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EXACT SEQUENCES FOR K-GROUPS AND EXT-GROUPS
OF CERTAIN CROSS-PRODUCT C*-ALGEBRAS

M. PIMSNER and D. VOICULESCU

Recently M. A. Rieffel began studying K, and Ext for the irrational rotation
C*-algebras A, i.e. the crossed product of the continuous functions on the circle
by the automorphism corresponding to a rotation of angle 2n0 where 0 is an irrational
number. Also Kj, of such algebras appeared as the range of an index map in the con-
text of A. Connes’work [8] on operator algebras associated with foliations, the
irrational rotation algebras corresponding to an extremely simple case: the Kro-
necker flows on the 2-torus. ,

The irrational rotation algebras have a unique trace state and the results of
M. A. Rieffel [28] and of the present authors [26] taken together provided a deter-
mination of the range of the homomorphism induced by the trace from K, into R.
On the other hand S. Popa and M. A. Rieffel [27] solved the problem of computing
Ext for these algebras.

In the present paper we study K-groups and Exr-groups for C*-algebras which
are crossed products by a single automorphism i.e. the case of an automorphic
action of the rational integers.

We obtain for the K-groups and Extz-groups six terms exact sequences involving
only the groups for the initial algebra and the cross-product algebra. These exact

sequences are derived from the cyclic six terms exact sequences of K-theory and
respectively Ext-theory applied to what we shall call- the Toeplitz-extension asso-

ciated with a crossed product. / CL

For the irrational rotation a]gebras these results have as an immediate conse-
quence the fact that the homomorphism from K, into R given by the trace is injective,
which confirms a fact conjectured by M. A. Rieffel :_’and provides the missing part
in the computation of K. Also for the same algebra/é;, our general results immedia-
tely answer the problem of computing K, and describe its generators.

We show in an Appendix that our present results lead -also to a new proof
for the fact that the range of the homomorphism Ky(4,) — R induced by the trace
is Z 4+ 0Z.

We would like to mention that our work appears also to be related to recent
work of J. Cuntz [9] (see Remark 2.7 below).
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The K-theory to which our results refer is the K-theory for C*-algebras and is
periodic. The usual reference for this K-theory is [30] with the mention that the
commutative algebras can be replaced by non-commutative ones. The basic defini-
tions can also be found in the papers [9] and [14]. The Ext-groups are the Brown-
Douglas-Fillmore Exr-groups.

§1

This section consists of two lemmas about generators for K, of certain cross-
products of C#-algebras.

We shall denote by 9, the C*-algebra of n X #n complex matrices and by 1,
its unit.

If B is a C*-algebra with unit, elements of B ® &, will be written either as
elements of this tensor product or as n X n-matrices with entries from B.

For x€ B ® &, an idempotent, [x], (or simply [x] when this doesn’t lead to
confusions) will stand for the corresponding class in Ky(B). Similarly for xe B® &,
an invertible element, [x], (or simply [x]) will denote the corresponding class in K,(B).

1.1. LeMMA. Let B be a unital C*-algebra, A < B a C*-subalgebra with 1,€A
and let u€ B be a unitary element. Assume B is generated by A and u and uAu* = A.

Then, the group K,(B) is generated by the classes of the invertible elements of
the form 1, ® 1, + x(u* ® 1,) with xe A ® <M, (neN).

Proof. Let I' = Ki(B) denote the subgroup generated by the elements

[I ® 1, + x(u* ® 1,)]. Remark that [1; + 2u*] = [u*] so that [u]€l. Since the
t

elements of the form Z a;(w ® 1,), with s,t€Z, s <t and a,€ AQ® SN, are

Jess
dense in B® 9N, it will be sufficient to prove that the classes of invertible elements
of this form are in I'. Also, since [u]€l" it will be sufficient to do this only for the
4

case s = 0. Thus, lety = Z a(’ @ 1,) be invertible, and consider as in the proof

i=0 .. .
of the periodicity theorem ([4]), the matrix-identity:

a, a; ..... a,
~u, I 0
0 "“llp 1/
IT'y,.oooy\ (> 1
1 I 0 —u, I 0
= i 0 .
0 ) 0
I I 0 —u, I
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where I denotes 1, ® 1,, 4, denotes u ® 1, and

t—k
=Y, 4 @ 1) =y, w® 1)+ a .

j=0

The first and third matrix in the right hand side of this identity are of the form iden-
tity plus nilpotent so that their classes in K are trivial.

Thus, the above identity shows that [y] is equal to the class of the matrix in
the left hand side. Defining

0 O0..... el
~I1 0 0
Sé:: .
0
—1 0
a a ..... a,
I 0
0 ;
I

where ¢€ C, we have
D1 =1[Su® 1,) + T]
where n = (¢t 4 1)p. Now choosing ¢ # 0 small enough, we shall have
DI=[Su® 1)+ T1=[w®1,)+ S7'T) =
=nu]l+ [l ® 1, + S T(u* @ 1,)] . Q.E.D.

Let B, A, u be as in Lemma I.

From now on we shali make the additional hypothesis that B is the crossed
product of A4 by the automorphism induced by u.

This will mean that B will be the cross-product C*-algebra 4 x ,Z where the
action of Z on A4 is given by o: Z —» Aut A defined by (a(n))x = u"xu** for n€ Z
the representation » > u" of Z in B, being that which is obtained via the isomorphism
of Band AX Z .

By f: T — Aut B we shall denote the dual action, that is (8(y))x = x for
x €4 and (B(y))u == yu. It is well-known that the fixed-point algebra of fis A .

1.2. LEMMA. Let B, A, u be as in Lemma 1 and assume that B is the crossed
product of A by the automorphism induced by u. Then the group K\(B) is generated
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by the classes of the unitary elements of the form
(1z® 1, — F)+ Fx(u* ® 1,)F

where F,xe A @ I, (n€ N) and F is a selfadjoint projection.

Proof. In view of Lemma 1.1 it will be sufficient to prove that for an invertible

element
y=1;01,+x@*®1,)

where x € 4 ® I, there is an element of the form considered in the present lemma
having the same class in Ky (B).

