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ON INTERTWINING DILATIONS. VIII

GR. ARSENE, ZOIA CEAUSESCU, C. FOIAS

0. INTRODUCTION

Since the existence of contractive intertwining dilations was proved in early
1968 ([25]), it became clear that the problem of describing all of them is (or will be)
involved in several important topics of Operator Theory and other parts of Ana-
lysis ([13}). Many basic ideas concerning special cases of this problem appeared
explicitely or implicitely in quite a few papers (for example: [1], [2], [3], [4], [5], [12],
{21], [26], and so on).

There are now at hand some general descriptions of the set of all contractive
intertwining dilations (see [10], [11]); among these we quote here the following:

(A) the labelling using choice sequences (see [10], or the next section), which
deals with the “free’” part of the problem, and

(B) the idea of Lemma 4.3 from [10], where the general problem is reduced
to a very simple case. These facts are given, more or less, implicitely in [10]; it is
the aim of this paper to make explicite these labellings and the connections between
them.

We will heavily use the account given in [6] for the choice sequence labelling.

This paper has two main results: :

(A’) an algorithm which connects a contractive intertwining dilation with
its choice sequence (Theorem 4.1, below); this algorithm gives more workable
algorithm in seismic exploration used in Geophisics.

(B’) an explicit formula for the connection (B) (Theorem 6.1, below). This
formula turns out to be a generalization of both classical and operational extra~
polation formulas ([1], [2], [3], [81, [9], {171, [18}, [19], [22], or for example [16], Ch.

IV, Th.8.9and Ch.V,§4) and the characteristic function of a contraction ([24],
Ch. VD).

Different consequences of these results for Operator Theory, Differential
Equations and Geophysics as well as further developments connecting explicitely
our results to [3], [7), [14), [15], [16], [26], [27] will be given elsewhere.
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The results of this paper had been circulated as INCREST Preprints no.
28/1978 and 76/1979.

1. LABELLINGS OF CONTRACTIVE INTERTWINING DILATIONS

In this section we will recall the basic definitions and results which will be used
in the sequel.

Let o2 and s’ be (complex) Hilbert spaces, and Z(#, #") be the set of all
(bounded linear) operators from s to #'; the set L(, #) will be denoted by
ZL(#) and I (resp. 0) will be the identity operator on any Hilbert space (resp. the
zero operator on any Hilbert space, or the zero element of any vector space). For a
contraction Ce L(H#,#”") (ie. ||Cl| < 1), Dc = (I — C*C)? and D¢ = D ()~
will be called the defect operator, resp. space, of C.

In the sequel we fix T€ Z(#) and T'€ L(#’) two contractions, and let
Ue () and U’ e L(X') be their minimal isometric dilations. (For the geometry
of the minimal isometric dilation, see [24], [23].) Consider:

& = U —T)H#)"
@, = — UT*(0)-,
and define
(1.1), Ho=H,

and for every n > 1,

an, #,=#+L+U¢+... + U F=F +UZ, +...+ UL, +UF

(where the sums of subspaces are always orthogonal). We will use the following
notation .

(1.2) P=P,=P¥,"

1.2), P,=Px,, (n=1),
and

(1.3), T, = Pk, Ul#,, (n>0).

) If @ is a (closed linear) subspace of #, P will stand for the (orthogonal) projection of
. ) *
# onto €; in this case P;;eg will be denoted also by 1 — Pg .
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It follows that
(e o]
(1.4 H =\ #,, and

n=0

(L.5) U=s-lmT,P,
n->o0

(this means strong (operatorial) limit).

The notation &', L, #y, P', P,, Ty (n = 0) are now clear.

Consider a fixed contraction 4 F(T', T) (i.e. Ac L(A, A")yand T'A = AT;
we say that A intertwines T and T"). A contractive intertwining dilation of A is a con-
traction A € F(U’, U), such that P’A = AP. The set of all contractive intertwining
dilation of 4 will be denoted by CID(4); this is the main object of our study. One
easy way to describe CID(4) is to use the “construction in steps’ of the minimal
isometric dilation (see (1.1),, (1.3),, » = 0, (1.4) and (1.5)). For n = 0, a n-partial
contractive intertwining dilation of A is a contraction 4,e #(T,, T,), such that
P’A,= AP|#, (we say that 4, < n-PCID(4)). A sequence of contractions {4,}% ,
isa chain of PCID of Aif foreveryn = 0, 4, € n-PCID(A4) and P, A, ., = A,P,|H# .1
With this notation we have that the applications:

(1.6) Aco = {PrAe #0350 and
0o (4 = A = s lim Ao .

are reciprocal bijections between CID(4) and the set of all chains of PCID of A.
The main point in this description is that in a chain {4,}22 , of PCID of 4, we have
that A,€ 1-PCID(4,.,) for every n > 1; this means that a careful study of 1-PCID(A4)
and an inductive argument will provide a way to settle the problem.

The main labelling of CID(A) which will be considered here uses ‘‘choice
sequences’’ (see [10]). For this, let us define

.7 {?’A(T)zﬁ"Az{DATh—F(U——T)h: he#})- <9, + &
'@A(T)ngA:(@A‘{‘g)@f/’-A,

(1.8) {ﬁA(T’) =F1={Dh®WU —TYAh :he H#}- <D, D &L’
RT)=R" = (2D, L) O F4.

These spaces appear in [5], following the result from [4] which gives the uniqueness

condition for CID(A) in terms of regular factorizations ([24], Ch. VII). So, the fac-

torization AT (resp. T'- A) is regular if and only if #, == {0} (resp. #* = {0})

We will also use the projections:

PAT) =p,=P5i"*  pHT)=pt= P5s®"
(1.9) ' ,
9(T)=qu=Pe**"  gXT) = q" = (i7,00)* Piier »
(where iz, gz L = {0} ® L = D, ® L is the canonical injection of £’ in
0@ L <2, ®Z;in this case | — g* is in fact (i570e)* P2 i)
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A sequence {I,}2, of contractions is called an A-choice sequence, if
I'ye L (R4, ), and for every n > 2, F,,e&f(@r"_l, 9”_‘). Combining Propositi-
ons 2.2 and 3.1 of [10], we obtain that there exists a bijection between CID(A4) and
the set of all A-choice sequences. The analysis of this bijection given in [6] follows
the “‘stepwise approach” described above.

In this respect, the analysis of the “first step’” gives an explicit bijection between
1-PCID(4) and the contractions of Z(%#,, #4). The “imposed’” part of an
A, € 1-PCID(A) is given by the unitary operator:

o(A; T, T)=06,:F, > FA

1.10
(116 {UA(DATh +(U—Th) =Dh ® U — TY4h,  het.

The one-to-one correspondence between A, 1-PCID(4) and I'ye Z(R4, B7)
is given by (see [6], Lemma 2.1):

(1.11) A4, Ty) = Ay = AP{Hy + q*(6apa + Tl — p)YD4P + 1 — P)H,,
and for I'y(4, A})) =TI,

(1.12) g'T(1 — pJ(D4P + I — P)o#y = A, — AT,

where A% = A,(4,0) = AP|#; + q o p(D,P + I — P)A#, .
In order to use inductive arguments we must go further with the analysis of the
“first step’’. We obtain then (see [6], (2.10), (4.12) and (4.15)) the unitary operators:

wAl (Tlla Tl) = wa: '@Al - @rl

(1.13) {
wu,(1 —pa)Dy, = Dr(l — pA(DP + [ — P)A,,

o(T|, T) = o: B4 - D
(1.14)

wh(l — p4)(0 @ U'T) = D(1 — pHO @), I'e &',

which verify

(1.15), e, = —ot(l — ph)R,, .

