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HILBERT C*-MODULES: THEOREMS OF STINESPRING -
AND VOICULESCU

G. G. KASPAROV

There are two well known technical results in the theory of extensions of
C*-algebras. Stinespring’s theorem [[ 1] describes the structure of completely positive
maps of a C*-algebra A into the full operator algebra Z(#). Voiculescu’s theorem
[12] establishes the existence of the identity element in the semigroup of extensions
of the type 0 » 4 - % — A - 0 (A being the algebra of compact operators in
Z(A)). The theory of general extensions 0 =4 @ B— 2 — A — 0 announced
in [13] is based on a suitable gcneralizatibﬁ of these two theorems (with Z ()
replaced by the multiplier algebra .#(4 ® B8)). In the present paper we give this
generalization (Theorems 3 and 6). Besides this, the paper also contains two theo-
rems about Hilbert C*-modules which are of independent interest (Theorems 1
and 2). In particular, Theorem 2 asserts that every countably generated Hilbert B -
-module is a direct.summand in the canonicdl Hilbert space over B.

§ 1. NOTATION

1. In what fdllows all the algebrasare C'*-a]g;ebras';the homomorphisms are *-ho-
mdmorphisms, and the idealsare closed and two-sided. All the results are valid for the
next threc categories ofalgebras: complex algebras, real algebras, and “real”” algebras.
A complex algebra is called “‘real” if it is equipped with an antilinear involution
b~ bsatisfying two conditions: b,b, = b, - b, (b*) = (b)*. The homomorphisms of
such algebras must. preserve. .the ‘“‘real’” .involution. . Moreover, we suppose that
a fixed compact second countable group G acts as a group of automorphisms on
all algebras. All homomorphisms are supposed to be equivariant. In the “‘real”
case the group and the action must be “real” (i.e., there exists an involution
g — g on G, such that g(b) = g(b)). o

Some explanations are necessary here. C* algebras (i.e., algebras of operators)
are characterized ‘in"the compléx case by a usual condition (x| < |lx*x]l, Vx.
Ta: the réal cas¢ however' this condition is not sufficient. It must be replaced by
el < llx*x - y*pll, Va, p (cf. -[16]). A complexification of a real algebra is a
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“real” algebra. Conversely, a subalgebra of real elements (¥ = x) in a “real”
algebra is a real algebra. This implies an isomorphism of the categories of real and
“real’’ algebras, provided that the <real” involution on G is trivial. (In the case of
a nontrivial involution on G, the category of ‘““real” algebras docs not reduce to
the category of real ones.) Note that all the constructions of the paper comply
with this isomorphism of real and “real” categories.

2. Anclement b€ Bis called invariant if b == b; g(b) == b, Vg€ G. An algebra
is called wnital if it has a unit, 1, which is invariant. The action of G is called
continuous if the map G X B - B :(g.b) = g(b) is norm-continuous. All tensor
products of algebras are equipped with the minimal C*-norm, and by ® b, == b, ® bys
glby ® by) = g(b)) ® g(by), Vg€ G.

3. & is the scalar field (i.e., the algebra R or C). The “real” involution is the
complex conjugation, the action of G is trivial. M, is the n X n matrix algebra.
The “real” involution is the complex conjugation of all the entries. The action of
G is defined by some unitary (‘“‘real’’) representation of G in €" which lS concretely
spc,cxﬁed in each case. For every algebra B put M,(B) = M, ® B. By {¢;;} we denote
the standard system of matrix units in M,,. % () is the unitary group of AZ,.

4. .#(B) is the multiplier (double centralizer) algebra of B. Recall ([3]) that a
pair of maps Ty, T, : B — Bisamultiplier if Vx, y€ B, x- T ,(p) — To(x)-». The strict
topology on .%(B) is generated by the system of seminorms

{ITlly = T\ + ITx(B)'i | b € B}
where T =: (T, T,)€ .Z(B). A continuous action of G on B defines an action of G
on #(B): g(T)(b) = g(T:g~(b)), i = 1, 2. This action is not, in general, continuous
in the norm topology, but only in the strict topology. The “real’ involution on .#(B)
is defined by T(b) = Ty(b), i =1,2.

5. An algebra B with the adjoint (invariant) unit is denoted by B. Every linear
map ¢ : A - B may be (uniquely) extended to the unital map ¢ : A~ B If @ is
completely positive and |ip]] < 1, then @ is also completely positive ([4]). For a
unital B we have B~B @ €, hence there exists a unital projection-homomorphism
p : B — B. Consequently, every linear map 4 — B may be continued to A-BL B

- 6. We say that a linear map is equivariant if it preserves the G-actions and the
“real” involution. Until otherwise specified, every completely positive map is suppos-
ed to be equivariant. :

7. Ending (or omitting) the proof, we put the sign 7.

§ 2. HILBERT C*MODULES

Recall the definition of a Hilbert module over a C*-algebra B ([10]).

DEerINITION 1. Let E be a linear space over the field € equipped with the strac-
ture of a right B-module. We suppose that the action of G on B is continuous and
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Mxb) = (Ax)b = x(Ab),Vx€ E, b& B, A€ &, The space E is called a pre-Hilbert
B-module if there exists a scalar product £ x £ - B satisfying Yx, y,z€ E, b€ B,
4€ ¢ the following conditions:

1° (%, + 2) = (%, ) + (x, 2); (x, 4y) = Ax, )

2° (x, yb) = (x, b

3° (%) = (x, »)*

4° (x,x) 2 0; if (x,x) =0, then x = 0.

