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ON THE SPECTRAL PICTURE OF AN OPERATOR

BERNARD CHEVREAU

1. INTRODUCTION

Let s be a separable, infinite dimensional, complex Hilbert space and let Z(#)
denote the algebra of all bounded linear operators on . The concept of the spectral
picture of an operator, introduced by Pearcy in [8], has proved to be useful in various
ways. For example, one of the main theorems of the Brown-Douglas-Fillmore
theory [4] can be stated in terms of spectral pictures thus: Two essentially normal
operators in #(3#) are compalent if and only if they have the same spectral picture.
(See [8] for definitions.) Also the Romanian characterization of quasitriangular
operators [1] can be formulated concisely in terms of spectral pictures: An operator
in &#(s#) is quasitriangular if and only if its spectral picture contains no negative
number.

The purpose of this paper is to make a contribution toward our understanding
of the notion of spectral picture. In Section 2 we give a concise exposition of the
unpublished result of John Conway to the effect that all spectral pictures are possible.
In Section 3 we discuss the behavior of the concept of spectral picture with respect
to the relation of quasisimilarity and give a definitive result in an important case.
The remainder of the paper (Sections 4 and 5) may be considered as an attempt
to study the “continuity” properties of the spectral picture. To make this question
precise, a metric is introduced in Section 4 on the set of all spectral pictures. The
main result of Section 5 (Theorem 5.6) can be paraphrased by saying that the map
sending an operator to its spectral picture is pathologically discontinuous at every
operator in £ (). As a by-product of this negative result we show that the norm-
-closure of the set of all n-cyclic operators has empty interior.

We conclude this section by some terminology. For our purposes it will be
convenient to use a slightly more formal definition of ‘spectral picture than the one
initially introduced in [8]. An abstract spectral picture is a pair # = (Y, y) where
YlS a nonempty compact subset of the complex plane and y is a continuous function
YNYo>Z=2y {—o0, o0} where Y denotes the complement of the unbounded

component of Y. (Throughout this paper Z is equipped with the discrete topology.)
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Equivalently one can say that y is an integer valued function constant on the holes
(that is the bounded components of the complement) of Y. The set of spectral pic-
tures will be denoted by ¥ 2. Asusual, for an operator T in L(#), 6 (T), 6,(T)
and o, (T) denote respectively its essential, left essential and right essential spectra,
that is respectively the spectrum, left spectrum and right spectrum of the image
7(T), of T in the Calkin algebra (i.c. the quotient of the algebra #(#) by the ideal
of compact operators /4 (#')). It will also be convenient to set

O-lre(T) :Gle(T) n O're(T).

Equivalently
04(T) = {A€C: T —A ¢ SF(H)}.

Here ' #(#’) denotes the set of semi-Fredholm operators (recall that an operator
T in () is semi-Fredholm if it has closed range and either kerT or kerT* is finite
dimensional). Foranoperator T in ¥ & () its index is the element, i(T'), of Z defined
by (7)== dim kerT — dim ker7*. The set of Fredholm operators (that is, the
semi-Fredholm operators with finite index) will be denoted by # () (for details see
[8]). We define the spectral picture, SP(T), of an operator T in Z(3#) by

SP(T) = (0,ce(T), 17)

where, for the appropriate values of A, i;{4) = (T — 1). (Cbserve that with our
definition a hole in ¢, (T) is a hole or a pseudohole in ¢ (T) (in the sense of [8])
depending on whether its index is finite or not.) Finally we will often talk about an
operator T without mentioning the space on which it acts; it is to be understood
then, that this space is always a separable, infinite dimensional, complex Hilbert
space which will be implicitly identified with 5# whenever such an identification
seems convenient.

2. UNIVERSALITY OF THE SPECTRAL PICTURE

In this section we prove that the map SP : £(#) - 2 is onto. Our proof
is constructive and uses the operator of multiplication by z, ¥, on R¥Q) as a “build-
ing block’. (Recall that, if Q is a bounded open set in C, R%(Q) denotes the closure
of the set of rational functions with poles off @~ in the Hilbert space L*Q, m) where
m denotes the Lebesgue measure.) The properties of V,, that are relevant to our
construction are summarized in the following proposition which has been extensively
used in the literature. (See for example [3] and [4].)