To this end we shall study the spectrum of x{(u* ® 1,). The invertibility of y
means that —1 is not in the spectrum of x(u* ® 1,). On the other hand the spectra
of the elements (B(y) ® id }x(»* ® 1,)) (where id, is the identical automorphism

of O, and ye T = {z€ CI |z| = 1}) are all equal. Since
(B ® 1d,)(x(w* ® 1,)) = 7 x(u* ® 1,)

it follows that {z€ C |z| = 1} is in the resolvent of x(u* ® 1,) .

Moreover, the spectral projections P, and P_ of x(u* ® 1,) corresponding
to {z€ C |zl > 1} and {ze C; |z| < 1} are invariant under B(y) ® id,. Indeed
(B(y) ® id, }(P,) are the spectral projections for the same sets of (f(y) ® id,)(x(+* ®
® 1,)) = 7x(u* ® 1,). But, it is easily seen that the spectral projections of x(z* ® 1,)
and 7x(u* ® 1,) for the above sets coincide. Thus (8(y) ® id,)(P,.) = P, and hence
P.,eAQ N, .

Consider now for 0 < ¢ < 1 the elements

Ve = (ePy + x(u* ® 1)Py) + (P- +ex(u®* ® 1,)P_).

It is easily seen that the elements y, for 0 < ¢ < 1 are invertible.

We infer that [y,] = [»,] and since y = y,, we have [y] = [y,]. Thus we have
=Wl ® 1, — Py) + Px(u* ® 1,)P4] and what is left to be done is to show
that the idempotent P.. can be replaced by a selfadjoint idempotent. '

Now P == P2 ¢4 ® 9N, implies that

Py=F+ FT(1,® 1, — F)

with TeA ® M, and F= F* = F?e 4 ® &I, (F is the orthogonal projection
onto the range of P, in any representation of A4 ® 9M,). Using the fact that
x(u* @ 1,)F = Fx(u* ® 1,)F, we have

yo=(,®1,— F)+ Fx(u* ® 1)F+ FS(1,® 1, — F)

‘where § = —T + x(u* ® 1,)FT.
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It is easily seen that the invertibility of y, implies the invertibility of

(1, ®1,— F)+ Fx(u* ® 1L,)F + s FS(1, ® 1, — F)

for all e eC and hence
D=l =1, ®1,— F) + Fx(u* ® 1,)F] .

To make y, unitary it is sufficient to replace y, by the unitary (yoy¥)=12p,
which is easily seen to be of the same form. Q.E.D.

§2

In this section we shall obtain a six-terms exact sequence for the K-groups
of certain cross-product C*-algebras. This exact sequence will be derived from the
usual exact sequence of K-theory applied to what we shall call the Toeplitz extension
associated with the crossed product.

So, the first thing we shall do, will be to construct the Toeplitz extension.

As in the preceding section, A will be a unital C*-algebra, a:Z — Aut 4
and action of Z on A4, B will denote the cross-product 4 x,Z. Also, A will be
viewed as a subalgebra of B and u shall denote the unitary in B, corresponding to
the cross-product structure, which together with A4 generates B and such that
a(n)a = u"au*". The unit of B will be denoted by 1.

Let further C*(S) denote the C*-algebra generated by a non-unitary isometry
S, ie. §*S =1, SS* « I where I denotes the unit element.

It is known that C*(S) does not depend on the choice of S. Consider the self-
adjoint projection P = I — SS*.

Let K denote the C*-algebra of compact operators on some complex separable
Hilbert space with basis indexed by {0,1,2 ...} and (e;;),<;; the corresponding
system of matrix-units for K. Then there is a homomorphism ¢: K — C*(S) given
by ¢(e;;) = S'PS*/ and ¢(K) coincides with the closed two-sided ideal generated
by P in C*(S). As is well-known C*(S)/e(K) is isomorphic with C(T) (where
T~{ze C\ |z} = 1}) and the image of § in C(T) is the identical function z on T.
This can be written as an exact sequence:

0 —> K25 C*(S) —> C(T) —> 0.

We define the Toeplitz aigebra for (4, «) denoted by Z(4, a) or simply 7,
as the C*-subalgebra of B ® C*(S) generated by 4 ® / and ¥ ® S. Remark that
T is invariant under the inner automorphism of B ® C*(S) given by u ® I. Thus,
we can define «: Z — Aut () by a(n)x = (u ® IY’x(u ® I)**. Clearly, the homo-
morphism d: 4 — 7, d(a) = a ® I is Z-equivariant for the actions « and &.

7 -~ 2238
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Consider now J < 7 the closed two-sided ideal generated by the selfadjoint
projection Q= 1 @ I — (u ® S}u ® S)* =1 ® P. It is easy to check that there
is a homomorphism ¥: 4 ® K — 7, defined by

Y@ ®ep) =@ SYa® P)u® S)¥ = vau*) @ ¢le;;)
and moreover that (4 ® K) =J. Also, (B ® oK) n.F ==J. Indeed,

(B® o(K)) n g o Jis immediate and for y€ (B ® ¢(K)) n J we have because
of ye B® ¢(K)

0 == hm H}’ - (1 ® (p(eOO + e + emm))y(l ® (P(eoo + L + emm))‘v.l

n-— 00

and since 1 ®@ ¢fegy + ... +epm) =¥ ®f(eoo+ ... +€,,))€J and ye g
we infer y€ J.

Tensoring by B the exact sequence of C*(S) (which is nuclear), we obtain an

exact sequence:
0—BR®K—>B® CHS)— B® C(T)—>0.

Since 7 n (B ® @(K)) = J, the algebra 7|/ identifies with the C*-subalgebra
of B ® C(T) generated by A ® | and 1 @ z (1 is the unit of C(T) here and z is the
identical function on T). But this C*-algebra is clearly isomorphic with B=- 4 %X ,Z
via the correspondences @+ a @ I, u — u @ z. Thus we have obtained an exact
sequence:

0—>A@K—5T 54%x,2—>0,
which we shall call the Toeplitz extension associated with 4 X ,Z. .
Let us also remark that the diagram

9-—_11:"/‘ X aZ
X l/
A
is commutative (here 7 is the inclusion of 4 in B= A X Z).

With these preparations, we can now pass to K-theory. The same notations
as in §1 will be used.