Moreover, E must be equipped with a linear, norm-continuous G-action (the norm
is defined below) and (in the “‘real’” case) with the antilinear involution x — x sa-
tisfying Vg€ G, (besides the usual condition g(x) = g(x)), also the following:

5° g(xb) = g(x)g(b); xb = Xb

6° (8(x), £(») = &((x, ¥)); (%, ) = (%, ).
An clement x€ E will be called invariant if x = x and g(x) = x, Vg€ G.

LemMma 1. ({10], [14]). Put Vx€ E |x|| = |((x, X)||[¥%. The space E with
the norm ||+ || satisfies all the axioms of a normed space. Moreover, ¥x, y€ E, beRB,
xb|| < ||xl[- 116}, I(x, M < x|l lp)l. These two inequalities remain valid even if
we drop the condition: (x, x) = 0 = x = 0 in the condition 4°.

Proof. Only the last inequality {i(x, y)|| < l211- |7 || is not obvious. (The triangle
inequality for the norm is, as usual, its consequence.) Proving it, we shall consider
two cases. If at least one of the norms ||x|}, [|y]l is non-zero, say ||y|] # 0, then our
inequality follows from (x 4+ yb, x + yb) = 0 with b= —(p, x)/[(y, ¥)||. The
case ||x|| = ||»|| = O follows from the same (x -+ yb, x+-yb) = 0 with b=-(y, x). A

DeFiniTioN 2. A pre-Hilbert B module E is called a Hilbert B-module if it
is complete with respect to the norm defined in Lemma 1. The Hilbert direct sum
@ E; is the completion of the corresponding algebraic direct sum by the norm

ilee;ined by the scalar product (@wx; ®y) =Y, (¥, ). We denote 6['-1) E by E".
EXAMPLES. . l l ! 1
1) E = B, (x,y) = x*y.
') E = B". . '

2) Let {¥;} be a countable collection of finite dimensional Euclidean spaces
equipped with a unitary G -action (“‘real” G -action in the ‘“‘real” case). We suppose
that every finite dimensional uhitary’représentati(m of G occurs (up to isomorphism)
an infinite number of times in the collection {V;}. The scalar product on V is assumed
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to be linear in the second argument and antilinear in'the first one. Let the scalar product
on V; ® B be defined by (v; ® b;, Xy ® b,) == (xy, X)b5b,. The ‘Hilbert direct sum

O (V; ® B) will be called the Hilbert space over B.In the case B = € we
get the usual Hilbert space >. '

DermniTioN 3. For Hilbert B-modules E, and “En we denote by F(E,, Ey)
the set of such maps T : E, - E, that there exists T% : E, — E; satlsfymg the con-

dition:
(T(x), ¥) = (x, T*(»), Vx€L,, y €E,.

The action of G and the ¢ rcal’“_ mvolutnon are defined on L(E,. E,) by g(T)x) -
= g(Tg~Yx)), g€ G, x€ E;; T(x) - T(x). An clcment Te J(Fl, E,) is called
equivariant it T = T, g(T) — T; Vg€ G. Put L(E) - L (E, E).

Lemma 2. ([10]). Every map T€ Z(E,, E,) is a bounded linear B-module map.
For Te L(E|, L) the operator T# is uniquely defined and belongs 1o L(E,, E)). With
the norm induced from the space of bounded linear operators on E, L(E) is a C*-
-algebra.

Proof. The existence of the adjoint easily implies the linearity of T, and the
boundedness follows from the Banach-Steinhaus thcorem because the family of
linear maps S

{fs 1 E2 > Bix€ E,, {xi < 1}, fi(3) = (Tx,§) = (x, T*y),

is bounded for every fixed y€ E,. Remaining statements may be found in [10]. 73

LeMma 3. Let E,, E,, E, be Hilbert B—moa’ttlcs For x€ E\,y,z€ E; put
0, (2)- x(y,z). Then, , € J(F El), 0;“y ~Afue Ez, vE Es, T € L(E, E),
Se Y(£;, £,), then :

T045 = 010> 0xy S = Oe.5000
In particular, : . .
} ] Ocy 04 =_,Q".‘¥'“”"~:’ [~
Besides thut ‘V’:re G g((}\‘ J) == Oy(x)ﬂy), 'oxy = 0.\ W @

DremiTion 4. The closure of the linear span of {8, |x€ E,, y€ E~,} in f(En, E,)
will be denoted by #(Ey, Ey). Put X (E) = A(E, E), X = AH(KH), A g = A (A p).

1t follows from Lemma 3 that #°(E) is an ideal in #(E). The G~action.on H(E)
is continuous as it is continuous on E.

LemMA 4. If E is a Hilbert B'-modul'e.,'_ then
Z(E") = M, @ L(E), H(E") = M, ® H(E).
Besides that, #(B) ~ B, #(B") ~ M, ® B, #y ~ £ ® B./
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THEOREM -1..-For an arbitrary Hilbert B-mpdule E the correspondence T€ ¥ (E) -
- (T, Ty e J. /if(b)) with T)(0, )= 07, o To(0, ‘) 05, 1oy (X5 Y€ E) defines an iso-
morphism of L(E) on M (A (E)).

