FUNCTIONAL CALCULUS AND INVARIANT SUBSPACES

C. APOSTOL

INTRODUCTION

This paper is an attempt to generalize the results of J. Agler [1], S. Brown [4], S. Brown, B. Chevreau and C. Pearcy [5] and J. G. Stampfli [27] on invariant subspaces. We shall show that the techniques of S. Brown can be used to produce invariant subspaces for polynomially bounded m-tuples of operators acting in Banach spaces. We have to say that our results are not complete as in the above quoted papers (except for m = 1 in particular cases) because of the difficulties of spectral nature for m > 1 and of the imperfection of general Banach spaces.

The paper is divided in five sections. In §§ 1 and 2 we develop an $H^{\infty}(\mathbf{D}^m)$ — functional calculus for a polynomially bounded m-tuple $A \in \mathcal{L}(\mathcal{X})^m$, where \mathcal{X} denotes a complex separable Banach space. If the approximate point spectrum of A is enough rich then the $H^{\infty}(\mathbf{D}^m)$ — functional calculus becomes a weak* homeomorphism between $H^{\infty}(\mathbf{D}^m)$ and a weak* closed subspace of $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ regarded as the dual of a tensor product space. Thus we can speak about the weak* closure of the algebra generated by A. In § 3 we produce hyperinvariant subspaces only for the reductions we shall need in the sequel. In § 4 we produce invariant subspaces for A in case it has rich approximate point spectrum and \mathcal{X} has an unconditional basis or an unconditional finite-dimensional decomposition determined by some compact injective scalar operator. Theorem 4.13 is a direct correspondent of the main result of [5]. In § 5 we release the hypothesis on \mathcal{X} and our results involve only restrictions to invariant subspaces of m-tuples having functional calculus with continuous functions on \mathbf{D}^m (i.e. quasiscalar m-tuples). Sample results in this section are:

- If $\mathscr X$ is reflexive, $T \in \mathscr L(\mathscr X)$ is subscalar and $\partial \mathbf D \subset \sigma(T) \subset \overline{\mathbf D}$ then T has a proper invariant subspace (Theorem 5.8).
- The restriction to an invariant subspace of the multiplication with the argument in $L^p(m)$, 1 (where <math>m denotes a finite positive Borel measure in C with compact support) has a proper invariant subspace.

Both results generalize Scott Brown's Theorem [4].

The author expresses his gratitude to Dan Timotin and Dan Voiculescu for many helpful discussions.

§ 1. FUNCTIONAL CALCULUS

Let \mathscr{X} be a separable Banach space over the complex field \mathbb{C} and let $\mathscr{L}(\mathscr{X})$ denote the algebra of all bounded linear operators acting in \mathscr{X} . The dual \mathscr{X}^* of \mathscr{X} is the Banach space of all bounded linear functionals defined in \mathscr{X} . The action of $x^* \in \mathscr{X}^*$ applied to $x \in \mathscr{X}$ will be denoted either $x^*(x)$ or $\langle x, x^* \rangle$. Recall that the \mathscr{X}^* -topology of \mathscr{X} is called the "weak topology" and the \mathscr{X} -topology of \mathscr{X}^* is called the "weak*-topology".

Correspondingly we shall use the symbols "w-lim", "w*-lim". The symbol "s-lim" will denote the strong limit. If $\{T_i\}_{i\in I} \subset \mathcal{L}(\mathcal{X})$, is given, where I is a directed set, then "w-lim T_i ", s-lim T_i are defined pointwise (in case the corresponding limits exist).

For any natural number $m \ge 1$, we denote by \mathbb{C}^m the Carthesian product of m copies of \mathbb{C} , i.e. $\omega \in \mathbb{C}^m$ is an m-tuple of the form $\omega = (\omega_1, \ldots, \omega_m)$, $\omega_k \in \mathbb{C}$. The open unit polydisk in \mathbb{C}^m will be denoted by \mathbb{D}^m . We shall denote by $H^{\infty}(\mathbb{D}^m)$ the algebra of all bounded complex analytic functions defined in \mathbb{D}^m , endowed with the supnorm topology determined by the supremum norm $\|\cdot\|_{\infty}$.

Let $A = (A_1, \ldots, A_m) \in \mathcal{L}(\mathcal{X})^m$ be a commutative m-tuple, i.e. $A_j A_k = A_k A_j$. If p is a polynomial of the form $p(\omega) = p(\omega_1, \ldots, \omega_m)$, then p(A) is defined by $p(A) = p(A_1, \ldots, A_m)$. We shall say that $A \in \mathcal{L}(\mathcal{X})^m$ is polynomially bounded if it is commutative and

$$c_A = \sup \{ ||p(A)|| : p\text{-polynomial}, ||p||_{\infty} \le 1 \} < \infty,$$

where $||p||_{\infty}$ is the norm of p as an element of $H^{\infty}(\mathbf{D}^m)$. Assume that A is polynomially bounded and denote by A^* the m-tuple $A^* = (A_1^*, \ldots, A_m^*)$. Then A^* is polynomially bounded. For any $h \in H^{\infty}(\mathbf{D}^m)$, $0 \le r < 1$, the function $h_r \in H^{\infty}(\mathbf{D}^m)$ defined by the equation $h_r(\omega) = h(r\omega)$ is analytic in a neighbourhood of \mathbf{D}^m , thus we can define $h_r(A)$ as a Cauchy integral. We shall say that A is H^{∞} -bounded if $\lim_{r \to 1} \langle h_r(A) | x, x^* \rangle = \langle \Phi^A(h) | x, x^* \rangle$ exists for any $h \in H^{\infty}(\mathbf{D}^m)$, $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$.

