_i^{(v_i)})$. Let i = 1 and note first that if p is any polynomial, then

$$p_1(\lambda) = \begin{cases} \mathbf{\Pi}(\lambda - \lambda_j) p(\lambda) & \lambda \in \ell_1 \\ 0 & \lambda \in \bigcup_{i > 1} \ell_i \end{cases},$$

where the λ_j are the multiple points in $\partial \ell_1$, is continuous on the closure of σ_f and analytic in each ℓ_i . Thus p_1 is the uniform limit, on the closure of σ_f , of polynomials (by Mergelyan's Theorem). Clearly the functions $\prod (\lambda - \lambda_j) p(\lambda)$ are dense in the closure of the polynomials in the norm

$$||p||^2 = \int_0^{2\pi} |p(\tau_1(e^{it}))|^2 |\tau_1'(e^{it})| dt$$

on $\partial \ell_1$, and this proves (2.1).

Now let $L_{0f}: H^2 \to H^2(\cup \ell_i^{(v_i)})$ be defined by

$$L_{0f}x = \sum_{k} \rho_{k}(\lambda) (x, h_{\bar{\lambda}}^{(k)}) u_{k}$$

where $h_{\lambda}^{(k)}$ is the eigenvector of T_f defined by

$$h_{\lambda}^{(k)}(z) = \prod_{j \neq k} (z - z_j) \prod (1 - \delta_i^{-1} z) / \prod (1 - d_i(\lambda) z)$$
,

where z_1, \ldots, z_{ν} are fixed (distinct) complex numbers of modulus < 1 and ρ_k are the (bounded) functions $\rho_k(\lambda) = \widetilde{h}_i^{(k)}(z_k)^{-1}$.

To prove that L_{0f} is bounded, restrict to one loop of σ_f and follow the proof given in [1]. Indeed,

$$L_{0f}x = \sum_{k} \rho_{k}(\lambda) (x, h_{\tilde{\lambda}}^{(k)}) u_{k} = \sum_{k} \rho_{k}(\lambda) (y, \prod (1 - \delta_{i}^{-1}z) / \prod (1 - d_{i}(\tilde{\lambda})z)) u_{k}$$

where $y = \mathbf{P} \prod_{j \neq k} (e^{-it} - \overline{z}_j) x(e^{it})$, so that

$$L_{0f}x = \sum_{k,i} \rho_k(\lambda) \overline{c}_i(\overline{\lambda}) y(\overline{d}_i(\overline{\lambda})) u_k$$

where the c_i are given by

$$\prod (1 - \delta_i^{-1} z) / \prod (1 - d_i(\lambda) z) = \sum c_i / (1 - d_i(\lambda) z).$$

On a loop ℓ_1 , we have

$$\|L_{0f}x\|_{\ell_1}^2 \leqslant \sum_i \int |\rho_k(\overline{\tau}_1(\mathrm{e}^{\mathrm{i}t}))|^2 |c_i(\overline{\tau}_1(\mathrm{e}^{\mathrm{i}t}))|^2 |y(\overline{d}_i(\overline{\tau}_1(\mathrm{e}^{\mathrm{i}t})))|^2 |\tau_1'| \; \mathrm{d}t$$

which, by Corollary 1.1, is bounded if ρ_k is bounded. We have

LEMMA 2.1. L_{0f} is bounded and satisfies

$$(2.2) (L_{0f}T_{F}y)(\lambda) = \lambda(L_{0f}y)(\lambda)$$

for $y \in H^2$.

Proof. We have shown boundedness. The proof of (2.2) is exactly as in [1]:

$$L_{0f}T_{F}y = \sum_{k} \rho_{k}(\lambda) \left(T_{F}y, h_{\overline{\lambda}}^{(k)}\right) u_{k} =$$

$$= \sum_{k} \rho_{k}(\lambda) \left(y, T_{f}h_{\overline{\lambda}}^{(k)}\right) u_{k} = \lambda \sum_{k} \rho_{k}(\lambda) \left(y, h_{\overline{\lambda}}^{(k)}\right) u_{k} = \lambda L_{0f}y.$$

The motivation for the construction of L_{0f}^{-1} that follows is this: we would like to define

$$L_{0f}^{-1} \sum p_k(\lambda) u_k = \sum p_k(T_F) (1 - \bar{z}_k z)^{-1}$$
.