PROPOSITION 2.1. Let Q be a bounded open set in the complex plane and let Vo,
be the operator of multiplication by z on R¥Q). Then we have
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(1) o(Va) = Q~; moreover |(Vo — A~ < 1/dist(A, Q) for A¢ Q-,

(2) for each A€ Q,(Vo— A) is a Fredholm operator and (Vo — 1) = — 1
(consequently, o (Vg) < 0Q).

PRrOPOSITION 2.2. Let Q be a bounded open set and let n belong to Z. Then there
exists an operator A% such that:

(1) 0(4%) = Q- and, for 1 ¢ Q-, |[(4% — )~ < 1/dist(2, 2-),
(2) for each A in Q (A% — A) is semi-Fredholm of index n.

Proof. For n > 0 let A% be the direct sum of n copies of V, and for n < 0
let A%=(A5")* where Q*={A : 1€ Q}. Verifications of (1) and (2) are straightfor-
ward. Finally we take 4% to be a diagonal operator such that ¢(4%)==0(4%) = 0Q.

We are now ready to prove that the map SP is onto. The author is grateful

to Professor J. Conway for allowing him to present a proof of his unpublished
result.

THeorem 2.3. (J. Conway). Given an abstract spectral picture P there exists
an operator T in L (#) such that SP(T) = 2.

Proof. Let 2 = (Y, y) be the given spectral picture. For each n in Z we define
Q, to be the union of the bounded components B of C\Y such that y(B)=n and
denote by A, the operator 4% (we define A4, only when Q, # @). Let
T=N@&&( ¥ &4,
neZ, 2,29
where N is anormal operator such that o(N) = o, (N) = Y (if all the Qs are
empty, we justset T =N). We now discuss the semi-Fredholm status of 77— 1 as A
runs over the complex plane. We distinguish three cases.

Case 1: A€ Y. Since n(N) is normal, the left and right essential spectra of N
are equal to o (N) = Y. Thus, (N — 1) is not semi-Fredholm and, consequently,
(T — 2) is not semi-Fredholm either.

Case 2: ) ¢ Y=Y U (U Q,). Then there exists d >0 such that dist (4, Q;)>d
neZ

for all n. Therefore, the sequence {(4,—4)~'}

is norm-bounded and (T— 1)
is invertible.

n EZ, Q.0

A ~
Case 3: Ae Y\Y = | Q,. Let k in Z such that A€ Q,. Then there exists a

nezZ

common positive lower bound for dist(4, Q;7), ns k, and, therefore, Y, @ (4, — 1)
ntk
is invertible. Since (N — 1) is invertible and (4, — 4) is semi-Fredholm of index k

(cf. Proposition 2.2), the operator (T — A4) is semi-Fredholm of index k.
It follows from the above considerations that ¥ ={l€ C : (T — 1) ¢ ¥ F}

and that, for any 4 in ¥Y\Y, i(T — 4) = y(4). Thus, SP(T) = 2, as desired. &)
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3. SPECTRAL PICTURES AND QUASISIMILARITY

Recall that an operator A : 5 — 4 is a quasiaffinity if A has trivial kernel
and dense range. An operator T in £ () is said to be a quasiaffine transform of an
operator 7" in Z(A') (notation: T < T”) if there exists a quasiaffinity 4 : # — #~
such that AT = T'A. If both relations, T < T’ and T’ < T, hold, the operators
T and T’ are said to be quasisimilar. In [15], it was shown that two quasisimilar
operators have overlapping essential spectra. This result suggests the following
question: What conditions on the spectral pictures Z = (Y, y) and 2’ = (Y',7y")
will insure the existence of two quasisimilar operators 7 and 7" such that SP(T) = &
and SP(T") = 2'? The purpose of this section is to answer completely this question
when Y and Y’ are connected sets. Our result is as follows. (In particular, it shows
that there exist quasisimilar operators with “‘very different” spectral pictures.)