(Note that ‘%Al. = ‘@Al e (DAI U(”))_ < '@Al .)
The operator w,, from (1.13) is the restriction to #,, of a ““larger” unitary
operator (see [6], (2.7)), namely:

ajAl(Tl,: )= a,{ﬁ @Al -9, ® 91‘1

1.16
( ){E)AIDAL = [ — qg*)o4ps+ (1 —pY)) @ Dr, (1 — pJUD4P + I— P)H, .
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We will need also that (see [6], (2.8))
(1.16)" @D, Uh=Dh 0, (he #).

The operators w,, and w*: suggest how to construct an A-choice sequence
associated to an A, € CID(A); we define by induction:

{1.17), Iy =T4, 4), Q4 = vy, 24 = o,

and forn =2
(L1, T, = Q-1 Ty(Ay_y , Ay) Qi s Qa, = Qu,_ oW, , QM = Qln-1otn

where [y(A,.1, A,), W4, = 04 (T, T,), 04 = 0(T,, T,) are associated to
A,€ 1-PCID(4,_,).

The sequence {I',}2 , is called the A-choice sequence of Ae. The sequences
{Q4,}2., and {Q4+}2, are called the sequences of identificators of Aw; for n > 1,
Q,, (resp. 24) is a unitary operator from %4, (resp. #4+) onto P, (resp. @ )

‘We have, of course, that for every n > 1
(L.15), [y(Ayoy, 4,) 04, = —@(1 — pA)| R 4.,

As in the case of w,,, the operator Q, is the restriction to 2,4, of a larger unitary
operator, namely

(1.18), Qi D4, > D, D9, ® ... ®Ir, ,

defined recurrently by

(1'18); bA!. == aAl’
and for n>2
(1.18); Qu, = (Qua,_, ® R4, )oba, .

2. OBSERVABLE SEQUENCES

The aim of Sections 2, 3 and 4 is to give an algorithmic variant of the one-to-
-one correspondence between CID(4) and A-choice sequences. From the point of
view of Operator Theory this analysis produces new objects (connected also with
{11]) which might be of interest. On the other hand, a very particular case of this
algorithm is a variant of the Robinson’s method (see for example [20]) used in Geo-
physics for seismic exploration; our algorithm seems to be more adequate for con-
trolling small perturbations.
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Consider again the typical situation of this paper: Te Z(#), T' e L(H")
Ae F(T', T) are fixed contractions and A is a contractive intertwining dilation of
A (ie. A€ CID(4)). Let {4,}2 ¢ be the chain of PCID of 4. In this section we
will give an alternate description of A.. We will use for this the decompositions of
H and A given by (1.1),, n = 0.

" =
DEerFINITION 2.1, Let n = 1 and 1 < k < n; the operator

(2.1), Su(4,, A) = Si(4,) = (U'*)k_l(Pl: — P DALy L &L

is called the k-th observable operator of A,. The string {S(4,)}7 -, is called the obser-
vable string of A,.

It is plain that {S,(4,)}%..; is uniquely determined by A,. Conversely:
LemMma 2.1. For any n = 1, the observable string of A, uniquely determines A,,.

Proof. Let n > 1 be a fixed positive integer. The operator 4, e L(H,, )
is uniquely determined by its matrix with respect to the decompositions:

Hy=ZL, + UL+ ...+ UL, + UH,
Hy=H"+ L'+ ...+ U P,
From the very definition of the set n-PCID(A4), we have that
P'A, = AP#,,

which means that 4, is completely determined by the operator (1 — P')A4,. On the
other hand, because U"(H#) < H#,, ,

AU | = A PU |\ H = AT H =
=TI, |# = PIUAH =
= PIU"P' A\ # = T4,

which implies that A4, is completely determined by the operator (1 — PYA (L +
+UZ,.+ ... + U-12,). Finally, we have forevery 0 € k < n— 1

I — PYUK L, = (U= PYATE S, = (I — P) T4, |2, =

m=1

= —P)Tk [API,Z’* + 2 um-1 Sm(A,.)] )

and therefore the observable string of A4, uniquely determines 4.
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REMARK 2.1. Let n,m > 1 and 1 < k < min{m, n}; then
(2.2) Si(A4,) = Si(4,.) .

Jjust because {4,}52, is a chain of PCID of 4.
The relation (2.2) justifies the notation

(2.3), Sa(deo; A) = S5,(Ae) = Su(Am) (n=1,

where m > n is arbitrary.

DeriNITION 2.2. The sequence {S,(4co)}>, is called the observable sequence
of Ag,.

From Lemma 2.1 it follows that
CoroLLARY 2.1. The observable sequence of A uniquely determines Ae.

Remark 2.2. It will be of some interest (even in the numerical case)
to find out (for given T and T') the conditions for a sequence {S,}3., (where
S, : L.~ & for every n > 1) such that there exist A e F(T’, T) and As€ CID(4)
with S,(A4s) = S, for every n > 1.

Due to Corollary 2.1, the connection between A and its choice sequence will
be clear when we will have an algorithm for calculating the observable sequence
of A, from the choice sequence of A.. This will be done in the sequel. To this end,
we analyse now a little more the structure of the observable sequence of A.

From (1.11) it follows that

(2.4) S((Ax) = qops(D4P +1— P)| L + q'Ti(1 — p)D4P + 1—P)| L.
Having in mind the connection between S)(As) and I';, define the operators:

R(A): Ly > &L

2.5) {
RYA) = q o ,pu(DP + 1~ P)| &y,

2.6) {R(A) Ry Ly
R(AY* = (1 — p DL+ 11— P) &y,
and
Q.7 {R'(A) R P
R'(A) = qY|R".

Using (2.5), (2.6) and (2.7) in (2.4), we have

2.8) Si{Aw) = RY(A) + R'(4) I''R(A)* .
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The previous considerations make sense for every 4, (considered in 1-PCID(4,_,))
instead of 4, n = 1; we will define then:

(2.9), Ri(Ax) = RXA) ,
(2.10), Ry(Ax) = R(A),
(2.11), Ry(Aw) = R'{4),

and foreveryn > 1,

2.9), RYAe) = U RYA,) : &, > £,
(2.10), R(Aw) = R(4,) Q5 :9r, > &L, ,
(2.11), Ri(Aw) = U™*" R(A)QY: D, — £ .

_From (2.8), we have that for every n > 1,

2.12), Si(Aeo, A,—1) = RY(A,)) + R'(A,) T(A,-1, A)R(A)* .

From the formulas (2.1), it follows that for every n > 1:

2.13), Sp(Ae, A) = (U™*)* = Si(Acos Ap-1) -

For every n>1, using (2.13),. (2.12),, (2.9),, (2.10), and (2.11),, we obtain
(2.19), Su(Ae) = R _1(Acs) + R, _1(Aeo) T'o(Ry-1(A)) *.

We are now faced with the problem of studying the sequences { R(Ao0) 2.0, { Ru(Ax0)} 2.0
and {R; (A=)} o Before going into this, let us record the following facts.

LEMMA 2.2. The operators R (Ax) and R.(Ax) are injective for every n = 0.

Proof. Using (2.10), and (2.11),, (» = 0), the result will follow from the fact
that R(A) and R'(A4) are injective. For [, = (I — UT®he &, where he 5, we have
that

RA, = (1 — p)D4P + I — P)h — TT*h — (U — T) T*h) =
= (1 — p)Dh — (DIT*h + (U — T) T*h) = (1 — p) Db .

Lemma 1.1 (b) and (c) from [6] implies now that R(4)* and R'(4)* have dense
range, which means that R(4) and R’(4) are injective.