A simple proof plugging this into L_{0f} shows how this gives a right inverse for L_{0f} . But if p_k is just in $H^2(\cup \ell_i)$, or even if p_k is continuous on $\cup \ell_i$, $p_k(T_F)$ may not make sense. Even the integral

(2.3)
$$\int_{\gamma} p_k(\lambda) (\lambda I - T_F)^{-1} (1 - \overline{z}_k z)^{-1} d\lambda$$

for γ a curve surrounding $\bigcup \ell_i$ may not make sense because $\operatorname{sp}(T_F) = (\bigcup \ell_i) \cup (\bigcup \mathcal{L}_i)$ may be bigger than $\bigcup \ell_i$. To overcome this, we take the integral in (2.3), substitute for γ the union of the boundaries of the ℓ_i and write down the result formally, for $L^2(\bigcup \ell_i)$ functions p_1, \ldots, p_v , as

$$L_{0P}(\sum p_k(\lambda)u_k) = \sum_{j,m} \frac{1}{2\pi i} \int A^{-1} \frac{\prod (z - \Delta_i) \prod (1 - \Gamma_i \overline{z}_m)(1 - \overline{z}_m z)^{-1} p_m(\tau_j) d\tau_j}{\prod (1 - D_i(\tau_j)z) \prod (1 - G_i(\tau_j)z) \prod (\overline{z}_m - E_i(\tau_j))}.$$

LEMMA 2.2. The operator S defined on $(1 - \overline{v}z)^{-1}$, |v| < 1, by

$$S(1-\overline{v}z)^{-1} = \frac{-1}{2\pi i} \overline{A}^{-1} \frac{\prod (\overline{v}-\overline{A}_i) \prod (1-\overline{\Gamma}_i z_m)(1-z_m \overline{v})^{-1}}{\prod (1-\overline{D}_i(\lambda)\overline{v}) \prod (1-\overline{G}_i(\lambda)\overline{v}) \prod (z_m-\overline{E}_i(\lambda))} \frac{|\tau_j'|}{\tau_j'}$$

has a unique bounded extension from H^2 into $L^2(|d\tau_i|)$.

Proof. Following the proof in [1, Lemma 7.1], we note that

$$\| S(1 - \bar{v}z)^{-1} \|^{2} = \int \left| \frac{1}{2\pi} A^{-1} \frac{\prod (\bar{v} - \overline{\Delta}_{i}) \prod (1 - \overline{\Gamma}_{i}z_{m})(1 - z_{m}\bar{v})^{-1} \tau'_{j}(e^{it})^{\frac{1}{2}}}{\prod (1 - \overline{D}_{i}(\tau_{j})\bar{v}) \prod (1 - \overline{G}_{i}(\tau_{j})\bar{v}) \prod (z_{m} - \overline{E}_{i}(\tau_{j}))} \right|^{2} dt =$$

$$= \| T_{1}L_{\Gamma}T_{2}(1 - \bar{v}z)^{-1} \|^{2}.$$

Here T_2 is the (co-analytic) Toeplitz operator with symbol $(1 - z_m e^{-it})^{-1}$, so that

$$T_2(1-\bar{v}z)^{-1}=(1-z_m\bar{v})^{-1}(1-\bar{v}z)^{-1}$$
.

 L_{Γ} is the L_{Γ} operator with f replaced by F, with $a(z) = \tau_j(z)$, with $\Gamma = \{G_i\}$, and with $\rho(e^{it}) = \tau'_j(e^{it})^{\frac{1}{2}}$; so that

$$L_{I}(1 - \bar{v}z)^{-1} = \tau_{j}^{'\frac{1}{2}} \left[\sum_{i} \overline{C}_{i}(\tau_{j}(e^{it})) (1 - \bar{v}\overline{D}_{i}(\tau_{j}(e^{it})))^{-1} + \right.$$
$$\left. + \sum_{i} \overline{\Xi}_{i}(\tau_{j}(e^{it})) (1 - \bar{v}G_{i}(\tau_{j}(e^{it})))^{-1} \right].$$

 T_1 is the operator of multiplication by

$$\frac{1}{2\pi} A^{-1} \prod (\overline{\Delta}_i) \prod (1 - \overline{\Gamma}_i z_m) / \prod (z_m - \overline{E}_i(\tau_j)).$$

 T_1 and T_2 are clearly bounded, and L_{Γ} is bounded, by Corollary 1.1. This proves Lemma 2.2.

Now to see that L_{0F} is bounded and maps into H^2 , let

$$L(z) = L_{0F}(p)(z)$$

for $p = \sum p_k(\lambda)u_k$ with $p_1, \ldots, p_v \in H^2(\cup \ell_i)$. We have

$$L(v) = (p, S(1 - vz)^{-1}) = (S^*p, (1 - vz)^{-1}).$$

Since S is bounded, by Lemma 2.2, this implies that (there is a function) $PS^*p \in H^2$ such that

$$(2.4) L(v) = (\mathbf{P}S^*p)(v).$$

Thus, as a function of z, $L(z) = L_{0F}(p)(z) \in H^2$. It also follows from (2.4) that

$$||L_{0F}p|| \leq ||L(z)|| \leq ||S^*|| ||p||$$

and hence that L_{0F} has a unique bounded extension to all of $H^2(\bigcup \ell_i^{(v_i)})$. We have

LEMMA 2.3. L_{0F} is bounded in L^2 norm and satisfies

$$(2.5) T_F L_{0F} x = L_{0F} \lambda x$$

and

$$(2.6) L_{0f}L_{0F}=I.$$

In particular, L_{0f} has dense range.