 $\Phi^A(h)$ is a bounded linear operator mapping $\mathscr X$ in $\mathscr X^{**}$. The restriction of $\Phi^A(h)^* \in \mathscr L(\mathscr X^{***},\mathscr X^*)$ to $\mathscr X^*$ will be denoted by $\Phi^{*A}(h)$. We shall say that Φ^A is *-multiplicative if Φ^{*A} is multiplicative as a map of $H^\infty(\mathbf D^m)$ into $\mathscr L(\mathscr X^*)$. Observe that we have

$$\Phi^{A}(h) = w^* - \lim_{r \to 1} h_r(A), \quad \Phi^{*A}(h) = w^* - \lim_{r \to 1} h_r(A^*),$$

where the first limit involves the weak* topology of \mathcal{X}^{**} and the second one the weak* topology of \mathcal{X}^{*} , and

$$\|\Phi^{A}(h)\| = \|\Phi^{*A}(h)\| \leqslant c_{A}\|h\|_{\infty}.$$

If \mathscr{X} is reflexive we identify \mathscr{X}^{**} with \mathscr{X} , thus $\Phi^{A}(h) \in \mathscr{L}(\mathscr{X})$, $\Phi^{*A} = \Phi^{A^{*}}$. We shall call A strongly H^{∞} -bounded if

$$\Phi^A(h) = s - \lim_{r \to 1} h_r(A).$$

If A is strongly H^{∞} -bounded we have again $\Phi^{A}(h) \in \mathcal{L}(\mathcal{X})$ and Φ^{A} is multiplicative. For any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$ define the rank-one operator $x \otimes x^* \in \mathcal{L}(\mathcal{X})$ by the equation

$$(x \otimes x^*) z = \langle z, x^* \rangle x, \quad z \in \mathscr{X},$$

and put

we put

$$||x \otimes^A x^*||^* = \sup \{ |\langle p(A) x, x^* \rangle| : p\text{-polynomial}, ||p||_{\infty} \le 1 \}.$$

Now consider the following possible situations for A:

- 1) $s-\lim_{n\to\infty} A_k^n = 0, \quad 1 \leqslant k \leqslant m,$
- $2) s-\lim_{n\to\infty} A_k^{*n} = 0, 1 \leqslant k \leqslant m,$
- 3) either $s-\lim_{n\to\infty} A_k^n = 0$ or $s-\lim_{n\to\infty} A_k^{*n} = 0$, $1 \le k \le m$,
- 4) $\lim_{n\to\infty} ||A_k^n x \otimes^A x^*||^* = 0, \quad (\forall) \ x \in \mathcal{X}, \quad x^* \in \mathcal{X}^*.$

The classes determined by the above situations will be denoted by C_0 , C_{00} , C_{000} , C^0 .

In the sequel of this section $A=(A_1,\ldots,A_m)\in\mathcal{L}(\mathcal{X})^m$ will denote a fixed polynomially bounded m-tuple. We shall define the operators $\alpha_{k,n},\beta_{k,r},\gamma_{k,n}\in\mathcal{L}(H^\infty(\mathbf{D}^m)),$ $1\leq k\leq m,\ n\geqslant 1$, as follows: if $h\in H^\infty(\mathbf{D}^m)$ has a Taylor expansion with respect to ω_k , of the form $h(\omega)=\sum_{l=0}^\infty h^{(k,l)}(\omega)\ \omega_k^l$, where $h^{(k,l)}\in H^\infty(\mathbf{D}^m)$ and $\frac{\partial h^{(k,l)}}{\partial \omega_k}=0$,

$$(\alpha_{k,n}h)(\omega) = \sum_{l=0}^{n^3-1} \frac{n^3 - l}{n^3} h^{(k,l)}(\omega) \omega_k^l,$$

$$(\beta_{k,n}h)(\omega) = \sum_{l=0}^{n-1} \frac{l}{n^3} h^{(k,l)}(\omega) \omega_k^l,$$

$$(\gamma_{k,n}h)(\omega) = (\omega_k)^{-n} [h(\omega) - (\alpha_{k,n}h)(\omega) - (\beta_{k,n}h)(\omega)].$$

1.1. Proposition. The following relations hold

$$C^0 \supset C_{0 \vee 0} \supset C_0$$
. U $C_{\cdot 0}$.

The proof is a simple verification which we omit.

1.2. Lemma. For any $1 \le k \le m$, $n \ge 1$ we have

$$\|\alpha_{k,n}\| = 1, \|\beta_{k,n}\| \le \frac{1}{2n}, \|\gamma_{k,n}\| \le 2 + \frac{1}{2n}.$$

Proof. $\alpha_{k,n}h$ is the Cesaro mean of order n^3 of h as a function of ω_k and the relation $\|\alpha_{k,n}\| = 1$ becomes obvious in view of [18], p. 33. Since plainly we have $\|h^{(k,l)}\|_{\infty} \leq \|h\|_{\infty}$ we derive

$$\|\beta_{k,n}h\|_{\infty} \leq \frac{1}{n^3} \left(\sum_{l=0}^{n-1} l\right) \|h\|_{\infty} \leq \frac{\|h\|_{\infty}}{2n}.$$

We also have

$$\|\gamma_{k,n}h\|_{\infty} = \|h - (\alpha_{k,n}h) - (\beta_{k,n}h)\|_{\infty} \leq \left(2 + \frac{1}{2n}\right) \|h\|_{\infty}.$$

1.3. Lemma. If $\lim_{n\to\infty} \|A_k^n x \otimes^A x^*\|^* = 0$, $(\forall) x \in \mathcal{X}, x^* \in \mathcal{X}^*$, resp. if $A_k \in C_0$, then

$$w^*-\lim_{n\to\infty} g(A) (h-\alpha_{k,n}h)_r(A) = 0$$
, resp. $s-\lim_{n\to\infty} g(A) (h-\alpha_{k,n}h)_r(A) = 0$,

uniformly with respect to $0 \le r < 1$, $g, h \in H^{\infty}(\mathbf{D}^m)$, $||g||_{\infty} \le 1$, $||h||_{\infty} \le 1$, where g is a polynomial.

Proof. Using the relations

$$\begin{aligned} |\langle g(A) \left(h - \alpha_{k,n} h \right)_{\mathbf{r}}(A) x, x^* \rangle| &= \\ &= |\langle g(A) \left(\beta_{k,n} h \right)_{\mathbf{r}}(A) x, x^* \rangle + \langle g(A) \left(\gamma_{k,n} h \right)_{\mathbf{r}}(A) A_k^n x, x^* \rangle| \leqslant \\ &\leqslant c_A \left(\frac{\|x\| \cdot \|x^*\|}{2n} + \left(2 + \frac{1}{2n} \right) \|A_k^n x \otimes^A x^*\|^* \right) \leqslant \\ &\leqslant c_A \|x^*\| \left(\frac{\|x\|}{2n} + \left(2 + \frac{1}{2n} \right) \|A_k^n x\| \right), \end{aligned}$$

the assertions in our Lemma become obvious.