Proof. Since for every S from the hnear span of | 0”, we have TI(S) = T-85,
Ty(S) = ST in L(E), it follows that [T(S)|| < [iT||- IS]l, i = 1, 2. Therefore T,
and T, may be continuously extended on .I(F). It is not difficult to show that
(Ty, T)€ M(A(E). I Ty(0,,) = 0,Vx, y€ £, then Oy, 1( =0,V x, hence T = 0.
It means that the correspondence is monomorphic. To prove that it is epimorphic,
we put for (T, T,)€ M (A (E)), x€E E

T(x) = lim Tl(OV D) [0, x) + 0!] !

a->+0

T*(x) = lim [Ta(f*x,x)]*(X)'ﬂ(x, x) 4 o=t

The existence of the hmlts is an easy consequence of the Cauchy criterion and the
inequalities:

TS T(S) < IT, [-5°S,
Ty(S)- T S)* < |To[p- SS* (v S€ #(E)).

Now noticing that V x€E lim 0, (x)[(x, x) + a] 1= x, we have:
w0

(e, T*0)) = lim (6, [T, P01 [02) + 21 =

= Wm (T2(0,)- Oa(X) [0x, ¥) + o] 7% (2 3) + 179 =

a—4-0

= lnn(( »)’.)f Tl(gx.x)(x)‘ [(x, x) + O(]" , y[(J), J’) + o]~ =

T aH+0

= ETO(-Tl(Hx..e)(X) ACx x) + 2174 0,,(0)- 106 ») + o7 = (T(x), »).

It follows that T€ Z(E). To prove that T,(0,,)=0r,, put V z€E w=T(0, )(z)—
—~ O7,,(2). It is easy to check that YV u, v€E (, (W) = 0. Takingu = v = w, we
get w = 0. The second relation T,(0, ) =6, 1., follows in a similar way.

CONSEQUENCE 1. £(#'p) =~ M (A ® B). &

§ 3. THE STABILIZATION THEOREM

. DEFINITION 5. A set of elements {x;}ier in a Hilbert B-module Eis called a
system of generatorsfor E if the finite sums {Y, »;, b,| b, € B} aredense in E. Amodule

Ehaving:a countable system of generators is called countably generated.
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Next theorem may be regarded as a generalization of Theorem 4 in [7].

THEOREM 2. If B is an algebra with a continuous G -action and E is a countably
generated Hilbert B-module, then £ @ # g ~ #g.

Proof. Every Hilbert B-module may also be considered as a Hilbert B module
(x-1=x, VxeF£). Conversely, if £ is a Hilbert B-module, then denoting the
closure of the set of finite sums {3y, y,b; | y,€E, b;€B} by E, we get a Hilbert B-mo-

J ~
dule. It may be easily checked that passing from the B-module to the B-module
and then back again to the B-module, we get the initial B-module. Having this in
mind, we shall suppose in the following proof that B is unital.
According to the definition, # ;== @ V; ® B. We must represent £ ® #
i=1

(=]
in the same form @ W, ® B. Let {x,} be a countable system of generators for £
i=1

and {e,} an orthonormal basis in # ; constructed from the elements of the spaces V
.Denote by {yj} the sequence of elements in £ @ 3#", in which every element x;, @ 0
and every element 0 @ e, occur an infinite number of times. Proceeding inductively,
we suppose that there are already constructed the mutually orthogonal, finite
dimensional, G-invariant (and ‘‘real”-invariant) linear subspaces Wi, ..., W, =
< F ® ' satisfying the conditions:

1°. Every W; has a basis which is orthonormal with respect to the scalar
product in I & .

2°. There exists such an integer m, depending on n, that

W, 4 .. +W"cEmd=°fE@(é V@B)-

je=1

3°. The distance between y, and (W, + ... -+~ W,). B does not exceed 1/n.
We shall construct W,,, satisfying the same conditions. Let {f;, ..., /,}
be the orthonormal basis in W, + ... + W,. Put

. » ‘ . .
y:z-;—l = Z .f_;(f;s yn+l):
j=t .

" )
Yn€1 = Yui1 = Vn+1-

Since either y,.,€ E, or y,,,€ V; for some i/, we may suppose that y,/, € E,,
for some m’ = m (see condition 2°). By the Mostow’s theorem on periodic vectors
([9], 2.16) there exists such an element z€ E,., that |z — ),/ < 1/,,. and Gz
is contained in a finite dimensional, G-invariant subspace R < E,.. We may suppose
that z and R are both orthogonal to W, + ... -+ W,. Replacing R by R + R,
we may also suppose that R is invariant under the ‘“‘real’” involution. Now find
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such m” > m’ that R is isomorphic as a “‘real” G-module to V,.. Fix an ortho-

normal basis {/;, ..., i} < V... By our isomorphism, there is a corresponding
basis {/, ..., 1,} = R. We have:

k
glh) = Z Tji(g)/’j 5
Ji=1

k
gty =Y, T;ug)l; (g€ G),

h,=nh,

13 ]

