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FUNCTIONAL CALCULUS AND INVARIANT SUBSPACES

C. APOSTOL

INTRODUCTION

This paper is an attempt to generalize the results of J. Agler {1}, S. Brown [4],
S. Br.own,'B. Chevrean and C. Pearcy [5] and J. G. Stampfii [27]) on invariant
subspaces. We shall show that the techniques of S. Brown can be used to produce
invariant subspaces for polynomially bounded m-tuples of operators acting in
Banach spaces. We have to say that our results are not complete as in the above
quoted papers (except for m = 1 in particular cases) because of the difficulties of
spectral natare for m > 1 and of the imperfection of general Banach spaces.

The paper is divided infive sections. In §§ 1 and 2 we develop an H*(D™) — func-
tional calculus for a polynomially bounded m-tuple 4 € £(Z)", where & denotes
a complex separable Banach space. If the approximate point spectrum of 4 is enough
rich then the H*(D™) — functional calculus becomes a weak* homeomorphism
between H*(D™) and a weak* closed subspace of Z(Z, £**) regarded as the dual
of a tensor product space. Thus we can speak about the weak* closure of the algebra
generated by 4. In § 3 we produce hyperinvariant subspaces only for the reduc-
tions we shall need in the sequel. In §4 we produce invariant subspaces for A
in case it has rich approximate point spectrum and 2 has an unconditional basis
or an unconditional finite-dimensional decomposition determined by some compact
injective scalar operator. Theorem 4.13 is a direct correspondent of the main
result of [5]. In § 5 we release the hypothesis on 2" and our results involve only
restrictions to invariant subspaces of m-tuples having functional calculus
with continuous functions on D™ (i.e. quasiscalar m-tuples). Sample resuilts in
this section are: '

— If & is reflexive, T € (%) is subscalar and 0D < o(T) = D then T has
a proper invariant subspace (Theorem 5.8).

— The restriction to an Invariant subspace of the multiplication with the
argument in LP(m), 1 < p < oo (where m denotes a finite positive Borel measure
in C with compact support) has a proper invariant subspace.
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Both results generalize Scott Brown’s Theorem [4].

The author expresses his gratitude to Dan Timotin and Dan Voiculescu for
many helpful discussions.

§ 1. FUNCTIONAL CALCULUS

Let & be a separable Banach space over the complex field C and let #(%4)
denote the algebra of all bounded linear operators acting in 4. The dual 2* of &
is the Banach space of all bounded linear functionals defined in . The action
of x* € &* applied to x € & will be denoted either x*(x) or (x, x*). Recall that the
Z*-topology of 4 is called the “weak topology”’ and the Z-topology of &* is
called the ‘“‘weak*-topology”.

Correspondingly we shall use the symbols “w-lim”, “w*-lim’’. The symbol
“s-lim” will denote the strong limit. If {T'},e, © £(Z), is given, where I is
a directed set, then “w-lim T,’, s-lim T, are defined pointwise (in case the

corresponding limits exist).‘

For any natural number m > 1, we denote by C™ the Carthesian product
of m copies of C, i.e. w € C™ is an m-tuple of the form w = (w,,. . ., ®,), v, € C.
The open unit polydisk in C” will be denoted by D™. We shall denote by H>(D™)
the algebra of all bounded complex analytic functions defined in D™, endowed
with the supnorm topology determined by the supremum norm Jj- { .

Let A== (4,,...,4,)€ L(Z)" be a commutative m-tuple ,i.e. 4;4, = A,A;.
If p is a polynomial of the form p(w) = p(w,,.. ., »,), then p(4) is defined by
p(A) == p(A4,,..., 4,,). We shall say that 4 e L(Z)" is polynomially bounded if
it is commutative and

¢4 = sup {[p(4)|}: p-polynomial, [plle < 1} < oo,

where ([plie, is the norm of p as an element of H®(D™). Assume that A is polyno-
mially bounded and denote by A* the m-tuple A* = (4F,..., A4%). Then A* is
polynomially bounded. For any » € H*(D™), 0 < r < 1, the function h, € H*(D™)
defined by the equation /,(w) = h(rw) is analytic in a neighbourhood of D™, thus
we can define h,(4) as a Cauchy integral. We shall say that 4 is H*-bounded if
lim < h(A4) x, x* > == (P(h) x, x*) exists for any he H°(D™), xe X, x* e &*.

r—1

&4(h) is a bounded linear operator mapping 4 in Z%*. The restriction of ¢4(h)* e
€ L(X*** 4*) to ¥* will be denoted by P*4(k). We shall say that &4 is *-multi-
plicative if $*4 is multiplicative as a map of H*®(D™) into Z(Z*). Observe that
we have

DA = wt-lim h(4), @*4(h) = w*-lim h(4*%),
r—1 r—1
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where the first limit involves the weak* topology of 2** and the second one the
weak* topology of Z'*, and

24| = NIe* (M < cqllhlloo.

If & is reflexive we identify Z** with &, thus &4(h) € L(X), H** = P4". We shall
call 4 strongly H®-bounded if

®A(h) = s-lim h(A).
r—1

If A is strongly H*®-bounded we have again $4(#) € £ (%) and & is multiplicative.
For any x € Z, x* € &* define the rank-one operator x ® x* € £(Z) by the equation

(x@x¥)z={(z,x*)x, zeX,
and put
lx @4 x*|[* = sup {[{p(4) x, x*}|: p-polynomial, |lplle, < 1}.
Now consider the following possible situations for 4:

) slimA;=0, 1<k<m,
n-Qo

2)  slimA™ =0, 1 <k<m,

n— 0o

3)  either s-lim Al =0 or slim4;"=0, 1 <k<m,

n—>CO n—-oo

4)  lim [Alx @4x*|* =0, (V) xeZ, x*ec@*.

n—co

The classes determined by the above situations will be denoted by C,., C.o, Covo, C°.

In the sequel of this section A == (A,. .., A,) € L(X)Y" will denote a fixed po-
Iynomially bounded m-tuple. We shall define the operators a ,, i r» Vi,n € L(H®(D™)),
1<k <mnzl,as follows: if 1 € H*(D™) has a Taylor expansion with respect

oo kI
10 @y, of the form A(w) = Z Atk D(w) b, where A4 e H>*(D™) and (Zh = 0,
1=0 wk
we put
nd—1 n3 — l
@) (@) = %) A (@) o,
=0
n—1 1
(B, i) (@) = Y, — ht& o) o,
izo n®

a) (@) = () "Th(@) — (%4 ) (@) — (Bicuh) (@)].
1.1. ProrosiTION. The following relations hold
C > COVO oD Co. U C.() .

The proof is a simple verification which we omit.
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1.2. LEMMA, Forany 1 <k <m,n =1 we have

1 t
o it = 1, {[Brnll < E;; s “)’k,n“ <24 —2—; .

Proof. «, ,h is the Cesaro mean of order n® of & as a function of @, and the
relation |l 1) == 1 becomes obvious in view of [18], p. 33. Since plainly we have
flatk: DYy < [hil, we derive

1 gl ”n”oo
6 h < - 2; } < —=-
” k,n ”oo w (’01) ” z”oo <

We also have

e ahlloo = I — @) — Beah)lleo < (2 + —21;) Wello -

1.3. LEMMA. If lim [Alx @4 x*II* =0, (N x e X, x* € X*, resp. if A€ Cy,
n-co
then

w*-lim g(A) (h - ak,nh)r(A) = 03 resp. s-lim g(A) (h - ak,nh)r(A) = Oa

i~ CO n-»co
uniformly with respect to0 0 < r < 1, g, he H°(D"), |lgleo < 1, e < 1, where g
is a polynomial.
Proof. Using the relations
[<g(A) (h - ak.nh)r(A) X, X*>| =

= {g(A) (B s)(A) x, x*) -+ (g(A) (i P, (A) Afx, x*)| <

<o (P (24 )@t <

2n

)

1
< cyllx* 24+ 2 Y ) s
< culix “(2,, +( +2n);1 kxu)

the assertions in our Lemma become obvious.