Proof. We have shown that L_{0F} is bounded. To prove (2.5), let $x(\lambda) = \sum p_k(\lambda)u_k$;

$$FL_{0F}x(\lambda) - L_{0F}\lambda x(\lambda) = L_{0F}(\sum_{k} (F(z) - \lambda)p_{k}(\lambda)u_{k}) =$$

$$= \frac{1}{2\pi i} \int AA^{-1} \sum_{m,j} \frac{\prod (1-D_i(\tau_j)z) \prod (1-G_i(\tau_j)z) \prod (1-E_i(\tau_j)z) \prod (z-\Delta_i) \prod (1-\Gamma_i \overline{z}_m) p_m(\tau_j) d\tau_j}{\prod (z-\Delta_i) \prod (z-\Gamma_i) \prod (1-D_i(\tau_j)z) \prod (1-G_i(\tau_j)z) \prod (\overline{z}_m-E_i(\tau_j)) (1-\overline{z}_m z)} =$$

$$= \frac{1}{2\pi i} \sum_{m} \frac{\prod (1-\Gamma_i \overline{z}_m)}{\prod (z-\Gamma_i) (1-\overline{z}_m z)} \sum_{j} \int \frac{\prod (1-E_i(\tau_j)z) p_m(\tau_j)}{\prod (\overline{z}_m-E_i(\tau_j))} d\tau_j.$$

Note that the sum of the last integrals is a polynomial r(z) of degree s_2 (= the number of $E_i(\lambda)$, λ outside σ_f). At \bar{z}_m^{-1} , its value is

$$r(\bar{z}_m^{-1}) = \bar{z}_m^{-s_2} \sum_j \int_0^{2\pi} p_m(\tau_j) d\tau_j = \bar{z}_m^{-s_2} \sum_j \int_{\partial \ell_j} p_m(w) dw = 0$$

if p_m is, say, a polynomial, and therefore

$$P \prod (z - \Gamma_i)^{-1} r(z) / (1 - \overline{z}_m z) = 0$$

(since $T_F - \lambda I$ invertible for λ outside $sp(T_F)$ implies the number of Γ_i = the number of E_i ; [2], Lemma 2.1.). Thus

$$\mathbf{P}FL_{0F}x - L_{0F}\lambda x = 0$$

and (2.5) follows.

Now we compute

$$L_{0f}L_{0F}x = \sum_{k} L_{0f}L_{0F}p_{k}(\lambda)u_{k} =$$

$$= \sum_{k} L_{0f}p_{k}(T_{F})L_{0F}u_{k} =$$

$$= \sum_{k} p_{k}(\lambda)L_{0f}L_{0F}u_{k}$$

(at least if the p_m are polynomials and hence, by taking limits, for $x \in \sum H^2(\cup \ell_i^{(v_i)})$). Hence

$$L_{0f}L_{0F}x = \sum_{k,m} \rho_k(\lambda) p_k(\lambda) (L_{0F}u_m, h_{\overline{\lambda}}^{(k)}) u_k.$$

We need to show that $ho_k = \overline{h}_{\overline{\lambda}}^{(k)}(z_k)$ satisfies

(2.7)
$$\rho_k(\lambda) \left(L_{0F} u_m, h_{\bar{\lambda}}^{(k)} \right) = \delta_{km}.$$

To do this, we first prove

LEMMA 2.4. If g is a rational function, analytic in |z| < 1 and if, for some $\mu \in \mathbb{C}$, $(F(e^{it}) - \mu)g(e^{it}) \in L^2$, then

(2.8)
$$\sum \overline{c}_{\epsilon} \mathbf{P}[(F-\mu)g](\overline{d_{\epsilon}}) = (\lambda - \mu) \sum \overline{c}_{\epsilon} g(\overline{d_{\epsilon}})$$

where the c_{ϵ} are chosen so that

$$h_{\overline{\lambda}}^{(k)}(z) = \sum c_{\varepsilon}(\lambda) (1 - d_{\varepsilon}(\lambda)z)^{-1}$$

for $\lambda \in \ell_i$.

Proof. If $g \in H^2$, the conclusion is clear; viz:

$$\sum_{\varepsilon} \overline{c}_{\varepsilon} \mathbf{P}(F - \mu) g(\overline{d}_{\varepsilon}) = (T_{F-\mu}g, h_{\overline{\lambda}}^{(k)}) = (g, T_{F-\mu}^* h_{\overline{\lambda}}^{(k)}) =$$

$$= (g, (\overline{\lambda} - \overline{\mu}) h_{\overline{\lambda}}^{(k)}) = (\lambda - \mu) (g, h_{\overline{\lambda}}^{(k)}) = (\lambda - \mu) \sum_{\varepsilon} \overline{c}_{\varepsilon} g(\overline{d}_{\varepsilon}).$$

For general g, let $g_r(z) = g(rz)$, 0 < r < 1. By the above, (2.8) holds with g replaced by g_r . Furthermore, as $r \to 1$,

$$(\mathbf{P}(F-\mu)g_r)(\overline{d_e}) \to (\mathbf{P}(F-\mu)g)(\overline{d_e})$$

because if s is chosen so that F and g are analytic in 1 > |z| > s and so that $|d_{\varepsilon}| < s$, we have

$$\mathbf{P}(F-\mu)g_r(d_{\varepsilon}) = \int_{|z|=s} \frac{(F-\mu)g_r(z)}{z-d_{\varepsilon}} dz \to \int_{|z|=s} \frac{(F-\mu)g(z)}{z-\overline{d_{\varepsilon}}} = \mathbf{P}(F-\mu)g(\overline{d_{\varepsilon}}).$$

Since obviously $g_r(d_{\varepsilon}) \to g(\overline{d_{\varepsilon}})$, the lemma is established.