In the next three lemmas we shall assume m > 1 and we shall consider the (m-1)-tuple $A' = (A_1, \ldots, A_{m-1}) \in \mathcal{L}(\mathcal{X})^{m-1}$. We shall denote by $H_m^{\infty}(\mathbf{D}^m)$ the subalgebra in $H^{\infty}(\mathbf{D}^m)$ consisting of polynomials in ω_m whose coefficients do not depend on ω_m , but could depend on $\omega' = (\omega_1, \ldots, \omega_{m-1})$.

1.4. Lemma. Assume A' is H^{∞} -bounded, resp. strongly H^{∞} -bounded. Then for any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $g, g' \in H^{\infty}_m(\mathbb{D}^m)$ the limits

$$\lim_{r\to 1} \langle g_r(A) x, x^* \rangle, \text{ resp. } s\text{-}\lim_{r\to 1} g_r(A)$$

exist. Moreover if $\Phi^{A'}$ is *-multiplicative we have

$$(w^*-\lim_{r\to 1}g_r(A^*))(w^*-\lim_{r\to 1}g_r'(A^*))=w^*-\lim_{r\to 1}(gg')_r(A^*).$$

Proof. Let us put

$$G = \left\{ f \in H^{\infty}(\mathbf{D}^m) : \frac{\partial f}{\partial \omega_m} \equiv 0 \right\} \cdot$$

For any $f \in G$ we define $\hat{f} \in H^{\infty}(\mathbf{D}^{m-1})$ by the equation $\hat{f}(\omega') = f(\omega)$. It is obvious that the map $f \to \hat{f}$ is an algebraic isomorphism and $f_r(A) = \hat{f_r}(A')$. Thus the limits

$$\lim_{r\to 1} \langle f_r(A) x, x^* \rangle, \text{ resp. } s\text{-}\lim_{r\to 1} f_r(A)$$

exist. Since g is of the form $g(\omega) = \sum_{l=0}^{\infty} g^{(m,l)}(\omega) \omega_m^l$, where $g^{(m,l)} \in G$ and the series is in fact a finite sum, the rest of the proof will be a simple verification.

1.5. Lemma. If A' is H^{∞} -bounded and $\lim_{n\to\infty} ||A_m^n x \otimes^A x^*||^* = 0$, $(\forall) x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, then A is H^{∞} -bounded. Moreover, if $\Phi^{A'}$ is *-multiplicative then Φ^{A} is *-multiplicative.

Proof. Let $h, g \in H^{\infty}(\mathbf{D}^m)$, $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$ be given. Since $\alpha_{m,n}h \in H_m^{\infty}(\mathbf{D}^m)$ and by Lemma 1.3 and Lemma 1.4 we have

$$\lim_{\substack{r \to 1 \\ r' \to 1}} \langle h_r(A) x - h_r(A) x, x^* \rangle =$$

$$= \lim_{\substack{n \to \infty \\ r' \to 1}} \lim_{\substack{r \to 1 \\ r' \to 1}} \langle (\alpha_{m,n}h)_r(A) x - (\alpha_{m,n}h)_{r'}(A) x, x^* \rangle = 0,$$

it follows that A is H^{∞} -bounded. Using again Lemma 1.3 we derive

$$\langle x, \Phi^{*A}(hg) x^* - \Phi^{*A}(h)\Phi^{*A}(g)x^* \rangle =$$

$$= \lim_{r \to 1} \langle x, h_r(A^*) (g_r(A^*) - \Phi^{*A}(g)) x^* \rangle =$$

$$= \lim_{n \to \infty} \lim_{r \to 1} \langle x, (\alpha_{m,n}h)_r(A^*) [(\alpha_{m,n}g)_r(A^*) x^* - \Phi^{*A}(\alpha_{m,n}g) x^*] \rangle =$$

$$= \lim_{n \to \infty} \langle x, \Phi^{*A}((\alpha_{m,n}h) (\alpha_{m,n}g)) x^* - \Phi^{*A}(\alpha_{m,n}h) \Phi^{*A}(\alpha_{m,n}g) x^* \rangle,$$

thus if $\Phi^{A'}$ is *-multiplicative, Lemma 1.4 will imply that Φ^{A} is *-multiplicative.

1.6. Lemma. If A' is strongly H^{∞} -bounded and $A_m \in C_0$, then A is strongly H^{∞} -bounded.

Proof. We imitate the proof of Lemma 1.5, using the second part of Lemma 1.3 and the second part of Lemma 1.4.

1.7. THEOREM. If $A \in C^0$, resp. $A \in C_0$, then A is H^{∞} -bounded and Φ^A is *-multiplicative, resp. A is strongly H^{∞} -bounded.

Proof. By Lemma 1.5 and Lemma 1.6 we may suppose m=1, $A=A_1$. Let $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $h \in H^{\infty}(\mathbf{D})$. Since α_1 , h is a polynomial and by Lemma 1.3 we have

$$\lim_{\substack{r \to 1 \\ r' \to 1}} \langle h_r(A) x - h_{r'}(A) x, x^* \rangle =$$

$$=\lim_{n\to\infty}\lim_{\substack{r\to 1\\r'\to 1}}\langle(\alpha_{1,n}h)_r(A)\,x-(\alpha_{1,n}h)_{r'}(A)\,x,\,x^*\rangle=0,$$

we derive that A is H^{∞} -bounded. The fact that Φ^{A} is *-multiplicative is actually proven in Lemma 1.5. The proof of the "strong" part is similar.

1.8. PROPOSITION. If $A \in C^0$, resp. $A \in C_0$, and if $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}(\mathbf{D}^m)$ is a bounded sequence pointwise convergent to 0 then for any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$ we have

$$w^* - \lim_{n \to \infty} \Phi^{*A}(h_n) x^* = 0$$
, resp. $s - \lim_{n \to \infty} \Phi^A(h_n) x = 0$.

Proof. Using Lemma 1.3 and proceeding as in Lemma 1.5 and Lemma 1.6 we can reduce to the case m=1, $A=A_1$. Because $\{h_n\}_{n=1}^{\infty}$ tends uniformly to 0 on compact sets we may suppose

$$h_n(\omega_1) = \omega_1^{l_n} h'_n(\omega_1), \lim_{n\to\infty} l_n = \infty,$$

consequently

$$|\langle \Phi^A(h_n) x, x^* \rangle| = |\langle A^{l_n} \Phi^A(h'_n) x, x^* \rangle| \le$$

$$\leq \|h_n'\|_{\infty} \|A^{l_n}x \otimes^A x^*\|^* \leq \|h_n'\|_{\infty} \|x^*\| \|A^{l_n}x\| \, c_A.$$

Since we have $\lim_{n\to\infty} ||A^n x \otimes A^*||^* = 0$, resp. $\lim_{n\to\infty} ||A^n x|| = 0$, the proof is concluded.

