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ON TOEPLITZ OPERATORS WITH LOOPS

DOUGLAS N. CLARK

INTRODUCTION

For F(e") a bounded measurable function on [0, 2r], define the Toeplitz ope-
rator T on H? by
Tpx = PF(e")x(e")

where P is the orthogonal projection of L? on H2. In a recent paper [1], we obtained
a rather simple representation for 7%, up to similarity, in case F(z) is rational and
maps the unit circle T to a simple closed curve. In the present paper, more-compli-
cated behavior by the rational function F(z) is permitted.

To be precise, let F(z) be a rational function with no poles on |z| = 1. Labe}
as %, the bounded components of the complement C\F(T) for which the index
(=N,) of Tp — Al is positive and as ¢; those for which that index (=v,) is negative.
The %, and ¢; will be referred to as the loops of F. We make the followmg assump-
tions, which will hold throughout this paper. -

(I) The intersection of the closures of any. two loops consists of a finite set of
points (called the multiple points of F).

(I The boundary of each loop is an analytic curve except at the multiple
points, where it is piecewise smooth, with inner angle 0 satisfying 6 # 0, #, 2n.
No (distinct) arcs of 0 F(T) meet at angle 6 = 0.

(111) No multiple point of F is the image F(z,) of a point zye T where
F'(zy) = 0.

(1V) F never “backs up”: if 7, is the Riemann mapping function from [z| < 1
to £, we assume the argument of 17 }(F(e¥)) is a monotone decreasing function
and, if T; is the Riemann mapping function to %, we assume the argument of
T, (F(e") is monotone decreasing.

An arc of .%; or 8¢;, one endpoint of which is a multiple point, will be referred
to as a branch of F(z).

Throughout, f(z) denotes F(z“l), 50 that T, = T#. The sets o, and o denote

the unions
O'f:Ufi 6p=U$i.
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The main result is

THEOREM 1. The operator Ty is similar to
YOT. 0¥ @Tr on Y ®H?, @Y @ H

where H? is the vector H® space based on a Hilbert space of dimension v.

Two immediate consequences of Theorem 1 are worth recording. Let .7,
denote the closed span of the eigenvectors of T corresponding to eigenvalues in
& and let =; denote the closed span of the eigenvectors of T, corresponding to

eigenvalues in Z; (a bar over a set always denotes complex conjugation). It is easy
to see that .#; | u; for any (i, ).

CoRrOLLARY. 1. The intersection of any two of the subspaces in {.# , »;} is {0}.

COROLLARY 2. The (direct) sum

Z/ii—l— Zmi

is all of He.

We conclude the introduction by giving two examples of the theorem and
corollaries. '

ExAMPLE |. F(z) = a(z"*! — z—-("-1), F(T) is the classical N leaved rose of
analytic geometry. If n is odd, there are n leaves (loops) ¢, each with v; = -2 and
if n is even, there are 2 leaves £, each with v; = —1. By Theorem 1, T} is similar to

TT‘®T11®T15®T12@ @TanTu, n odd
r,oT.,.&... ®T,, ., neven

ExampLE 2. F(z) = z%/(z — B), —; < | B} < L. In this case F(T) is a “figure

8”, having loops %, (with N, = 1) and ¢4, (with vy = —1). By Theorem 1, T is
similar to
T, ® Ty,

and the eigenvectors for Ty (for A€ &,) together with those of T’ (for A€ #,) span
H*. This example, and the question of determining the span of the eigenvectors of
Ty and T§¥, was considered by Gambler [3). Although [3] contains a number of
interesting results, Gambler did not obtain a proof of Corollary 2, even in this
special case. The question solved in Corollary 2 was first posed to this author in a
conversation with R. G. Douglas in January, 1975.

To give an idea of the proof of Theorem 1, we outline it in the case of Example
2 with § > 0. In this case, F(z) has the two loops: ¢, the image under F of the arc
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of the circle from uy = (1 + 1/1 — 4p?)[2B to u, containing —1, and &, the image
under F of the arc from #, to u, containing 1. The only multiple point is -1 =
= F(u,) = F(u,). The eigenvectors k, of T satisfying k,(0) = 1 are given by

k(2)= (2% —z/f -+ 1)~t for AeZ,,
and the eigenvectors #,(z) for T, are
h(z) = (1 — Bz) (1 — Az + ABz»)~1  for A€ 4.