THEOREM 3.1. Let @ = (Y, y) and P'= (Y',y") be two spectral pictures such
that Y and Y' are connected sets. Then there exist two quasisimilar operators T and T’
in P(H) such that SP(T)= P and SP(T') = P' if and only if the following conditions
are satisfied:

(D) YnY 4 0.

(2) The functions y and y’ coincide on the intersection of their domains (that is,
on (YN\Y)n (Y'\Y)).

(3) {A€ (Y\Y):y(2) # 0}< ¥ and {A€ (Y\Y") :y'(}) # O} < Y.

The proof of Theorem 3.1 will be broken into several propositions. One of
these (Theorem 3.6) says that, if T and T” are quasisimilar operators, then ¢, (T)
N o (T") =% @, thus improving the above result of [5]. We begin with an elementary
fact on quasiaffine transforms.

LemMma 3.2. If T < T’ and A is an eigenvalue of T with multiplicity n, then
A is an eigenvalue of T’ with multiplicity m > n.

Proof. Let A bea quasiaffinity such that AT = T’A4. Then we have the equality
A(T — 2) = (I" — 2)A, from which we get the inclusion, A(ker(T — 1)) < ker(T' —
— 4). Since A is one-to-one, the result follows.

LemMmA 3.3. Let T and T' be quasisimilar operators. Then, for any 1 such

that both (T — A) and (T’ — 1) are semi-Fredholm operators, we have (T — 1) ==
= T — A).

Proof. The result follows at once from the definition of the index and from
Lemma 3.2 via the relations, T< T, T" < T, T'* < T* and T* < T"*. @)

LemMA 3.4. Let T and T’ be quasisimilar operators. Then any A such that
(T — A) is semi-Fredholm of nonzero index belongs to (0, (TN".
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Proof. If the operator (T” — 1) is not semi-Fredholm, then A belongs to
0,.(T") and, hence, to (0,,(T)". If (T’ — 1) is semi-Fredholm, the result follows
from Lemma 3.3.4

The proof of Lemma 2.9 of [5] can be easily adapted to obtain the following
result.

LEMMA 3.5. If the operators T and T' are quasisimilar, and if there is a hole
Hy in 0. (T) contained in o(T), then o,,(T) N 0, (T") # D.

THEOREM 3.6. If T and T’ are quasisimilar operators in FL(H), then 6. (T) N
N Ulre(T/) # Q3.

Proof. If neither ¢,,(T) nor ,,.(T’) have holes of infinite index, then o,,(T) =
= 6(T) and ¢, (T") = ¢,(7"), and the conclusion is just the result of [5] recalled
at the beginning of the present section. Otherwise, one of the sets ¢, (T) or ¢, (T"),
say 0,,.(T), has a hole of infinite index and such a hole is contained in ¢(T"). In that
case, the conclusion follows from Lemma 3.5.

We conclude our sequence of intermediate results with two specialized ver-
sions of Theorem 3.1. The first one is essentially Theorem 3.11 of [5] and corres-
ponds to the case where Y” is a singleton. (For any subset £ of C, 0, denotes the zero
function on E.)

THEOREM 3.7. Let Y be a subset of the complex plane and let ) be a complex
number. Then there exists an operator T in L () with spectrum Y, quasisimilar to
an operator Q whose spectrum is the singleton {A} if and only if Y is compact,

connected, and contains L. Moreover, any such operator T satisfies SP(T)=(Y, 0& \Y)).

Proof. By translation we may assume A = 0. Then the first part of the theorem
1s Theorem 3.11 of [5]. To prove the last assertion observe that if there is any complex
number z in o(T)N\o)(7T) it must be an eigenvalue of either 7 or T* and, conse-
quently, of Q or Q*. Therefore, such a number z has to be 0, in contradiction with
the fact that 0 belongs to o, (7). Thus, 61, () = o(T) and this equality implies
T — z) = 0 for any z not in a,,(T).

COROLLARY. 3.8. Theorem 3.1 is true in the case where y and y' are the zero
A A
Sunctions (on Y\Y and Y'\Y’, respectively).

Proof. The “only if” part follows from Theorem 3.6 which corresponds to

condition (1). (The other two conditions are trivially satisfied in this case.)
Conversely, let Y and Y’ be nondisjoint compact connected subsets of C.