In the next three lemmas we shall assume m > 1 and we shall consider the
(m — I)-tuple A" = (Ay,..., Ap_1) € L(X)"1. We shall denote byH2(D™) the
subalgebra in H*(D™) consisting of polynomials in w, whose coefficients do not
depend on w,, but could depend on @’ = (wy,. .., ®,,_;).

1.4. LEMMA. Assume A’ is H®-bounded, resp. strongly H%®-bounded. Then
for any xe X, x* e X*, g, g’ € H2(D™) the limits

lim {(g,(A4) x, x*), resp. s-lim g,(4)
r-1 r—-1
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exist. Moreover if &4 is *-multiplicative we have
(W*-}i_flll g4*)) (W*_l,in: & (A7) = w-lim (88")(A%).
Proof. Let us put
G = {fEH“’(D'"):ai’: = }

w m

For any f € G we define } € H*(D™~1) by the equation f {0") = f(w). It is obvious
that the map f — fA is an algebraic isomorphism and f,(4) = f:(A'). Thus the limits

lim {f,(A) x, x*), resp. s-lim f,(A)
r—1 r—1

(e <)

exist. Since g is of the form g(w) = ¥ g™ (w) w,, where gi™?e G and the
I=0

series is in fact a finite sum, the rest of the proof will be a simple verification.

1.5. LemMA. If A" is H®-bounded and lim ||[A%x @1 x*||* =0, (V) xe X,

n—o0
x* e &*, then A is H®-bounded. Moreover, if ®4 is *-multiplicative then @1 is
*-multiplicative.

Proof. Let h,ge H*(D™), xe %, x*eZ* be given. Since a,, ke H(D")
and by Lemma 1.3 and Lemma 1.4 we have
lim {h,(A) x — h, (4) x, x*) =
r—1

r—1

= lim lim {(a,, /1), (A)x — (X oh),(A) x, x*) = 0,
n—-»00 r—1
r—1

it follows that 4 is H*-bounded. Using again Lemma 1.3 we derive
(x, P*A(hg) x* — P*A(N)P*A(g)x*) =

— lim Cx, 1,(4") (2.(4%) — D*4(g)) x*) =

= lim Hm (x, (%p,1) (A%) [0, @) (A¥) x* — D*4(ar,, ,8) X*]) =

n—-eo r—1

= lim <x> (p*A((“m,nh) (am,ng)) x* — ¢*A(O(m,nh) (D*A(am,ug) X*>a

H~QQ

thus if @4 is *-multiplicative, Lemma 1.4 will imply that & is *-multiplicative.
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1.6. LeMMA. If A" is strongly H®-bounded and A,, € C,. then A is strongly
H>-bounded.

Proof. We imitate the proof of Lemma 1.5, using the second part of Lemma 1.3
and the second part of Lemma 1.4.

1.7. THEOREM. If A€ CY resp. A€ C,. then A is H®-bounded and $4 is
*-multiplicative, resp. A is strongly H™-bounded.

Proof. By Lemma 1.5 and Lemma 1.6 we may suppose m =1, A= A,.

Let xe &, x* € &*, he H*(D). Since o, Ji is a polynomial and by Lemma 1.3 we
have

lim (h(A) x — h,(4) x, x*) =
r—1

r'—=1

= lim lim {(o /1),(A) x — (2 1), (A) x, x*) =0,
n~+oo. r—1
r—1

we derive that. 4 is H®-bounded. The fact that &* is *-multiplicative is actually
proven in Lemma 1.5. The proof of the “strong’” part is similar.

1.8. PROPOSITION. If A€ C® resp. A€ Cy. and if {h,}2, < H°D™) is a

bounded sequence pointwise convergent to O then for any xe€ %, x* € &* we have

wE- lim @*A(h,) x* = 0, resp. s-lim P4(h,) x = 0.

n—+ n—=o0

Proof. Using Lemma 1.3 and proceeding as in Lemma 1.5 and Lemma 1.6
we can reduce to the case m = 1, 4 = A4,. Because {h,},, tends uniformly to 0
on compact sets we may suppose

hw,) = orkiw,), liml, = co,
n—+oo
consequently
K @A(h,) x, x*H| = [{AD(hy) x, x*)| <

< MhplloollAhx @4 x*(1* < [yl IX* || NAx ]l €.

Since we have lim [[4"x ®4 x*%|j* == 0, resp. lim |[4”x| = 0, the proof is

concluded.
A direct consequence of Proposition 1.8 is the following:

1.9. CorROLLARY. If A € C°, resp. A € Cy. then for any x€ ¥, x* € Z* the sets
{®*4(h) x* : he HP(D™), |lhile, < 1}, {#4(h) x 1 he H®D™), lhlle < 1}

are sequentially compact in the weak* topology, resp. strong topology.
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Proof. If {h,}2, < H®(D™) is a bounded sequence we can find a w*-conver-
gent subsequence {f,}oy, w*- lim i, = h. Since {,}32, is pointwise convergent
n— oo

to h, applying Proposition 1.8 we derive

wr-lim @*4(fy ) x* = P*4(h) x*, resp. s-lim ®4(y,) x = PA(h) x.

n— oo n— 00

1.10. REMARK. The proofs of Theorem 1.7 and Proposition 1.8, in case
m =1, can be achieved using Taylor expansions in place of Cesaro means.

3 2. THE WEAK* CLOSURE OF THE ALGEBRA GENERATED
BY A POLYNOMIALLY BOUNDED m-TUPLE

Let A =(Ay,..., 4,) € L(Z)" be a polynomially bounded m-tuple. For any
xeZ putdAx = (4yx,..., 4,x)e ™, Il Axl]| = Y, ll4exll. Then the left approxi-
k=

1
mate point spectrum of A is the set

1({d) = {weCm: nfl li(4 — w) x||| = O}.

i
fix )=

‘The right approximate point spectrum and the approximate point spectrum of A
are the sets
1(A4) = 7,(4%), ©(4) = 7,(4) U 7, (4).
Observe that we have 7,(4) = 75,x,(4), where the right hand term is defined
in [17], Definition 1.3. We also define the essential approximate point spectra of 4 by

T(4) = {we C™: inf g({{(A — o) x||=0 if dim Z/¥ < oo},

%=1, x&
Tre(A) = Tle(A*)’ Tc(A) = Tle(A) U Tre(A)'

Let & ® Z* denote the projective tensor product of & with 2%, i.e. the com-
pletion in the projective norm, denoted below by ||+ |, of the algebraic tensor product
qsee {16] and {25}, Ch. III, § 6). By {25], Ch. XI, Theorem 6.2 and Theorem 6.4 we
know that any ue & ® Z* is of the form

U= § X ® X, fj xall ikl < o0
n=1

n=1

and the map
LE,X**)2T - ore(X @ T*)*
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where @ (1) — E (Tx,) (x¥), identifies L(¥, Z**) with (2 ® 2*)*. The weak*
n==1
topology of Z(%, **) will be determined by the above identification. Since #(Z)
is a subspace in Z(&, £**) we define the ultraweak operator topology of £ (%)
by the restriction of the weak* topology to #(%). The ultraweak and weak operator
topology of £ (%) agree on bounded sets. If 4 is reflexive then we can speak about
the weak* topology of L(X) (== L(X, Z**)) or equivalently the ultraweak operator
topology of £(¥). Let &, denote the weak® closure in Z(4, 2**) of the algebra

A
generated in £(Z) by A,,..., A,. If we denote by & ® £* the quotient space
of & ® X* by the subspace

(el ® I*: o) =0, (V) Ted },

A
then &7, can be canonically identified with the dual of & ® 4 * and this identi~

A
fication will determine a weak™ topology in &7 ,. The norm in & ® 4* will be denoted
asin & ® L, by |i-|l.. Let x e &, x* € Z* be given. There exists a unique conti-
nuous linear operator, mapping & ® 4* onto nuclear operators in 2 such that

ZTRI*>x@x* - x@x*e LX)

(recall that we already defined in §1, x ® x*, by the equation (x ® x*)y -=
<= {y,x*) x, ye ). The above map is injective if and only if & has the approxi.
mation property (see [19], Theorem 1. e.4) in which case Z(Z, £**) is the dual of
nuclear operators in & (endowed with the nuclear norm). If Z has an unconditional
basis (or an unconditional finite-dimensional decomposition) then £ has the approxi-

mation property. The image of x ® x* in & é Z* will be denoted by x Ci) x*.