We prove similarity with the direct sum of multiplication by z on H?*{,;) and the
adjoint of multiplication by z on H*¥)).

Define L,,:H® —» H*(/;) by

'

Lopx = (x, 1) AE 4.
Ly, intertwines T and multiplication by 4, since
LOfTFx == (Tpx, hz) - (x, 1}]1;) == A«Lo]‘x. -
The proof that L, is bounded is obtained by writing
hy(z) = ci(D)(A — di(Dz2)~" + (A (1 — dx(D)2) 7!

where d (1) = 2BA/(A + (—=1)'+1 ]//12 — 4f4) and where & and c2 aresuitably chosen.
Then

Lyyx = El(l)x(dl(l)) + Z‘z(/l)x(dz('l)) = Tlx + Tex.
It can be seen that |d;(1)] = 1 on 84, so T, consists of a change of variable followed
by a multiplication. We have |dy(4)| < 1 except at A = 1/B, where dx(4) = u,. This
leads to a boundedness problem somewhat different from that considered in [2],
where |dy(4)] < ¢ < 1, or [1], where {dy(1)] = 1 at a boundary point 4, if and only
if d,(2) and dy(4) coincide. The boundedness of T, and T, (and hence of L) is proved

in §2 below.
Next we define an operator Ly from H3(¢) to H? by

Lorp(2) = iﬁig PANI=2)(4 + V22— 42B) + z/2p) di

for p(2) a polynomial. The proof of boundedness for Ly is similar to that for L,,
(the adjoint of L, is analogous to T above). Ly is related to the inverse of Lo,
(Lor = L' in the case of only one loop [1].)
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For the loop %;, we define operators analogous to Ly, and Lor, with fand F
interchanged; let L,; be the operator corresponding to Ly and L, the operator
corresponding to L,,. The operators L = L;"‘,-}— Ly, and L, = Lie @ Ly are
bounded and L intertwines the operators Tr and M* @ M. on HA(%,) + H¥()).
The proof is completed by showing that L has dense range and satisfies L,L = I.
The last fact is proved by setting up

(LI —02)7, (L —u2)™Y), ful, o] < 1,

as an integral over 8(%#; U £,) and by observing that this integral is the same as the
limit of

jﬁ((u — T~ —vz)~%, (1 — uz)~Y) dA

as the path of integration approaches (%, U ¢,) from outside o(T}) (§ 3). The last
contour integral is, of course, equal to (1 — vu)~2.

The proof we give of Theorem 1 uses the methods of [1], although only Part I
of [1] is a prerequisite. In Section 4, we outline a version allowing for “backing up”’,
i.e., removing assumption (IV) on F.

1. PROPERTIES OF f NEAR A MULTIPLE POINT

We need to extend certain results of [1] to the case where f(T) has multiple
points. As in [1], write the rational functions

1.1 f@—2=a@WII0—dHD) I (1 —eHDIT1 ~ gi(l)Z)/E(Z— 7,-)1:1‘(2 —90))

where |d;] < 1= g < le; and |yl <1< 18;]; and

M N
(1.2)  Fz)— =AM —D )T - EM2)IL( — Gi(/l)Z)/_I;Il(Z—F i)g(Z—Ai),

where |D;j < 1 = G; < 'Ejj and [I'] < 1 < |4,]. As noted in [1], the above func-
tions of A may be multiple valued, so we assume that we have renumbered them so
that the functions in (1.1) [resp. (1.2)] are single-valued and piecewise continuous on
0o, Udoy [resp. do; Udog] and that they are all analytically continuable across
all multiple points (of course on the branches, some d; or ¢; change to g;, etc.).

Let ¢ be a loop of do,. We begin with a characterization of the multiple points
of d¢.

LeEMMA 1.1. A point A € 0¢ such that A, is not the image under f of any point
on the unit circle where f' = 0 is a multiple point if and only if some one of the functions
d; or e; has 'd(2)| = 1 or le(A)] — 1 as A — Ay along a branch of 0¢.
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Proof. At each point of 8¢, there is at least one g;(4) (since 3¢ < f(T)). Let g,(1)
be a g; on one of the branches of 0/ near the multiple point 4,. We have that
(the analytic continuation of ) g7 !is the inverse of f(z) as a map from a neighborhood
of g,(4y) to a neighborhood of 4. On the other branch of d¢ near A, this analytic
continuation cannot have modulus 1, for then a part of d¢ in a neighborhood of
/g would be the image under f of an arc of the unit circle, contradicting assumption
(IT) on 9¢. Thus some d; or e; (namely the continuation of g,(4) on the other branch
of 3¢) has the desired property.