I =1,

i H

where T : G — %(k) is some unitary representation. Since V,,,, 1s orthogonal to R,
k

the relation (/,7)=0 holds Vi j. Letz== Z L, @ (Zfa[z) L1,

;=1 + /(2n+2)a. The matrix L = (L;;) = W, 1)) is positive and invertible In
the algebra M,(B) because (L) = (U L) + [2n + 2)0]72-(5;)).
Putg = ( )=L-12€ M,(B). Define W,_, to be the linear span of {/;’, .. l"\‘

where []’ = Z /;/d;;. Obviously, W, , < E,~and the ba81s {1, ..., I’} is orthonor-

mal: ((I/", /') = ( Y, Gy, 1d ))— D*LY == (5 ;). Moreover, W,,, is ortho-
$, q=1
gonal to W, 4+ ... + W, since the elements {/;} and {h;} are orthogonal to W, -+

. + W,. A direct computation with the basis {/;"} shows that W, ; is G-invariant
and “‘real”. Finally, denoting the distance by p, we have:

p(yn+1= (Wl + .+ M/n-p-l)'B) <
< P(,V,;/H 5 Z) -+ P(Z, ”'/nq.l'B) <

<1/Q2n+2) + plz, 2) < 1(n+1),
where
13 I
z= Zoz‘IA =Y o /],

itio> ..I
i==1 =1

|I»

p(z, 2') < [(2n + 2)a]-t -

oh; H 1/(2n+-2).

This finishes the induction. Now the properties of the sequences {y;} and
{W,} show that we get the required decomposition of E @ 7 into the direct sum. 7

RemARk 1. If B has a countable approximate unit, then s, is countably
generated over B. '
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§ 4. STINESPRING’S THEOREM

THEOREM 3. Assume that the algebra A is separable, the algebra B has a coun-
table approximate unit, and the G-actions on A and B are continuous. Let ¢ 1 A —
- H(A ® B) be a completely positive map. Then:

1) There exists a homomorphism n : A — /(A ® B) and an invariant element
Ve (A @ B) with the property: o{a) = V*n(a)V, Y a€A. If A is unital, then
n may also be chosen unital.

2) If A and @ are unital, there exists such a unital homomorphism

piAd— MM, @A ® B) = L(Hy® Hp)

that V¥ a€ A ¢(a) ® 0 = gp(a)g, where qE L(H 3 @ H'p) is the projection onto the
first direct summand.
For a non-unital algebra A the assertion 2) remains valid if 'p! < 1.

Proof. First of all we shall consider the case of a unital A. There is a B-valued
scalar product on the algebraic tensor product 4 ® #p :

( Ya®x, ¥ b6 yj) =¥ Y, (i 0(@?b))yy).
i=1 j=1 =1 j 1

Evidently,

( Ya®x, Ya® xi) = Y (xi elafa)x;) >0
i=1 i=1 ij=1
because the matrix Z e; ® afa;€ M, ® A is positive, and the map 1® ¢ : M, ®
ii=1

® A - L(HY)is alsjo positive. Put V b€B, g€G, acA:

(Z a; ® x;)-b= Z a; ® xb,

g(z a; ® x;) = Z gla;) ® g(xy),
(Zai®xi): Zdi@):\:ia
a-(Ya; ®x) =Y aq; ® x;.

Then 4 ® #, becomes a B-module with a scalar product satisfying Definition 1
except for the condition: (z, z) = 0 = z = 0 in the condition 4°, Also we have:

H (a(f:, ai®xi)s a(i“i@-\‘i)) < '1”'2‘(}’3‘%@-\'," i ai@»\'i)
i=1 i=1 i i=1
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since the inequality

n n
Y, e ® afataa; < |ajf? - ( ), e; ® a,-*aj)

i j=1 ij=1

holds in M,(A) and ¢ is completely positive.
From Lemma 1 we now derive that

N = {ZEA ®,nyl(Z, Z) = 0}

s a B-submodule in 4 ® #5 with the property: (x,)) =0 VX€E4 ® #'y, y €N,
and from the inequality (1) we obtain that 4" is invariant under the action of A4.
Let E be the completion of (4 ® o)/ A by the norm |z 4+ || = ||(z + &
z + A)|¥2. Then E is a Hilbert B-module, and the left action of A defines a unital
homomorphism 7' : 4 - L(E).

Now define the maps W : #; — F and W* : 4 @ # 5 — # 5 by the formulas:

W)= 1@x+ 4, W ( Y a,® xi) = 3 ¢(@)x, . Then
i=1 i

' :

2

w ( i a4 ® xi)
f==1

i

T (0 platla)x) | <
i, j=1

< o0l |

i
I

(En:, a; ® x;, ﬁ ai®xi)
i=1 i=

because for the map o’ =1 ® ¢ : M, ® A - 9(#") we have that ¢'(a*)-¢'(a) <
< [’ (DI @'(@*a). (This inequality for an arbitrary completely positive map follows
easily from the usual Stinespring’s theorem.) Therefore W*(#") = 0, and W* may
be extended on E by continuity. An easy check shows that V x€ #,, y€E, acd

4 (W(x), y) = (x, W*(y)) lie., We L(H, E)]
an
WHn'(a)W = ¢(a).

Take an arbitrary unital homomorphism n,: 4— % (o#) (for example, cf. Lemma
8 in § 6 below). Composing with the embedding L(#) = M (H) ® C < MK ®
® B) = Z(H,), we get a unital homomorphism =, : 4 — L(#}). Finally let
T=n @ny:A—>LE®DHy),i: E— E@Hybe the inclusion, j: EQHy— E
the projection. Put V' = i. W, ¥* = W*.j. According to Theorem 2 E @ #, ~ H g,
and we get the required Ve Z(#p) and 7.:4 — L(#p). This proves 1) for
a unital A.