Now let T" denote the m-dimensional torus and let #£*(T™) be the algebra
of all essentially bounded classes of complex functions of T, with respect to the
normalized Lebesgue measure. The weak* topology of L™(T™) is determined by the
duality relation LY T™)* = L<(T"). By [24], Chapter III, 3.4.4 (c) we identify
H>=(D™) with a weak™® closed subspace in L>(T") and this determines a weak* topo-
logy in H®(D™).

Further we assume that A € L(X)" is a CO-class m-tuple. Since A is H™-bounded
and @4 is well defined (see Theorem 1.7) we may consider the linear map

@ (H2D™), w*) — (& 4, w¥)
defined by the equation
Di(h) = D(h), he HOD™).
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In case ¥§ maps homeomorphic H*(D") onto &, and &, denotes the evaluation
at o in H*(D™), then the equation

Elodpp = &,

A
determines a w*-continuous linear functional £ e & ® Z*. Finally recall that a
subset 6 = D™ is dominating if (see {6], {23])

sup Ih((D)I = ”h“om (V) he Hoo(Dm)

wEs

2.1. THEOREM. Let A be a C%class m-tuple. The map ®§ is continuous.
If 0 €D™ is given and {x,}2, < X, {x¥}L,, = X* are bounded sequences such that
lim (A — @® x,|]| = lim ||](4* — @®) x¥||| = O then we have
= CO

n— oo

im {(@4(h) — h(@®)) x,|| = lim [[(@*4(h) — k(@) x}]| = 0,

n—»oo n—+oo

uniformly with respect to h e H*(D™), {hlle < 1.

Proof. Let {h,}2, = H®MD™) be weak* convergent to 0. Since in particular
{h,}Z1 is a bounded sequence, pointwise convergent to 0 and by Proposition 1.8

‘we have
lim {®4(h,) x, x*) =0, xe4, x*eZ'%,
n=+00

‘we derive easily
lim (pm.A(hn)(u) =0, ueZ ® 2*.

Because H*(D™) is separable, the continuity of @4 will follow by [5], Theorem 2.3.
Now if h e H*(D™) is given define A’ € H*(D™) by the equation

B (0) = hwy,. .., Op_1, ©).
‘Then we have

/I(CU) - h’((ﬂ) = g(w) (wm - (02,), g€ Hoo(Dm)a
(@A) — h(@®) xuli < 194(8) (Am — @) Xull + WPAH) — H()) X,lls
(@*A(h) — h(@) x7 || < 19*4(g) (A% — f) xnll + WP*A(R) — K () x}l.

Since A’ is in fact an element of H*(D™-1) (if m > 1) the rest of the proof
can be done by induction and we omit it.

2.2. REMARK. Theorem 2.1 is analogous to a spectral mapping theorem.
In fact it implies the spectral inclusion h(7,(4) ND™) < 7 (P*4(h)), h e H=D™),
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2.3. THEOREM. Let A be a Cclass m-tuple. If 1(4) ND™ is dominating
then ®4 is a homeomorphism onto s/, and for any he H®(D"), x € ¥, x* € &X*
we have

A A
Ml < IPEINY < cplihil, X ® x* Iy < llx @4 X*|I* < c4ilx @ x*115.

Proof. Since 1(4) nD™ is dominating, Theorem 2.1 implies A]l, < LA,
thus by [S], Theorem 2.7, &£ will map homeomorphically H*(D") onto & ,. The
rest of the proof is obvious.

§ 3. HYPERINVARIANT SUBSPACES

Throughout this section A == (4,,..., 4,,) € L(X)" and S € () will denote
a polynomially bounded m-tuple, resp. an operator which is not a scalar multiple
of the identity and sup [|S"|| < oo. A proper hyperinvariant subspace of S wilk

n>1
be a closed linear manifold, different from {0} and &, invariant for any operator
commuting with S. We shall say that S has the single-valued extension property
if the equation

(=8 =

has the only analytic Z-valued solution f'= 0 (see [12], § 3, [10], Chapter I, Defini-
tion 1.1). If S has the single-valued extension property then for any x € Z there
exists a unique analytic function xg valued in %, with a maximal domain pg(x) o p(S})
such that

(A — ) xs(l) =x, Leps(x).

The open set pg(x) is the resolvent set of x with respect to S and oy(x) ==
=C\ pg(x) is the spectrum of x with respect to S; 64(x) is a compact subset of 6(S).
void if and only if x = 0 ([10], Chapter I, Proposition 1.2). For any closed subset
o < o(S) put

Zso) ={xe&:04x) < o}.

Then Z'4(o) is a linear manifold invariant for any operator which commutes with §
([10], Chapter I, Proposition 1.2). It is obvious that if S has not the single-valued
extension property, then the point spectrum of S is nonvoid and consequently S
has a proper hyperinvariant subspace. If the point spectrum of S is void then §
has the single valued extension property .

Forany 0 < 0 <2r, 0 <e <= put

6(0,¢) ={e? :p e[ —¢& 0+ ¢)).
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3.1. LemMA. If S is power bounded, o,(S*) = @ and {S"} does not tend
strongly to 0, then the set

{6€l0,2n): X% (a(6,8) # {0}, (V)0 <e<m}

is infinite.
Proof. Let x€% be such that lim [|S"x]}> 0 and x*eZ* |x*| =1,
{8"x, x¥y = [IS"x||. Since the unit ball in Z* is weak* compact we may suppose

that we have
w*-lim S*knx% = x*,
n— oo

The assumption ¢,(S*) = @ implies the existence of the limit

w*-lim S*en—rx¥ = y* . r=0,1,....

Since we have |[y¥|| < sup ||S"|| we can define the analytic function
n>1
x*.(-): {A: 4] # 1} - &* by the equation
(A — S*)~1x*, |4 > 1

*
xs.(/l) =5 0
— Y ¥ W< L.

r=0

Using the relation S*3%, = 3 we derive easily

(A — S x5 () = x%, I¥e A < (Sl;lp 1S 11 — Al =,

consequently o5.(x*) < {A:|A| = 1}. For any 0€[0,2n), such that e¥ €og(x*)
and any 0 €e<n, 0 <y <1 put

8(0,6,m)={te*:1 —n<t<l+n oecld—e¢ 0+
I, e, n) =060,¢,n)
and define the analytic function
fo.ld) = (A — €692 (3 — el0+a)2, 2 eC.

Because obviously f; .xs(+) is continuous on I'(8, ¢, ) we may consider the integral

x:‘,e=i.s Foruld) X5() dA,
2ni Jre,s,m
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‘which is independent on 7. If we put

S*0,¢) = (S* — ei(o—s))e (S* — ei(0+£))2’

1 fo.{Ox%5(0) dC
*eq'l = e, A 0, ¢,
Ve o, o(A) P Sm,m) P ¢, ¢mn
28 e, ol A) = ._1 So,(D)x%(0) d¢ — y¥o.4D), Aecintd(, e, n)

2mi EAT{ES B A— C

then yj .. ,(+)s Zp.e.,(+) are analytic functions and
('l - S*) y(;‘: &, r]('{) = xg:,a s A é 5(0’ &g, ’7),
(A — S*) 2§, (2) = S¥(0, &) x* — x;.., Ae€intd0,e,n).