Conversely, suppose dy(4) has ld,(4,)| = 1, {4,} = 94, 4, > 4. Continuing
d;(1) into a neighborhood of A,, we see that the continuation must have modulus 1
on some curve through 2,. This curve must be the image under f of an arc of T
and it cannot coincide with both branches of 9/ since (by definition of the
d) \d,(})| < 1 on at least one branch of §¢. Thus 4, is a multiple point.

LEMMA 1.2. Suppose Ay is a multiple point in 0¢, and d\(2) is as in Lemma 1.1
(ldi(A)| — 1 along a branch of 3¢ at A,). Then d(2) tends to the unit circle nontangen-
tially along that branch.

‘ Proof. By hypothesis (and by (I11)), di(4) is analytically continuable across 4.
By the proof of Lemma 1.1, (the continuation of) &, has modulus 1 on some branch
B of 95, U 05y at Ay. Thus (the continuation of) d; maps § to the unit circle and the
branch f* of ¢ (on which |d,(1)] < 1) must meet 8 at an angle 6 & 0, , 2n (by (ID).
Since d; maps ' to a curve making angle 0 with the unit circle, this proves the lemma.

We use the preceding lemmas to give a generalization of a result on L ope-
rators from {1]. Recall that if

(1.3) II(l bt 61—_12) _ Zci(l _ diz)_l + Z é.(l '_giz)“l
A —da2) If (1 — g8:2) T
r

where I' is some set of the g;, then, for x(z) a polynomial, we define
. Lrx(e") =
(1.4 ,
= p(e") [} cda()x(d(ae"))) + Zr Eae")x(g (ac))]

where p is a measurable function and a is a continuous function from |z] =1 to
¢, where £is a loop of g;.

LeMMA 1.3. Let I’ be a set of the g(A) on 0¢{. Suppose a'(z) is continuous
and non-zero except at those points u, such that a(u,) is a multiple point in ¢, where

a(z) — alug) ~ (z — ug)®, |a'(2)] < |z — up|*~?
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and suppose that a is one-to-one on T. Let p(e") be bounded except at the points z,
where f(zo) = ... = f®z,) = 0 and the points u, above, and suppose p satisfies

) ~ g+ QP+ a) - 12p
1PN < clt — z,

near the z, (where p of the d(2) and q of the g{2) agree at f(z,)), and
(1.5 Ip(e"); < cle® — u,l=vr2
near the uy. Then Ly is bounded in L? norm.

Proof. We need only deal with Lpyx(e”) near a point u, where 4, = a(u,) is
a multiple point; at all other points of d¢, the results of [, § 3] apply.

Near 4, the proof of boundedness for the terms including g; is the same as
the proof of the inequality (3.5) of [1]. By hypothesis (III), none of the di(a(4,)),
gi(a(uy)), efa(uy)) coincide, so (in [1, (2.6)])

2+ —1=20+1D—1=1=48

and [1, (2.6)] becomes (1.5) above.
Each term in (1.4) involving a d,(1) such that |d(2)] < ¢ < 1 (i.e., those d;
not included in the conclusion of Lemma 1.1) represents an operator of finite Hilbert-

-Schmidt norm given by [1, (3.4)]. Thus, the methods of [1] prove such terms repre-
sent bounded operators.

It remains to prove the boundedness of the terms

x = p(e")c(a(e")x(d (a(c")))
where d; satisfies the conclusion of Lemma 1.1. To do this, we apply an argument
identical to that following [I; Lemma 3.1]. Note that

e =110 —o7dr 1)/[J_];I(l — djldy) I;I (1 — g/d)}

is bounded, since none of the d;(%), g;(4) coincide with di(a(e”)) near a(u,) (by III).
Thus the bound on u((r, 1)) following [1, Lemma 3.1] is correct, with p =1,
g:~0 and == 1. (Note that Lemma 1.2 above justifies the containment relations
concerning the set S). This proves Lemma 1.3.