If @(1) =1, then W*W =1 and WW* is a projection. Hence

E ~ Im(WW*) @ Im(1 — WIW*) ~ #,DE"
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It follows that
EQHp ~HpDE @Hp) = HgDHy.
With this identification V' becomes the inclusion #; ® 0 #z ®H#5 and V*
becomes the projection of # 5 @ 5 onto the first summand. This proves 2).
For a non-unital 4 notice first that every completely positive map 4 — 2
is bounded. For complex algebras it follows from the case & = &€ with the use of
the Banach-Steinhaus theorem (see the proof of 4.1 in [8]). For real algebras one

must pass to complexification.
Now a suitable normalization of ¢ reduces assertion 1) to the case llp!] < 1.
Replacing ¢ by ¢ : 4 - L(5#;) (see point 5 in § 1), we come to the unital case.?

§ 5. FACTORABLE MAPS

The terminology in this section is an exception from the rule indicated in point
6 of § 1: we shall not assume here that all completely positive maps are equivariant.
Recall that a completely positive map ¢ : 4 — B is factorable if there exists an
integer n and such completely positive maps 6 : 4 - M, 7 : M, — B that ¢ = 1¢.
The map ¢ is nuclear if it belongs to the point-norm closure of the set of factorable
maps. Different special cases of the next lemma are well known ([5]).

LEMMA 5. For any two algebras A and B there exists a one-to-one corres-
pondence between completely positive maps ¢ : A - M, ® B and completely positive
maps Y M, ® A — B defined in the following way. If ¢(a) = Z e; ® ¢;a),

5L
!//(2 e;® a;) = Z Y.(a;;), then the correspondence ¢ — y means that ¢;fa) ==
np,,(a) VY a€A, Vz ,J. If the group G acts on M, ® A by the formula:

g(z e ® aij) = Z(; Tki(g)T;j(g)ekl ® g(aij))

and on M, ® B by the formula:
g(vzeij ® bij) = Z(}g _T'ki(g)le(g)ekl ® g(bij))
hJ ] K,
then the correspondence @« takes equivariant maps into equivariant ones. (Here T : G—
— YU(n) is a unitary representation and T is its complex conjugate representation).

LemMMA 6. For any two Hilbert B-modules E, and E, there are isomorphisms of
linear spaces L(ES, E) ~ P(E,, EY), A (E}, E) ~ H(E,, ET) which transfer

ViE; > Ey, Vixg, .. X) =Y Vix;) into W:E,—> E}, W(x)=Wyx),...,
i=1
. W(x) iff Vix) = Wyx), V x€ E,,Vi. Define the completely positive maps

¢ L(E) > L(EY) =M, Q L(E)
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and
VM, ® L(E) = L(E}) > L(Ey)

by the formulas: ¢(a) = V*aV, y(a) = W*aW where Ve ¥(E}, E)), W€ Z(E,, E}).
Then the correspondence V «» W leads to the same correspondence ¢ — Y as in Lemma
5. If G acts on E} by the formula:

ﬂ%uum:(iﬂ@%ﬁﬂnwéIMHAW)

and on E} by the formula:

g5 = (% Tule) 8000 % Tl0) 50 )

then the correspondences V — W,V — @, W — i preserve the property of being
equivariant. (Here T and T are the same as in Lemma 5).

LeEMMA 7. Let A and B be two algebras with continuous G-actions and ¢ : A— B

an equivariant nuclear map. Then ¢ belongs to the point-norm closure of the set of
equivariant factorable maps.

Proof. Choose the completely positive maps s : A - M, and 7 : M, — B so that
|lto(a) — @(a)|] < e for every a from some bounded subset X = 4. We may suppose
that G- X = X, X = X. The G-action on M,, is taken to be trivial. By Lemma 5 t
may be considered as a positive element of M,, ® B, i.e., 1 = z%*z, zé M, ® B,
By the Mostow’s theorem ([9], 2.16) there exists a periodic element ye M,, ® B

which is close enough to z. Denote the linear span of Gy by S,, and S, 4 S, by S.
Lety,, ..., y, be the “real” basis in S in which the G-action is unitary: g(y;) =
= E’: T;(g)yj» T:G — (n). Then y = Y] a;y; with some {a;}.

j=1 i=1

Define the G-action on M, by the formula:

w@=;nm@n@qp

An easy check shows that the element V| e, ® ¥y, eM, ® M, ® B is inva-
i,7=1

riant. By Lemma 5, there is an equivariant completely positive mapn : M, M, —

— B corresponding to this element. Define a completely positive map

J

oM, M, ® M, byale,) = Y, ae; ® ey
ij=1
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Then the composition # - a coincides with the map defined by the element y¥y ¢ M, ® B.
Choosing y so close to z that ||(t — 5-a) o(a)|| <&, Vae X, we get {p(a) —

— nao(a)|| < 2& for a€X. Finally, put Vaed & (a) = S gt ao(ga) dg (where dg
G

is the normalized Haar measure on G), &(a) = (£,(a) + &,(a))/2. The factorization

< . . .
-—>M,,,,,—]> B is equivariant and Y aeX |jo(a) —né(a)| < 2.