A direct consequence of Proposition 1.8 is the following:

1.9. COROLLARY. If $A \in C^0$, resp. $A \in C_0$, then for any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$ the sets

$$\left\{\Phi^{*A}(h)\; x^*: h \in H^{\infty}(\mathbf{D}^m),\; \|h\|_{\infty} \leqslant 1\right\},\; \left\{\Phi^A(h)\; x: h \in H^{\infty}(\mathbf{D}^m),\; \|h\|_{\infty} \leqslant 1\right\}$$

are sequentially compact in the weak* topology, resp. strong topology.

Proof. If $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}(\mathbf{D}^m)$ is a bounded sequence we can find a w^* -convergent subsequence $\{h_{k_n}\}_{n=1}^{\infty}$, w^* - $\lim_{n\to\infty} h_{k_n} = h$. Since $\{h_{k_n}\}_{n=1}^{\infty}$ is pointwise convergent to h, applying Proposition 1.8 we derive

$$w^*-\lim_{n\to\infty} \Phi^{*A}(h_{k_n}) \ x^* = \Phi^{*A}(h) \ x^*, \text{ resp. } s-\lim_{n\to\infty} \Phi^{A}(h_{k_n}) \ x = \Phi^{A}(h) \ x.$$

1.10. REMARK. The proofs of Theorem 1.7 and Proposition 1.8, in case m = 1, can be achieved using Taylor expansions in place of Cesaro means.

§ 2. THE WEAK* CLOSURE OF THE ALGEBRA GENERATED BY A POLYNOMIALLY BOUNDED m-TUPLE

Let $A=(A_1,\ldots,A_m)\in \mathcal{L}(\mathcal{X})^m$ be a polynomially bounded m-tuple. For any $x\in \mathcal{X}$ put $Ax=(A_1x,\ldots,A_mx)\in \mathcal{X}^m$, $|||Ax|||=\sum_{k=1}^m ||A_kx||$. Then the left approximate point spectrum of A is the set

$$\tau_{\mathsf{I}}(A) = \{ \omega \in \mathbf{C}^m : \inf_{\|x\|=1} \||(A - \omega) x|\| = 0 \}.$$

The right approximate point spectrum and the approximate point spectrum of A are the sets

$$\tau_{\mathbf{r}}(A) = \tau_{\mathbf{l}}(A^*), \ \tau(A) = \tau_{\mathbf{l}}(A) \cup \tau_{\mathbf{r}}(A).$$

Observe that we have $\tau_1(A) = \tau_{\mathcal{L}(X)}^{\text{left}}(A)$, where the right hand term is defined in [17], Definition 1.3. We also define the essential approximate point spectra of A by

$$\tau_{\operatorname{le}}(A) = \{\omega \in \mathbb{C}^m : \inf_{\|x\|=1, \ x \in \mathscr{Y}} \||(A-\omega) x||| = 0 \text{ if dim } \mathscr{X}/\mathscr{Y} < \infty\},$$

$$\tau_{\mathrm{re}}(A) = \tau_{\mathrm{le}}(A^*), \ \tau_{\mathrm{e}}(A) = \tau_{\mathrm{le}}(A) \cup \tau_{\mathrm{re}}(A).$$

Let $\mathscr{X} \boxtimes \mathscr{X}^*$ denote the projective tensor product of \mathscr{X} with \mathscr{X}^* , i.e. the completion in the projective norm, denoted below by $\|\cdot\|_*$, of the algebraic tensor product (see [16] and [25], Ch. III, § 6). By [25], Ch. III, Theorem 6.2 and Theorem 6.4 we know that any $u \in \mathscr{X} \boxtimes \mathscr{X}^*$ is of the form

$$u = \sum_{n=1}^{\infty} x_n \otimes x_n^*, \quad \sum_{n=1}^{\infty} ||x_n|| \, ||x_n^*|| < \infty$$

and the map

$$\mathcal{L}(\mathcal{X},\mathcal{X}^{**})\ni T\to \varphi_T\in (\mathcal{X}\otimes\mathcal{X}^*)^*$$

where $\varphi_T(u) = \sum_{n=1}^{\infty} (Tx_n)(x_n^*)$, identifies $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ with $(\mathcal{X} \otimes \mathcal{X}^*)^*$. The weak* topology of $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ will be determined by the above identification. Since $\mathcal{L}(\mathcal{X})$ is a subspace in $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ we define the ultraweak operator topology of $\mathcal{L}(\mathcal{X})$ by the restriction of the weak* topology to $\mathcal{L}(\mathcal{X})$. The ultraweak and weak operator topology of $\mathcal{L}(\mathcal{X})$ agree on bounded sets. If \mathcal{X} is reflexive then we can speak about the weak* topology of $\mathcal{L}(\mathcal{X})$ (= $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$) or equivalently the ultraweak operator topology of $\mathcal{L}(\mathcal{X})$. Let \mathcal{A}_A denote the weak* closure in $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ of the algebra generated in $\mathcal{L}(\mathcal{X})$ by A_1, \ldots, A_m . If we denote by $\mathcal{X} \otimes \mathcal{X}^*$ the quotient space of $\mathcal{X} \otimes \mathcal{X}^*$ by the subspace

$$\{u \in \mathcal{X} \otimes \mathcal{X}^* : \varphi_T(u) = 0, \ (\forall) \ T \in \mathcal{A}_A\},$$

then \mathscr{A}_A can be canonically identified with the dual of $\mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$ and this identification will determine a weak* topology in \mathscr{A}_A . The norm in $\mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$ will be denoted as in $\mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$, by $\|\cdot\|_*$. Let $x \in \mathscr{X}$, $x^* \in \mathscr{X}^*$ be given. There exists a unique continuous linear operator, mapping $\mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$ onto nuclear operators in \mathscr{X} such that

$$\mathcal{X} \underset{\odot}{\otimes} \mathcal{X}^* \ni x \underset{}{\otimes} x^* \to x \underset{}{\otimes} x^* \in \mathcal{L}(\mathcal{X})$$

(recall that we already defined in § 1, $x \otimes x^*$, by the equation $(x \otimes x^*) y = \langle y, x^* \rangle x$, $y \in \mathcal{X}$). The above map is injective if and only if \mathcal{X} has the approximation property (see [19], Theorem 1. e.4) in which case $\mathcal{L}(\mathcal{X}, \mathcal{X}^{**})$ is the dual of nuclear operators in \mathcal{X} (endowed with the nuclear norm). If \mathcal{X} has an unconditional basis (or an unconditional finite-dimensional decomposition) then \mathcal{X} has the approximation

mation property. The image of $x \otimes x^*$ in $\mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$ will be denoted by $x \overset{A}{\otimes} x^*$.