CoRroLLARY 1.1, Suppose in Lemma 1.3 that
a(z) = t(2)
the Riemann mapping function for the loop ¢. Then (1.5) may be replaced by

I
pe") = T'(e")” py(e¥)
where p, is bounded near a(u,).
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Proof. The Riemann mapping function-t(z) satisfies the hypothesis on a(z)
n Lemma 1.3 with « = n -~ the inner angle of £ at ©(u,). By [4, Theorem IX.8],
1)7(2)] < ¢z — |~ near u,.

2. Ly AND Lyp

In this section, we deal with the part of T similar to a sum of
analytic Toeplitz operators, T,],. First note that T,]_ on H'iv'j is unitarily equivalent to

multiplication by z on H% vj(/j), the closure of the — v dimensional vector-polyno-
mials in the norm '

| = S P ) i) df =

= "ot e a5

We will actually replace Z@Hivj(fj) by an even more convenient H® space. Let v
denote the maximum of the —v; and let u;, ..., u, be orthonormal vectors in some
auxiliary Hilbert space. Let H%( U /") be the closure of the functions of the form

pA) = Zv pi(A) v, in the norm
K

=1

el =Y, _2, Sm [Pt (&))? |77 ()] dt.
i k=140

We will use for our similarity the space A%( U ¢"). Indeed

2.1 HYu Py =3, @ H2, (¢).

To prove (2.1), all we need to show is that H2,(¢) = H¥u/P). Let i=1 and
note first that if p is any polynomial, then

o= [HG—21ppay €4
P2 { 0 re v,

i>1
where the 4; are the multiple points in 9/, is continuous on the closure of ¢ and
analytic in each /,. Thus p, is the uniform limit, on the closure of o, of polynomials

(by Mergelyan’s Theorem). Clearly the functions [J (1 — A p(A) are dense in the
closure of the polynomials in the norm

Iple = S PRI di

0

on d¢;, and this proves (2.1).
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Now let Ly, : H2 > Hz( U £ be defined by
Lopx = Xk; p.(4) (x, 11;."’) uy
where 4 is the eigenvector of T/, defined by
@) = LG =z ILa = &Il0 — @),

where z,, ..., z_ are fixed (distinct) complex numbers of modulus <1 and p;, are the
(bounded) functions p,(1) = ﬁ;k’(zk)'l.

To prove that L,, is bounded, restrict to one loop of ¢ and follow the proof
given in [1]. Indeed,

Logs = % o) G i, = % i TL( = 67/ TL (L — diD2)) e

where y = P[] (e~ — z;)x(e"), so that

Jj#k
Lypx = ];E.pk('l)zi(i)y(di(l))uk
vl
where the ¢; are given by

[0 — 572 — diz) = ¥ (1 — d(Ay).

On a loop ¢,, we have

ILosx|f7, < X S G Ple @) AN G ()P dt

which, by Corollary 1.1, is bounded if p; is bounded. We have

Lemma 2.1. Ly, is bounded and satisfies

22 (LosTry) () = ALgsy) (A)
for yeH?,
Proof. We have shown boundedness. The proof of (2.2) is exactly as in [1]:

LOfTFy = Zk 0i(4) (Try, h(;k)) U =

= ; Pk(l)()% Tfh'(;.k))uk =2 ; pk()')(y’ h(jf))uk = A LOfy .

The motivation for the construction of Lo}l that follows is this: we would like
to define

Lot 3 D = 3 plTH( — z,2)72.
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‘A simple proof plugging this into L,, shows how this gives a right inverse for L.
But if p, is just in H*( U £;), or even if p, is continuous on U ¢, p,(T¢) may not make
sense. Even the integra}

(2.3) S PYAT = Tp)~Y1 — z,2)~* dJ

Y
for y a curve surrounding U ¢; may not make sense because sp(Tp) =( U HU(UZ)
may be bigger than U ¢;. To overcome this, we take the integral in (2.3), substitute
for y the union of the boundaries of the /; and write down the result formally, for
L*y ¢) functions p,, ...,p,, as

1 H(Z — 4 )H (l —— Fiim)(l - Emz)—lpm(?’-j) de
L D) =Y — (41 ’ .
B =5 I — DD I — G @ — Ef5))

Lemma 2.2, The operator S defined on (1 — vz)~%, |v| < 1, by

2ni I~ D) I -G [T G — ED) 5

has a unique bounded extension from H? into L¥(idx)).