Hence we derive

o5(x5.0) < 0(0, ),
0s(S¥(0,8) x* — xf ) c {e? 1 o ¢ (0 — &, 0 + ¢))}.

But wealso have €' € 65.(S*(6, ¢) x*). Indeed if € € ps.(S*(0, £) x*), then the function
S*(0, €) x%(-) has an analytic extension in a domain containing €, while x%.(-)
has not such an extension. We can find a sequence {1,}22; < ps(x*) such that
lim 2, = €%, |x%.(A)ll = n (f x%.(-) is bounded near €, then using the assumption

ERadd

,(S*%) == @ and the weak* compactness of the unit ball of Z*, we can extend x5.(-)
to a weak* continuous function in a neighbourhood of €' and such an extension
is necessarily analytic contradicting e¥ € o5.(x*)). Thus we have

lim (4, — §%) x5(L) IXEG)I! = x* lim [xE@) I~ = 0,

‘while
lim |IS#(0, &) x5.(A) N xSt = lirg [f(A)] = |f(ei%)) > O,

n—-co

lim [|S%(0, &) x5.(A) ]| IX5.(2,) 171 = ll_f!; I(S*(0, &) x*)s- (A IXF(A ) 172 =

and the relation e € o5.(S*(0, £) x*) follows. Now the inclusions
o(S*(0, &) x* — x5,,) = {e?: 9 ¢ (0 — &, 0+ ©)}

05:(S%(0, £) x*) = Gu(x5;0) U a5e(S*(6, £) x* — x3,.)
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imply x,, # 0, Z%.(c(0, £)) # {0}. To conclude the proof it suffices to show that e
is not an isolated point in og(x*). But if € is isolated in og.(x*) then x§, does
not depend on ¢ if ¢ is enough small, thus

0 % x§ = limxj .,

=0

T e~0

tim ) < limS o )]+ ) 11dA] <
€~0 2 rg,e, s

2w n>1 §0

<-sup |87 tim{ 1ol 11— 1201748 =0
rf,e,e

and this contradiction shows that e has to be an accumulation point in ag(x*).

3.2. THEOREM. If S is power bounded and neither {S"}3, nor {S*"}3.
tend strongly to O then S* has a proper hyperinvariant subspace.

‘Proof. If 6,(S*) # @ then ker (S* — p), u € 6,(S*) is a proper hyperinvariant
subspace of S*. If ¢,(S**) # @ then (S* — u) Z* is a proper hyperinvariant sub-
space of S*. If 6,(S*) = ¢,(5**) = O, applying Lemma 3.1 we can find two compact
disjoint sets o, 6 such that

Z35(0) # {0}, Z5%©0) # {0}

For any x* € X%(0), x** € E%(5) the function

)= (XEdA), x**), Ado,
(x*, x§5(2)), lea,
is analytic in C because
(), x**)y = (x*, xEEQ)) = (R(A; S*%) x*, x**), |4 > 1.

But we have lim f{1) = 0, thus by Liouville’s Theorem we derive f{1) = 0, {x*,

Ao

x**% = lim Af(1) = 0. This implies that 2%.(¢) is a proper hyperinvariant subspace
A= co .
of S*.

3.3. REMARK. In case & is reflexive, Theorem 3.2 b”ecofnes a -consequence
of [10], Chapter V, Theorem 1.9.

3.4. PROPOSITION. Let A be polynomially bounded. If 1(4) n D™ is dominating
and the commutant of {A}}i_1 has no proper invariant subspace then A € Cyy,, conse-
quently @7 is a homeomorphism.

Proof. Since A has no proper hyperinvariant subspace, applying Theorem 3.2
we infer 4 € Cyy,. But the inclusion Cyyvo = C° and Theorem 2.3 imply that &}
is a homeomorphism.

2—2443 31



172 C. APOSTOL

3.5. THEOREM. Let A be polynomially bounded. If (t,(A)\1,.(4)) U (z(4)\
N1, (A) # O then the commutant of {A,}7_, has a proper invariant subspace.

Proof. If w € 1,(A)\1,,(4) we can find two subspaces &', 2" of Z such that
inf {Il(4 — w) x|l : x € 2", Ix]| =1} > 0 and

dim &' = codim " < oo, £ N A" = {0}, F' + X" = .

Let {x,}%.; = & be such that [x;ji=1, im (4 — 0) x;|] = 0. If x; =
k= oo

=X, - X!, X, €X', x;! € I we may suppose that {x;}72., converges strongly to x’,
consequently {x;'}i2.; converges strongly to x" (via (4 — @)%’ is bounded from
below with respect to [||-!}). Since we have ([(4 — @) (x" + x| = 0 we deduce

n
that {7} ker (4, — w,) is aproper subspace invariant for the commutant of
k=1

{Agp.. I wet(4)\1,(4) we apply the above reasoning to A* to show that

"

Y, (4, — @) &) is 2 proper subspace invariant for the commutant of {A}7 ;.
k=1

§4. INVARIANT SUBSPACES FOR POLYNOMIALLY
BOUNDED m-TUPLES

As before A — (As,...,A,)e L&Y will denote a polynomially bounded
m-tuple. For any ¢ « &, § < &* we shall put

A
o @ 0={x®x*:xeq, x*€d}.
The closed ball in % with center in x and radius b > 0 will be denoted by B(x, b, &)-
Consider the following possible properties of A:

A
(@) There exist by 21, 0 <r, <1 such that for any o€ Z @ Z*, xe &,
x*ed*¥ we have

dist (¢, B(x, b,5Y2 ) (A) B(x*, bb¥2, Z%)) < rb,
A
where b= |lp — x ® x*,.
4 4
B) £RX*={xQ@x*:1xeZ,x*eX*},

(y) 4 €C° t(A) ND™ is dominating and there exists b, > 1 such that for any
xeZ, x*eZ*, {w®}.; © 1,(4) nD™, {¢}i=1 = C we have

dist (¢, B(x, b,0"2, ) () B(x*, b,b12, Z*)) =0,
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n

A n
where @ = x ® x*+ E‘ck@%m, b =Y lal
- k=1

K=1

(0) A €C° 1(A) nD™ is dominating and there exists by > 1 such that for any

xeZ, x*e€Z*, {0P}p.; < 1, (4) n D", {c}i-y = C we have the same relation

as in (y). :

REMARK. By Theorem 2.3 if A has property (y) or (o) then ¢4 maps homeo-
morphically H2(D™) onto &/, and &4 is well defined.

4.1. TueoREM. If A€ C° 1(A) nD"™ is dominating and A has property (B)
‘then A- has a proper invariant subspace.

Proof. For any w eD", the functional &7, defined by Theorem 2.3, is of the
form
ELDER) = (PLh) x,, Xi), h € HZ(D™),
consequently
(4, — wy) q)i(h) Xws X:> = 0.

This implies that either ker (4, — w,) or & (4, — w,)x, isa proper invariant
subspace of & ,.

4.2. PROPOSITION. The following implications hold true:
O @=®
) if 1, (4 nD™ is dominating then (y) = (&)
3) if 17, (A)nD™ is dominating then (5) = (&)
@) if t(4) = 1,(4), T(4) = 7,(A) then ((7) + (8)) = (@)

4
Proof. (1) Let 9 € ' ® 2'* be given. We can find by induction two sequences
{xuno © %, {x}}520 = Z* such that

A
Xo=0, x5 =0, o — %, ® ¥y < rlloll, 0<r<l,

nj2

IXna — Xull < bgr™2 l@IN2 X5 1 — X511 < byr™2 e 132

A
If we put x = lim x,, x* =lim x’ we have ¢ = x ® x*.

n—-co n-»co

4 4
) LetpeZ ® L*, xeZ,x* €X*,¢>0,begivenand putb = ¢ — x® x*].
Because 7,(4) nD™ is dominating and we have

A
@ — x ® x*)o O, < b,
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[

applying [5], Proposition 2.8 we can find {¢}i-; = C, {@®}i., < 7, (4) nD™,
such that

n A n
3 lad < cb, \] (0 — x® x5 04 — ¥ cubhw)
i ’ o k=1

k=1 ;‘L*

< &.