2.1. LeMMA. a) The following diagram

KA®K) ——= e K(T)
2 dy
Ky A4) (id ) — (xf— l))%Kl(A)

is commutative.
b) The homomorphism d,: Ki(A) » K(T) is injective.
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Proof. Both a) and b) are statements concerning elements of K;(A4), i.e. con-
cerning classes of unitaries from the algebras 4 ® 9N, . Since replacing (4, x, 7°)
by (A ® M, 2 ® id,, 7 ® IM,) we have the same situation, it is easily seen that
it is sufficient to prove a) and b) only for the classes of unitaries from A.

a) Let ved be unitary. The isomorphism K,(4) ~ K, (4 ® K) associates
with [v] the class [V ® ey - (T — 1 ® €e0)] where v ® ey + -1 €go) 1S A
unitary in the C*-algebra A4 ® K obtained by adjoining to A ® K the unit I.

We have

¢;:;[U®€00+(1~— 1 ® ey)] =
=P R@P+(U®I—-1Q P)=

=P @FP+1® SS*].
On the other hand
dy o ((id ) — (@(—1))) [0] = dy([o] = [(—=DvD) = [v @ I] — [w*vu @ 1] .
Consider now the unitary

Q:(u®S Q

)ey®sm2.
0 w®S*

We have

@1 — [wou®l]=[v® 1] — [Q (“*”‘g@) 4 1 ; I) Q*] _

B C[(v®SST+Q 0 \]_
—lel [( 0 1®1)]“

=b@IN—-[v®SS*+1® P]l=
=@ Nv® SS*+1® P)']=
=[(®NHW* ® SS* + 1 ® P)] =
=[l® SS* + v ® P]
which concludes the proof of a).
b) Arguing twice as in the discussion at the beginning of the proof, we see
that we must prove the following fact: if vy, v; €4 are unitaries and if [0, 1] 3¢ =

— w,e J is a continuous function with values unitary elements of Z, such that
Wo = Uy ® I, w; = v; ® I then in K,(4) we have [vy] = [v4].
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Let us consider again the unitary

Qz(u@S 0] )
0 west

We have

(wt 0 )Q(o?(—- Dwx 0 )Q* _
0 1®1 0 1®1

_ (W,(l ® SwHl ® $*¥) + w,0 0 .
0 1®1)

Denoting by y, the element w, (1 ® S)w¥(l ® S*) 4+ w,Q the preceding com-
putation shows that y,e.J is unitary and clearly y, depends continuously on
tef0,1]. Also, yp=1® SS* 4 1, ® P and y, = 1 ® SS* + v; ® P. Moreover,
we shall prove that y,el ® I+ J.

Since

ye=10I+w,—1®DH0+
+ wl(1 @ SiwF — w¥l ® S))(1 ® §)

andJ = (B ® ¢(K)) n 7 it follows that it will be sufficient to prove that (1 ® S)w —
—w(l ® S)e B(K) for all we 7. Since the unstarred algebra generated by
A®Lu® Sand u* ® S*is dense in .7 it will be sufficient to check the last asser-
tion for elements w taken among these generators which is immediate.

Summing up the preceding discussion, we have proved that y, is a continuous
function of ¢, with values unitaries in 1 ® I + J and such that y, =1 ® SS* +
+0®P,y;=1Q® SS* 4 v; ® P. Using the isomorphism of C1®I) -+ J
with 4 ® K given by ¥, this implies that the classes in Ky(4 @ K) of (T — 1 ® ego) +
+ vo ® €5, and (f — 1 ® eg) + v; ® ey, coincide. But this is equivalent with
[vo] = [v,] in Ki(A). Q.E.D.

2.2. LEMMA. The following diagram:

K4 ® K) Ve e k()
2 dy

is commutative.
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Proof. As in the proof of Lemma 2.1 it will be sufficient to prove the femma
only for the classes of selfadjoint projections from A.
Let ge A be a selfadjoint projection. The isomorphism Ky(A4) ~ K4 ® K)
associates with [¢] the class [g ® eq] .
We have
Yylg ® el = [g ® P].
On the other hand

dy o ((idy — ((—1))) gl = [g ® 1] - [((—D)g) ® 1] .
Using the unitary operator

(" nos)
0 u* ® S*

we have

[(a(—l)q)®11=[9(("‘(“’”)(’9’ 0)9*]:_

0 0
_[fa®ss* 0\7_ o
(5 -wes
=[gR®I)—~[g® P]. Q.E.D.

2.3. LeMMA. The homomorphism
dy 1 Ki(A) > K(T) is an isomorphism.

Proof. Consider the diagram:

) 5
K4 ® K) Vi K (T ) — %k (A X L) ——mKo(A ® K)

ix

A &
]\"(A) (ld,‘)* — (a(— ]))*>K1(A)

The top tow of the diagram is an exact sequence, being a segment of the
exact sequence of K-theory applied to the Toeplitz extension. Also, because of
Lemma 2.1 the square in this diagram is commutative and d, is injective. Recall
also that i = nod and hence iy, =, od, .

It is easily seen from these facts, that all we have to prove is that Im i, > Ker §.
We shall use to this end Lemma 1.2.

Since the sum of the classes of two generators of the form considered in
Lemma 1.2 is again the class of such a generator, we infer that every element
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in Ky(4x Z) is the difference of the classes of two generators. On the other hand
we assert that for a generator (1 ® 1, — F) + Fx(u® ® 1,)F as in Lemma 1.2 we
have

UL ® I, — F) + Fx(u* @ 1)F], = [F ® eglo »

where £ ® ey, is viewed as an nXn matrix over 4 ® K. Using again the argument
that (4, ) can be replaced by (4 ® M, 2 ® id,) we see that there is no loss of
generality in assuming that # == |. Remark that the unitary:

(1 — F)+ Fxu*Fe AX L

lifts to the co-isometric element w= (1 — F)® I + Fxu*F ® S*€ 9. But for
such elements, 0 is computed as an index of the lifting w.