Let A be an element of YN Y'. By Theorem 3.7 there exist quasisimilar operators
Q and W (respectively, Q' and W’) such that ¢(Q) = a(Q") = {1}, SP(W)=

= A V= (Y, 0 . It is easy to check that the operators
(v, O(Y\Y)), ‘and SP(W) = (Y O(Y,\Y,)) is easy to che operato
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T=Q @Wand T'= Q @ W’ are quasisimilar and satisfy SP(T) = SP(W)=-
= (Y, O;\Y) and SP(T') == SP(W') =(Y", O;I\Y,).

Proof of Theorem 3.1. We first prove the “‘only if” part. Let Tand T’ be quasi-
similar operators with spectral pictures (Y,7) and (Y’,7), respectively. Since
Y =0, (T)and Y’ == g;,(7"), Theorem 3.6 yields Y n Y’ # @, that is, Condition
(1). Similarly, Condition (2) follows from Lemma 3.3 and Condition (3) from Lemma
3.4. (Note that we have not used the fact that Y and Y’ are connected.)

Conversely, to prove the “if”” part, let 2 = (Y, y) and 2'= (Y”, y’) be spectral
pictures such that Y and Y’ are connected sets and such that Conditions (1), (2),

and (3) are satisfied. Let Q = {i€ Y\Y: y(A)#0} and Q'= {1€ %’\Y’ 1 y'(2)0}.
(We assume that Q U Q' ¢ O, otherwise the proof is over by Corollary 3.8.) Note

that, by virtue of Condition (3), the open set 2 U Q' is contained in Y n Y’ and
so is its boundary, I'. We want to show that, in fact, I' is contained in ¥Yn Y’

Suppose not; then there exists A in I' which does not belong to, say, Y. From I' f’
it follows that A is in some hole H of Y:; moreover, we have Hn Q = @ (otherwise
H is contained in Q and 1 is an interior point of 2 y 2'). But then, the set Hn Q’
must be nonempty and we have a contradiction with Condition (2) (y vanishes on H
but there are points in H where 7’ is nonzero). Thus, I' = Y n Y’. Condition (2)

guarantees the existence of a (continuous) function y, : I'\I" - Z, extending 7y
and 9" on Q y Q' and vanishing elsewhere. Let R be an operator such that SP(R) ==

=TI, 7;) and let Wand W' be quasisimilar operators such that SP(W)= (Y, O(?'\Y))

and SP(W")=(Y", 0& '\r'))' (The existence of such operators Wand W’ is insured
by Corollary 3.8.) It is easy to check that the operators T = R®W and T’ =R@W
are quasisimilar. We now compute SP(T’) by inspection of the semi-Fredholm status
of T'— J, distinguishing three cases. First, if 1 belongs to Y then (7'— 1) is not
semi-Fredholm (because W — 1 is not). Next, if A belongs to 2, then (W — %)
is semi-Fredholm of index O (in fact, invertible) and (R — 1) is semi-Fredholm of
index y,(1) = y(4). Thus, in that case, (T — 1) is semi-Fredholm of index y(2).
Finally, if 2 does not belong to Q U Y, then, since y,(1) is either equal to 0 or unde-
fined, (R — 1) is semi-Fredholm of index O; the operator (W — 4) being invertible,
we have that (T" — 1) is semi-Fredholm of index O = y(4). Therefore, SP(T) = (Y, y)
and similarly SP(T') = (Y', ).

4. A METRIC ON THE SET OF SPECTRAL PICTURES

The metric we introduce on &2 is based on the Hausdorff metric, dg, on the
set of nonempty, compact subsets of the complex plane. (For details on the Hausdorff

metric, the reader is referred to [12].) For a subset .#Z of Z, let P, be the subset
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of ## consisting of the spectral pictures (Y, y) such that y=(#) is nonempty if and
only if n belongs to .#. We first define a metric on L2 4.