Hence we derive
i A n ”
' ¢ —x®x*— ¥ cfawh
- It
k-1 i

i

< e [(PH7

Because we assume that A has the property (y) we canfind y € B(x, b ,c4/?b'2, I),
y* € B(x*, b,cl{?b1/2, I*) such that

< g;
*

A n A
{x@_X**{‘ 2 ckdf;‘,(k)—y@y*

k=1 |

consequently we have

dist (¢, Bx, buc6'%%, ) () B(x*, b, o) <

A
< llp —y @ p¥lls< el + (@) 7).

Choose & == b[2(1 + [[(PF) D]~ r=2"1
(3) We repeat the proof of (2), with {w®}}_., < 7,.(4)nD™.

4
(4) Let 9 e X @ X%, x e X, x* €™, £>0be givenand put b=p— x ® x*[l.
As in (2) we can find {¢}}., = C, {©®}i., = 7(4) ND™ such that
4 ! A n i
Z Ick' scAb:! (P—x®x*—- chéag(k)»l
‘ - k=1

' < E.
k=-1 i !‘*

If {0%}ren & 1,.(4), {©®F}rsy < 7,.(4) because 1(4) = 1, (4) Ut (4) by
assumption, applying (y) and (8) we can find first y € B(x, by c}{?b'2, &), y* € B(x*,
b,cY?b12, I'*), such that

I

| 4
b g ] <
Uk

and then z e B(y, by{c?b\2, &), =% € B(y*, by cI2b1/2, *) such that

t
N4

A |
i}y ® v+ 2 Ckoﬁfﬁ(k) — Z@ z¥ ” < e,

k>ny {;#
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where b’y is provided by () and b/, is provided by (). If we put b, = c}{*(b) + b
we have

dist (¢, B(x, b,b4%, Z) (A) B(x*, b,bY2, %)) <

A
<llp —z® 2%, < e+ <

k=1

A n A
!x@x*—}— Y abswm —z@® z*

*

<3e.
*

<e¢ ;x®x*+2 cké”w<k>~—y®y

k<m

4 4
' -+ Hy Qy*+ Y bl —z @ z*

k>

Choose ¢ = b6, r, = 2L

4.3, LEMMA. Let % be an n-dimensional subspace of & with a basis {e}i -,
of unit vectors such that

for some fixed positive con;vtant a>1andany 2, €C, 6,€[0,2n). Let {¢,}}-, = C

be such that Yy lcxl = 1. Then there exist {iy}i-, = C and y* € Y* such that
k=1

<1, ¥ < a, wy*(e) =c.

} kngl Hi €

Proof. Assume first that a = 1 and the norm in % is strictly convex and
smooth (see [11], Ch. VII, §2). If we put

" n
G:{Z ae, a. =0 Z,ake,‘
k=1 k=1

then we know that for any x € ¢ there exists .a unique yE¥ e * such that |y*|| =
== y¥(x) = 1 (via the smoothness of the norm in %). Because the norm in % is
invariant under rotations on the axis determined by the basis {e,}f-,, we derive
easily y¥(e) =0, xeo, 1 <k <n. Let & e@/* be such that

ekl = ef(e) =1, ef(e )—0 k#j.

| =
|

Then 'w'e' have

'S | 3 aet

Z eific), e

for any A, €C, 6,¢<[0, 2n) and the functions

''n
g ok
s A= Aey

k=1

!
1
1
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increase with |A;]. This, together with the strict convexity of the norm in both #
and #*, imply the following equivalence:

yi(e) == 0 < €j(x) = 0.

Suppose our lemma holds true if the dimension of the subspace does not exceed
n—1(=1). For any €0, 1] put

e ,k<n—1,
te,_y —L‘f(t) €ps k=n— 11

elt) = {

where f(¢) € [0, 11, lle,_s()!l = 1. The function fis continuous and f(0) = 1, (1) =- 0.
Using the above assumption on the dimension, the Hahn-Banach Theorem and

n--1

the invariance under rotations on axis we can find x(t) €, x(¢) = }: a,(t) elt),
Ko

Vi e (yF == y¥,) such that

IO = Il =1, a®) /@) = les k< n—1,
an—l(t)yf:(en—l(t)) = lcn—ll + lcn"

The vectors x() and y¥ are uniquely determined because if x'(¢), y;* is another
n—1
solution of the previous equations and x'(t) = Y ai(t)e(t) we have
K=1

YECO) + EEE) =S, [a6) ' Fe) + ai) v ei)] <2
k=1

But since e = ay(t) y}'(eu)) = ailt) yi*(e 1)), if we put

rdt) = ai(D]a(t) = (e )/y*(e() if a()+ 0
we derive

YEEO) +EO) = Y ) + Un(®) a0 ¥ @) <2

ar(t}#0

which is possible only if r,(2) = 1, x(f) = x'(¢), y¥ = y;*. This implies the conti-
nuity of the functions

t— ), t-yF

and in particular the function

t— y:g(an—l(t) ten—l)
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will be continuous. Since y¥(0) =0, Y@y (1) ey ) = a,_y(1) Y¥en-1(1)) =
= |¢y-1| + lc,| We can find s &[0, 1] such that y¥a,_,(s) se,_)) = Ic,, i If ¢ =
== ei%]|c,| and we put

M == eiokak(s)s k<n—1, Hpa = ew"_lan—l(s) S

Ha = €%a,_y(s) f(s), y* =y}
we have a solution for the conditions in our lemma. The proof will be completed
by induction if we observe that in case dim % = 1, the lemma is trivial.
Further if @ = 1 and || || is not strictly convex and smooth then for any 0 <
< g < 1let |-}, denote the norm in % determined by duality with the norm in #*

determined by the equation
n 2
Z e ] S et )‘,— : (2 um)
[ =

and define the norm || - H,3 in % by the equation

n n 4 n 12

S el =0 -0l % ael + a(z uk)%) .

k=1 i k=1 & k=1

The norm ||-||; in' % is smooth, because |- ||, in #* is strictly convex and the norm
[I-]l. in % is both smooth and strictly convex as well as invariant under rotations
on axis. Thus we can find a solution x,, y¥. Finally using the compactness of the
closed unit ball in finite dimensional spaces and the relations 1irf)1 Izl = 1i=zll,

—(1~—8)

€

lim [[z*], = {|z*|l, uniformly with respect to z and z* in compact sets, we can find

=0

a solution {g}f.,, y* for the conditions in our lemma as a limit of &-solutions.
Now assume a > 1. If we introduce the norm

i‘ Al = sup{ Y, ef%de
k=1 0

k=1
n
and x = ¥} me,, y*e*, |xllp < 1, ly*lh <1 is a solution, we have [ix|j <1
k=1
liy*ll < a, thus the assumption @ = 1 is not a restriction.

10, €10, 271)}

Now recall that a scalar operator (in the sense of Dunford, [12], § 3) acting

in & is an integral of the form SAE(dl), where E denotes a strongly countably

additive spectral measure with compact support, with domain the Boolean algebra
all Borel subsets in C and value projections in &. For any continuous complex

function f defined on ¢ (SAE(dl)) we have

wa E@dD) || < o(E) sup [f)],

where v(E) is a positive constant depending on £.
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4.4. THEOREM. Suppose there exist K € P(X), K' € L(4'*), compact injective
scalar operators. If A€ Cy. N C.o and 1(A) ND™ is dominating then A has a proper
invariant subspace.