COROLLARY 2.2. Let n = 0. The factorization A,-T, (resp. T, - A,) is regular
if and only if R (Aw) == 0 (resp. R;(Ae) = 0).
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Proof. The factorization A,- T, is regular if and only if #,4, = {0}, which is
equivalent to 9, = {0}, which in turn is equivalent by Lemma 2.2. to the fact that
R,(Ax) = 0. A similar argument based on Lemma 2.2 is valid for the factori-
zation T, - A, .

3. THE ALGORITHM

This section is devoted to the study of the sequences of operators defined in
(2.9),, (2.10), and (2.11),, » = 0; this will represent the main part of the algorithm
which connects the observable sequence with the choice sequence. The *“first objects’
involved in this algorithm will be studied in the next section, where the definite form
of the algorithm will be given.

We fix A e CID(4) and we denote

R = R)(Ax)

Rn = Rn(AOO) b
R, = R, (Ax), forn =0,
and
Sn == Sn(AOO)9 for n = i.
Concerning the sequence {R,}% ,, we have the following
LEMMA 3.1. For every n =1
G.1), R, = RyDr,Dy, ... Dr,,
where
(3.1 Ry =(—p)DP+1~P)ZL,.
Proof. We proceed by induction. From (2.10), we have that
(3.2) R, = R(4y) Q.

From (2.6), we have that (because £, < #))
(3.3) R(A)* = (A = pa )PPy +1— P = (1 —pi)D, |2
Using (3.2), the definition of @, , (3.3), (1.13) and (2.6) we have that

Rf = Q, R(AD* = w4, (1 — py) Dy &y =

= Dr(l — pJ(DP + [ — P)|Z, = Dr,RE,

which means that (3.1), is proved.
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Suppose now that for an n = 1, (3.1), is verified. Asin thecase n = 1| (using
also (1.17),,,), we have:

Ry = Q4. R4, )" = Qa, 004, (1 — pa,,) Da, | L5 =
= Q4 Drya,, 4,.0(1 — pa,) Da,| & = Dr,,, 4, R(A,)* = Dr,., R} .
From (3.1),, we have now that:
Ri, =Dr,, Dr, ... Dr.RE,

which means that (3.1),,, is verified. The formulas (3.1),, (n > 1) are therefore
proved by induction. The formula (3.1), follows from (2.10), and (2.6).

Similar arguments can be used to obtain the structure of the sequence {R,}.,
we will not repeat the proof.

LemmA 3.2. For every n = 1

3.4), R, = R, Dr; ... Dr:. R
where
(3.4), Ry=q* |24

We proved thus until now

PRroOPOSITION 3.1. For every n = 1

Sn = Rg—l + R:t-l FnRr*:—l ’

where

Ry = —p)DP+1—-P)\EZ,, R, = RyDr, ... Dr

n?

R} = g4 24 , R, =R, ..D

. ra

and R} depends only on A, , (k = 0).

The case of the sequence { R0} , is far more complicated; the iterative formulas
for it will give also iterative formulas of the same type for {S,}2.,. This is quite natu-
ral, because for the zero choice sequence, S, = R?_, for every n>1. Anyway, Pro-
position 3.1 will play its role in this matter.

The present formulas for the sequence {R2}®., are given by (2.5) and (2.9),,
(n = 0). We have

R} = qlopu(DP +1— PYZ,,
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and for n > 1

R) = U'*"g*04,p4,Da,| &L .

The whole idea for studying {R3}%, is to use the unitary operators {5,,};',11 defined
in (1.18), and (1.18),, (n>1). This means, in fact, to use the space ,0%2,,®...%2r,,
instead of 2 4,, as intermediate space between £, and &'

Define for every n > 1 (the case n = 0 will be discussed in the next section) the
operators:

(35) Xn:f[*%@/‘@.@rx@...@@r"
o X,=Q,D,|&,.

(3.6), {Y'*:%@@n@-.. ®Dr, > &

Y, = U*gAn(0 4 pa. + [1(Ayy Ay )1 — pa)) i .

in the matrix form the operators X, and Y, can be written as follows (n > 1):

X,
X,
X, =1. , where
3., Xz
X LoDy, and
LX) %> Dry,s (I<j<n),
and
Y, =Y, ., YD, where
(3.8), YP=9,-» 2, and

Y} :9r, > &, (I<j<n.
Taking into account (2.13),,, and (1.11), it follows that
(3.9), Sper = 1, Xo= X0 + VaXy + ... + YiX7, (n>1).
Moreover forn > 1

" td @91@,,,@@’"»\,
X =Poo0b.. 09, 24,D4)Ly = Qu(l —pa) Da,| Ly = RE,

where we used (3.7),, (3.5),, (1.18);, (1.17), and (2.10),.. We have then

(3.10), X7 = R¥, (n=1).

5-2238 2
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On the other hand, forn > 1

n 1% < 2409 1@---@-@ n
Yi = U™ g0, pa, + T4y Ans)(1 —pa) Fh, Poje 0o, 09;" =

= U'*1gAn(QAn)*Q4n T\(A,, Ay1r) D, = U*gAn (Q4n)* Iy = R} Ty s

where we used (3.8),, (3.6),, (1.18);, (1.17), and (2.11),. We have that

(3.11), Y?=R,T,.,, n=1.
Using (3.9),, (3.10),, (3.11), and (2.14),,,, we obtain
(3.12), RY=Y2X?+ YIX}+ ... 4+ ¥yr \xr—1, (n=1).

The formulas (3.12),, (n > 1) explain why we will study now the sequences
{X,}2 ,and {¥,}3.,; moreover, the formulas(3.9), and (3.12), explain the connection
between the iterative formulas for {$,}22, and those of {R3}% ,.

We will start with the sequence {¥,}% ;; this will be unexpectedly simple.

Lemma 3.3. (a) Y2=Y?
(b) Y!=Y!.
Proof. (2) Let D he 9, (he #); we have
YD 4h) = U'*q*s(0a,pa, + Ty(Ay, )1 — pa)) Ty (Dh) =
= U*q"(0 4,p4, + I'(41, A)(1 — pa)) D4 Uh =
= U'*qhg(DyToh + (U — TYh) = U*qA(Dyh @ (U — T)) Ah) =
= U*U'(l — Py 4h = (1 — P') A},

where we used in order (3.6),, (1.18);, (1.16)', the fact that 2,=92, 06D, U(#)",
the equality Thh = Uh (for h€ #), and (1.10) for ,,. On the other hand

YYD 1) = U'*2q2(0 4,p4, + (s , A1 — pa) G, (D) =
= U™, p,. + Ti(Ayy A) (I — pa)) B (D) =
= U'*q4(0,4,p4, + ['1(As, A5)(1 — py,)) D, Uh =
= U'*tgtig (D, To(Uh) + (U — T)Uk) =
— U2qax(D, Uh @ (U’ — Th) AUh) =
— U2U'(1 — P{) A,Uh = U"*(1 — P}) TjAh =
— U'*(1 — P)) PLU'Ah = U*(1 — P)) U'dyh = (1 — P') Ay,

where we used in order (3.6),, (1.18), (1.18);, (1.16)" for 4, and A,, the fact that
Uh, = Toh, (for hy e #,), and (1.10) for o,,. This concludes the proof of (a)
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(b) Since
(Dr(1 — p)(D4P + 1 — PYH)]” = Dy

we have to prove that Y]y, = Yy, for every y, € Dr(1 — p ) D P + I — P)(H,).
Lety, = Dy (1 — p D ,P -+ I — P) hy, where hy € #;. From (1.13) it follows that

Y= wAl(l — PAI) DA,hl .