Since the projection onto the kernel of w is F @ P = Y(F® ey) and the
cokernel of w is O, we infer that

I(l — FYy 4+ Fxu*F), = [F ® el -
Returning now to matrices, we have
A1, — F)+ Fx(u* @ 1,)Fh —
— [l ® 1, — F) + Foxo(u* ® 1,)F,], € Kerd
if and only if in Ky(A) we have [F}}y = {F) . Since
(1 ®1, — F)+ Fixy@® @ L)AL =
=[(1 @ L4, — FD) + Fixi(u* @ 1,4,)Fih

where Fi =(0® 1,)@® F,,x;=(1 ®1,) @ x; there is no loss of generality in
assuming m = n. Also, because of

[(A®1,— F)+ Fx@® @ L)L —
— A ® 1, — Fy) 4 Fpxp(u® ® 1)Fp =
=[(1 @ Ly, — F) + FI'x{'(v* @ L )F'} —
— [ ® Ly, — F)) + F/x) (0" ® 1,4)F5'h

where F/ = FL @ (1 @ 1,),x/ =x,® (1 ® 1,4, (k=1,2), we see that every
element @ of Ker é can be written as:

o=[1®1,— F)+ Fx@ ® 1) —

— (1 ® 1, — F) 4+ Foxp(u* ® 1,)F:],
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where F, = vF,v* for some unitary ve 4 ® N,. But, then
o=[(A®!1,—~ )+ Fixu* @ 1)L —
~ (1 ® I, — F) + Fixsu* ® 1,)Fih

where x3 = vxy(o{—1) ® id,)v* e 4 ® I, .
This in turn gives:

o=[(1&I1,—F)+ Fx,@* @ 1)) 1, ~ F)+ Fxu* ® 1,)F)*), =
=[1®1,— F)+ Fx(e(—1) ® id,)F)xFFA], .

This last equality shows that @€ Im /.. Thus we have proved that Keré <Im i, .
Q.E.D.
2.4. THEOREM. The diagram

(id 1) — ((—D)s iy
- Ky(A) Ko(A X ,Z)

Ko(4)

[ (id Oy — (1))

KA X Ly Kiy(A) Ki(A4)

where the vertical arrows correspond to the connecting homomorphisms in the exact
sequence for the Toeplitz extension (modulo the isomorphisms Ky(A) ~ K(A®K),
Ki(A) = K (A ® K)) is an exact sequence.

Proof. Looking at the diagram in the proof of Lemma 2.3 and using Lemma
2.1 a) and Lemma 2.3 we have that the sequence

Gda)y — (a(— D)y ix
Ko(A % ,Z) ' Ki(A) - Ki(A4) » Ky(A X L) — K(A)

is exact. This shows also, that the theorem will be proved if we can establish the
analogue of Lemma 2.3 with K, replaced by K, (the analogue of Lemma 2.1 a) is
just Lemma 2.2).

To this end, remark first that

(idery @ d)y: Ki(C(T) @ A) > Ky(C(T) ® T)

Is an isomorphism. Indeed, applying Lemma 2.3 to (C(T) ® 4, idsq) ® o) instead
of (4, &) and remarking that 7(C(T) ® 4, id¢qy @ )~ C(T) ® I (4, o) we obtain
exactly this fact.

Now, related to the periodicity theorem, there is a natural isomorphism

K(C(T) ® M) = Ko(M) @ Ky(M)




104 M. PIMSNER and DAN VOICULESCU
for any unital C*-algebra M. This, together with the fact that
(ideery ® d); - Ky(C(T) @ 4) = Ky(C(T) @ T)

is an isomorphism, immediately gives that d,, : Ko(4) — K,(J) is an isomorphism.
Q.E.D.
We conclude this section with applications of the results obtained, to the
irrational rotation C*-algebra. For 0 < 0 < 1 an irrational number, the irrational
rotation C*-algebra A, is the crossed product of C(T) by the automorphism corres-
ponding to a rotation of angle 278. Equivalently 4, is the C*-algebra generated by
two unitaries u and v, such that uou® = ¥y .
Applying Theorem 2.4, we obtain that K;(4,) is a free abelian group with
two generators. Taking into account also Lemma 1.2 and the description of the
map Ky(4 X ,7) = Ky(4), given in the proof of Lemma 2.3, one easily obtains

2.5. COROLLARY. K;(A,) is isomorphic with Z.@® Z the generators being the classes
{«] and [v].

Also, from Theorem 2.4 we obtain that Ky(4,) is also a free abelian group with
two generators. The unique trace-state of 4, induces a homomorphism Ky(44) — R
the range of which, by results of M. A. Rieffel [28] and of the present authors
[26], taken together, coincides with the subgroup Z + 0Z of R. Since Ky(4,) is a
free abelian group with two generators, we infer, that this map is an isomorphism
of Ky(A4,) onto the group Z -+ 0Z .

2.6. COROLLARY. The unigue irace-state of Ay induces an isomorphisin of
Ko(Ay) with the subgroup Z. + 6Z of R .

2.7. REMARK. J. Cuntz has pointed out to us that it is possible to use Theorem
2.4 also for studying Ky(A4 X ,Z) in case A is not unital and that this may be useful
in studying K,(0,) for the algebras O, considered in [9] and [10] since by [10] the
algebras O, ® K can be represented as crossed products of certain non-unital
C#-algebras by single automorphisms. For 4 non-unital one should use Theorem
2.4 for A x3Z and the split exact sequence

0— AX,Z » AXzZ - C(T)—>0.

§ 3.

In this section we shall obtain a six-terms exact sequence for the weak
Ext-groups of certain cross-product C*-algebras. The proof of this fact is closely
patterned after the proof of the corresponding result for K-groups, given in §2.

We shall use the same notations concerning the crossed product A X ., Z = B
and the associated Toeplitz algebra 7 as in § 2.
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3.1. LEMMA. Let M be a unital C*-algebra, p : A > M a unital *-homo-
morphism and se M such that

s*p(a)s = p(a(—1a)

for all ae A. Then there exists a unital *-homomorphism ¢ : I — M, which is also
unigue, such that:

o(d(@)) = p(a), ou® S)=s.

Proof. The uniqueness of ¢ is obvious, so we shall concentrate on the existence.
Representing M on some Hilbert space it is easily seen that there is no loss of gene-
rality if we treat only the special case when M is the algebra L(H) of all operators
on the Hilbert space H. Since s*s = s*p(1)s = p(a(—1)1) = I,; we see that s is an
isometry. Moreover

(L — "™ )p(@)s")y* ((Ty — s"s*")p(a)s”) =

— s*np(a*a)sn _ (s*np(a)sn)* (S*np(a)sn) —

= p(e(—n)(@*a)) — (p(e(—n)a))* (p(e(—n)a)) =0
so that

pla)s® = s"s*"p(a)s” = s"p(a—n)a) .