PROPOSITION 4.1. Let A be a subset of Z. Then the mapd g : PPy xX FP 4R
defined by
du(?, P)=d,(Y, Y)+ 3}  du(Q7, 2)+

LI AN

+ Z 27d g (Qr, 2,7)

neMNL

(where P =(Y,7), P'=(Y",v), Q, =y '(n) and Q, =y'~(n)) is a metric on ¥ P 4.

Proof. Since the sets @, are all contained in the complement of the unbounded
component of C\Y (and similarly for the Q,s), the numbers d,(Q,7, 2, )are bounded
independently of »n. Thus, d, is well-defined. The symmetry and the triangular
inequality (for d 4) follow at once from the corresponding properties of the Hausdorff
metric, Suppose now that d (2, #) =0. This implies the equality d, (Y, Y')=0
and, hence, that Y = Y’. As a consequence any hole of Y is a hole of Y’. It remains
to show that y and y’ are equal. Suppose there exists a hole H of ¥ on which the value
of v is n and the value of ' is m ¢ n. Then H n Q" = O and Q; % Q,~. This
inequality implies that d,(Q,, Q,7) and, hence, d 4 (2, 2') are positive. Consequently,
there is no such hole as Handy =7y. %4

THEOREM 4.2. The map d : P X FP — R defined by

inf(d. (2, ?), 1) if @ and P’ belong to
the same F P4
d(2, 7" =

1 if not
is a metric on ' P.

. Proof. Since S 2 is the disjoint union of the 2 , when .# runs over the set
2%, the map d is well-defined. The verification of the axioms of a metric is straight-
forward. 2

It is easy to check that the topology induced on &% by this metric is such
that a set 0 in 2 is open if and only if 0 n £ 2 4 is open for each M =Z.. Moreover,
a spectral picture &’ sufficiently close to the spectral picture 2 must belong to the
same S 2 4 and, therefore, the range of their index functions must be the same. Thus,
the metric we have defined provides an intuitively ‘“‘reasonable’ topology on ¥ 2.
The next section will show, however, that this topology is somewhat too rigid to
expect nice continuity properties of the map: T — SP(T). Nevertheless, we hope

that this example will encourage further studies to find a more suitable topology
on P
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5. CONTINUITY OF THE SPECTRAL PICTURE

In this section we will show that given any operator T’ in #(5#) and any ¢ > 0,
there exist operators 77 in £ () such that |T" — T| < ¢ and SP(T") is arbitrarily
different from SP(T) in terms of number of holes and values of indices. In view of
the earlier remarks on the topology induced on &2 by the metric defined in Section
4 this clearly implies that the map T — SP(T) is discontinuous at any operator
in (). In this section a “hole in SP(T)” is to be understood as a hole (of finite
index) in o (T) (though our method can be used to affect the number of pseudoholes,
it does not enable us to change the value of their indices and, therefore, we are not
going to consider them).

We begin by recalling a theorem which has proved to be very useful in
the recent developments in operator theory, especially in approximation problems
(c.f. [3], [4]). To state it in a form convenient for our purposes we introduce the
following notation. If 4 is any operator #(s#), then we denote by 4 the direct
sum of countably many copies of 4 acting on J# ., the direct sum of countably many
copies of . We identify #, with # via a unitary transformation (the same one
throughout this section) and thus view 4 as an element of £(#).

THEOREM 5.1. Let T belong to L(H) and let ¢ be any positive number.
Let {2,}2., be a sequence in 6, (T) and let D be a diagonal normal operator with entries
{As}. Then there exist a unitary operator U : 3¢ @ H# — H, a compact operator K
on H of norm lessthan ¢,and an operator T' in L (H# ® H) such that T== UT'U* -

-~ K and T' has the form
T = (D 4
0 S

The following lemma contains a few facts on the Fredholm theory for operators
in 2 X 2 upper triangular form that will be needed later on. The author is indebted
to Vern Paulsen for a simplification in the proof.

LeEMMA 5.2. Let A, R, C be operators in £(H#) and let T be the operator in
L(H D H) defined by
T= (A K.
0 C

(1) If A is a Fredholm operator of index nthen T is a semi-Fredholm operator
of index m if and only if C is a semi-Fredholm operator of index m — n.