§ 6. GLIMM’S LEMMA

This section contains the main assertion leading to the Voiculescu’s theorem.
In everything connected with the Voiculescu’s theorem we shall closely follow the
scheme suggested by Arveson [1]. From now and on we again assume that all com-
pletely positive maps, and in particular positive functionals and states, are equi-
variant (see point 6 of § 1). The G-actions on algebras 4 and B are assumed to be

continuous.
By A% and #°¢ we denote the G-invariant elements in the algebra 4 and the

Hilbert space # respectively. Every homomorphism = : A4 — Z£(#) defines
by restriction the homomorphism ¢ : A4S —» L(5¢0).

DEFINITION 6. An inclusion n: 4 «— Z(5#) is called a G-inclusion if (1 ® n)¢:
(ZL(€E) ® A)° - L((C ® 3#)°) is an inclusion for any n and any unitary G-action
on €~

Lemma 8.1) If = is an inclusion, then 7 is also an inclusion.
2) The restriction of states from A to AC defines a one-to-one correspondence

between the states of A and the states of A°.
3) If A is separable, then there exists an (unital) inclusion n : A L(H)

where H is a separable Hilbert space. For any such n
l@n:4 - L(H# Q H) ~ LF)
is a G-inclusion.

Proof. To obtain the first two statements we simply use the averaging by G.

i=1

In 3) we mayputn = @ n;: 4 > & (@ H; } where 7; are cyclic representations
i=1
with 0 Ker 7; == 0. Now denoting Z(€") ® 4 by 4 and € ® H by H, for any

inclusion 7 and @ # 0 in 4 we can find an orthonormal system {x, ...,x,} < H

so that g(x,) = ) T;{g)x; and n(a)x, # 0 for some k. Choose orthonormal
j=1

(P, s ya} =5 so that g(r) = ¥ T;g)y;. Then z =% 3, ®@x,e (¥ @ H)®
: )

m m
Jj=1 i

and (1 ® m(@)(2) # 0.
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Next assertion is an equivariant analogue of Theorem 2.5 of [2} (see also
0p.

LEMMA 9. Assume that A is separable, A« L () is a G-inclusion, ¢:
A - M,= 2(C") is completely positive, o(ANA)=0. Then there exists such
a sequence of equivariant linear maps V€ - that Yae A lim |lo(a) —

100

— Vi*aV|| =0 and ¥ e o lim ||V = 0.

{00

Proof. First we shall deal with the case of n =1 and the trivial G-action
on &, Restricting ¢ to A® = L(#S) and applying Glimm’s lemma (cf. [6], 11.2.1;
note that in the real case the proof of Glimm’s lemima is the same as in the complex
case, and the “‘real”” case may be obtained from the real one), we get such a sequence
of invariant vectors &; € #C thatp(a) = lim (¢;, af), Vae A% lim (¢,)=0,

i»oo i~»00
Y n€ s#°¢. Obviously the second relation remains valid Ve 2, and in view of
point 2) of Lemma 8 the first relation also extends to all ae 4. (Note that the first

limit exists Vae A because (¢, af)) = (&, a® %)) where a% = S g(a)dg.) Finally
G

we put V() = BE,, fe €. The case of arbitrary » and arbitrary G-action on &*
follows by replacing ¢ : 4 - M, with  : M, ® A —» € (Lemma 5) and applying
Lemma 6. 74

THEOREM 4. Assume that A is separable, A — F(H#) is a G-inclusion,
@ A[(ANK) > M, (B) =4 (B") is a nuclear map, the G-actions on A and B
are continuous, and the G-action on B" is such as in Lemma 6. Let us consider
ZL(H) as a subalgebra of scalar operators in L(# p) (cf. the proof of Theorem 3).
Then there exists such a sequence of equivariont elements V,e A(B",#'y) that
VY aed lim|@(a) — VFaV]| =0 and ¥V ne #, lim ||V¥(n)| = 0.

i 00 iso0

Proof. The case of an arbitrary nreduces to =1 in the same way as in Lemma 9.
For n = 1 it suffices to construct such a sequence of invariant elements &€ #
that Va€A lim |lp(a) — (¢, at)]l =0 and Vne#y lim ||({;, m) =0. Then

i—» 00 i—co

we shall be able to define V, : B > #, and V¥ #, » Bby Vib) = &b, V¥(n) =
= ({;, n). Evidently, V; e A#'(B, # p) because V; == lim O, s,y Where da) = (&;, &)
{($ir &) + ]~

In the construction of {£;} we may suppose in view of Lemma 7 that ¢ is

factorable: ¢ : A — M, = B and o(AnA)=10. The group G acts on € and
M, = £ (C¥) via some representation T : G — 4/(k). Consider a completely positive
map

6=1Qc:A-> M, @M, = L @ )
where G acts on €¥ ® c*via T® T. According to Lemma 9 there exists such a

10--2238
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sequence W, :C* ® CF » 5 that Va€Ad G(a) = lim WF#a W, and V€ #
i—oo

M o2 . . - k

lim Wi#() == 0. Fix a coordinate basis {e,, ..., e,} =C%. Let g(a) = Y. p(@e,,

I->00 p,q: 1

k
Wepg) = Tpg- Then @(a) == 3 0,.(a)7,,. Define the matrix (p,,) € M(B) as a
Psg==1
k
positive squarte root of the matrix (t,,). Put {; = h Wie,®e,)p,,. It can be easily