Thus s” interwines p o a(—n) and p .
We infer that H, = (Y s"H and H, = H © H, are reducing subspaces fot

n>0

p(A4) and the Wold decomposition asserts that they are also reducing for s. Now
§|Hy is unitary and hence there is a representation &, of the crossed product A X ,Z
on H, such that Go(a) = p(a)!H, and Go(u) = siH,. Defining o, : I — L(H,) by
0o = 0y o1 We have gy 0d = p|H, and ao(u ® S) = s|H, .

To complete the proof, it will be sufficient to show that there is a represen-
tation ¢; of J on H, such that ¢, od = p|H, and o,(u ® S) = s|H, . Denoting
S|H, by s, we define on H, a representation &, of J = (4 ® K) by

a1(Y(a ® e)) = si(p(@)|H)(Tn, — s157)s{ .

1t is not difficult to check that this is a representation; we mention only that the
projection (Jn, — s,5F) commutes with p(A) and leave the details to the reader.

Now, &, is non-degenerate and hence there is a unique representation o,
of 7 on H, extending &, and which can be defined by

o (x) = s-limay(xyp(l @ e+ ... +1 @ e,n) -

m-»co
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For x=a ® I = d(a) (ac A) this gives

o(d(@)) = s-lim 6,(Y(@ ® egp + (a(—1)a) ® ey + ...

=00

R + (0{(—77‘[)61) ® emm)) =

m

= s-lim ¥} sf(p((—k)a) H)) (I, — 8,5F)s3* =

m—=00 L0

m

= s-lim Y] (p(@) Hy)s(Iu, — 5,5¥)s7* = p(a) H, -

m—c0 ;1 T,

Also,

0'1(1/1 ® S) = s-lim al(l//(l ® €10 + e + 1 ® em+1, m)) =

1= 00

m
= s-lim Y st (I, — susP)sF =5, -

m—00 [Ty

Thus 0,0d = p H; and o,(u ® S) = s; which concludes the proof. Q.E.D.

We pass now to Ext-groups. For H a complex separable Hilbert space of
infinite dimension, we shall denote by K(H), L(H), L/K(H) the compact operators
on H, the bounded operators on H and respectively the Calkin algebra. The canonical
map L(H) —» L/K(H) will be denoted by ¢. When this will not lead to confusions,
we shall write simply K, L and L/K .

In order that the considered Ext’s be groups we shall assume in the results
involving Ext-groups (Lemma 3.2, Lemma 3.3, Theorem 3.5 below) that A is separable
and nuclear. We remark that this implies that 4 X,Z and Z are also nuclear and
hence their Ext’s are groups.

By Ext A and Ext,A we shall denote the Exz-groups with respect to strong
equivalence and respectively weak equivalence. For a =-monomorphism ¢ : 4 - L/K
the corresponding classes in Ext A and Ext, A will be denoted by [o] and
respectively [a],, .

Remark thatif ¢: A — L/Kis a=-monomorphism and ee L/K is a projection in
the commutant of 6(4), and e # 0, then there is an isomorphism eL/Ke ~ L/K
which gives us the possibility of considering the “‘restriction” of ¢ to ¢, however
the class of this “‘restriction’ is determined in general only up to weak equivalence.

We shall say that a unital separable nuclear C*-algebra M has the homotopy-
-invariance property if the following holds: if gy, 6;: M — L/K are unital #=-mono-
morphisms, which can be joined by a continuous curve in the space of unital =-homo-
morphisms from M to L/K endowed with the topology of point-norm-convergence,
then [o,] == [o,].
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This property is somewhat weaker than the homotopy-invariance property
for homogeneous extensions considered in [24]. Further, from the sharpening of
Salinas result [29] obtained in [24] we have that generalized quasidiagonal (abbre-
viated g.q.d.) C*-algebras have the homotopy-invariance property. Generalized
quasidiagonal means that there is a composition series with quasidiagonal quotients
and M is quasidiagonal if it has a faithful representation p : M — L(H) (H separable)
which is almost diagonal, i.e. so that there are finite rank orthogonal projections
P; 11, P;e L(H) for which lim ||[p(»), P,]|| = O for all y€ M .

jo oo

We shall also need the six-terms exact sequence for Ext. This sequence proved
by Brown-Douglas-Fillmore for commutative C*-algebras, has been generalized to
wider classes of C*-algebras, together with other parts of the Brown-Douglas-Fillmore
as the result of the work of several authors (2], [3], [5], [11], [24],125], [29], [31], [32)).

On the other hand the exact sequence for the weak Ext-groups should also
follow (without any quasidiagonality assumption) from the results announced in [19].
We shall give here the result from [25]. Let 4 be a unital C*-algebra, I a closed
two-sided ideal. The diagram:

Ext (AJI) —> Ext (4) —> Ext (I)

Ext (SI) <—— Ext (SA) <—— Ext (SA/I)

is an exact sequence, where A {and hence all the other algebras) is nuclear, moreover
I, A/I are g.q.d. (and hence all the other algebras) and it is also assumed that there
is a unital *-homomorphism X : A/ - C. Here SA is the reduced suspension of
the “pointed” C*-algebra (A4, X) i.e.

SA = {fe C([0, 1], A) | xf(t) =0 (V) te[0, 1], £(0) =f(1) =0} .
Let now A be unital, nuclear and let 7 =« A4 be a closed two-sided ideal and

assume that / and A/l are g.q.d.
Then without assuming 4/7 “‘pointed”, we can pass to

0—>1—> A —> AJ[ —>0

where A77 is clearly “pointed”.

Now, there are isomorphisms Ext (/\’Z):Extw (M) and Ext (§[\7[) =~ Ext (QM)
where QM = {fe C(T, M) f(1) = 0}". ,\

Then the six-terms exact sequence applied to 0 - I - 4 — 4/l - 0 gives an
exact sequence:

Ext,, (A[[) —> Ext, (4) ——> Ext, ()

Ext,, (QI) <—— Ext,, (QA) <—— Ext,, (QAJI) .