Because (1 — p,) Dyhie Ry, =94, , there exists a sequence {D, A7}, where
e s, n =1, such that

Hm Dy B =1 — pu) Dahn .
n-oo

Then we have:
’ ~F 4
Yin=U *2qA”(°'A2PA2 + 'y(Ay, Ag) (1 — p4y) Qa4 (1 —py) D, =

= lim U*q%(0 4,04, + ['1(Az, A1 — p,,)) g, Dyl =

n—oo

= lim U'*%q4sg, D, Ukl = lim U'*3U’' — T;) A} =

n—oo " n— 00

= lim U*(l — Py) Ah) = lim U™(1 — P{)(0,4,P4, + I'i(4y, 2)(1 Pa)) Dy hy=

n—oo n—oo
= U™*(1 — P{)(w)* Fow (1 —p4)Dyhy =
= U*g™o")* Iy, = Rilyn = Yy,
where we used the same machinery as in part (a) plus (3.11),. This concludes the
proof of the lemma. ,
LeEMMA 3.4. Letn,m > 1 and 0 < j < min {n, m}. Then we have that
Y) =Y},
Proof. 1t is sufficient to prove that for every n > 1 and every 0 <j < n
YrJ; = Yf;+1 .

For this, we choose n > 1 and we apply Lemma 3.3 for A4,_,€ #(T,_y, T, ;) instead
of 4€ (T, T); in thls case A, will play the role of 4, forevery k = 0, 1, 2,

We denote by Y{(n), (i=1,2; 0 <j < i), the operators defined by (3.6),, (3.8)1
(3.6),, (3.8), for A4, instead of A. Looking at (3.6), it is clear that only the first
and the last factor in the expression of Y, and, respectively, Y,(n) are different.
Using (1.18)] with A replaced by A, and (1.18),, we have that

Yy(n) = U2 Y, (4, , ® Qa,.) .
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which means that

(3.13), Yoy = Un-YY, YL, ..., YY) Q,
(3.14), Yi) = U"-1Y"Q, .

A similar argument shows that

3.19), Y0) = U™ (¥R s Yaid) Gy
(3.16), Yyn)=UrYp 1824, -

From Lemma 3.3 it follows that Y3(n) = Y3(n) and that Y}(n) = Y}(n). Combining
these equalities with (3.13),, (3.15),, (3.14), and (3.16),, we have that

Yi=YI,, for every 0 € j < n,
and the lemma is completely proved.

This enables us to define for every n > 0
3.17), Y? = Y2,
where m > n 1is arbitrary.

PROPOSITION 3.2. For every m 2z n = 1,
(3.18), Y'= Y5 = R{)Dr; oo Dpe Ly

Proof. Lemma 3.4 implies that Y" = Y7 and the proposition follows from
(3.11), and (3.9),.

We concentrate now on the sequence {X,}2,. The study of the connection
between X, and X, ., (for n > 1) necessitates the following considerations.

Let n > 1 be fixed for a while. For h,_,€ 3#,_,, the formula (1.11) — for
A,e 1-PCID(A4,_,) — implies that

([ Autta-1l® 2 | An-1hn-al®>
§O
1 DAl = lihn-alF — [ 4ahy-alf? <

< [lAn-allP — [ Ap-aftp=il® = (| D, hn a2
This means that there exists a contraction
B, D4, ., Da,
{B,,DA"_‘ =Dy | 4,_, -
Using (3.5),41, (3.19),,4, and (3.5),, we have that
(3.20)y41 Xprr = BinX,,

where

(3.19),

Bo1 9,091, ® ... 09, > 9,09, D ... ®9r,,,
(3.21),41
Bn+1 = QAn+l Bn+1 Q;n .



ON INTERTWINING DILATIONS. VIII 69

The operator

(3.21),

will be also waseful.
Because of (3.20),,(n > 2), we must firstly study the sequence {B,}3;
For this, let us denote for every n = 1

P409r,@...@9r,
0. —(l%cwr@ o9)* Poiowo...eor,”;

in this case | — Q, is in fact the operator
DAD2r ®...02 1' D@ Pr @.. @91‘"
1 —0,= (o099 0...09" )* Po.eoe.. .09 0m
The key step in understanding {B,,};,“;, is the following
LeMMA 3.5. For every n > 1

(3'22)n+1 Qn-i-.lfén—kl = Drann >
and

32911 (I = QusD)Brar = B(1 — 0,) + 24, (1 — ¢*)(@4)* T,1,0, .
Proof. Using the same arguments as in the proof of Lemma 3.4, the case
n = 2 can be reduced to the case n = 2. Thus, it will bé sufficient to consider the
cases n = | and n = 2. Since the proof for n = 1 is similar (in fact also easier)
to the proof for n = 2, we shall consider only the case n = 2.
We will verify now (3.22), and (3.23),. For this, let xe 2, ® Zr,. Choose a
sequence {D4 A}, (Wie #,,n > 1), such that
lim D i = Q) x .
Then i
~ ~ ~p ~ ~F ok
By(x ® 0) = Q,, B0y (x ®0) = Q,, Byoog (Qax ®0) =
= lim @, B,@* (D, ® 0) = lim Q,,,B,D,,, UK; =

" n-oo n— o0

= lim Q,,,D,,,UR; = lim (Q,,D,/7) ®0 =

n—oo n-»00

= 1im (3,B,D,,h7) ®0 = (Q,,B.F x) ® 0= Bx ©0,

where we used in order (3.21);, (1.18);, (1.18)3, (1.16)’, (3.19), (1.18), (1.16)’, (3.19),,
(3.21),. This means that

(3.24) (1~ Q) By(1 — 0)) = By(1 — Qy),

and

(3.25) 03B, = 038,0,.
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Let now h,€ #, and consider y, = Q,(1— p,)D 4 € Dr,. (From [6], Lemma 1.1
(a) it follows that the set of such y, is dense in 9r,.) We have

Q:B,0 © 0 @ 7,) = 0402, B,0%0 B0 @ 1) = 050, By(1 —py)Dyhty =
= Q, (1 — p)Bs(l — pa D1y = Q4 (1 — pa)BsDyhy =
= QAswAs(l - pAs) DAahl = QﬁnDrl(Az » Ag) (1 —pAz)D_Azhl =

= l)r:xQAﬂ(1 _pAg)DAghl = Dfﬁ"& ’

where we used (3.21),, definition of y, the structure of Q 4, the fact that
By(D, Us#)~ < (D, U#)~, (1.17); and (1.13). This relation and (3.25) imply that

Q3§3 = DF3Q2 s

50 (3.22); is proved. From (3.24) it follows that (3.23); will be proved if we verify
that

(1 — QB0: = T, (1 — ) Q™)*T50; .

For this, take again /1, € #; and y:‘.—QAe(l —P4)D 41 € Dr,. Because (1—p,)D 0 €
€ 9 ,,, there exists a sequence {#7}>.,, where A€ A, for every n > 1, such that
lim D, = (1 — py)Dyhy .
n—->00

Then

(1 — QB0 B0 @ y.) = (1 — 0)3,,B;2% (0 DO Dy,) =

= lim (I — Qg)@,,ByD i = lim QA,,P”Aa@f”gﬁAa 493, D, =

n—-oo n—co

= 1im @, (1 — g (0,2, + To(Az s (L — pa)D gt =

n—>o0
= Qu(1 — ¢y (A, A)A — p)D =
= Q1 — q™)(Q*)* gy, ,

where we used (3.21),, the properties of y,, (1. 18)3, (1.16) and (1.17),. This concludes
the proof of the lemma.
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For completing Lemma 3.5, we see that we will have to study the operators

Cn :@r;—).@A (’B@rl (‘B @91',,
(3.26), '
Cy = =84, (1 ~ g*)@*)*.

forn > 1.

LeEmMMA 3.6. For every n = 2,
(327)11 QnCn = Frﬂgr: »
(328)n (l - Qn)cn = C’vn-*lDr,‘1 .