Now to prove (2.7), write $(L_{0F}u_m, h_i^{(k)})$

$$(2.9) = \frac{1}{2\pi i} \sum_{j} \left(\int \frac{\prod (z - \Delta_{i}) \prod (1 - \overline{z}_{m} \Gamma_{i}) d\tau_{j}}{\prod (1 - D_{i}(\tau_{j})z) \prod (1 - G_{i}(\tau_{j})z) \prod (\overline{z}_{m} - E_{i}(\tau_{j}))(1 - \overline{z}_{m}z)}, h_{\overline{\lambda}}^{(k)}(z) \right) =$$

$$(2.10) = \frac{1}{2\pi i} \sum_{j_i \in \epsilon} c_{\epsilon} \int \frac{\prod (\overline{d_{\epsilon}} - \Delta_i) \prod (1 - \overline{z}_m \Gamma_i) d\tau_j}{\prod (1 - D_i(\tau_i)\overline{d_{\epsilon}}) \prod (1 - G_i(\tau_i)\overline{d_{\epsilon}}) \prod (\overline{z}_m - E_i(\tau_i))(1 - \overline{z}_m d_{\epsilon})}$$

Note that $F - \tau_i$ times the integrand in (2.9) equals

$$r_{jm}(z) = \frac{\prod (1 - E_i(\tau_j)z) \prod (1 - \Gamma_i \overline{z}_m)}{\prod (z - \Gamma_i) \prod (\overline{z}_m - E_i(\tau_i)) (1 - \overline{z}_m z)}$$

which is a rational function (of z) with $r_{jm}(e^{it}) \in L^2$. Thus Lemma 2.4 applies to the integral in (2.10) and yields

$$(L_{0F}u_m, h_{\overline{\lambda}}^{(k)}) = \frac{1}{2\pi i} \sum_{j,s} \overline{c}_{\varepsilon} \int (\lambda - \tau_j)^{-1} (\mathbf{P}r_{jm}) (\overline{d}_{\varepsilon}) d\tau_j.$$

We claim that

$$r_{jm}(e^{it}) = \overline{R}_{jm}(e^{it}) (1 - \overline{z}_m e^{it})^{-1}$$

where $R_{jm}(e^{it}) \in H^2$. This follows, once again, by the fact that the number of $E_i(\lambda)$ (for λ outside $sp(T_F)$) equals the number of Γ_i ; [2, Lemma 2.1]. Furthermore

$$R_{jm}(z) = \frac{\prod (z - E_i(\tau_j)) \prod (1 - \overline{\Gamma}_i z_m)}{\prod (1 - \overline{\Gamma}_i z) \prod (z_m - E_i(\tau_j))} \cdot$$

It follows that Pr_{jm} is just the (co-analytic) Toeplitz operator $T_{R_{jm}}^*$ applied to (its eigenvector) $(1 - \bar{z}_m z)^{-1}$, yielding

$$\mathbf{P}r_{jm} = \overline{R}_{jm}(z_m)(1-\overline{z}_m z)^{-1} = (1-\overline{z}_m z)^{-1}.$$

Thus

$$(L_{0F}u_m, h_{\bar{\lambda}}^{(k)}) = \frac{1}{2\pi i} \sum_{j,\epsilon} \bar{c}_{\epsilon} \int (\lambda - \tau_j)^{-1} (1 - \bar{z}_m \overline{d}_{\epsilon})^{-1} d\tau_j =$$

$$= \frac{1}{2\pi i} \bar{h}_{\bar{\lambda}}^{(k)}(z_m) \int_{\partial \sigma_f} (\lambda - \tau_j)^{-1} d\tau_j = \delta_{km} \bar{h}_{\bar{\lambda}}^{(m)}(z_m),$$

and Lemma 2.3 is proved.