108 M. PIMSNER and DAN VOICULESCU

Moreover when M is unital nuclear, g.q.d., there is a natural isomorphism
Ext, (C(T) ® M) ~ Ext, (QM) @ Ext,, (M)

and when M is not unital:
Ext,, (C(T) ® M) ~ Ext,,(QM) @ Ext,, (M)

(use for instance Lemma 8.5 of [25]).

3.2. LEMMA. a) The following diagram

,_\_/’ lﬁ* . .
Ext, (A ® K)e Ext, (7)

d d*

(id)* — (x(—=1)* Ext Y4

Ext,, (A) s

is commutative.
b) The homomorphism
d: Ext,(9) - Ext,(A)
is surjective.

Proof. a) Let 1 : 7 — L/K be a unital *-monomorphism. Then the projection
T(Y(1 ® ey)) commutes with (tod)(A). The “restrictions’ of 1o d to 1(Y(1 & ey))
and 17, — t(¥(1 ®e,)) determine two classes [,],, and respectively [a,],, in Ext,, (A4).
We have [6¢], -+ [0, = d*[t],,- Moreover the class in Ext,, (4) corresponding via
the isomorphism Ext, (4 ® K) ~ Ext,, (4) to y*[1], is just the class [o,], .

On the other hand consider s = (¥ ® S). We have s*s =1, ,; and ss% == 1, —
— (Y (1 ® eqns)). Also for a € A we have

st(d(@) = (v @ S)a ® 1)) = ((«()a) ® I)s = (z o d)((1)a)s

which shows that («(1))*[s,], = d*[1]., -
It follows
(o(—1))*d*[1],, =[o1),y = d¥[],, — [00)w

which is the desired result.

b) Let p : 4 » L/K be a unital s-monomorphism. Since Ext, (4) is a group
there is [y}, € Ext, (4) such that [p], = [#], -} («(—1))*[p],,. This implies the
existence of a selfadjoint projections e in L/K commuting with p(4), such that the
“restriction” of p to e defines an extension weakly equivalent with (a(—1))*[p],, .

But this means that there is se€ L/K such that s*s =l zss* = e and
s*p(a)s = p(a(—1)a) .
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In view of Lemma 3.1 there is a unital *-monomorphism ¢ : § — L/K such
that o od = p and o(u ® S) = 5. Clearly d*[c] = [p] and a fortiori d*[s], = [p]. -
Q.E.D.

3.3. LEMMA. Assume J has the homotopy-invariance property. Then, the
homomorphism
©d* : Ext, (7)) —> Ext,, (A)
is an isomorphism.

Proof. By Lemma 3.2 b) we know that d* is surjective, so that it will be suffi-
cient to prove that d* is also injective.
Consider the diagram

E3 % e’
Ext, (A& K) <—i’—~——£xrw (7 ) t———Ext, (1X,Z)
?' d* *

. o " —_— *
d)” = =D b ¥y

Fxt, (A)=a

the top row of which is an exact sequence and in which the square and the triangle
are commutative. If d*[g], = 0 for [¢], € Ext,(Z) then y*[c], = 0 and hence
[6},, = 7*[n],, for some [n],, € Ext, (4 x ,Z). Moreover i*[y],, = d*n*[n], = d*[c],=0.

Thus it will be sufficient to prove that if [y], € Ext,, (4 X ,Z) is such that
i*[n), = 0, then ©*[n], = 0. A slight further reduction is possible; it is sufficient
to prove that if [y] € Ext (4 X ,Z) is such that i*[n] = O then n*[y], = 0. Indeed,
if i*[n],, = O then there is [n'] such that i*[#’] = 0 and {5'], = [#]., .

Thus consider [n] € Ext (4 X ,Z) such that i*[5] = 0 and let us construct a
special element of the class n*¥[y]. Since trivial extensions are equivalent, we can find
i AX,Z —» L(H), such that Kergoy =0 and gopoi=1noi. Let further H, be a
Hilbert space with an orthogonal basis {fy, f1, ... }, let ¥ be the unilateral shift
on this basis and let v be the representation of  on H, = H ® H, defined by
wd(@) = wa) ® In, and vu® S) = pw) @ V.

Then we have a *-homomorphism:

(qov)®(emn): T — LIK(H,) ® L/K(H) = L/K(H, ® H)

Taking p of infinite multiplicity it is easy to insure that g o v is a monomor-
phism, and hence we have

] =[(g°v) ® (non)].
So, what must be proved, is that [(go v) @ (nom)], = 0.

Let ve L/K(H) denote the unitary ((g o u)(u))*n(x) so that g(u)v* = (g o u)(u)
and v commutes with (g o u 2 i)(A4) = (0 i)(A4) since

vn(@v* = (g - W)@))*n(e()a)((q ° W) =
= ((g > 1)())*((g > W((DD)(g > W) = (q ° p)(@) = n(a) .
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Consider now the decomposition
H,® H=(H, © (H® /) ®(H®fo) @ H)
which we shall write as
H,®H=H; ®(H® H)

after identifying H ® f, and H via & ® f, — h and denoting H, © (H ® f) by H .
Corresponding to this decomposition we shall view

L/K(Hy) @ (LIK(H) ® y)
as a subalgebra of L/K(H, @ H). In this subalgebra of L/K(H, @ H) we consider

the following unitaries:
UO == I@ ( I 0)

0 w

v O
=1
’ ®(o 1)

v O cost sint I 0 cost  —sint
= I ® ) _ ) . ) .
0 7 —sint  cost 0 " sint cost

The following relations are easily obtained:

UFU = Wo, Wy =1
and N

(@ o) @ (Gopem)u® S) = (gov) ® (qop-n)® S) .