S0 —3yi= Ltz HME—HITA-Te )l —z0)" I

Proof. Following the proof in [1, Lemma 7.1], we note that

IS — 52)-1 ) = Hi_ g MO = HIA = Tz)(1 = 20 E)” [
2n I —Dizyv) [T ~ G I (2. — Efz)))

= |IT\L T — 52) 12
Here T, is the (co-analytic) Toeplitz operator with symbol (1 — z,e-¥)~1, so that
T(l —vz)"1=(1 — z,0)" (1 —vz)~L.
Ly is the Ly operator with f replaced by F, with a(z) = 7(2), with I = {G,}, and
with p(e") = tj(e"’)%; so that
Li(1—v2)~' = T}% [Y Cilti(e")) (1 — oD (r(e")) " +
+ X EgE N (1 — G LaE) .
T, is the operator of multiplication by

i‘ AV @) T (A = Tzn)/TT En — E5) -
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T and T, are clearly bounded, and Ly is bounded, by Corollary 1.1. This proves
Lemma 2.2.

Now to see that Ly, is bounded and maps into H?, Jet
L(z) = Lor(p)2)
for p = Y pu(P)u with p, ..., p € H(U ;). We have
L) = (p, SU — vz)~1) = (S*p, (1 — vz)~Y).

Since S is bounded, by Lemma 2.2, this implies that (there is a function) PS*pe H?
such that

2.4 L(v) = (PS*p) (v).
Thus, as a function of z, L(z) = Lyx(p) (z)€ H2. It also follows from (2.4) that
ILorp || < LG < 1IS*| lip]]

and hence that L has a unique bounded extension to all of H*( U ¢"?). We have

LEMMA 2.3. Ly is bounded in L? norm and satisfies

(2.5) TeLopx = Lypix
and
(2.6) LyLyp=1.

In particular, Ly, has dense range.

Proof. We have shown that Lz is bounded. To prove (2.5), let x(2) = ¥ pi(Duy;

FLopx(2) — LopAx(d) = LOF(;(F (@) — Wp(Muy) =

L S AA-1 I —Di(x)IT(1—Gi(z))IN(1 — E(1))2)I T (z— 4)IT(1 =T iz, )p u(z)d7; —

i " JH(Z—AK)H(Z-FJII (1 _—Di(‘[j)z)]:[(l —Gi(Tj)Z)H(Enn”—Ei(Tj))(l _émz)

- 1“ H(l —_ F;Em) Z Hg - Ei(rj)z)pm(tj) dT. )
DI Ty D N R ey e

Note that the sum of the last integrals is a polynomial r(z) of degree s, (= the number
of E(2), 2 outside a;). At z!, its value is

2z
G =5"Y S Pultdy; = 27 ¥ S Pu(w)dw =0
ag¢

j J0 i ]
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if p,, is, say, a polynomial, and therefore
PIIG—TI) @/ —Zz,2)=0

(since Tr — Al invertible for A outside sp(7F) implies the number of I"; = the number
of E;; [2], Lemma 2.1.). Thus

PFLypx — Lophx = 0
and (2.5) follows.
‘Now we compute.

Ly;Lopx = Y, Ly Loppi(R)uy, =
x
= zkl Losp Tr)Loptty, =
= ¥ DA Lo Loputy
k

(at least if the p,, are polynomials and hence, by taking limits, for x € ¥, H2( U ).
Hence

LogLorx = 3, peHpu) (Lot b i
We need to show that p, = fz%k) (z,) satisfies

@7 () Lortims h5") = S
To do this, we first prove
LeMMA 2.4. If g is a rational function, analytic in |z| < 1 and if, for some

WE C, (F(e) — w)g(e?)e L2, then

(2.8) ¥ .PI(F — welid) = G — 1) ¥ ¢.8(d)

where the c, are chosen

. =Y (D) (1 — d(W)z2)~?
for A.E /i'

Proof. If ge H?, the conclusion is clear; viz:
_ N
Y eP(F — w)g(d) < (Tr-,8 hy') = (g, TE_ ) =

=g A=) =0 —wEh)=0—uwYNisd,).
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For general g, let g(z) = g(rz), 0 < r < 1. By the above, (2.8) holds with g replaced
by g,. Furthermore, as r - 1,

(P(F — p)g,) (d,) = (P(F — p)g)(d.) ,

because if s is chosen so that F and g are analyticin 1 > {z| > s and so that /d.} < s,
we have

F— — .
F—wey, S F = WEQD) _ pp_ we(d) .