3. PROOF OF THEOREM 1

We begin with a computation involving the resolvent of T_F . Let |u|, |v| < 1; we have, by standard Wiener-Hopf factorization,

$$\begin{split} &((T_F - \lambda I)^{-1}(1 - \bar{u}z)^{-1}, (1 - \bar{v}z)^{-1}) = \\ &= A^{-1} \prod (v - \Delta_i) \prod (1 - D_i(\lambda)v)^{-1} \prod (1 - \Gamma_i \bar{u} \prod) (\bar{u} - E_i(\lambda))^{-1} (1 - \bar{u}v^{-1}). \end{split}$$

By spectral theory, if γ is any simple closed positively oriented curve containing $sp(T_F)$ in its interior,

(3.1)
$$(1 - \overline{u}v)^{-1} = ((1 - \overline{u}z)^{-1}, (1 - \overline{v}z)^{-1}) =$$

$$= \frac{1}{2\pi i} \int_{\gamma} ((\lambda I - T_F)^{-1} (1 - \overline{u}z)^{-1}, (1 - \overline{v}z)^{-1}) d\lambda =$$

$$= \frac{1}{2\pi i} \int_{\gamma} A^{-1} \frac{\prod (v - \Delta_i)}{\prod (1 - D_i(\lambda)v)} \frac{\prod (1 - \Gamma_i \overline{u})}{\prod (\overline{u} - E_i(\lambda))} (1 - \overline{u}v)^{-1} d\lambda .$$

Since the integrand is bounded, we can let the curve γ approach $\partial \operatorname{sp}(T_F)$ and take the limit. By (IV), [1, Lemma 1.3] implies that, as λ approaches a loop ℓ_i from the outside, $\prod (1 - D_i(\lambda)v)$ approaches

$$\prod (1 - D_i(\lambda)v) \prod (1 - G_i(\lambda)v)$$

and each $|E_i(\lambda)|$ remains > 1. Similarly as λ approaches a loop \mathcal{L}_i from the outside, $\prod (u - E_i(\lambda))$ approaches

$$\prod (u - E_i(\lambda)) \prod (u - G_i(\lambda))$$

and each $|D_i(\lambda)|$ remains < 1. Thus, taking the limit in (3.1), we get

$$(1 - \overline{u}v)^{-1} = \frac{1}{2\pi i} \sum_{j} \int_{\partial \mathcal{E}_{j}} A^{-1} \frac{\prod (v - \Delta_{i}) \prod (1 - \Gamma_{i}\overline{u}) d\lambda}{\prod (1 - D_{i}(\lambda)v) \prod (1 - G_{i}(\lambda)v) \prod (\overline{u} - E_{i}(\lambda))(1 - \overline{u}v)} + \frac{1}{2\pi i} \sum_{j} \int_{\partial \mathcal{E}_{j}} A^{-1} \frac{\prod (v - \Delta_{i}) \prod (1 - \Gamma_{i}\overline{u}) d\lambda}{\prod (1 - D_{i}(\lambda)v) \prod (\overline{u} - E_{i}(\lambda)) \prod (\overline{u} - G_{i}(\lambda))(1 - \overline{u}v)}$$

where each $\partial \ell_i$, $\partial \mathcal{L}_i$ is oriented counterclockwise.

Now we deal with $L_{0f}L_{0f}$. We have

$$(L_{0F}L_{0f}(1-uz)^{-1}, (1-vz)^{-1}) =$$

$$= (L_{0F}\sum_{k}h_{\lambda}^{(k)}(z_{k})^{-1}\overline{h}_{\lambda}^{(k)}(u), (1-vz)^{-1}) =$$

$$= \sum_{j,m} \frac{1}{2\pi i} \int_{0}^{2\pi} A^{-1} \frac{\prod (v-\Delta_{i}) \prod (1-\Gamma_{i}\overline{z}_{m}) (1-\overline{z}_{m}v)^{-1}}{\prod (1-D_{i}(\tau_{i})v) \prod (1-G_{i}(\tau_{i})v) \prod (\overline{z}_{m}-E_{i}(\tau_{j}))} h_{\tau_{j}}^{(m)}(z_{m})^{-1} h_{\tau_{j}}^{(m)}(u) d\tau_{j}.$$

Summing up the terms depending upon m, we get

(3.3)
$$\sum_{m} \frac{\prod (1 - \Gamma_{i} z_{m})}{\prod (z_{m} - E_{i}(\tau_{j})) (1 - \overline{z}_{m} v)} h_{\overline{\tau}_{j}}^{(j)}(z_{m})^{-1} \prod_{i \neq m} (u - z_{i}) =$$

$$= \sum_{m} \frac{\prod (1 - \Gamma_{i} z_{m}) \prod (1 - \overline{d}_{i}(\overline{\tau}_{j}) \overline{z}_{m}) \prod (1 - g_{i}(\overline{\tau}_{j}) z_{m}) \prod_{i \neq m} (\overline{u} - \overline{z}_{i})}{\prod (\overline{z}_{m} - E_{i}(\tau_{j})) (1 - \overline{z}_{m} v) \prod_{j \neq m} (z_{m} - \overline{z}_{j}) \prod (1 - \delta_{i}^{-1} z_{m})}$$

where we have used the fact that, as z tends to |z| = 1 from inside |z| < 1, $\prod (1 - \overline{d}_i(\tau_j(z))\overline{z}_m)$ tends to

$$\prod (1 - \overline{d}_i(\overline{\tau}_i(z))\overline{z}_m) \prod (1 - \overline{g}_i(\overline{\tau}_i(z))\overline{z}_m) ;$$

([1]; Lemma 1.3).