Moreover vy, vy, W, are in the commutant of (g v) @ (non)) o d)(A4).
Using Lemma 3.1 we now define *-homomorphisms:

o, T —> LIK(H, ® H)

o,0d=((qov)®(nom))od and
o (u® S)=(((gov) ® (nem))(u @ S)Hw, .
Clearly o, , in the topology of point-norm-convergence, depends continuously

on t. By homotopy-invariance, we infer {6,] = [6,2]. Now [0,,.] = [(g° V) ® (5 o m)]
and hence to conclude the proof of the lemma it will be sufficient to prove that [¢0],,=0.
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We have
(6ood)(@ = (((g°v) D (nom))od)(a) =

=({(ge V) ®(gopeon)od)a) =
= v}((gov) ®(gopom)od)(a)n
Go(u @ S) = (((gev) ®(nom)(u® S)w, =
=(((gov) ®(@Gop-m)u® S))v, =

= v¥((qov) ®(gopon))u® S)v, .
It follows that

[oo], =[(gev) @ (gopom)], =0. Q.E.D.

3.4. Remark. Concerning the proof of Lemma 3.3 we would like to mention
that the ideas of constructing the unitary v and then of getting rid of this unitary
by means of a homotopy were inspired by {27], where similar arguments were used
in the computation of the Exs-groups of the irrational rotation C*-algebras.

3.5. THEOREM. Assume A is unital separable and nuclear and assume that
AX,Z and A are g.q.d. Then the diagram

i* (id )* — (a(—1))*
Ext, (A X Z) Ext, (A) Ext,, (A)

(idg)* — (Qu(—1))* (Qi)*
Ext,, (QA4) Ext,, (QA4) Ext, (Q(A X ,Z))

is an exact sequence (the vertical arrows are defined from the exact sequence for the
Toeplitz extension).

Proof. Consider the diagram

k l//*

Ext (4%,2) — " wpu (T) ——Y  mEv (@ K)

\ ld* !
e
ExeY gy W07 = (=D e

w

where the top row is a segment of the six terms exact sequence for the Toeplitz
extension, the triangle and the square are commutative (Lemma 3.2) and d* is an
isomorphism (Lemma 3.3). This gives us the possibility to replace in the six terms



112 M. PIMSNER and DAN VOICULESCU
exact sequence for the Toeplitz extension the segment

¥ p* s
Ext, (A X2y —> Ext () — Ext,, (4 @ K)
by
(id 4)* —(a(~ 1))*
Ext, (A ,Z) — Ext,, (A) —— Ext,, (A) .

Thus to complete the proof of the theorem it will be sufficient to obtain the
results corresponding to Lemma 3.2 a) and Lemma 3.3 with Exz, (?) replaced by
Ext, (Q7).

As for K-theory, this is achieved by remarking that the Toeplitz extension for
(4 ® C(T), « @ idg(yy) is

0—AR®KRCT)— T ®CT) — (AX,2Z)® C(T)— 0

and then using the natural isomorphism

Ext,,(C(T) ® M) ~ Ext, (QM) @ Ext, (M) . Q.E.D.

In order to be able to use the preceding theorem it is necessary to have criteria
for the generalized quasidiagonality of A4 X ,Z. The authors have learned that in
case A is commutative results about quasidiagonality have been recently obtained
by D. Hadwin.

Here we shall give a result we obtained for non-commutative 4 when the
action « : Z — Aut A satisfies a certain almost-periodicity condition.

3.6. LEMMA. Let A be a unital separable C*-algebra and let a :Z — Aut A
be a homomorphism, such that there exists a sequence of integers 0 < ny < n, < ...,
so that

lim la(n)a — a|l=0
Jj—oo

for all ae A. Assume, moreover, A is quasidiagonal. Then A X ,Z is also quasidiagonal.

Proof. Let U be the bilateral shift on a Hilbert space H, with basis {e,},cz
and let p : A - L(H,) be an almost-diagonal representation, so that the represen-
tation ¢ of A X,Z on H, ® H, defined by

ow) =In ®U
a(a)(h ® e;) = (p(a(—J)a)h) ® e;

be a faithful representation of 4 X ,Z. We shall prove that ¢ is also almost diagonal.
Let (a;)5°; =4 be a total sequence of selfadjoint elements. Replacing n, < 1y <

by some subsequence, we may assume |la(n)a, — @l < 1/j for 1 <k <j. Let
further P; e L(H,) befinite rank projections, such that P; t I'and ||[p(a(k)a;), P}l <1/}
forl <i<jlkl <
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Consider in H, the pairwise orthogonal vectors of norm 1

kn . k=
Ji,j = COS - ¢ 4 sin ——¢,_,
’ 2 2 J

n; n;

where 0 < k < n;. Remark that |[Uf, ; — fit1 ,ll < L for 0 < k< n; — 1 and

l’Ij
.f;rj,j = fo,; - Since, moreover the vectors Uf, ; — fi+y,; for 0 <k <n;—1 are pair-
. . . . 2n
wise orthogonal, this easily gives ||UQ;U* — Q| < o where Q; denotes the

J
projection onto the linear span of {f; ;, ...,f,,j_l,j} .

Denoting by R; the projections P; ® Q;, it is clear that R; /I and
l~im I|[o(u), Rl = !im lo()R;o(u*) — R;||=0.
J—00

Jr oo

Thus, it will be sufficient to prove that lim ||[o(a,), Rj}|| =0for k = 1,2,... .
Jj—oo

To thisend, write R; = Ry ; + ... + R, _; ; where R, ; is the orthogonal projection
onto the subspace (P;H,) ® f; ;. Since for i s k(0 < i, k < n;_,) we have

([o(a), R, ;*[6(a), R, ;] = [o(a), R; )([o(a), R, ;)* =0

for a € A, we infer that

lo(a@), Rj]ll = max ||[o(a), Ry j1Il -
1<k 1

Now, for 1 <7 <, consider g; (which is selfadjoint) and remark that
lo(a)), Rk,j]” < 2| — Rk,j)o'(ai)Rk,j” .
Consider 4 € P;H, with |[h|| = 1. We have
”(1 - Rk,j)o'(ai)Rk, j(h ®fk1)H <
< flo(a)h ® fi, ) — (Pip(a(—K)adh) ® fi ;I <
< 2f[p( —K)aph — Pp(a(—k)ah| +
+ lpl(—k + npadh — pa(—k)a)h| <
< 2P, pla(—K)ap]|| +

+ [Jo(—k + nja; — a(—k)a;|| <

<20+ H“("j)ai —al <30,

8 — 2238 31
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Thus for 0 <k <nm— 1, 1 <i<j we have

I — Rk,j)a'(ai)Rk,j” < 3fj
and hence for 1 €i <j

lle(a), Rl < 6/j.
lim {[[o(a), Rl =0. Q.ED.