Now let T^m denote the *m*-dimensional torus and let $\mathcal{L}^{\infty}(T^m)$ be the algebra of all essentially bounded classes of complex functions of T^m , with respect to the normalized Lebesgue measure. The weak* topology of $L^{\infty}(T^m)$ is determined by the duality relation $\mathcal{L}^1(T^m)^* = \mathcal{L}^{\infty}(T^m)$. By [24], Chapter III, 3.4.4 (c) we identify $H^{\infty}(\mathbf{D}^m)$ with a weak* closed subspace in $L^{\infty}(T^m)$ and this determines a weak* topology in $H^{\infty}(\mathbf{D}^m)$.

Further we assume that $A \in \mathcal{L}(\mathcal{X})^m$ is a \mathbb{C}^0 -class m-tuple. Since A is H^{∞} -bounded and Φ^A is well defined (see Theorem 1.7) we may consider the linear map

$$\Phi_*^A: (H^\infty(\mathbf{D}^m), w^*) \to (\mathcal{A}_A, w^*)$$

defined by the equation

$$\Phi_*^A(h) = \Phi^A(h), h \in H^\infty(\mathbf{D}^m).$$

In case Φ_*^A maps homeomorphic $H^{\infty}(\mathbf{D}^m)$ onto \mathscr{A}_A and \mathscr{E}_{ω} denotes the evaluation at ω in $H^{\infty}(\mathbf{D}^m)$, then the equation

$$\mathscr{E}_{\mathfrak{w}}^{A} \circ \Phi_{*}^{A} = \mathscr{E}_{\mathfrak{w}}$$

determines a w^* -continuous linear functional $\mathscr{E}_{\omega}^A \in \mathscr{X} \overset{A}{\underline{\otimes}} \mathscr{X}^*$. Finally recall that a subset $\sigma \subset \mathbf{D}^m$ is dominating if (see [6], [23])

$$\sup_{\omega \in \sigma} |h(\omega)| = ||h||_{\infty}, \quad (\forall) \ h \in H^{\infty}(\mathbf{D}^m).$$

2.1. THEOREM. Let A be a C^0 -class m-tuple. The map Φ_*^A is continuous. If $\omega^0 \in \mathbf{D}^m$ is given and $\{x_n\}_{n=1}^{\infty} \subset \mathcal{X}$, $\{x_n^*\}_{n=1}^{\infty} \subset \mathcal{X}^*$ are bounded sequences such that $\lim_{n\to\infty} |||(A-\omega^0)|x_n||| = \lim_{n\to\infty} |||(A^*-\omega^0)|x_n^*||| = 0$ then we have

$$\lim_{n\to\infty} \|(\Phi^{A}(h) - h(\omega^{0})) x_{n}\| = \lim_{n\to\infty} \|(\Phi^{*A}(h) - h(\omega^{0})) x_{n}^{*}\| = 0,$$

uniformly with respect to $h \in H^{\infty}(\mathbf{D}^m)$, $||h||_{\infty} \leq 1$.

Proof. Let $\{h_n\}_{n=1}^{\infty} \subset H^{\infty}(\mathbf{D}^m)$ be weak* convergent to 0. Since in particular $\{h_n\}_{n=1}^{\infty}$ is a bounded sequence, pointwise convergent to 0 and by Proposition 1.8 we have

$$\lim_{n\to\infty} \left\langle \Phi_*^A(h_n) x, x^* \right\rangle = 0, \quad x \in \mathcal{X}, \ x^* \in \mathcal{X}^*,$$

we derive easily

$$\lim_{n\to\infty}\varphi_{\Phi_{\bullet}^{A}(h_{n})}(u)=0,\quad u\in\mathscr{X}\underline{\otimes}\mathscr{X}^{*}.$$

Because $H^{\infty}(\mathbf{D}^m)$ is separable, the continuity of Φ_*^A will follow by [5], Theorem 2.3. Now if $h \in H^{\infty}(\mathbf{D}^m)$ is given define $h' \in H^{\infty}(\mathbf{D}^m)$ by the equation

$$h'(\omega) = h(\omega_1, \ldots, \omega_{m-1}, \omega_m^0).$$

Then we have

$$h(\omega) - h'(\omega) = g(\omega) (\omega_m - \omega_m^0), \quad g \in H^{\infty}(\mathbf{D}^m),$$

$$\|(\Phi^A(h) - h(\omega^0)) x_n\| \leq \|\Phi^A(g) (A_m - \omega_m^0) x_n\| + \|(\Phi^A(h') - h(\omega^0)) x_n\|,$$

$$\|(\Phi^{*A}(h) - h(\omega^0)) x_n^*\| \leq \|\Phi^{*A}(g) (A_m^* - \omega_m^0) x_m^*\| + \|(\Phi^{*A}(h') - h'(\omega^0)) x_n^*\|.$$

Since h' is in fact an element of $H^{\infty}(\mathbf{D}^{m-1})$ (if m > 1) the rest of the proof can be done by induction and we omit it.

2.2. REMARK. Theorem 2.1 is analogous to a spectral mapping theorem. In fact it implies the spectral inclusion $h(\tau_r(A) \cap \mathbf{D}^m) \subset \tau_1(\Phi^{*A}(h)), h \in H^{\infty}(\mathbf{D}^m)$.

2.3. THEOREM. Let A be a C^0 -class m-tuple. If $\tau(A) \cap \mathbf{D}^m$ is dominating then Φ_*^A is a homeomorphism onto \mathscr{A}_A and for any $h \in H^\infty(\mathbf{D}^m)$, $x \in \mathscr{X}$, $x^* \in \mathscr{X}^*$ we have

$$\|h\|_{\infty} \leq \|\Phi_{*}^{A}(h)\| \leq c_{A} \|h\|_{\infty} \,, \ \|x \overset{A}{\otimes} x^{*}\|_{*} \leq \|x \otimes^{A} x^{*}\|^{*} \leq c_{A} \|x \overset{A}{\otimes} x^{*}\|_{*} \,.$$

Proof. Since $\tau(A) \cap \mathbf{D}^m$ is dominating, Theorem 2.1 implies $||h||_{\infty} \leq ||\Phi_*^A(h)||_{\gamma}$, thus by [5], Theorem 2.7, Φ_*^A will map homeomorphically $H^{\infty}(\mathbf{D}^m)$ onto \mathscr{A}_A . The rest of the proof is obvious.