Proof. Let n = 2 be fixed. From (1.15), it follows that

(QAn-0)*T,Q,, 04, = —@(l — pAn)|R4,.

Thus,
T |Dr, = —Q4(1 — pt)Q2%
SO
THD s = —Qa,(1 — ) (@*)* = 0,C,,

and (3.27),, is proved. (We used here that 24, < 9,(”.)~

On the other hand, t_ake hy 1€ #,_yand x = Q,, D4, N, 1€D,® Dr,®
®... %, , Then: ' '

CHx © 0) = —Q4n(l — pAn) 5, (Qu,., D, -1 © 0) =
= —QAn(l — p&B} (Da,_Jfty-1 ®0) = —Q@4(1 — pA)D4,Uhy_y =
= —Q4(l — pA(D4, Topn- 1@ — TNAT 1) — (0 @ (U — T)A,Th, 0} =
— Q4(1 — p)(0 @ (U — T AT o) =
= Qn-1n(l — pAn)(0 @ U'(1 — Pp_)T,Anh,—1) =
= QD (1= pA)O © (L — Py ) Tadyhy) =

= D@41 — pAn-)(0 @ (U= To_)Ayp-ahtyr) =

= ——DchA"‘l(l - PA"—I)DA,,-Ih‘n—-'l = DI,:'C’:_.IX >
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where we used (3.26),, (1.18),, (1.16)', (1.8), (1.14), again (1.8) and (3.26),-;. This
relation is exactly (3.28), and the lemma is proved.

Lemmas 3.5 and 3.6 give us the possibility to compute the sequence {B,}.,.
The analysis of formulas (3.22),, (3.23),, (3.27), and (3.28),, for n = 2, leads us to
consider the following operators.

First, for an arbitrary contraction I' : G —» G’, (where G and G’ are Hilbert
spaces), consider

JT):G® D — G ®Dr
(3.29)

HI) = (

—I Dy
o 1)

A matrix computation shows that J(I') is unitary; this unitary J(I') is known and
used for a long time in the literature.
Define now for n > 2 and 2 € k < n the operator

(30f J(M): 7, @2, 091, @ ... ®| Tr, 09, ®... ©r, -

> F, DR, DD, D ... 0D, OIr,|D ... ®Ir,,

such that J (I,) acts like the identity on each component of the direct sum, except
the framed ones on which it acts like J(I'). For n = 1, we will need also the operator

(3-30)}1 Jn(rl):fA®i<%A @@-——r;[@@r;@ @91‘,,—"

~ 7,07 @909, ® ... @I,
defined analogously. These operators were used also in [11] in connection with the

indexing of CID(A) by A-adequate isometries.
Finally consider also the operator

(3.31), 4,: D, @D~ Dy ® 2r,,

such that Alii::@s?r = §1 and Ali_fg: = C;, and for n > 2, the operators
1

1
@2r,

(3.31), 4D DD ®Dr,®D... 0D, »D,®DD. .. DD,
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where A7 acts like the identity on each component, except on the first two on which
it acts like 4,. We denote also for n > 2 by

(332)" i" :*@A @‘@F1 @ ‘e @91"‘_1 had 9,{@9[}@ ‘e @91",._1 @ ‘@I‘;
the canonical inclusion.

ProposiTiON 3.3. For every n 2 2,
(3.33), B, = AnJ () ... J([)i, .

Proof. Consider for any nz 2 the operator
M,= 8. J,([)] 2,99, ®... ®Dr,., ®D,-.
Writing the domain of M, as (2, ® Zr, ® ... ® Zr,_,) ® (Z,.), we will prove

by induction that for every n > 2
(3.34), M,=(B,, C).

The relation (3.33), will follow immediately from (3.34),, n> 2. For n=2, we
have (if we write the range of M, as (2, @ Zr)) ® (2r,)

o~ ‘1, O 0
B, C 0
M, = A'iz-/z(rz) [ @A D Dr, ® @r; = 0 ~TI, Dr; =
0 o0 I Lo o,

(Iél — G T clprg)‘

. 0 Drz F;k
From (3.22),, (3.23), and (3.26), it follows that
~ ( B, —al,
(3.35); B, —
o

where the matrix is written with respect to the decompositions (2,) @ (Z2r,) and
(2,4 ® 9r) ® (Dr,). On the other hand, from (3.27), and (3.28), it follows that

(3.35); C, = ( ).
ry

where -the range of C, is written as (2, ® 2r) ® (2r,). The relations (3.35),,
(3.35); and (3.35);’ imply (3.34),. Suppose now that (3.34), is verified for ann > 2.
Then M, = (B,, C,), so

0 0

‘ ~ 4 ~
Bn Cn 0 . Bn —"Cn.rn+1 C"Dl‘:,+1
(3.35)41 Mpir = 0 Iy Dp =

Fpyy
0 D r*
0 0 1 0 Dr Fi:k+1 Tz n+1

n+i
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where the matrixes are written with respect to the decompositions
©2,.©2r,®.. ®2r,.) ®(2r)® (Z.:.)
(2,09, ®...99r, ) ®(9,;) ®(9r,,,)

P D9, @...0Pr,) ®(9r,.).
From (3.22),.,, (3.23),,, and (3.26), if follows that

~ B: “Cnrn+1
(3-35):’14-1 By = ;
0 Dr,,
from (3.27),,, and (3.28),,, we have
C"DP:'-(-I
(3-35);,4—1 Cr1=
LY

The relations (3.35),,,, (3.35),,, and (3.35);/,; imply (3.34),.,, and the proposition
is completely proved.

From (3.20), and Proposition 3.3 we have

CoOROLLARY 3.1. For every n = 2,

X2\ X3
X} Xp-1
(336),, : = A’ll‘]n(rf_’) s Jn(rn)
' D ¢t
il L0

(the operator O in the right hand side being between &, and & I.;).

Proposition 3.2 and Corollary 3.1 show that everything is clear in (3.9),, (n = 1),
except the first object of the process. These will be studied in the next section.

4. THE ALGORITHM (continued)

The aim of this section is to include in the iterative formulas of Section 3 the
connection between S, and S,. This will also slightly modify the formulas (3.9),,
(3.18), and (3.36),4+4, (n > 1). This separate treatment of the “first_step’’ is quite
natural: it is required even by the definition of choice sequences. Indeed, every
Y7 (for n = 1) is defined on the domain of I, (which is 9r,), but Y? is defined on
9 , while the domain of I'; is #,. This fact is connected with the condition »n > t
which appears in Proposition 3.2. '
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From (2.14), we have that

S = R} + Rérle)k = qAaApA(DAP +1-P)&, + ‘IArl(l — p)(D,4P +

+ I — P)|&, .
We define .
.1 {Xt;::PA(DAP+I'—P)]g*:$*-’9—A
"=qlo, F > &L,
and
4.2) {Xou = —pDyP+1— P& : L —> Ry
Y'=q' =Ry, : Ry~ & ;

with these definition we have that R = Y’X’ and

4.3) ’ S, = Y'Xg+ Y'X.

From (3.9), and Lemma 3.4 it follows that ,

4.4, ‘ S,p = YOXO L YY) b - YRXT,

for every n > 1.
In order to connect (4.3) with (4.4),, (n = 1), define

[ G
(4 5)“ Xn - pAXn
Xy = (1 —paX7, (n=1).