(2) If A is a normal operator then ¢ (T)=o6,(4)VU0c (C) and, for any
Ao (1), (T — 2)=1i(C—2).

Then we have:



ON THE SPECTRAL PICTURE 127

Proof (1). Let S be an operator such that n(S) is the inverse of n(4) in the
Calkin algebra. We can write

(A R)_(A 0)(1 SR +(0 K)
o c) \oclJlo 1 ) 0 0

) . 1 SRY . . . .
where K is a compact operator. Since ( 0 1 ) is invertible, the operator T is

semi-Fredholm of index m if and only if so is the operator 4 @ C; that is, if and
only if the operator C is semi-Fredholm of index m — n.

(2) The inclusion ¢ (T) < 6,(4) U (C) follows easily from (1). It is always
true that o,,(4) = ¢,(T). Here, since A is normal, ¢ (4) = 7,(4) and therefore,
o (A)co (T). Let now 2 belong to ¢,(C)\a (4). Then (again because 4 is normal)
the operator (A — 4) is Fredholm of index 0 and it now follows from (1) that (7" — 1)
cannot be a Fredholm operator. This proves the inclusion ¢,(C) < ¢ (T) and, con-
sequently, 6.(4) Uoc (C) < ¢,(T). The equality of the indices follows from (1)
(via the fact that, for any 4 ¢ ¢ ,(T), (4 -— 1) is Fredholm of index 0).

We now establish our basic approximation theorem.

THEOREM 5.3. Let T belong to L () and let F be a closed non-empty subset
of C such that, for each u in F,d(u, 0, (T)) < &. Let {,}32, be adense sequence
in F and let D be a diagonal normal operator with entries {1} . Then there exists
an operator T’ such that ||T' — T\ < ¢ and T’ is unitarily equivalent to an operator
of the form

D 4
lo s)’

Moreover, we can assume that o (T') = o (T)U F and that, for any 1¢ o (T),
T — A) =iT' — 7).

Proof. Since Fis compact, there exists a number o < ¢ such that d(u, 6,,(7)) <
< a,for all pin F. We now choose a sequence {4,}32, in 6,,(T) such that |p,— 4,| <a,
for all n, and we let D, be the diagonal normal operator with entries {4,}2> ; (in the
orthonormal basis in which the entries of D are {u,},). By Theorem 5.1 there
exist a unitary operator U : # @ # — #, a compact operator K on # of norm
less than & — o, and an operator T, in £(# @ #) of the form

w3
0 S
such thaty T = UT,U* 4 K. Let T, be the operator on 2 @ # obtained by replacing
D, by D in the matricial form of Ty; then we have ||T, — Tl € |D — D] < «a.
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Setting 7" = UT,U* we have
W7 =T < WU (T — TN HU* + K < 2+ ¢ — a == &.

We now prove the assertion on the essential spectra and the indices. Note
first, that, since T, is unitarily equivalent to a compact perturbation of T, the ope-
rators T; and T have the same spectral picture. Therefore, by (3) Lemma 5.2, we
obtam o(T)=g¢ (D JUugo (S) and, for any A ¢ ¢ (T), (T — 1) = i(S — A). Since
D1 is unitarily equivalent to D, @ D,, we can replace S by an operator of the form

" s)

In other words, we can assume (again by Lemma 5.2) that ¢ (D) < ¢ (S) and,
therefore, that ¢(S) = ¢(T). Applying Lemma 5.2 once more, we obtain ¢ (7")==
s ae(ﬁ) Uo (S)= FuUa(T) (it is easy to see that ae(D~) == F) and, for any
Ago (TH (T — ) =1i(S— ) =iT—N.