Proof. Because we have in particular 4 € C°, applying Theorem 3.5, Theorem
4.1 and Proposition 4.2 we shall show that 4 has properties (y) and (§). Letxe &,
x*eZ*, {afi-1 € C, {0W}7_, c 1,,(4)nD™, & > 0, be given and let E denote
the spectral measure of K. Because K is compact and injective, E(s) is a finite
rank projection whenever ¢ is a finite set and |E(¢) x — x| can be made arbitrarily
small if & is suitably chosen (see [12], § 3). By Corollary 1.9 we also know that

{®4(h) x: h e HO(D™), W, < 1}

is a compact set in the strong topology of Z.
We can choose finite disjoint subsets {o,}7-, of 6(K) and pick ¢, such that ¢,
(ker x*)N E(6) %, lell= 1,1 <k <nand

'l

= a®)eli <o, | F ( ) ok) L) x| <ol
k=1

Since we have

!

Y Ay

k=1

no |
Yy, e A
k=1

< v(E)i

applying Lemma 4.3 and Hahn-Banach Theorem, we can find {g}i-, <
n B3
c C,z*eE(Uok) Z* such that

k=1

i
!J Z M€y

!
(P

<L 1< B ) = Ic,-l)_l

j=1

|
(4 — @®) ]| < ¢, "{E

I

(C;ak) o) x || < el -

k=1

If we put
n 12 & n 1/2
w=otB)($16l) " % me wr=ue(§1ar)"
k=1 k=1 k=1

by =v(E), u=1x+w, u* =x*+ w*

n \ L2 n 1/2
we have ue B(x, b, (Z lckl) , X), u*eB (x*, bA'( |ckl) R X*) .
1

k=1 k=
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Since
wz*(e) = Ck(z et and | ll < o(E),
we have
| n A ] n A
Y abfow —w@wr| < sup ( Y, afim —w @ w* | (%) | =
| k=1 - ‘|* Ihle sl |\ =1 —

=( )":,lcu) sup | 37 e { (@) — BB e 2% Y | <
Ko ;

o<t | k=1

< v(E)z(ﬁ; ickl) sup ( 3, Il 1h(o) — 24 () eki|)
k=1

1\111 <1 \x-

< WEY ( v lckr) (ki; Sup (@) — #400) ekn)-
k=1 =1 Wlgst

n *
Since z* € E ( Z ak) x*, we have

A
llx @ w*ll, < sup KPEH) x, w*)| =
= Moo <1

—o(E)- (AZ lckl)l o, <E(U a,‘) ¢4(h)x,z*>l <
c=1 < k=1 H

n 1/2
<a)( )"

k=1

Finally since (¢, x*) = 0, we have

A n 172
w ® x*[lx < o(E) (2 Ickl) sup x*H1<
- k=1 o<1 | K=1 ‘

‘o

< oEY (kij Ickl)llz ( 5 s Keihe, x*>i‘) -

k=1

= (§ 1) (F g, 100 — W) e x7)1) <

k=1

< v(E)z(ﬁ lckr) ux*u(i sup 1040) — Hw®) ek)
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Now using the relations

x®x~+ Z 6 m—u®u

k=1

#

—

f n
2;{ch§ u;—w®w"*—x®w —w®x M

ki fae

inr ! A 4
“ 2 bl —w ® Wil 4 e @ w¥lly v @ xF,
1 e o o

k=1

can be made
£

x®x + E O —u®u’*]

k=1 I
arbitrarily small, thus A has the prop\.rty ().

The first part of the proof implies that 4% has property (y), too, thus if
{w®}2_, < 1,.(4), we can find

n 1/2 n 12
ut GB(x, by ( ) lckl) , BZ) u*eB {X*,bA( Y lckl) , 33”*‘)
k=1

k=1

and Theorem 2.1 we deduce that |

such that

sup l (Di(h) x, x*) + f; cih(@®) — u**(D4(h)*u¥) | < e.

h‘ k=1

Because
{®F(h)*u*: h e H(D™), il < 1}

is a compact set in the strong topology of £* and the unit ball of & is weak® dense
in the unit ball of £**, we may suppose u**c Z. This shows that 4 has the pro-

perty (3).
4.5. COROLLARY. Suppose & is reflexive and there exists K e L(Z) a compact

injective scalar operator. If A € Cy. N C.o and ©(A) n D™ is dominating then A has
.a proper invariant subspace.

Proof. By [12], Theorem 18, (iv), K* € L(Z*) is a compact scalar operator.
It is obvious that K has dense range, thus X* is injective and we can apply Theo-
tem 4.4,

4.6. COROLLARY. Suppose & has an unconditional basis and either % is reflexive
.or &* has an unconditional basis. If A€ Cy. N C.o and 1(A) N D™ is dominating then
A has a proper invariant subspace.



FUNCTIONAL CALCULUS AND INVARIANT SUBSPACES 181

Proof. Let {x,} be an unconditional basis in Z (see [26], Definition 14.1,

p. 396). Put ¢ == {0} U {1/n}n»1. Using [26], Theorem 17.1 we can define a spectral

‘measure £ onthe Borel subsets of ¢ as follows : forany ¢ < ¢ and x €% we put
E(é) X = 2 )»kxk, if X = 2 )uk.xk.

k-es i»1
1t is easy to check that K = S/lE(dl) € #(X) is a compact injective scalar operator

thus either by Corollary 4.5 or by Theorem 4.4 we deduce that 4 has a proper
‘invariant subspace.

4.7. THEOREM.  Suppose there exists K e L(%) a compact injective scalar
operator (or suppose, in particular, that & has an unconditional basis). If A< C,.
and t(A) n D™ is dominating then A has a proper invariant subspace.

Proof. Because A € Cp., the proof of Theorem 4.4 shows that 4 has the
property (y) and by Theorem 3.5, Theorem 4.1 and Proposition 4.2, 4 has a
proper invariant subspace.

4.8. THEOREM. Suppose there exist K'e L(Z*) a compact injective scalar
operator (or suppose, in particular, that &* has an unconditional basis). If AcC.,
and t(A) N D™ is dominating then A has a proper invariant subspace.

Proof. Because 4 e C.o we derive as in the proof of Theorem 4.7 that 4
has the property (8) and that 4 has a proper invariant subspace.

Recall now that % is called uniformly convex if whenever {x,}, c Z,
{ya}o1 « & are sequences such that
lim )} = lim |ly,|l = 1/2 (im {x, + y,l) =1

n—co n—+oco n-—r o

we have
lim }x, — »,] = 0.
n-—»o0
A uniformly convex space is reflexive (see [11], pag. 188—189).
Consider the following possible properties of Ae C° if @4 is a homeo-
morphism:
(y') For any xe &, x*e &*, ¢ >0, b > 0, there exists 0 < r < 1 such
that

dist (¢, B(x, b'2, &) @B(x*, b2, Z¥)) < e

A n n
whenever ¢ = x ® x* + ¥, ¢ 840, Y, lel=b, {c}i1=C, {0P} ) « 7, (4) n D™,
- I=1 I=1

min || >r, 1<ign
1<kgm
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(6) For any xe %, x*eZ*, ¢ > 0, b > 0 there exists 0 < r < 1 such that

dist (¢, B(x, b'2, &) @B(x:k, b2, X*) < ¢

A n n
whenever ¢ = x ® x* + ¥, ¢6lm, ¥ lel=b, {¢}i.i=C, {0)} 1, (4)nD",
i-.1

=1

min jo{ =5, 1<I<n
1cksm

4.9. PROPOSITION. Suppose A € C® and D% is a homeomorphism. Then the fol-
lowing implications hold :

(i) if 1,.(4) nD™ is dominating, (') = («)

(i) if 1,.(A) nD™ is dominating, (8') = (a)

(iit) if 1 (4) n D™ is dominating, ((v") + (8")) = («).

Proof. The condition min |w{’] > r, 1 </ < n, makes no obstruction if

1<gkgm

we repeat the proof of Proposition 4.2, (2), (3), (4).