From (4.1), (4.2), (4.5), and the proof of Lemma 3.3, we have, forn > [
Y'Xy+ Y'X! = qUo,p, + [l — p))X] = Y°X) ;

thus (4.4),, (n = 1), and (4 3) can be written as

{4.6), S,,H': Y'X,+ Y'X, + VX 4+ ... 4 YXn,

where n = 0. _

It remains to include in the iterative relations (3.36),, (n = 2), the operators
X, Xg" and the splitting of X9, into X, and X, (m = 1). To this end consider the
operator

4  F, QR > F, DR,

@7 fm (it
=

(L —p)l — g%, —(1 —pXL—gh/,
and for every n = 1, ’ :
(4'7)11 A(r)’fA@%A @@I‘I@@_@F -—)‘97 ®%A®9rl®~"®91‘ N

where 4} acts identically on all components, except on the first two, on which it
acts like 4,. .
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LemMma 4.1. With the above notation

X1 X
(4.8) X" | =40 X'
X3} 091‘;
Proof. The operators in (4.8) being defined on %, consider x€ %,.. We
have:
X3 ‘ I 0 0 pu(DP + 1— P)x
Q)| X' | x=4 |0 —Iy D ||(0—p)WDP+I—P)x|=
0.@1-: 0 D)”1 F?‘ 0
P4l — g o, —pa(l — ) 0 Pu(D4P+1—P) x

=10 —=p)1—gHo, —(1—pJ(l—g*) 0 |§ —I'(1—p)DP+I-P)x|=
0 0 I Dr(l—p YD P+T—P)x
240 — gNopy + (1 —p))DP+ T — P)x
= —-poQ — qA)(UAPA + (1~ p DL+ I — P)x |=

Dr(1 —p)(D4P+1— P)x

pAl — Q) E)AlDArx X/
= (1 ~pA)(l - Ql)&)A1DA1x = Xl” X,
QI(I)AIDAlx X!

which concludes the proof of the lemma. (We used here (1.16), (4.5);, (3.5), and
(3.1

The relation (4.8) “looks like” relations (3.36),, (n > 2). There remains only
one step: to connect 4, with 4.

Lemma 4.2.

@.9) 4y = B T)ID, ©F,,.
Proof. We know from (3.31), that

8,:9,99,,>9,D9,.
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The operator A43J;(I'y) acts between F, @ %, D Dz (= (P4 +Z) ® D +) and
Fi DRy ®Dr(= (D, +ZL)® Yr,), which justifies the restriction on the right
side of (4.9). We have '

Pl —ghyoy —psl—g")y O\ /I O 0
A J(Ty) =] (1= p)(t—gHo, —(1—py(l—g*) 0|10 I Dr; =

0 0 U\o by I¥

Pl —qho, pal — ghI —pal — g%) D,
=| 1—p)QA—g%o, (—p)(1—g); —(G—p)1—g) Dy |

0 Dr, F;k ‘

Writing this matrix with respect to the decompositions (2, + &) @ 92,. and
(D, + &) ® Dr, , we obtain :

.| . (Y — A .
@0 sy = (U790 eane T LA TR OB,
vt — P4 1

On the other hand, from (3.21),, (3.19),, (1.18); and (1.16) we have
BD h=0,B,Dsh = QuDuh =
=1 — ¢)(0.ps + I'1(1 — pa)) ® Dr(1 — pYI D4,
for every h e o, which means that (see 4.10)
(4.11) AT i@ oo = By .
The relation (3.27); shows that
4.12) 0,C, = I'f\Dr; .

Finally, for he 5#,
CH(Dah @ 0ay )= — @(1 — p1)(@4)*(Dsh & 0) =

= —wh(l — p) DUk = (1 — p4)O © (U’ — Ti)4Tyk) =
= 04(1 —p4) (0 ® U'(l — P)Ti4sh = Dy (1 — pO @ (U' — T)dh)=

= ~ Dy (1 ~ pYD4h ® Or),



78 GR. ARSENE, ZOIA CEAUSESCU, C. FOIAS

(see also the proof of Lemma 3.6) which means that:
4.13) (0 =09G =—(0—¢qD:19,,.
From (4.12), (4.13) and (4.10), it follows that

4.19) AT = C,.

Q i
r
(QAJr-‘l’)@Qr;
The lemma follows now from (4.11), (4.13) and (3.31), .
COROLLARY 4.1. For every n > 2,
A1T(Ty) ... T (T = AT (TDIT2) - .. Jo(T) -

Putting together all the pieces we have: (4.3), (4.6)2.,, (4.1),(4.2), (3.18)2.,, (3.4)s,
(3.36).,, (4.8) and Corollary 4.1, we dispose now of the algorithm for obtaining the
sequence {S,}., from the sequence {I',}%.,. We have:

THEOREM 4.1. Forevery n 2 1,

S, =YX,  +Y'X', + YX)_ + ...+ Yyl

where
Y =gq4,,
Y" = ¢“I,, and
Y*=¢Dps ... DpeTuny»  Jor k=1,
and
Xog=pisDP +1—P)\ZL,,
Xy =0 —p)DP+I— P)Z,, and
X; ) Xy
X X
4.15), Xi | = 4| Xk
b
Xk Ogr;
where if AS is defined by (4.7),, then
(4.16), A= AI(TY .. T, for k= 1.

REMARK 4.1. Ttis easy to note that the factor (D, P + I — P) can be “omitted”
in the iterative relations for the X,’s. More precisely, there exist the operators

Z,,,:QA‘{“;Z—)Q"A,

Z;’:@A_(_g__)‘%/ﬂ’
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for every n = 0, and
‘ Z,If:@A’%‘g"’-@fk,

forn > land 1 < k < n, such that

X, z,
X, z)
.17, xi|=|z [@P+1- P2,
X zn
for n 2 0, where
zZ, ) Z,
) z, o1
4.18), | z, | =4,| % |,
: z7
zz )\ oap

for n > 1.

Remark 4.2. The exact transcription of this algorithm for the case dim#’ =
= dim#’ =1 and T = I” = 0 provides a numerical method which seems to be
useful in detecting the reflection coefficients of layered media by seismic exploration.

5. SCHUR-TYPE FORMULA ' ‘ ’

The aim of Sections 5 and-6 is to give an explicit formula for the one-to-one
correspondence between CID(A4) and the contractive analytic £(2,, #4)-valued
functions (see [10], Proposition 4.1).

Let us recall first the construction made in [10], Section 4. Fix A, € CID(A)
with the A-choice sequence {I',}3.;. In the following we consider I';€ L(%,, £*)
as being in #(0gza, 04 ,). Lemma 4.1 from {10] establishes a one-to-one correspondence
between CID(I';) and all contractive analytic L (Z#,, #4)-valued functions- s(z),
such that s(0) = I',. For this, the set CID({I",) is analysed as a particular case of the
general theory with T=0g,, T' =0 . and A=I,. We choose as minimal isometric
dilation for O (resp. 044) the unilateral shift of multiplicity #, (resp. #*), which
will be denoted by ¥, (resp. ¥4). Any element I', of CID{I';) is a contraction inter-
twining V5, and Va4, soit is the multiplication by a contractive analytic £ (Z 4, #4)-
-valued function s(z) (see [24], Ch. V, Sec. 3), and, of course, s(0) = I';. There is
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a simple connection between this description of CID(I",) and the observable sequences.
Indeed, in this particular situation the role of &, is played by (I— VA0;A)§2;= 7
and the role of &’ is played by (V41—04 )%™ = VAR4. Let I',€ CID(I')
and

8(z) = 8o + z8; + 2%, + ... lz} < 1

be its contractive analytic £(2# ,, #4)-valued function associated as above. Then,

taking into consideration Definition 2.1 and the construction made in [24], Ch.V,

Sec. 3, it follows that the observable sequence of I'y,, namely {5,}2., verifies

(5.1, 5, = Vis,, n=1).
Note also that

(5.1)0 So = F 1-

Next, Lemmas 4.2 and 4.3 from [10] establish a one-to-one correspondence
between all A-choice sequences and all pairs formed by a contraction I',€ L(%,, Z4)
and a I';-choice sequence. This is done in the following way. Note that using (1.7),
(1.8) and (1.10) we have

(5 2) e)al'vrl == VA'%A
"%rl = @rl E

(5.3) Fr = {Dryr @ VAT ire R,

' RN = (Dr, ® VAR © F"r |
and
(5.4 or(Var) = Drr @ VAlyr, (re A,).
Define now
(5.5)

J)=SVAHII(—D)E

QAQQF;’

{ J() 2Dy —~ R

where J is the operator which permutes the sumands in a direct sumand J(—T)
is given by (3.29). Then, it is easy to see that

(5.5 JI)@y) = (—T{dy) @ VAD, dy)
is unitary. Define for every n > 1
(56)n Vn =j(rl)rn+1 .