->OO

This gives

3.7. PROPOSITION. Let A be a unital separable C*-algebra with a compositior
series (J,)o<,<p Such that fp+1/Jp are quasidiagonal. Let further o :Z — Autd
be a homomorphism such that «(n)J, =J, for all neZ and 0 < p < f. Assume
moreover that there is a sequence of integers 0 < ny < n, < ... such that

lim fla(n;)a — all = 0

j—oo
forallae A. Then AX Zis g.q.d.
Proof. Remark that (J, X ,Z)y<,<; 1S a composition series for 4 X,Z. The

quotients (J,.4; X ,Z)/(/, ,,><az“) can be identified with subalgebras of ( J;,H/J ) X L which
are quasidiagonal by Lemma 3.6. Q.E.D.

APPENDIX

In this appendix we shall give a new proof for the result obtained in [26]
concerning the range of the homomorphism K (4,) — R induced by the trace. In
fact what we shall do will be to give a method for verifying that K(4 X ,Z) is generated
by certain projections in case there are sufficiently many what we shall call Rieffel-
-projections, i.e. self-adjoint idempotents of the form:

P = u*x¥ + xp 4+ xu (x4, X, € A)

in A X,Z. This amounts to finding a way of computing the image via the homo-
morphism 6 : Ky(4 X ,Z) - K,(4), appearing in the exact sequence, of the classes
of Rieffel-projections.

Let us begin with a few remarks about elements x,, X, € 4, xo = xg" such that

P = utx¥ + xo + xu
is a projection. From p? = p, we immediately get the following relations:
(1) xo = x5 + a(—1)(x*x;) + X xF
(1) x; = xpx; + x3(2(1)x0)
@iii)) 0 = (o(—1)xp)x; .
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Consider 4 the left support projection of x, in the enveloping von Neumann
algebra of 4. Then (iii) gives:

(e{—Dx)4 =0
and (i) gives:
xpx¥ = A(xg — x3) = (xo — x3)4 .

Finally from (ii) it follows that
AXgXy = XXy
which together with x, = x¥ implies that
[xg, 4] = 0.
Let us also record for further use that these relations imply:
(@(—Dx)(xf — xp)4 = 0.

PROPOSITION. Let p = u*x¥ -+ xo + xu € AX L be a Rieffel-projection and
4 the left support projection of x, in the enveloping von Neumann algebra of A.
Then the unitary exp (2rixyA) is in A and

d[plo = fexp (2mixed)], .

Proof. The homomorphism o is the composition of the connecting homo-
morphism
0: KA X ,Z)y —> K(A ® K)

associated with the Toeplitz extension for 4 X ,Z and the isomorphism Ky(A®K) ~
~ Ky(A4). So, it will be sufficient to prove that

exp 2mix,d) @ e+ 1 ® (1 — g)€ A ® K

and
0lplo = [exp (27ixod) @ €y + 1 @ (1 — el -

Now in general if
0 —>I1—->T—>TI—0

is an exact sequence of C*-algebras, then d[p],, where pe T/I is a selfadjoint
projection, is computed as follows. Take a selfadjoint lifting @ € T for p. Then

d[ply = [exp (2mia)], .

Thus, both assertions of the proposition will follow once we shall show that
taking the selfadjoint lifting

a=uwx;, @S*+x@I+xu®S
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for the Rieffel-projection p, we have
exp (2mia) = exp Qrix(d) ® P+ 1 ®@ (I — P) =
= Jlexp (2mixgd) ® ego + 1 ® (1 — eyy)) -

This will follow from computations.
Note that

@P=a—xxFQ@P=a+ (x5 —x)d @ P.

We shall prove by induction that

a"=a+ (xf — xp)d ® P.
Suppose this is true for #. Then

a"tl = a® + a((x§ — x9)4 ® P) =
=a 4+ (63— x0)d ® P+ xo(xf — x0)4 ® P +
+ xu(xg — x0)4 ® SP =
=g b (3T — x)4 ® P+ u(a(—1)x)(x§ — x0)4 @ SP .

Since the last term vanishes, the assertion is proved.
Summing up it follows that:
exp (2nia) =

= (exp (2ni) — 1)(a — x4 ® P) +
+exp(rixed) ® P+ 1@ (I — P) =

=expurix,(d) @ P+ 1@ I — P). Q.E.D.

Now for A, we have

Ky(C(T)) —> Ko Ag) —> Ky(C(T)) .

Since K(C(T)) =~ Z is generated by [1] and K(C(T)) ~ Z is generated by {v], where
v is the identic function on T = {z€ Cj |z} = 1}, it follows that Ky(A4,) is gene-
rated by [1], and [p], in case there is a Rieffel-projection p such that §[p], - [v];.
The existence of such a projection is immediate by applying the Proposition we
have proved, to the projections constructed by Rieffel [28]. Having found generators
for Ko(A,) it is easily verified that the range of the homomorphism Ky(4,)—R induced
by the trace is Z + 0Z .
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Added in Proof.
1. Among the predeczssors of the Toeplitz extension we would like to mention Coburn’s

work on the C#%-algebra of an isometry, O’Donovan’s work on weighted shifts (Trans. Amer.
Math. Soc., 208 (1975), 1 —25) and the work of P. Muhly, Mc. Asey and X. S. Saito on non-seifad-

joint crossed products.
2. After this paper has been circulated as a preprint (without the Appendix) several advances

have been made:
a) J. Cuntz in “K-theory for certain C#-algebras. II"” has obtained a generalization of our
Theorem 2.4 based on connecting our work to his previous work [9]. He also obtains an extremely

Tr
nice and much simpler proof for the range of Ko(4)) —> R .
b) Two preprints of A. Connes *‘An analogue of the Thom isomorphisms for cross products

of a C*-algebra by an action of R” and ‘““C*-algébres et géometrie differentielle” contain severai
fundamental results (Thom-isomorphism and index-theorem for Lie-group actions on C*-algebras)
which among many other things also provide a new proof for our Theorem 2.4 and give a non-
«commutative differential-geometric insight into the structure of 4, .
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