§ 3. HYPERINVARIANT SUBSPACES

Throughout this section $A = (A_1, \ldots, A_m) \in \mathcal{L}(\mathcal{X})^m$ and $S \in \mathcal{L}(\mathcal{X})$ will denote a polynomially bounded m-tuple, resp. an operator which is not a scalar multiple of the identity and $\sup_{n \ge 1} \|S^n\| < \infty$. A proper hyperinvariant subspace of S will be a closed linear manifold, different from $\{0\}$ and \mathcal{X} , invariant for any operator commuting with S. We shall say that S has the single-valued extension property if the equation

$$(\lambda - S) f(\lambda) = 0$$

has the only analytic \mathscr{X} -valued solution f = 0 (see [12], § 3, [10], Chapter I, Definition 1.1). If S has the single-valued extension property then for any $x \in \mathscr{X}$ there exists a unique analytic function x_S valued in \mathscr{X} , with a maximal domain $\rho_S(x) \supset \rho(S)$ such that

$$(\lambda - S) x_s(\lambda) = x, \quad \lambda \in \rho_s(x).$$

The open set $\rho_S(x)$ is the resolvent set of x with respect to S and $\sigma_S(x) = C \setminus \rho_S(x)$ is the spectrum of x with respect to S; $\sigma_S(x)$ is a compact subset of $\sigma(S)$, void if and only if x = 0 ([10], Chapter I, Proposition 1.2). For any closed subset $\sigma \subset \sigma(S)$ put

$$\mathscr{X}_{S}(\sigma) = \{ x \in \mathscr{X} : \sigma_{S}(x) \subset \sigma \} .$$

Then $\mathcal{X}_S(\sigma)$ is a linear manifold invariant for any operator which commutes with S ([10], Chapter I, Proposition 1.2). It is obvious that if S has not the single-valued extension property, then the point spectrum of S is nonvoid and consequently S has a proper hyperinvariant subspace. If the point spectrum of S is void then S has the single valued extension property.

For any $0 \le \theta < 2\pi$, $0 < \varepsilon < \pi$ put

$$\sigma(\theta, \varepsilon) = \{ e^{i\varphi} : \varphi \in [\theta - \varepsilon, \theta + \varepsilon) \}.$$

3.1. LEMMA. If S is power bounded, $\sigma_p(S^*) = \emptyset$ and $\{S^n\}_{n=1}^{\infty}$ does not tend strongly to 0, then the set

$$\{\theta \in [0, 2\pi) : \mathscr{X}_{S^*}^* (\sigma(\theta, \varepsilon)) \neq \{0\}, \ (\forall) \ 0 < \varepsilon < \pi\}$$

is infinite.

Proof. Let $x \in \mathcal{X}$ be such that $\lim_{n \to \infty} ||S^n x|| > 0$ and $x_n^* \in \mathcal{X}^*$, $||x_n^*|| = 1$, $\langle S^n x, x_n^* \rangle = ||S^n x||$. Since the unit ball in \mathcal{X}^* is weak* compact we may suppose that we have

$$w^*-\lim_{n\to\infty} S^{*k_n}x^*_{k_n}=x^*.$$

The assumption $\sigma_n(S^*) = \emptyset$ implies the existence of the limit

$$w^*$$
- $\lim_{n\to\infty} S^{*k_n-r} x_{k_n}^* = y_r^*, \quad r = 0,1,\ldots$

Since we have $||y_r^*|| \le \sup_{n \ge 1} ||S^n||$ we can define the analytic function $x^*(\cdot): \{\lambda: |\lambda| \ne 1\} \to \mathcal{X}^*$ by the equation

$$x_{S^*}^*(\lambda) = \begin{cases} (\lambda - S^*)^{-1} x^*, & |\lambda| > 1 \\ \\ -\sum_{r=0}^{\infty} \lambda^r y_{r+1}^*, & |\lambda| < 1. \end{cases}$$

Using the relation $S^*y_{r+1}^* = y_r^*$ we derive easily

$$(\lambda - S^*) x_{S^*}^* (\lambda) = x^*, \ \|x_{S^*}^* (\lambda)\| \le (\sup_{n>1} \|S^n\|) |1 - |\lambda||^{-1},$$

consequently $\sigma_{S^{\bullet}}(x^{*}) \subset \{\lambda : |\lambda| = 1\}$. For any $\theta \in [0, 2\pi)$, such that $e^{i\theta} \in \sigma_{S^{\bullet}}(x^{*})$ and any $0 \le \varepsilon < \pi$, $0 < \eta \le 1$ put

$$\delta(\theta, \varepsilon, \eta) = \{ t e^{i\varphi} : 1 - \eta \leqslant t \leqslant 1 + \eta, \ \varphi \in [\theta - \varepsilon, \ \theta + \varepsilon] \}$$

$$\Gamma(\theta, \varepsilon, \eta) = \partial \delta(\theta, \varepsilon, \eta)$$

and define the analytic function

$$f_{\theta,\varepsilon}(\lambda) = (\lambda - e^{i(\theta - \varepsilon)})^2 (\lambda - e^{i(\theta + \varepsilon)})^2, \quad \lambda \in \mathbb{C}.$$