The sequence {7,}52, is then a I';-choice sequence (see [10], Lemma 4.3).

We are able to explain now what “the Schur-type formula” means. Consider
Ax€ CID(4) with the A-choice sequence {I',}2, and let I',,€ CID(I',) be defined
by the I'i-choice sequence {y,}52; (see (5.6),). Let further the corresponding contrac-
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tive analytic £(2,,#%)-valued function be denoted by s(z). The Schur-type
formula gives the expression of the observable sequence of A, in terms of s(z).
The rest of this section is devoted to the study of s(z) in terms of the objects involved
in the description of A ;the Schur-type formula will be given in the next section.

The formulas (5.1),, (# > 1), show that we can study the coefficients {s,},,
of s(z) by means of Theorem 4.1. To this end we will identify the objects which
appear in this theorem for the case I' ,€ CID(I'y). Denote by ¥, ¥, [p"}2.4, {x0)180,
{17380, {{xEY2_1121, o, {00324, {J,}3 the operators associated to '€ CID(I™y)
by Theorem 4.1, which correspond to the operators denoted there with the corres-
ponding capital letters. From (4.1) it follows that

.7y Y =qlor, = VI(V)*,
s0, using (4.2) we have
(5.8 Y= gV,

(The notation Y’, Y etc., are those of Theorem 4.1 for 4., € CID(A4).) From (2.4)
we infer

.7 Y = q"y = q )y = VD T,
so, using (3.18); and (3.4),

(5.8 Y= gy

From (3.18), it follows that

7, A Y= qr-.Dy; Dy; ... 'D?’.. Vr1=

= quj(r])Dr; Dl‘; AN Dr,‘,nrn-i—z =
= VADFI Dr; Ce DT:-H F,,_,_z s

so, using again (3.18),,, ,

(5.8), YrH = g4V )*pn (n =1
The relations (4.1), (4.2) and (5.2) imply that

(5.9) X =0,

and

(5.9 ' xy = Dr,.

From (5.1),, (4.6),_,—for s, instead of S,—, (5.8)"”, (5.8)7_, and the formula (5.9),
to be proved immediately, we have

(5.10), q's, = @ (VYD'x_y + ¥+ o+ YT =
= Ylx, 4+ Yl ;4 ...+ Yol n=0.

6-~.2238
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Moreover, from (4.7),, (5.2) and (5.4) it follows that

(5.11) 50=( 0 o )_
DrVilV, R, — —(1— g™)an
0 0
=wu@n( *)W:®ﬂnﬁk=
Iy 1

= [0 @ (V% @ j(T)*] .
In order to calculate {6,}2 ;, note that from (3.29) and (5.6), it follows that for every
nx=1

(.12, @) = L) & 1 I, ) @ j(T)].

Forevery # > 1 and 1 < k < n, the operator J,(I',) acts as the identity on the first
component (see (3.30)%); denote by J,(I',) the operator obtained from J(I',) by
eliminating the first components of the domain and of the range. Then we have for
nzland 1 <k <n,

(G135 T = V4 ® Ly @) @ LhosdVp AT V5 © L @ (T @ 1,4,

where the subscript of I indicates the number of components of the direct sum on
which it acts. Also, from (5.11) it follows that

(5.19), 0 =10 @ L, W, aIIVE ®jT)* @ 1,] for every n > 1.

Using (4.16),, in our particular situation it follows that for every n > 1,

(5.15), 6, = [0 ® L .apa(T ) aT2) - - Jpn(To )V @ 1, @ (T)*].

From (4.15),, (5.9)¢ and (5.15), we have

(5.9), x,=20, for every n > Q.

An important step in obtaining the Schur-type formula is

PRroOPOSITION 5.1. For every n = 1

(5.16),  Jop(Tpaly) - L Vie L@/ | 777 | =

= o | VieLd.
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Proof. The equality of the last (n 4 1) components follows from (4.15),
(applied to I' € CID(I'Y), (5.9);-, and (5.15),. There remains the first component
to be taken care of, Computing the first component in the left hand side of (5.16),
we obtain

—(DF;FZxrll’—l + Dr;Dr;‘Faxrll—l + ...+ ‘DI";DI'; e Dp n+ Jlxn %)

Note that from (5.1), , (4.6),_, and (5.9),.,, we have
(5.17), S, = Vs, =y'x; Ly + ¥+ .+, nzl.

The formula (5.16), is now completely proved if we look at (5.7)” and (5.7),
d<kgsn—1).

RemarK 5.1. The formulas (5.16),, (n = 1) are in fact

0 0 )
0 —S,
Xy x,
(5.16), JoidT T o TydTyy) | Xaey | =] x5 |
xr-1
0 \ X"

the zero-operators acting between convenient spaces.

6. SCHUR-TYPE FORMULA (continued).

Consider for everyn > 1 the operator

6.1),. ., VW =YZ, - Y'Z) +YVZY 4 L+ Y2
and
6.1), Y. =YZ,+Y"Zy .

From Remark 4.1 it follows that !

6.2), S, = Y(DP + 1 — P)|&Z,, (n=1).
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Define now the analytic (2, + £, #')-valued function

Y@ =¥ +z¥,+ ... + 2V, 1+ ..., (z} < 1)
and the analytic (.., £')-valued function

S@) =8 +z8+ ... +2"S,,+ ..., (z} < 1);
then (6.2),, (n > 1) imply that
6.3) S =YWL +1—P)&,.

The key step in this section is

ProrosiTion 6.1. For every n > 2,
(6.4), ¥, =[¥) (1~ g5 — pla-z + ¥our(l —gNoups + ¢"s0or(1—p) 5

where the first term in the right hand side means the coefficient of z"~* of the analytic
Jfunction in the brackets.

Proof. We will prove first that for every n > 2
(65)n qlnpA = Wrt*l(l - qA)O-ApA .

For this, we will prove by induction that for every n > 1

z; -1
748 B A
, Z1 Z_
(6.5)n L 1P = . ! (1 —gMo.p,.
zZiz
zr 0

n

These relations imply immediatelly (6.5),, for n > 2.
First, we have that

zZ; Zy - PA(II - qA)O'APA A Z;
ZY Y\ pa=4 Zy fpa=] 1 —ppQ “qA)UAPA =| Z,/ |4 — qA)JAPA
Z) . 0@r; 0 0

where we used (4.18), and (4.10). This is exactly (6.5); .
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Suppose now that (6.5),,, is verified, where n > 2 is fixed. Then:

which is (6.5),
Thus all we have to prove is that for every n > 2,

6.6), ¥, '—EPA) =¥, (1 — g5l — p,) + ¥,_o(1 — q")s,(1 — py) +
+ oo+ = g5l — pg) + g5, — py) .
Taking into account (6.1)} _, and (5.10)7 23, it follows that (6.6), is implied by

(6.7

' Zp " 0
1 0
Z, Xn'