Since the boundary of the essential spectrum of an operator T always contains
the left essential spectrum of T, the above theorem shows that the number of holes
in the spectral picture of T can be arbitrarily modified by arbitrarily small pertur-
bations: one can introduce countably many Jordan curves, as close as desired to
do(T) in the unbounded component of (C\o (7)) or in any existing hole of ¢,(T).
However, Theorem 3.1 does not enable us to affect the values of the index function:
wherever they are both defined, the indices i(T"— 1) and (7" — 2) coincide. Our
next step will be to show that the indices can also be modified in an arbitrary fashion
by small perturbations. This will be done, first, for a unitary operator whose
spectrum is the whole unit circle and, then, extended to an arbitrary operator by
means of Theorem 5.3. To that end we establish some auxiliary results on bilateral
shifts. Let p and 1 be nonnegative real numbers and let B, , be the weighted bila-
teral shift of multiplicity one defined in the canonical basis {e,},ez of 7:(Z) by
B, (e,) = pe,+; for n = 0 and B, (e,) = te,,, for n < 0. The unweighted bilateral
shift B, , is denoted simply by B.

LEMMA 5.4. Suppose 1 < p. Then we have
() o(T)={z:7 < 2] € p}.

(2) 6(T) == pL Ul (where I is the unit circle) and the annulus o(T)\o (T')
is a hole of index —1.

(3) For any L ¢ o(T), (B, . — N~ < V/dist(4, o(T)).

When p < 1 the above results remain valid switching p and v and replacing “‘index — 17
by “index 1.
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Proof (1). This is a consequence of the general result on the spectrum of
a shift (see [10]).

<o (>3
(2) Tn the decomposition 7Z) =\ {e;} @ \V {e_;} the operator B, .
i=0 i=1
has the matricial form
(pV R
0 ‘CV*)

where V is the (unweighted) forward unilateral shift and R is a rank-one operator.
Thus the spectral picture of B, . is equal to the spectral picture of the operator
C = pV @ tV*. Elementary considerations now show that the latter is as follows.
We have 0, (C) = 0,(C)=pI' U, {1:7 < |} < p} is a hole of index —1,
and {1 : |1] < 7} is a hole of index 0.

(3) Easy computations show that B, , is hyponormal and the result now follows
from [11].

The proof of these results when © > p is entirely similar.

REMARK. We will say that an operator T has the property (£) if its resolvent
satisfies the norm-inequality [|[(7" — 1)~?*|| < 1/dist(4, 6(T)), for any A ¢ o(T). Then
(3) of Lemma 5.4 says that the shifts B, . have the property (#). We observe for
further reference that property (#) is preserved under unitary equivalence and
under direct sums, as well as under translations and multiplications by nonzero
scalars. The interested reader can find more details about operators having the
property (#) in [9].

PROPOSITION 5.5. Let U be a unitary operator whose spectrum is the whole
unit circle T' and let {@,},cscn be a sequence (finite or not) of disjoint open annulii
centered at the origin. Suppose associated to each @, an integer y(n). Let {z :a < |z]<
< B} be the smallest annulus containing all the annuli «,. Then, for any p >
> Max(|l — af, |1 —pl), there exists an operator W such that U —W| < p and
such that for each n, a, is a hole of index y(n) for SP(W).

Proof. Suppose «,= {z : 7, < |z| < p,}. We define the operator B, to be
the direct sum of —y(n) copies of B, ., if y(n)< 0,7y, copies of B, ,. if p(n)> 0

A
and finally p,B @ 1,8 if y(n) = 0. Let B be the direct sum of ¥, |y(n)| copies of B

neJ
and let W, be the direct sum of the operators B,. We clearly have |[B — W] €0 =

= Max(|} — a, |1 — B]). Since B and U are normal (in fact unitary) operators
with the same essential spectrum, it follows from Corollary 2.13 of {8} that there
exist a unitary operator 4 and a compact operator K of norm less than ¢ — J such
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that
U= AB4* + K.
Let W:= AW,4%; then,

W= U< AL 08, — B (4% + KL < 6+ u— 8= p.

Since SP(W):= SP(W,), it remains to show that each «, is a hole of index y(n)

for SP(W)). Let @,~= {z : 7, < z < p,} and let 1 in «,. For any k # n belonging

to J, (B, — A) is invertible and by the remark following Lemma 5.4 (together with

the fact that N e, = @) its inverse satisfies [(B, — 4)~'" < Ifmin{p, — 1,

7, — iA}. Therefore, the operator Y, @ (B, — 1) is invertible and (W, -~ 4),
keJ\in

which is its direct sum with B, — 4, has the same Fredholm status as B, — Z, that

is, is Fredholm of index y(n). The proof is complete. Z

RemaARk. It is clear that slightly different versions of Proposition 5.5 can
be formulated. For instance, one can “‘thicken’ (i.e., introduce in o, (W)) a closed

annulus «- disjoint from (J @, but contained in {z :a <|z,< } by adding ‘o
neJ

the direct sum defining W;, a direct sum ¥, @® 7,8 such that | =,I" is dense
neN reN

in -
We are now ready to establish the main result of this section.