P(F — ,.'d;=s
(F — m)gAd;) e o s

Since obviously g,(d,) - g(d,), the lemma is established.

Now to prove (2.7), write (Lopu,,, hfl-k‘)

@9 :’1“1‘2:(5 MHGe—4)II0 -2 F)dr ,hg‘)(z))=
27i 7 \J [T (1 =Di(z)2) [T (1 = Gi(z)2) Il G Ei(x))(1—Z42)
ey =Ly “f 1@, — 49 I1 (L — 2,1) dy; .
2ni 5% M A=Di(t)d) [T (1 —G(tpd) TT G~ ET))(1 —2 ,.d,)

Note that F — 1; times the integrand in (2.9) equals

Ima- )Z)II(I I'iz,)
H(Z—F)H(Zm @)1 —z,2)

which is a rational function (of z) with r;,(e")€L?. Thus Lemma 2.4 applies to the
integral in (2.10) and yields

r J m(z)

(Logtty, H) = 5’—. Y, EES O — 1)\ (Pr;,) (d,) ;.
N
We claim that

rim(€") = Rin(€) (1 — 2,1
where R;,(c")€H?. This follows, once again, by the fact that the number of E,(4)
(for A outside sp(T})) equals the number of I';; [2, Lemma 2.1]. Furthermore
IGE—E@)ITA— fzm)
H(l-FZ)H(Zm (7))

It follows that Pry, is just the (co-analytic) Toeplitz operator T, applied to (its
eigenvector) (I — z,z)~%, yielding

ij(z) =

Prim = Rip(2u) (1 — 2,2) 72 = (1 — Z,2) 1.
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Thus
1 B R
(Lor"m, h(k)) = E: Z ceS (l - Tj)—l (l - Z:nds)_l de =
Tl g, e

""(zm) S (A — 1)~1dt; = 8" (2,0,

P
(G’f

and Lemma 2.3 is proved.

3. PROOF OF THEOREM 1

We begin with a computation involving the resolvent of Ty. Let |u], |v] < 1;
we have, by standard Wiener-Hopf factorization,
(T — D4 —uz) ™, (1 —vz)™ ) =
= A [~ )11 — DH») [T (A — T'ull) @ — E{2))~*(1 — uv~?).
By spectral theory, if y is any simple closed positively oriented curve containing
sp(7F) in its interior,
(1l—zo)yt=(1l —uz)"Y,(1 —vz2)™) =
G.1) - 21 ( @1= 19 (0 — i, (0 — 52 dd =
n

l.ry

:LS ar Mo —4) XA =T gy,
2ri ), I — D) II@u — EL%)
Since the integrand is bounded, we can let the curve y approach dsp(Ty) and take

the limit, By (IV), [1, Lemma 1.3] implies that, as 4 approaches a loop ¢; from the
outside, JI(1 — D,(4)v) approaches

M- DI — Gi(dv)
and each |E(1)| remains > 1. Similarly as 1 approaches a loop .#; from the outside,
IHw— E®) approaches

| RO E;(l)) I — G
and each |D;(1)| remains < 1. Thus, taking the limit in (3.1), we get

(1 ——ﬁv)'ls _L S A-1 H(U “A.)H(l —F,!Ddl
7]

2mi 7 I1 (1 —DAW)I1(1 =G [T — E))(1 —uv)
(3.2)

1 A-1 IHe—4)J1 (0 —Tu)di

2ni j Sa_[j

I -0 [T — EMW) [T @ — GA)(I — uv)
where each 0¢;,0.% is oriented counterclockwise. :

4-.2238
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Now we deal with LyzL,;. We have
(LopLos(1 — uz)7, (1 —v2)71) =

= (Lo 3, K2y ERw), (1 — 52)~1) =

=Y “ﬁi"l H(”“A")H(l L 0 2 )_1 Wz, ™ ) .
PR R | (B YeRT | (i )v)II(z ()

Summing up the terms depending upon m, we get

. a=re,) | Wz Y1 sy
Z II (zm El(TJ)) (1 haad 2,,,1)) T'i (ZM) I'I;:':Im (u Zl)
3.3)