. . . . prg=1
checked that &; is invariant. Finally we have:

lim (§i5 aéi): hm Z (Wl'(ep ® eq)ppq:awi(er ® es)prs) =
{—0co i-.00 p,g,r,s

=1lim Y (¢, ® e WraWie, ® e))pip,s =

i—oo p,q,r,s

= Z (epw er) N (eqv g(a)es)p;':qprs =

Psq,r,s
= Zr a-qs(a)pr:z Prs = Z O-qs(a)rqs = q)(a) %
a7, 4,5

§ 7. VOICULESCU'S THEOREM

Recall (cf. [1]) that an approximate unit {¢,} for an ideal B < & is called quasi-
central if V d€Z lim lled — de,!! = 0. The existence of quasicentral approximate
2

units is proved in [l]. Moreover, if we have any approximate unit {u;} for B,
it is possible to construct a quasicentral approximate unit {e,} consisting of the

convex linear combinations of elements u,. If B has a countable approximate
unit and 2/B is separable, {¢,} may be taken countable.

NotaTion. For T4, T,€ Y(E), T, ~ T, means that T, — T, (E).

LemMAa 10. Assume that algebra A is separable, B has a countable approximate
unit, the G-actions on A and B are continuous, and ¢ : A — L(H#g) is a completely
positive map. Then there exists a sequence of completely positive maps ¢, 1 A — L (# g)
satisfying the conditions:

1) Vn,Vac4 ¢,(a) ~ ¢la),

2) Va€d lim {lp,(a) — ¢(@)| = 0,

n—00

oo
3) In the standard decomposition # y = @ W, ® B there exisis Vn a sequence
i=1
of integers {m,,} and a sequence of completely positive maps Y,
Mg

[ed
A->A ( ® W e B) such thatV a €4 g (@)=Y, ¥, (a) in the sense of strict conver-
i-=1 k=1
gence in L(Hg) = A (A g).
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Proof. Choose such a compact set X = A4 that its linear span is dense in A.
Alsofix ¢ > 0.Itsufficesto construct such a completely positivemap W : 4 —» L(Hp)

that ¥ xeX (x) ~ o(), [W(x) — o)l <& and Vaed yia) = i V(@) as

in 3). Let p, € F(s#;) be the orthogonal projection on @ W;® B and {u;} an

invariant, countable, increasing approximate unit in B (an mvanant approximate
unit may be obtained by averaging). Denoteby {e,} anincreasing, quasicentral,
countable approximate unit inA# ', « @ = Alg (p(A4)) 4~ A, consisting of the convex
linear combinations of elements (I ® u;)- p;,. Passing to a subsequence if
necessary, {e,} will satisfy

llp(x)- (e, — e )M® — (e, — e, 12 p(x)|| <

Vk z1,VxeX(heree, = 0). Put f; = (¢, — ¢, -)"%. Then Vxe X ¥ llo(x)f; —
k=1

~ fio(X)|| < e. Therefore the series 2 (e(X)fi -~ fio(X))f,, is convergent in norm,
k=
its sum belongs to ¢ 5 and the norm of the sum does not exceed s.
Since Zf,? strictly converges to 1, for any T e #(H#p) the series EfkTﬁ is

also smctly convergent In fact, for T = 0, b€ :£"; we have:

,2

g o= ()

I\ =m k=m

b <

f

<| Al o (5 ) o) <
k=m Lol
< IT1- 1| 8 82| O

k=m

In a complex algebra every element T is a linear combination of four positive
elements and in the real case the required convergence follows by complexification.

Now put Yaed, y,(a) = fip@),, wa)— El//k(a). Since Vk, f, €

e)’/( @k W, ® B) for some my, and V x € X, p(x)—y(x) = Z (@(X)fe. — froCGDfs
=1
the map ¥ satisfies all the conditions. #

Next theorem is a generalization of Theorem 4 in [1].

THEOREM 5. Assume that the algebra A is unital and separable, B has a countable
approximate unit, the G-actions on A and B are continuous, and A —> L(H) is a unital
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G-inclusion. Also assume that N n every completely positive map A|(An. %) — M (B)
is nuclear (in particular, it is sufficient to assume at least one of the two algebras A or
B to be nuclear). We shall consider ¥ (#) as a subalgebra of scalar operators in
L(H'g). Then for any unital, completely positive map ¢ : A[(ANK) - L(Hy) there
exists a sequence of invariant elements {V,} c L(Hy) satisfying Y n,Vae A the
conditions:

D) ol@ ~ ViaV,

2) lim {lo(@) — ViFa V|| = 0,

i->00

3) ViV, = 1.

Proof. Note first that having a sequence {V,} satisfying 1) and 2), it is not
difficult to get a sequence satisfying 1) — 3). In fact, since ¢(1) == 1, there exists
such a number n,, that Vn > n, ({(1 — V*¥V,|| <1 (by 2). The sequence V, =:
== Vit (VitinoVaan,) "% 1 2 1, is the required one.