Now from the fact that $F(z) = \overline{f(z^{-1})}$, we have

$$D_{i}(\lambda) = \overline{e}_{i}(\overline{\lambda})^{-1}, \ E_{i}(\lambda) = \overline{d}_{i}(\overline{\lambda})^{-1}, \ G_{i}(\lambda) = g_{i}(\overline{\lambda})$$
$$\Gamma_{i} = \overline{\delta}_{i}^{-1} \text{ and } \Delta_{i} = \overline{\gamma}_{i}^{-1}.$$

Using these relations, (3.3) becomes

$$\prod (u-z_i) \prod (-E_i(\tau_j))^{-1} \prod (-G_i(\tau_j))^{-1} \sum_m \frac{\prod (z_m-G_i(\tau_j))}{(1-z_m v) \prod_{i\neq m} (z_m-z_i)(u-z_m)}$$

From the partial fractions expansion

$$\frac{\prod (z - G_i(\tau_j))}{(1 - vz) \prod (z - \bar{z}_i)} = \sum_m \frac{\prod (z_m - G_i(\tau_j))}{(1 - v\bar{z}_m) \prod_{i \neq m} (\bar{z}_m - \bar{z}_i)(z - \bar{z}_m)} + \frac{\prod (v^{-1} - G_i(\tau_j))}{\prod (v^{-1} - z_i)(1 - vz)},$$

in which we set $z = \overline{u}$, we get for (3.3)

$$\prod (-E_i(\tau_j))^{-1} \prod (-G_i(\tau_j))^{-1} \left[\frac{\prod (\overline{u} - G_i(\tau_j))}{(1 - v\overline{u})} - \frac{\prod (\overline{u} - \overline{z}_i) \prod (1 - G_i(\tau_j)v)}{\prod (1 - \overline{z}_iv)(1 - v\overline{u})} \right].$$

Putting this in our expression for $L_{0F}L_{0f}$, together with

$$\begin{split} \bar{h}_{\tau_j}^{(m)}(u) &= \prod_{j \neq m} (\bar{u} - \bar{z}_j) \prod (1 - \overline{\delta}_i^{-1} \bar{u}) / [\prod (1 - d_i(\bar{\tau}_j) \bar{u}) \prod (1 - \bar{g}_i(\bar{\tau}_j) \bar{u})] = \\ &= \prod (-E_i) \prod (-G_i) \prod_{j \neq m} (\bar{u} - \bar{z}_j) \prod (1 - \Gamma_i \bar{u}) / [\prod (\bar{u} - E_i(\bar{\tau}_j)) \prod (\bar{u} - G_i(\bar{\tau}_j))] \end{split}$$
 we get
$$(L_{0F} L_{0f} (1 - \bar{u}z)^{-1}, \ (1 - \bar{v}z)^{-1}) = \end{split}$$

we get
$$(L_{0F}L_{0f}(1-\bar{u}z)^{-1}, (1-\bar{v}z)^{-1}) =$$

$$= \sum_{j} \frac{1}{2\pi i} \left[\int_{0}^{2\pi} A^{-1} \frac{\prod(v-\Delta_{i})\prod(1-\Gamma_{i}\bar{u})}{\prod(1-D_{i}(\tau_{j})v)\prod(1-G_{i}(\tau_{j})v)\prod(\bar{u}-E_{i}(\tau_{j}))(1-\bar{u}v)} d\tau_{j} - \int_{0}^{2\pi} A^{-1} \frac{\prod(v-\Delta_{i})\prod(1-\Gamma_{i}\bar{u})\prod(\bar{u}-\bar{z}_{i})d\tau_{j}}{\prod(1-D_{i}(\tau_{j})v\prod(\bar{u}-E_{i}(\tau_{j}))\prod(\bar{u}-G_{i}(\tau_{j}))\prod(1-\bar{z}_{i}v)(1-\bar{u}v)} \right] =$$

$$= \sum_{j} \frac{1}{2\pi i} \left[\int_{\partial \ell_{j}} A^{-1} \frac{\prod(v-\Delta_{i})\prod(1-\Gamma_{i}\bar{u})}{\prod(1-D_{i}(\lambda)v)\prod(1-G_{i}(\lambda)v)\prod(\bar{u}-E_{i}(\lambda))(1-\bar{u}v)} d\lambda - \frac{1}{\prod(1-D_{i}(\lambda)v)\prod(1-\bar{u}v)} d\lambda - \frac{1}{\prod(1-D_{i}(\lambda)v)\prod(1-\bar{u}v)} d\lambda \right] d\lambda$$

The last integral is 0 for every i, since the integrand is the boundary function of

$$A^{-1} \prod (1 - D_i(\lambda)v)^{-1} \prod (\overline{u} - E_i(\lambda))^{-1}$$

which is analytic inside each ℓ_i (since continuation around an algebraic singularity only serves to permute the $\{D_i\}$ or the $\{E_i\}$). Thus the sum of the first integrals is equal to the sum of integrals over the $\partial \ell_i$ in (3.2).