I — rz) 10— di@)z) IT (1 — &l I @ — 2

l lil

- % G — E@) — 2,0 TT (2 — DI~ 67z,

j#Em

where we have used the fact that, as z tends to {z| = | from inside z| < I,
II A —d(z)(2))z,,) tends to

IT (4 — di@ @)z IT (L — E@)za) 3
({i}; Lemma 1.3).
Now from the fact that F(z) = f(z™?), we have
DA) = &), Ed)=d:(D) GiA) = gi(A)
ri":S-i_l and 4; =y

Using these relations, (3.3) becomes

i#m
From the partial fractions expansion
H (Z 2 II(zm )) + II(D -- G; (TJ))
1-_02) I[(Z—Zl) m UZ,,,) H (Zm - l)(z Em) II(U —Z‘)(I—UZ)

itm

in which we set z = u, we get for (3.3)

-1 [H (u — Gi(Tj)) . H u "Z.)H(l — Gi(fj)?)] i
(1 — vu) II( — z;0)(1 — vu)

H (—E@) I (=6
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Putting this in our expression for LypL,,, together with

KW =L@ —Z) I = 67 WILA — 4@ 1A — @)@ =

sEmM

=1~ E)H( Gi) H @ —zp)[{ —rap Il @ — E@) I @ — G(T))]

we get i
(LopLos(1 —uz)~", (1 —vz)™H) =
=Z“1*[52”A’1 II(v—A)II(!~Fu) o
Toril)e A — D)1 — Gr)n)IIE — E())(1 — uv) &
_SZ«A_I H(u——A,)II(l~—Fu)II(u~z)dr ]
o I — D)o@ — E(u;)[IG — G — ziw) (1—uv)
E [S A1 H(U_Az)n(l—f;i‘_) - dl —
7 2mil)e,  IIA — DAV TI — G I — E(D))(1 ~ uv)
I = a)I10 — rap]l@ — Ei)S 41 di ]
IH — zip) (1 —uv) e, TIA—D(D)[Iu—EM)IIu—G{A)

The last integral is O for every /, since the integrand is the boundary function of
AL — D) [T (@ — E)~*

which is analytic inside each ¢; (since continuation around an algebraic singularity
only serves to permute the {D;} or the {E;}). Thus the sum of the first integrals is

equal to the sum of integrals over the 3¢; in (3.2).
To complete the proof, we note that we may repeat the constructions of § 2

above with f and F interchanged, and working on the loops %; instead of ;. The
result is a pair of operators L,; and Ly (corresponding to L,y and Ly, respectively),

from H*(u £ ")) to H? and from H? to H3( Y §,{N")), respectively. The analogue
of (2.5) is the intertwining relation
Tszfx = sz Ax s
from which it follows that
(3.4) Z,Tpx = Z szx .
The analogue of (2.6) is
(3.9 LogLy, =1

from which it follows that L,, has 0 kernel, and hence that L} has dense range.
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Now let L = L% + L;,. From (2.2) and (3.4), we have
LTex = AL¥x 4 ALgx .

We claim L has dense range (in H*(U Z{"") @ H*(U¢""). For this we use the
orthogonality of the manifolds .#; and ; in the introduction. [To prove this ortho-
gonality, suppose Trk, = ik, and T;h, = ph,. Then

(kys By) = A=Y Tek, hy) = A-Yk,, Trh,) = ph=Yk,, b)),

and pA~1# 1, since A€ &, and k€ ¢,.] By definition the kernel of Ly, is the ortho-
gonal complement of Y} z;. Analogously, the kernel of Ly is (¥ .#)*. Thus ¥, .7,
is the range of the partial isometry (c.f. (3.5)) V = Lj;L¥. Clearly the range
R(LY) = R(LE rw)) and R(V) < kerLy,;. By applying L to vectors in R(V), we
can now see that R(LY) = R(L). To see that R(L) is dense, let x @ yeH*(U M
@ H( U 4. Approximate y with vectors L,;y, and then approximate each
x — Lygy, by L¥x, (x,€R(V)). It follows that
L(xy + ya) = (Lipxn + L) @ Lopy, > x Dy .
Finally, we construct a left inverse for L. We have

(LesLap (1 — 02)73, (1 — 12)~Y) =

(e IL@—3)TL( — yd) W
i, ITU—d@0II — g0 TG — e — o)

j 27”
Replacing the d;, ¢;, etc. with appropriate E; !, D;}, etc. and conjugating, we obtain
the sum of integrals in (3.2) over 8., so

(1 —uz)71, (1 — vz)7Y) = (LopLog(l — uz)~1, (1 — vz)71) +
+ (L;’FLff(l —uz)7, (1 —vz)~ 1
and thus LY @ L is the inverse of L. This completes the proof.