: (1 —p)—
.23 \ XT3
Z,-3 )
Z,) 5
Z, -3
D A= (1 —p) .+
zZi3
0

Q—py=

’
n—2
1
Zn~2
1
Zn—Z

zZ, 1 Z,_»
"z A 2
zZ, Zy; Zys
: pa=A4, : pa=4,2180 L] :
Zn-2
zZr-l 0
zr \ O \ 0
Z, 4
1
4
=| " HA = ¢Noupa,
Zr-1
0

N

(A —go,p, =

(I —gMs (1 — P+

(1 — q%s,-2 (1 — Po)-



86 GR. ARSENE, ZOIA CEAUSESCU, C. FOIAS

We will prove (6.7),, (n = 2), by induction. For n =2 we have to prove that

A 0 Z,
z' |AQ=p)—| o |U—pd=| zy |0d—=aq1 —Dpy,
VA xq 0

which follows immediately from (4.18),, (4.10), (5.9); and (5.1),.
Suppose now that (6.7), is verified, where n > 2 is fixed. Then

z, 0 - 0
zy 0 . 0
A " AN -
(1—p)—| ™ |U=pp=4,] Tt |0—po—| ™" [1—p)=
zZy
zZ xnt 0 xni
-1 0 0
A 0 0
Z o — X x) X
= An ! . 2 (1 —pA)+Aan(F1) . Jn(Fn) 2 (1 —PA) - ”_ ! (1 —p,{) =
Zhot — X3 X523
0 xni
n-z ) Z, ]
A zZy
Z_, 0
=4, a- qA)So(l — Pyt ...+ ( —qA)Sn-e(l -+
Z55
0
. 0 \
0 0 -1
TOn-1 Y ',"*1
17 x'/’l— Zl_
=+ 45 ).c"’l (A —p)— ; Y —po= " 1A — g1 — p)+ ..+
zr-!
xph b iy
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Z; Z;
z zZy
Z 0
+1 0 A —gMs,-(1—p)+ A — gNs,-1 (1 — py),
0 0
0 0

which is exactly (6.7),.,. We used here (4.18),, (4.16),, (6.7),-1, (5.16),_;, (4.18)Z}
and (4.7),. The proof of (6.7)2., concludes the proof of the proposition.

We are now ready to prove

THEOREM 6.1. (Schur-Type Formula). The analytic operator-valued functions
S(z) and s(2), (|z| < 1), are connected by

6.8) S(z) = qA(‘TAPA + s(2) (1 — p DU — 2(1 — g o apa +

+ 521 — p )] UD4P + I — P)IZL .
Proof. The relations (6.4)., imply that
P2y = ¥, + 2¥, + 22¥y + ... =
= ¥, + z((PE( — ¢ — plo + ¥oll — qYa4p4 +¢75:(0 — P+

+ (P — ¢)s@(1 — ph + Pl — ¢Noupa + sl —p D+ ... =
=¥, + z(¥ (@) — ¢)s2)(1 — ph + AP @ — g5 — ph + ...)+

4 2(¥y + 2P + .. )1 — goupa + g es + P+ )0 —po) =
=¥, + 2@l — ¢9s(2)(1 —po) + 2¥@(1 — g)o4p4s + q's(2) 1 — pa) —

— g5l — pa) = qMoupa + (1 — p)) — ¢“T'i(1 — p) +
+ ¥(@)z(1 — éA)S(Z)(l —pa) + 21 — ¢%0,p) + @)1 — pa) -

This means that

Y@ —z(1 — g0 pa + @A — p ) = ¢*s2)(L — py) + §'04p4 s
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which implies
(6.9) ¥(2) = q*(c.apa + 5)(1 — paDU — 2(1 — g*) (044 + 51 ~ p))]~1.

The formula (6.8) follows now from (6.3) and (6.9) and the theorem is completely
proved.

ReMARrRK 6.1. The formula (6.8) shows that S(z) is a cascade transform
(see [15]) of s(z). We will explicitate this now.
First,if 4, Band (4 4 B)are strict contraction, we have that

(6.10) I—A—B)1=(I—I— A" B)y"I— A)*.

Using (6.10) in (6.9), we obtain

Y(2)=q"(04pa + s — p NI — (I — 2(1 — gN0,p)~2(1 — gH)s(2)(1 — p)I~"-
U —2(1 — g%)apad~?.

By power series formula, we infer that

(6.11) ¥(2) = qo4p[I — z(1 — qM)opa]~* + ¢*s(2)A—pJU—2z(1— gN)o4p,4]? +

+ g apa + 5@ — p) ( T 20 — 200 —gN6,p)" X1 — g5@A — p,,)r) ~

n=1
‘U — 200 — gHop,]7t.

It is plain that

6.12) $ 21U — 2(1 — ¢op,) M1 — s — p)T =

n=1

= 2l — (1 — g%0,p,1" N1 — g — 201 — p ) —
—2(1 — g*)a,pa]7' (1 — q¥)s(2)} (1 — p,) .
We will introduce now some notation
6.13)  a@ = qloupdl — 20 — Mo.p DL+ - PVZL,, el <],
6.14) @)= —pl— 21 — ¢Noupd DL + 1~ P)L,, Izl <1,

(6.15) d(z) = z(1 — plI — z(1 — gHo,p 1M1 — g%, lz} < 1.
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Then a(z), c¢(z) and d(z) are analytic functions on {z;]z} < 1} with values in £(%Z,,
L"), respectively L(Ly, Ry, L(RY, R,). Moreover, from (6.3), (6.11), (6.12),
(6.13), (6.14) and (6.15), we infer that

8(z) = a(@) + q*s(z)c(2) + g*(z04p4 + 25)1 — p I — 2(1 — ¢%)o,4p )1
‘(1 — q*)s( — d(2)s(2)]*e(z)
which implies that
(6.16) $(2) = a(2) + q[zo4p I — 2(1 — g*)o4p.) M1 — g*)s@)I — d(z)s(z)]~* -
o(z) + gUs@U — 2(1 — p )T — 2(1 — gNo,p) (1 — ¢¥)s(2) +
+ 2(1 — p )T — z(1 — ¢Do,4p) (1 — gNs(DNT — d(2)s(2)] *e(2) =
=a(2) + [ + zo,p (I — 2(1 — qM)0,p)7(1 — )@ — d(@)s(2)] - c(2) .
Let us introduce one more notation
(6.17) b(z) = q*(I + zo4p 4l — z(1 — g")o,p172 (1 — g*)IR* ,

which is an analytic #(#4, ¥')-valued function for |z| < 1.
Thus we have proved

COROLLARY 6.1. The Schur-type formula can be written as
S(z) = a(z2) + b(2)s(z2) [I — d(2)s(z)}~e(2) ,

where the entries of the matrix

-

a(z) b(2) Ly &
( ) R R,

c(z) d(z)

are analytic functions (on {z; |z| < 1}) with d(0) = 0 and both b(0) and c(0)* injective

REMARK 6.2. The formula (6.8) can be viewed also as a generalization of the
characteristic function of a contraction (see [24], ch. VI, (1.1)). Indeed, in the typical
situation of this paper, take # = #', T = T’ = 0, and A an arbitrary strict con-
traction in Z (). Then 2, = 2 ,. = ##, and from (5.2) and (5.5) we have that in
this case #, = # and #* = j(4) (). Consider the A-choice sequence {I',}5>,,
where

Iry=—j4),
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and for every n = 2,

r,=20.

n

From (5.17)%.,, (5.7)" and (5.7)2., it follows that s(z) is constant (and equal with
I')). Denote by ¥* the unilateral shift of multiplicity 3#. Using (5.5), the formula
(6.8) becomes

(V#)S(z) = —D (I — zA*)~1D, .

If ©,(2) is the characteristic function of A4, then

10.

11.

12.

13.

04(2) = —(4 + z(V*)*S(2)).
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