To complete the proof, we note that we may repeat the constructions of § 2 above with f and F interchanged, and working on the loops $\overline{\mathscr{L}}_i$ instead of ℓ_i . The result is a pair of operators L_{2f} and L_{2F} (corresponding to L_{0F} and L_{0f} , respectively), from $H^2(\cup \overline{\mathscr{L}}_i^{(N_i)})$ to H^2 and from H^2 to $H^2(\cup \overline{\mathscr{L}}_i^{(N_i)})$, respectively. The analogue of (2.5) is the intertwining relation

$$T_f L_{2f} x = L_{2f} \lambda x ,$$

from which it follows that

$$(3.4) L_{2f}^* T_F x = \bar{\lambda} L_{2f}^* x.$$

The analogue of (2.6) is

$$(3.5) L_{2F}L_{2f}=I$$

from which it follows that L_{2f} has 0 kernel, and hence that L_{2f}^* has dense range.

Now let $L = L_{2f}^* + L_{0f}$. From (2.2) and (3.4), we have

$$LT_{\mathbf{f}}x = \overline{\lambda}L_{2f}^*x + \lambda L_{0f}x.$$

We claim L has dense range (in $H^2(\cup \mathcal{L}_i^{(N_i)}) \oplus H^2(\cup \mathcal{L}_i^{(\nu_i)})$). For this we use the orthogonality of the manifolds \mathcal{M}_i and m_i in the introduction. [To prove this orthogonality, suppose $T_F k_{\lambda} = \lambda k_{\lambda}$ and $T_f h_{\mu} = \mu h_{\mu}$. Then

$$(k_\lambda,h_\mu)=\lambda^{-1}(T_Fk_\lambda,h_\mu)=\lambda^{-1}(k_\lambda,T_fh_\mu)=\mu\lambda^{-1}(k_\lambda,h_\mu)\;,$$

and $\mu\lambda^{-1} \neq 1$, since $\lambda \in \mathcal{L}_i$ and $\mu \in \ell_i$.] By definition the kernel of L_{0f} is the orthogonal complement of $\sum m_i$. Analogously, the kernel of L_{2F} is $(\sum \mathcal{M}_i)^{\perp}$. Thus $\sum \mathcal{M}_i$ is the range of the partial isometry (c.f. (3.5)) $V = L_{2F}^* L_{2f}^*$. Clearly the range $R(L_{2f}^*) = R(L_{2f}^{*+}, R(\ell))$ and $R(\ell) \in \ker L_{0f}$. By applying ℓ to vectors in $R(\ell)$, we can now see that $R(L_{2f}^*) \subset R(\ell)$. To see that $R(\ell)$ is dense, let $\ell \in \mathcal{L}_{2f}^* = \mathcal$

$$L(x_n + y_n) = (L_{2f}^* x_n + L_{2f}^* y_n) \oplus L_{0f} y_n \to x \oplus y.$$

Finally, we construct a left inverse for L. We have

$$(L_{2f}L_{2F}(1-vz)^{-1},(1-\overline{u}z)^{-1})=$$

$$=\sum_{j}\frac{1}{2\pi i}\int_{\partial \mathscr{L}_{j}}a^{-1}\frac{\prod\left(u-\delta_{i}\right)\prod\left(1-\gamma_{i}\overline{v}\right)}{\prod\left(1-d_{i}(\lambda)u\right)\prod\left(1-g_{i}(\lambda)u\right)\prod\left(\overline{v}-e_{i}(\lambda)\right)\left(1-vu\right)}d\lambda.$$

Replacing the d_i , e_i , etc. with appropriate E_i^{-1} , D_i^{-1} , etc. and conjugating, we obtain the sum of integrals in (3.2) over $\partial \mathcal{L}_i$, so

$$((1 - uz)^{-1}, (1 - \bar{v}z)^{-1}) = (L_{0F}L_{0f}(1 - \bar{u}z)^{-1}, (1 - \bar{v}z)^{-1}) + (L_{2F}^*L_{2f}^*(1 - \bar{u}z)^{-1}, (1 - \bar{v}z)^{-1})$$

and thus $L_{2F}^* \oplus L_{0F}$ is the inverse of L. This completes the proof.

4. THE CASE WHEN F BACKS UP

Let σ be the set of points on T where F backs up. That is $e^{i\varphi} \in \sigma$ satisfies either

- (4.1) $F(e^{i\varphi}) \in \partial \ell_i$ and $\arg \tau_i^{-1} F(e^{it})$ is increasing at $t = \varphi$ or
- (4.2) $F(e^{i\varphi}) \in \partial \mathcal{L}_i$ and $\arg T_i^{-1} f(e^{it})$ is increasing at $t = \varphi$.

In case condition (IV) on F is lifted, we have the following generalization of Theorem 1.

THEOREM 2. Let F satisfy (I), (II) and (III). Then T_F is similar to

$$\sum \oplus T_{\tau_i} \oplus \sum \oplus T_{T_i}^* \oplus V$$

where T_{τ_i} acts on $H^2_{-\nu_i}$, T_{T_i} acts on $H^2_{N_i}$ and V is a normal operator with spectrum $F(\sigma)$. V is absolutely continuous with the spectral multiplicity of a point λ in the spectrum of V equal to the number of points $e^{i\varphi}$ where F backs up and $F(e^{i\varphi}) = \lambda$.