4.10. LEMMA. Suppose there exists a compact injective scalar operator Ke
€ F(X) with the spectral measure E such that v(E) =1 (i.e.]] S SAOEW) | =

= sup |f(A)|, for any continuous complex function f defined on a(K)) and X'* is uni-
r€q(K) '

formly comvex. If Ae€C® A,€Cy., Al =1 and ®F is a homeomorphism then A
has the property (v').

Proof. We imitate that part of the proof of Theorem 4.4 in which it is
shown that A has the property (y). Using ‘the same notation, everything goes smooth

except the fact that |'x ® w*|l, can be made arblt;arlly small, because the argument

A
involving compactness is not available. We shall show that|| x ® w*[|, can be made
small if 0 < r < 1 is properly chosen and [w{"] > r, 1 <1< n. Since w* = p1/2z%*
because of v(E) == 1 and z* is produced by Lemma 4.3 we have

20 = 1= z* ( ¥ vunet)
I=1
(see the proof of Lemma 4.3). Let # > 0 be given and put -
= {563(1) A8 =S4, |S] s 1}:

x, ={S€% iSxl < 9},
U, = {Se¥U: |Sx| > u}.
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A n 1/2
Since {ix ® w¥|l,. < (z Ickl) sup K®i(h)x, x*y] and each ®F(h) com-
T k=1 A oo
mutes with A, it suffices to show that we have
12*¥(Sx) < n, Se¥,

if |@| = r and r is enough close to 1. Since the above relation holds true if S € %,,
pick Se %s. If we put

— inf {H LSy [/,L,[e,

i AEC}

and if we choose 4g € C such that
n |
= ”ls&\‘— Y lu,le:il
!

we have [Ag| < 2n=1 and since ||4,[ = | and |IS|| € 1 for any natural number k

|
ds > |

I

Af ()vssx*‘ ‘Z il el) Il >4

i=1

= !~211
|

Z ]y,](w”))k ¢y

i=1

~ (@{"Y)e,

=1

! :

Now letting & to be enough large and then letting r to be close to 1 and choosing
properly {e,}}_1, it becomes obvious that we may suppose that (1 — dy) is arbitrarily
small, uniformly with respect to S. By Hahn-Banach Theorem we can find z§e2*
such that

125 < dg?, Z5(Sx) =0, z‘s*(ﬁ';lmle,)=1.

=1

Finally the assumption on the uniform convexity of Z* implies that ||z* — z¥]
is small if |1 — dg| is small and this concludes the proof.

4.11. THEOREM. Let A be a polynomially bounded m-tuple. Suppose there exists
a compact injective scalar operator K € L(X) with the spectral measure E such that
v(E) = 1. Then A has a proper invariant subspace in case at least one of the following
conditions is fulfilled :

(i)Y & and &* are uniformly convex, 1(A) nD™ is dominating and there exist
L<sk<m 1<j<msuchthat Ay Co., Aj€ Coo, [Adl = |41 =1,

(il) Z'* is uniformly convex, 1{A) n D™ is dominating and there exists1 < k <m
such that A, € Cy., ||A )l = 1.
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(iii) & is uniformly convex, T (A) N D™ is dominating and there exists 1 < j < e
such that A;€ C.o, ||4;]] = 1.

Proof. By Proposition 3.4 and Theorem 4.5 we may assume 4 € C°, 93 is a
homeomorphism and 7,(4) = 7,.(4), 1 (4) = t,(4). Using Lemma 4.10 we infer
that A has the property (y") in cases (i), (ii) and the property (6) in cases (i), (iii),
To conclude the proof we apply Proposition 4.9,Theorem 4.1 and Proposition 4.2.

4.12. THEOREM. Suppose X is a Hilbert space and T, S € (%) are commut-

at least one of the following conditions is fulfilled:
(i) ©(B) n D2 is dominating and T € Cy., Se C.y,
(i) ©(B) n D2 is dominating and T € Cy. 0 C.y,
(iii) 7,(B) nD? is dominating and T < Cy.,
(iv) 1,(B) nD? is dominating and Te C,.

Proof. By the theorem of Ando [2] (see also [28], Ch. I. § 6) B follows to be:
polynomially bounded, thus we can apply Theorem 4.11.

4.13. THEOREM. Suppose there exists Ke L(%) a compact injective scalar
operator (in particular suppose that & has an unconditional basis) and & is reflexive
Then ary polynomially bounded operator T € L (%) such that o(T) D is dominating
has a proper invariant subspace.

Proof. Tt is easy to see that if 7" has no proper hyperinvariant subspace then we
have

o(T) = 1,(T) = 1,(T)

and by Proposition 3.4 we may assume T € C,.. Now we can apply Theorem 4.7.

§ 5. INVARIANT SUBSPACES AND QUASISCALAR OPERATORS
Let @ be a complex Banach space including 2 as a subspace and let
A={4y, ..., A) e LX), B=(B, ..., B,)e L™
be given. We shall call B an extension of A if
B <« &, B¥ = A, 1 <k <<m.

If . is a compact Hausdorff space we denote by ¢(.#) the supnorm algebra of
all continuous complex functions defined on .#. A spectral distribution

VG M) - L@)
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will be a linear multiplicative continuous map such that ¥7(1) == I(= the identity
operator). If B is a commutative m-tuple, then the carrier space .5 of the Banach
algebra generated by {B,}i-; and I, can be canonically identified with a compact sub-
set of C™ (see [22], Ch. IIL, § 1). We shall call B a quasiscalar m-tuple if B is commu-
tative and there exists a spectral distribution ¥ : €(M;) — L (@) such that

VB(p) = p(Bl’ LR ] Bm)
for any polynomial p. It is obvious that a quasiscalar operator is a generalized
scalar operator of order 0, in the sense of [10], Ch. IV, § 1. If % is reflexive then any
quasiscalar operator is a scalar operator (see [12], Theorem 18).

Let' S € Z(%) be given. A spectral maximal space of S will be an invariant sub-
space Z of S, such that 2, = 2 whenever %, is an invariant subspace of S and
o(S\%,) < o(S|Z) (see [10}, Ch. 1, § 3). We shall call S a decomposable operator
if for any open covering {G,}i_, of 6(S) there exists a system {Z,);i_, of spectral
maximal spaces of S such that (see [10], Ch. II, Definition 1.1)

Y=Y Z.08|Z)<=G, 1<k<n
k=1

If S is decomposable then S has the single-valued extension property and for any
closed set o,
o) ={ve¥: oiy) < o}

is a spectral maximal space of S such that ¢(S|%4(s)) < o ([10], Ch. II). If Sis a
quasiscalar operator then by [10], Ch. III, Theorem 1.19, S follows to be decompo-
sable. An operator T € .Z(%) will be called subdecomposable, resp. subquasiscalar,
resp. subscalar if it has a decomposable, resp. quasiscalar, resp. scalar extension
S € Z(#). Analogously, we call 4 a subquasiscalar m-tuple if it has a quasiscalar
extension B € #(¥)™.

5.1. PROPOSITION. Let T e P (%) be such that T is power bounded and T*
is subdecomposable. Then either T* has a proper hyperinvariant subspace or T € Cy.
or T is a scalar multiple of the identity.

Proof. Assume T ¢ Cy., 0,(T*) = @. Applying Lemma 3.1 we can find two
compact sets ¢, 6 = o(T*) such that

and =0, Tio) {0}, %) {0}
If Se #(@) is a decomposable extension of T*, we have
L(0) N Z38) = (o) n U5(8) = {0},

thus & ;7;) is a proper hyperinvariant subspace of T*,
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If 6,(T*)#0 then ker (T* — %), 1 € 6,(T*) is either a proper hyperinvariant
subspace of T* or T = AL

5.2. COROLLARY. Let Te LX) be power-bounded and subdecomposable. If 4 is
reflexive then either T has a proper hyperinvariant subspace or T e C.yor T is a scalar
multiple of the identity.