Because obviously $f_{\theta,\varepsilon}x_{S^{\bullet}}(\cdot)$ is continuous on $\Gamma(\theta,\varepsilon,\eta)$ we may consider the integral

$$x_{\theta,\varepsilon}^* = \frac{1}{2\pi i} \int_{\Gamma(\theta,\varepsilon,\eta)} f_{\theta,\varepsilon}(\lambda) \, x_{S^*}^*(\lambda) \, \mathrm{d}\lambda,$$

which is independent on η . If we put

$$S^*(\theta, \varepsilon) = (S^* - e^{i(\theta - \varepsilon)})^2 (S^* - e^{i(\theta + \varepsilon)})^2,$$

$$y^*_{\theta, \varepsilon, \eta}(\lambda) = \frac{1}{2\pi i} \int_{\Gamma(\theta, \varepsilon, \eta)} \frac{f_{\theta, \varepsilon}(\zeta) x^*_{S^*}(\zeta) d\zeta}{\lambda - \zeta}, \quad \lambda \notin \Gamma(\theta, \varepsilon, \eta)$$

$$z^*_{\theta, \varepsilon, \eta}(\lambda) = \frac{1}{2\pi i} \int_{|\zeta| = 1 + \eta} \frac{f_{\theta, \varepsilon}(\zeta) x^*_{S^*}(\zeta) d\zeta}{\lambda - \zeta} - y^*_{\theta, \varepsilon, \eta}(\lambda), \quad \lambda \in \text{int } \delta(\theta, \varepsilon, \eta)$$

then $y_{\theta, e, \eta}^*(\cdot)$, $z_{\theta, e, \eta}^*(\cdot)$ are analytic functions and

$$(\lambda - S^*) y_{0, \varepsilon, \eta}^*(\lambda) = x_{0, \varepsilon}^*, \quad \lambda \notin \delta(\theta, \varepsilon, \eta),$$
$$(\lambda - S^*) z_{\theta, \varepsilon, \eta}^*(\lambda) = S^*(\theta, \varepsilon) x^* - x_{\theta, \varepsilon}^*, \quad \lambda \in \text{int } \delta(\theta, \varepsilon, \eta).$$

Hence we derive

$$\sigma_{S^*}(x_{\theta,\,\varepsilon}^*) \subset \sigma(\theta,\,\varepsilon),$$

$$\sigma_{S^*}(S^*(\theta,\,\varepsilon)\,x^*-x_{\theta,\,\varepsilon}^*) \subset \{\mathrm{e}^{\mathrm{i}\varphi}: \varphi \notin (\theta-\varepsilon,\,\theta+\varepsilon)\}.$$

But we also have $e^{i\theta} \in \sigma_{S^{\bullet}}(S^{*}(\theta, \varepsilon) \ x^{*})$. Indeed if $e^{i\theta} \in \rho_{S^{\bullet}}(S^{*}(\theta, \varepsilon) \ x^{*})$, then the function $S^{*}(\theta, \varepsilon) \ x_{S^{\bullet}}^{*}(\cdot)$ has an analytic extension in a domain containing $e^{i\theta}$, while $x_{S^{\bullet}}^{*}(\cdot)$ has not such an extension. We can find a sequence $\{\lambda_{n}\}_{n=1}^{\infty} \subset \rho_{S^{\bullet}}(x^{*})$ such that $\lim_{n\to\infty} \lambda_{n} = e^{i\theta}$, $\|x_{S^{\bullet}}^{*}(\lambda_{n})\| \ge n$ (if $x_{S^{\bullet}}^{*}(\cdot)$ is bounded near $e^{i\theta}$, then using the assumption $\sigma_{p}(S^{*}) = \emptyset$ and the weak* compactness of the unit ball of \mathcal{X}^{*} , we can extend $x_{S^{\bullet}}^{*}(\cdot)$ to a weak* continuous function in a neighbourhood of $e^{i\theta}$ and such an extension is necessarily analytic contradicting $e^{i\theta} \in \sigma_{S^{\bullet}}(x^{*})$). Thus we have

$$\lim_{n\to\infty} (\lambda_n - S^*) x_{S^*}^*(\lambda_n) \|x_{S^*}^*(\lambda_n)\|^{-1} = x^* \lim_{n\to\infty} \|x_{S^*}^*(\lambda_n)\|^{-1} = 0,$$

while

$$\lim_{n\to\infty} \|S^*(\theta,\varepsilon) x_{S^*}^*(\lambda_n)\| \|x_{S^*}^*(\lambda_n)\|^{-1} = \lim_{n\to\infty} |f(\lambda_n)| = |f(e^{i\theta})| > 0,$$

$$\lim_{n\to\infty} \|S^*(\theta,\varepsilon) \, x_{S^*}^*(\lambda_n)\| \, \|x_{S^*}^*(\lambda_n)\|^{-1} = \lim_{n\to\infty} \|(S^*(\theta,\varepsilon) \, x^*)_{S^*}(\lambda_n)\| \, \|x_{S^*}^*(\lambda_n)\|^{-1} = 0$$

and the relation $e^{i\theta} \in \sigma_{S^*}(S^*(\theta, \varepsilon) x^*)$ follows. Now the inclusions

$$\sigma(S^*(\theta, \varepsilon) \ x^* - x_{\theta, \varepsilon}^*) \subset \{e^{i\varphi} \colon \varphi \notin (\theta - \varepsilon, \ \theta + \varepsilon)\}$$

$$\sigma_{S^*}(S^*(\theta, \varepsilon) \ x^*) \subset \sigma_{S^*}(x_{\theta, \varepsilon}^*) \cup \sigma_{S^*}(S^*(\theta, \varepsilon) \ x^* - x_{\theta, \varepsilon}^*)$$

imply $x_{\theta,\varepsilon} \neq 0$, $\mathscr{X}_{S^{\bullet}}^{\bullet}(\sigma(\theta,\varepsilon)) \neq \{0\}$. To conclude the proof it suffices to show that $e^{i\theta}$ is not an isolated point in $\sigma_{S^{\bullet}}(x^{*})$. But if $e^{i\theta}$ is isolated in $\sigma_{S^{\bullet}}(x^{*})$ then $x_{\theta,\varepsilon}^{*}$ does not depend on ε if ε is enough small, thus

$$0 \neq x_{\theta}^{*} = \lim_{\varepsilon \to 0} x_{\theta, \varepsilon}^{*},$$

$$\lim_{\varepsilon \to 0} \|x_{\theta, \varepsilon}^{*}\| \leq \frac{1}{2\pi} \lim_{\varepsilon \to 0} \int_{\Gamma(\theta, \varepsilon, \varepsilon)} |f_{\theta, \varepsilon}(\lambda)| \cdot \|x_{S^{*}}^{*}(\lambda)\| |d\lambda| \leq$$

$$\leq \frac{1}{2\pi} \sup_{n \geq 1} \|S^{n}\| \lim_{\varepsilon \to 0} \int_{\Gamma(\theta, \varepsilon, \varepsilon)} |f_{\theta, \varepsilon}(x)| |1 - |\lambda||^{-1} |d\lambda| = 0$$

and this contradiction shows that $e^{i\theta}$ has to be an accumulation point in $\sigma_{S^{\bullet}}(x^{*})$.