We include a brief sketch of how the results of the present paper and of [1, Part II] can be applied to prove Theorem 2.

First, the operators L_{0f} , L_{0f} , L_{2f} and L_{2F} must be modified as in [1, § 6]. For example, $\rho_k(\lambda)$, in the definition of L_{0f} , must be multiplied by

$$\rho'_k(\lambda) = \prod (\lambda - \lambda_i)^{-q_i/(2\beta_i)}$$

as in [1, § 6], and the m-th term in L_{0F} must be multiplied by $\rho_m^{\prime -1}$ and the denominator altered as in [1]. On the loops ℓ_i , L_{1f} and L_{1F} are defined as in [1], and, on \mathcal{L}_{if} , and L_{3F} are defined so that L_{3f} [resp. L_{3F}] corresponds to L_{1F}^* [resp. L_{1f}^*], with F and f interchanged. Lemma 1.3 above is used to show that the operators so defined are bounded.

Now let

$$L = (L_{2f} + L_{3f})^* + L_{0f} + L_{1f}$$

and

$$L' = L_{2F}^* + L_{3F} + L_{0F} + L_{1F}^*$$
.

Direct computation shows that L'L = I, so it suffices to show L has dense range. From

$$(L_{3F}^* + L_{1F})T_f = \lambda(\overline{L}_{3F}^* + L_{1F})$$

it follows that, if k_{μ} is an eigenvector of T_f ,

$$(L_{3F}^* + L_{1F})k_u = \overline{\lambda}\mu^{-1}(L_{3F}^* + L_{1F})k_u$$

so that $(L_{3F}^* + L_{1F})k_{\mu} = 0$ $(\overline{\lambda}\mu^{-1} \neq 1$, since $\overline{\mu} \in \operatorname{int}\ell_i$ and $\lambda \in \partial \ell_i \cup \partial \mathcal{L}_i$). Thus $\sum m_i \subset \ker(L_{3F}^* + L_{1F})$ or

(4.3)
$$R(L_{3F} + L_{1F}^*) \subset (\sum m_i)^{\perp}.$$

Similarly

$$(4.4) \qquad \qquad \sum \mathcal{M}_i \subset \ker(L_{3f}^* + L_{1f}).$$

Of course

$$(4.5) \sum \mathcal{M}_i \subset \ker L_{0f}$$

by definition of L_{0f} and since $\sum m_i \perp \sum \mathcal{M}_i$.

As a consequence, we can show that

$$(4.6) R(L_{2f}^*) \subset R(L).$$

Indeed, for $x \in H^2(\bigcup \overline{\mathcal{L}}_i^{(N_i)})$, $L_{2F}^*x \in \sum \mathcal{M}_i$ and $L_{2F}^*L_{2F}^*x = x$ follow as [1, (7.5), and (7.6)], and then we have

$$x = L_{2f}^* L_{2F}^* x = L L_{2F}^* x \in R(L)$$

by (4.4) and (4.5).

It is also true that

(4.7)
$$R(L_{3f}^* + L_{1f}) \subset R(L).$$

From (4.6), it suffices to prove

$$R(L_{2f}^* + L_{3f}^* + L_{1f}) \subset R(L).$$

If x belongs to the left member of (4.8), we have

$$y = (L_{2F}^* + L_{3F} + L_{1F}^*)x \in (\sum m_i)^{\perp}$$

by (4.3) and the fact that $R(L_{2F}^*) \subset \sum \mathcal{M}_i \subset (\sum m_i)^{\perp}$. Thus

$$y = L'Ly = L'(L_{2f}^* + L_{3f}^* + L_{1f})y =$$

$$= (L_{2f}^* + L_{3f} + L_{1f}^*)(L_{2f}^* + L_{3f}^* + L_{1f})y$$

and, since $L_{2F}^* + L_{3F} + L_{1F}^*$ is one-to-one,

$$x = (L_{2f}^* + L_{3f}^* + L_{1f})y = Ly \in R(L).$$

This proves (4.8) and hence (4.7). $R(L_{3f}^* + L_{1f})$ is dense, by a modification of the proof of [1, Lemma 5.3].

From (4.6) and (4.7), it follows that $R(L_{0f}) \subset R(L)$ and the density of R(L) is proved.

This work was partially supported by an NSF grant.

REFERENCES

- 1. CLARK, D. N., On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math., to appear.
- CLARK, D. N.; MORREL, J. H., On Toeplitz operators and similarity, Amer. J. Math., 100 (1978), 973-986.
- GAMBLER, L. C., A study of rational Toeplitz operators, Ph. D. Dissertation, S.U.N.Y., Stony Brook, N.Y., 1977.
- 4. TSUJI, M., Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959.

DOUGLAS N. CLARK
Department of Mathematics
The University of Georgia
Athens, Georgia 30602
U.S.A.