Proof. Since T** = T we apply Proposition 5.1.

5.3. THEOREM. Suppose A is subquasiscalar, o(4,) <D, 1 <k <m and
7(4A) nD™ is dominating. Then A* has a proper invariant subspace.

Proof. Let B=(B,, ..., B,) € Z(@)" be a quasiscalar extension of 4 such
that % is generated by the set

{(Ve(H)xe:x0€ X, f€C(Mp)}.

Proceeding as in [10], Ch. III, § 1, we derive easily .#; = D™ and this implies that 4
is polynomially bounded. By Proposition 3.4 we may assume 4 € C° thus applying
Theorem 3.5, Theorem 4.1 and Proposition 4.2 we shall show that 4 has the pro-
perty (y). Let xe&, x*eZ*, {c}}.; = C, {©™}1., « 1, (A)n D™, be given.

Choose 0 < # < 1 such that max |0{’ —@{’| > 2y, j#1I For any ¢>0
1<ksm

there are e ekerx*, 1 £/ < n, such that

lell =1, (4 — o) el <e.
Take f, € C(C) such that

0</, <L D=1 1A<n f(H=0,1i>2,
and define f{V, gV e €(Mp), 1 <1 <7 by
I w) = [0’ — @) ... [ (0F) — ©,), wedp,
ghw) = (@ — w)™, 10 — | > n/2, ey
Since 1 — fV(w) = (1 — fP(w))- g w)(w, — w), we have

1ol = f0) el = 175 (1 — /D) gDl — A e || < »2;15 1 sl

Letej = ¥ 5(f{") e,. Since f-f{1) = 0, j#1 and ¥ is multiplicative it is easy to see
that

v efm,e;z < 17l :i ¥ A,eI i

? n I Il n
!
S =e1

thus applymg Lemma 4.3 we can ﬁnd {#3r. < C, y* € ¥"* such that

2 el ( Lyl < 17 sl myted = ¢, (z \ck¥>
v e k=1
Let z' be the restrlctlon of y* to & and define z* € Z'* by. the equation

) = { Vs ( 5 f‘”) o y*> R
\ fo|
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We can choose ¢ (depending on #n and n) such that Y Iy ller — e,
=1

i n n i
! Op (1 -V f%h) (Z ukck)H are arbitrary small.
i [=1 k=1

wy*(e) — c,( i \Ck\)— ‘and

k=:1 |

n
Y,
i=1

If we put

n 12 n 112
W= HVB”(E c;)/ Z W, wh= |9 ,l- 1(2 }c,l) z*,

I=1
4 == 2Vl u=x-+w, u* = x* - w*
we have

n 1/2 n 1/2
ueB(x, bA(Zc,) , 9&’), u*eB(x*,b,,(Zlc,l) ,%"“)
i=t =1

i

A n A
x®x*+ ¥V cfim —u®@ut <
e pa) 4

*

n A
z C,dg’a“;(h — W ® w¥ |

I=1

A A .
< 4l ® wrlly 4w ® x* .

Ed

But using the relation

n A
(2 ,u,e,) ® (z* — z0

I=1

< i y*i
I=1

Vg(l — Zf‘“) iﬂzez

is arbitrarily small and following
%

we may suppose that

(5 u,e,) & — D)

the proof of Theorem 4.4 we can make both 1‘ )_l cEhn — w@w*

A
and Hw_@x* 4
%

arbitrarily small. To conclude the proof we shall prove that |x @_ w¥ll, becomes small

if n is small and o,(4F)=@. Indeed if we suppose the contrary, we can find 1< /< n,
{h 32, = HOD™), k) < 1, {n,}2, tending to O such that

lim (Y R(f5D) DA, X0 y*> = Y3 (x0), Yo € X%, y5 # 0.
Since we have

(4 — o")*y5) (xo)l = lim (<7 (fD) *(h,) (By — o) Xo, > <
< lim 2 17l e lihlleo kol llz3 11 = O

we derive yy € ker (4; — of")*, whence it follows yi* = 0.

5.4. THEOREM. Suppose A is subquasiscalar, o(4) <D, | <k < m and
(A4) N D™ is dominating. If there exists a compact injective scalar operator K e (%)
(in particular if & has an unconditional basis) and % is reflexive then A has a proper
invariant subspace.

3 ~ 2443 74
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Proof. By the proof of Theorem 5.3 we know that A is polynomially bounded.
Using Corollary 5.2 we may suppose A € C.o. If we use the notation of Theorem 5.3
we observe that in case }i(4 — w™®)e, | is small and

ef €%, llefll = llel = ef(e) = 1
then e} (¥ 5(fM)e,) is close to 1. Defining x7 € £* by the equation
X7 () = (P, ¥, xe X,

where y;° € #* is an extension of €] we may suppose [lx] > 1/2. But referring again
to the last lines in the proof of Theorem 5.3 we can make ||| (4* — w®)x;|!} arbitrarily
small and hence we derive the inclusion 1(4) < 7,(4). To conclude the proof we
apply Theorem 4.8.

5.5. THEOREM. Suppose there exist K€ Z(Z) a compact injective scalar ope-

rator (or suppose, in particular, that & has an unconditional basis) and &* is uniformly
convex. If A is polynomially bounded, 1{A) nD™ is dominating and each A, is sub-

scalar with a scalar extension B, € L(%,) such that |V s || = 1 then A has a proper
invariant subspace.

Proof. As in the proof of Theorem 5.4 we may suppose 4 € C.q and then show
the inclusion 1,(4) = 7,(4). For simplicity we shall prove the implication

0er(4) = 0er (A).

Thus if || Ae}j|is small and
' e*eZ*, le*]l= lell=¢e%(e)=1
then {le — ¥ g (f)ell, 1 < k < m is small (see the proof and the notation of Theorem
5.3). If y{ € @ is an extension of e* and we define x; € Z* by the equation

xp(x) = Vsl )% v, xe X

gl < 1, Ixf(e) — 11 < 17 s (f)e — ell
consequently, in view of the uniform convexity of 2*, we may suppose that |'e*—x7% ||
is small. Since we have
llAke*H AR 1A fle* — xcll,
|G = | <P 8(f;) Bex, ¥iy | < 21 lixll, x €%,
the proof is concluded.

5.6. COROLLARY. Suppose & is a Hilbert space, A is polynomially bounded
7(A) N D™ is dominating and A, is subnormal, 1 < k < m. Then A has a proper
invariant subspace.

Proof. Since A, is subnormal it has a normal extension B € .%(%#,), where
%, is a Hilbert space. Now we apply Theorem S.5.

5.7. COROLLARY. Suppose A has a normal extension B e L(#)", (ie. ¥ is a
Hilbert space and {B/}i_, are commuting normal operators) o(A,) < D, 1<k<m
and 1(A) nD™ is dominating. Then A has a proper invariant subspace.

Proof. Since A is polynomially bounded (see the proof of Theorem 5.3)we
apply Corollary 5.6.

we have
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5.8. THEOREM. If T e L(%) is subquasiscalar and 0D < o(T) < D then T*
(and in particular T if T is subscalar and % is reflexive) has a proper invariant sub-
space.

Proof. If T has no proper invariant subspace then we derive easily o(T) =
= 1(T) = o(T). Now if o¢(T)nD is not dominating in D then T has a hyperin-
variant subspace by [3], Lemma 2.1 (though the lemma is stated for operators in
Hilbert spaces its proof is valid in Banach spaces). We conclude the proof applying
Theorem 5.3. | |

5.9. THEOREM. Let m be a finite, positive, Borel measure in C with compact
support and let T denote the restriction to an invariant subspace of the multiplication
by the argument in LP(m), 1 < p < oo. Then T has a proper invariant subspace.

Proof. Proceeding exactly as in [4] we reduce to the case D < o(T) = D and
then we apply Theorem 5.8.
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