4. THE CASE WHEN F BACKS UP

Let o be the set of points on T where F backs up. That is e'?€o satisfies either

4.1) F(e'?)e 0¢; and argr; ' F(e') is increasing at t = ¢
or
4.2) F(e'?)e 0.%; and argT;'f(e") is increasing at ¢ = ¢.

In case condition (IV) on Fis lifted, we have the following generalization of Theo-
rem 1.
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THEOREM 2. Let F satisfy (1), (1) and (111). Then Ty is similar to
YooY TtV

where Ty, actson HZ, , Tr, acts on HY, and V is a normal operator with spectrum F(o).
V is absolutely continuous with the spectral multiplicity of a point A in the spectrum
of V equal to the number of points €'® where F backs up and F(e'®) = A.

We include a brief sketch of how the results of the present paper and of {1,
Part 11] can be applied to prove Theorem 2.

First, the operators Ly, Lyg, Ly, and Lyr must be modified as in 1, § 6]. For
example, p,(1), n the definition of L,,, must be multiplied by

oD = IT (4 — 2~

asin(l, § 6], and the m-th term in Lyr must be multiplied by p;,,—l and the denominator
altered as in [I]. On the loops ¢;, L, and L, are defined as in {1}, and, on #Z,,
L;pand Ly are defined so that Ly, [resp. Lyp] corresponds to Ly [resp. L], with F

and finterchanged. L.emma 1.3 above is used to show that the operators so defined
are bounded.

Now let

L= (sz + L3f)* + Lof + Llf
and

L' = L¥% + Lyp + Lop + L.

Direct computation shows that L'L = I, so it suffices to show L has dense range.
From

(L3r + LiDT; = ML3F + Lup)
it follows that, if k, is an eigenvector of T},
(L:F + Lipk, = Ilfl(L;akF + Lip)k,

so that (L¥: 4 Lipk, =0 (Apt# 1, since i€ int/; and A€ 04 U0L;). Thus
E m; < ker(L¥e 4+ Lyp) or

4.3) R(Lse + Lip) = (X me)
Similarly

(4.4) Y M, < ker(LY + Lyj) .
Of course

4.5) Y A#, < ker L,

by definition of L,, and since ¥, 2; 1 Y, 4.
As a consequence, we can show that

(4.6) RILE) = R(L).
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Indeed, for x€HX(U L), Lixe Y4, and LiLix = x follow as [1, (7.5),
and (7.6)], and then we have
X = L;ﬁfL’ZLFX = LL;:FXER(L)
by (4.4) and (4.5).
It is also true that

@.7) R(LY + Lyy) = R(L).
From (4.6), it suffices to prove
4.8) R(LY + Ly + L) « R(L).

If x belongs to the left member of (4.8), we have
y= (L;:F + Lye + L;S:F)x E(Z i)t
by (4.3) and the fact that R(LYp) < ¥, 4, = (¥ 22))*. Thus
y=LLy=L(Lj+ Ly + Ly =
= (Lyr 4 Lor + Lir) (L3 + Ly + Lipy
and, since Ljr + Ly + LiF is one-to-one,
x = (LY + Li; + L)y = LyeR(L) .

This proves (4.8) and hence (4.7). R(L{ + L,,) is dense, by a modification of the

proof of [1, Lemma 5.3).
From (4.6) and (4.7), it follows that R(L,;) = R(L) and the density of R(L) is

proved.

This work was partially supported by an NSF grant.

REFERENCES

1. CLark, D. N., On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math.,
to appear.

2. CLARK, D. N.; MorreL, J. H., On Toeplitz operators and similarity, Amer. J. Math., 100 (1978),
973--986.

3. GAMBLER, L. C., A study of rational Toeplitz operators, Ph. D. Dissertation, S.U.N.Y., Stony
Brook, N.Y., 1977.

4. Tsuii, M., Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959,

DOUGLAS N. CLARK
Department of Mathematics
The University of Georgia
Athens, Georgia 30602
U.S.A.

Received August 29, 1979; revised January 3, 1980.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