Choose such a compact set X < A that its linear span is dense in A4, X* = X,
and 1< X. Fix ¢ > 0. We must construct such an invariant element % € Z(¥#p)

[+ o]

that Vxe X, o(x) > U*x%, lo(x) — U*xU| < 3e. Let ¢ = Y, ¥« be the map
k=1

constructed in the proof of Lemma 10 (for the algebra 4/(4 nX") and the map

¢ A[(AnA) - L(#p)). Using Theorem 4, it is not difficult to define inductively
a sequence of invariant elements % ;€ 2, in such a way that Yxe X, Vi, j:

X)) — UFXU N < e-27F

CWUEXU) < 80270 for i # J;

[uny

2%}

(98

[oc]

. the series Z |%¥ e,,|| is convergent for each element e,, of some countable
k=1

approximate unit in .

0o
Then 37 [%F U« — ¥ (D] <&, ; %#;\| <e. The strict convergence of
e — 1+)
(=} ke o0 . (=}
Y ¥ (1) implies the strict convergence of Z Ut U, . Hence V b€ A ytheseries Z U, b
£ k=1 k=1
is convergent in norm by the Cauchy criterion. Moreover, V b€ # "y the series

oo oo
¥ Wb is also convergent as it is convergent for b €{e,,}. Therefore Y, %, converges
k-=1 k=1

oo
in the strict topology. Put % = Y, %, € L(#y). ThenVxe X
K=1

lp(x) — x| < llp(x) — b +
+ 3 W) — U + B U] < e
k=1 t+J

Since Vi, j, k Y, (x) ey and U*x%U;e Ay, we get @(x) ~ U*xU.
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REMARK 2. In the conditions of Theorem 5 put P, = V,V*. It is easily to verify
that if ¢ is a homomorphism, thenV ae A,¥n P,a ~ aP,and lim |P;a — aP;|| = 0.

100

Recall the definition of the approximate equivalence ([12]).

DEeriNiTION 7. Let E; and E, be Hilbert B-modules. The maps ¢, : 4 » Z(E),
@, 1 A > L(E,) are called approximately equivalent if there exists such a sequence
of equivariant isometries u, € £(E;, E)) that Yae A,V n uFo,(@u, ~ ¢(a) and
lim [luf@y(@)u; — @u(a)]| = O.

Suppose that we have fixed such a compact set X < A that its linear span
is dense in A. The maps ¢, : A - L(E)), @,:A— ZL(E,) are called s¢-intimate
if there exists an equivariant isometry u e Z(E,, E;) such that V x € X u*¢,(x)u ~
~ @y(x) and [lu*@(x)u — Px(x)|| < &.

Next theorem generalizes Theorem 1.3 of [12].

THEOREM 6. Assume that the algebra A is unital and separable, B has a count-
able approximate unit, the G-actions on A and B are continuous, and A — L (H)
is a unital G-inclusion. Also assume that ¥ n every completely positive map A|(AnA) —
—» M (B) is nuclear (in particular, it is sufficient to assume at least one of the two algebras
A or B to be nuclear). We shall consider ¥(H#’) as a subalgebra of scalar operators
in P(Hp) and denote the composition A — L(A)— L(Hg) by n. Then for any
unital homomorphism ¢ : AJ(ANA) = L(Hpg) thesum @ @ : A - L(Hy @ Hp)
is approximately equivalent to .

Proof. Tt is sufficient to show that ¢ @ n and = are 6e-intimate V¢ > 0.
0

Replacing ¢ by ¢' = @ ¢ and applying Theorem 5 and Remark 2, we can find
1

such an invariant element VEZ(#;) that V*V =1 and V x€ X ¢'(x) ~ V*n(x)V,
llp'(x) — V*a(x)V|| < & VV*a(x) ~ a(x)VV*, ||[VV*r(x)—n(x)VV*| < e. Clearly,
P = VV* is an invariant orthogonal projection, and V is an isometry of
#gon Im P. Hence ¢’ : A - L(#p) and Vo'lV* : A - £L(Im P) are unitary equi-
valent (i.e., O-intimate). As ¢’ and V*rV are e-intimate, Vo'V* and VV*rVV* =
= PnP are also e-intimate. Therefore ¢’ and PnP are e-intimate. On the other hand
n and PrnP -+ (1 — P)n(l — P) are 2¢-intimate because V xe€ X Pr(x) ~ n(x)P,
||Pr(x) — n(x)P|| < &. Denoting (I — P)n(l — P): A - Z(Im(l — P)) by =,,
we conclude that = and ¢’ @ n, are 3e-intimate and ¢ @ 7 and ¢ @ ¢’ @ n, are
also 3e-intimate. Now from the unitary equivalence of ¢’ @ my and @ ® ¢’ ® =,
it follows that = and ¢ @ & are 6e-intimate. 7

ReEMARK 3. It would be desirable to replace in Theorem 6 the inclusion
A s P(H) > L(Hp) by arbitrary n : A — L(# ) and ¢ : A/(AnA) - L(Hp)
by ¢ : A[(A 0 A ) > L(H ). But this is impossible without some additional assum-
ptions concerning n. Even in the case of B = 2(%), the algebra of functions on a
locally compact space % tending to 0 at co, Theorem 6 will not be valid without the
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condition of n being strictly monomorphic. We say that = is strictly monomorphic
if (denoting by w, : L(H @) = L(H) the restriction over y€ &) we have ¥ y e ¥,
w, (A (A nA) = A[(AN A gw). It is very likely that this condition is not only
necessary but also sufficient. For finite dimensional compact %, this was recently
proved in [15].
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