THEOREM 5.6. Let T be any operator in L () and let ¢ be any positive number.
Let {4,},en be a sequence of pairwise disjoint closed discsin C\o (T) of center 1,
and radius r, such that, for all n,r, < dist(r,, o (T')) < &/3. Finally, for each n,
let {@, ;}icr.cnbe a sequence (finite or not) of disjoint open annulii of center t,, con-
tained in 4,, together with a map, v, :J, — Z. Then there exists an operator T’
such that T’ —T' < ¢ and such that each @, ; is a hole of index (7,(j) + (T — r,))
Jor SP(T").

Proof. Let {u,},en be a countable dense subset of L{:(M" and let D beadiagonal

ne

operator with entries {g,}. Since d(u,, 0,(T)) < 2¢/3, by Theorem 5.3 there exist a
unitary operator R and an operator T of the form

6 S
such that |7 — R T R*! < 2¢/3. The operator D can be written D Yy, @N,

neN
where each N, is a diagonal normal operator such that ¢ (N,) — d4,. We can write
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N, =1t, + r,U, where U, is a unitary operator satisfying o(U,) = I' and we also
write @, ; =t, +r,4, ; where, for each n, the £, /s are annulii concentrical to and
contained in the unit disc. For each n we now apply Proposition 5.5 to the operator
U, and the annuli (£, ;};ey, together with a number g, such that ,r, < ¢/3. We
obtain, for each n, an operator W, such that |U, — W, || < u, and, for any j in J,,
¢4, ;is a hole of index y,(j) in SP(W,). Let V, = t, 4 r,W,; then |V, — N,||<¢/3

and each «, ;isa hole ofindex y,(j) in SP(V,). Let 1% be the operator obtained by

replacing each N, by ¥, in the decomposition of D. Clearly, [|I>— 151[ < ¢/3 and
it follows from the remark following Lemma 5.4 together with an argument similar
to the one used in the proof of Proposition 5.5 that each @, ;(n€ N, j€ J,) is a hole

of index v,(j) in SP(I;). Finally let T, be the operator obtained by replacing D by
V in the matricial form of the operator T, and let " = RT,R*. Then,

IT = T')| < |T — RT,R*|| + |R(T, — TOR*|| < 2/3 + /3 — &,

and the desired equalities for indices are obtained via Lemma 5.2.4

We conclude this section by an application of Theorem 5.6 to a question involv-
ing cyclic operators. For any positive integer n we denote by C,(o#) (or C,) the set of
n-cyclic operators in (). (Recall that an operator T'in &(s#) is said to be n-cyclic
if there exists a subset E of # of cardinal n such that the smallest invariant subspace
for T that contains £ is 3#.) In [7] Herrero showed that the norm-closure of C,
can be characterized simply in terms of spectral pictures: An operator T in £ ()
belongs to C,; if and only if there are no holey of index less than —n in SP(T)
and all the holes of index —# are simply connected. In [6] it was shown that the set
of cyclic operators has empty interior. Using Theorem 5.6 we can improve this
result.

CoroLLARY 5.7. The normclosure, C,, of the set of n-cyclic operators has

empty interior, In fact \J C; has empty interior.
n>0

Proof. 1t is enough to prove the second assertion. Let T belong to some
C; and let ¢ > 0. Let {4,},en a sequence of discs as in Theorem 5.6 but in the
unbounded component of C\¢,(T) and let i, be a sequence of integers decreasing
to —co. By Theorem 5.6, there is an operator 1™ in & () such that ||7" — T < ¢ -

and each z;,, is a hole of index i, in SP(T"). By Herrero’s result the operator T cannot
belong to U C;y.
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