3.2. THEOREM. If S is power bounded and neither $\{S^n\}_{n=1}^{\infty}$ nor $\{S^{*n}\}_{n=1}^{\infty}$ tend strongly to 0 then S^* has a proper hyperinvariant subspace.

Proof. If $\sigma_p(S^*) \neq \emptyset$ then ker $(S^* - \mu)$, $\mu \in \sigma_p(S^*)$ is a proper hyperinvariant subspace of S^* . If $\sigma_p(S^{**}) \neq \emptyset$ then $(\overline{S^* - \mu}) \mathcal{X}^*$ is a proper hyperinvariant subspace of S^* . If $\sigma_p(S^*) = \sigma_p(S^{**}) = \emptyset$, applying Lemma 3.1 we can find two compact disjoint sets σ , δ such that

$$\mathscr{X}_{S^{\bullet}}^{\bullet}(\sigma) \neq \{0\}, \qquad \mathscr{X}_{S^{\bullet}}^{\bullet *}(\delta) \neq \{0\}.$$

For any $x^* \in \mathcal{X}_{S^*}^*(\sigma)$, $x^{**} \in \mathcal{X}_{S^{**}}^{**}(\delta)$ the function

$$f(\lambda) = \begin{cases} \langle x_{S^*}^*(\lambda), x^{**} \rangle, & \lambda \notin \sigma, \\ \langle x^*, x_{S^{**}}^{**}(\lambda) \rangle, & \lambda \in \sigma, \end{cases}$$

is analytic in C because

$$\langle x_{S^{\bullet}}^{\bullet}(\lambda), x^{**} \rangle = \langle x^{*}, x_{S^{\bullet \bullet}}^{**}(\lambda) \rangle = \langle R(\lambda; S^{*}) x^{*}, x^{**} \rangle, |\lambda| > 1.$$

But we have $\lim_{\lambda \to \infty} f(\lambda) = 0$, thus by Liouville's Theorem we derive $f(\lambda) \equiv 0$, $\langle x^*, x^{**} \rangle = \lim_{\lambda \to \infty} \lambda f(\lambda) = 0$. This implies that $\widehat{\mathscr{X}_{S^*}^*(\sigma)}$ is a proper hyperinvariant subspace of S^* .

- 3.3. Remark. In case \mathscr{X} is reflexive, Theorem 3.2 becomes a consequence of [10], Chapter V, Theorem 1.9.
- 3.4. PROPOSITION. Let A be polynomially bounded. If $\tau(A) \cap \mathbf{D}^m$ is dominating and the commutant of $\{A_k^*\}_{k=1}^m$ has no proper invariant subspace then $A \in C_{0 \vee 0}$, consequently Φ_*^A is a homeomorphism.

Proof. Since A_k^* has no proper hyperinvariant subspace, applying Theorem 3.2 we infer $A \in C_{0\vee 0}$. But the inclusion $C_{0\vee 0} \subset C^0$ and Theorem 2.3 imply that Φ_*^A is a homeomorphism.

3.5. THEOREM. Let A be polynomially bounded. If $(\tau_{l}(A) \setminus \tau_{le}(A)) \cup (\tau_{r}(A) \setminus \tau_{re}(A) \neq \emptyset$ then the commutant of $\{A_k\}_{k=1}^m$ has a proper invariant subspace.

Proof. If $\omega \in \tau_1(A) \setminus \tau_{1e}(A)$ we can find two subspaces $\mathscr{X}', \mathscr{X}''$ of \mathscr{X} such that inf $\{\||(A-\omega)x|\|: x \in \mathscr{X}'', \|x\|=1\} > 0$ and

$$\dim \mathcal{X}' = \operatorname{codim} \mathcal{X}'' < \infty, \ \mathcal{X}' \cap \mathcal{X}'' = \{0\}, \ \mathcal{X}' + \mathcal{X}'' = \mathcal{X}.$$

Let $\{x_k\}_{k=1}^{\infty} \subset \mathcal{X}$ be such that $||x_k|| = 1$, $\lim_{k \to \infty} ||(A - \omega) x_k|| = 0$. If $x_k = x_k' + x_k''$, $x_k' \in \mathcal{X}'$, $x_k'' \in \mathcal{X}''$ we may suppose that $\{x_k'\}_{k=1}^{\infty}$ converges strongly to x', consequently $\{x_k''\}_{k=1}^{\infty}$ converges strongly to x'' (via $(A - \omega)|\mathcal{X}''$ is bounded from below with respect to $|||\cdot|||$). Since we have $|||(A - \omega)(x' + x'')||| = 0$ we deduce that $\bigcap_{k=1}^{m} \ker (A_k - \omega_k)$ is a proper subspace invariant for the commutant of $\{A_k\}_{k=1}^{m}$. If $\omega \in \tau_r(A) \setminus \tau_{re}(A)$ we apply the above reasoning to A^* to show that $\sum_{k=1}^{m} ((A_k - \omega_k) \mathcal{X})$ is a proper subspace invariant for the commutant of $\{A_k\}_{k=1}^{m}$.

§4. INVARIANT SUBSPACES FOR POLYNOMIALLY BOUNDED m-TUPLES

As before $A = (A_1, \ldots, A_m) \in \mathcal{L}(\mathcal{X})^m$ will denote a polynomially bounded m-tuple. For any $\sigma \subset \mathcal{X}$, $\delta \subset \mathcal{X}^*$ we shall put

$$\sigma \bigwedge \delta = \{x \overset{A}{\otimes} x^* : x \in \sigma, \ x^* \in \delta\}.$$

The closed ball in \mathscr{X} with center in x and radius $b \ge 0$ will be denoted by $B(x, b, \mathscr{X})$. Consider the following possible properties of A:

(a) There exist $b_A \geqslant 1$, $0 \leqslant r_A < 1$ such that for any $\varphi \in \mathcal{X} \overset{A}{\otimes} \mathcal{X}^*$, $x \in \mathcal{X}$, $x^{\sharp} \in \mathcal{X}^*$ we have

$$\operatorname{dist}\left(\varphi,\,B(x,\,b_{A}b^{1/2},\,\mathcal{X})\, \overbrace{A}\,\,B(x^{*},\,b_{A}b^{1/2},\,\mathcal{X}^{*})\right)\leqslant r_{A}b,$$

where $b = \|\varphi - x \overset{A}{\otimes} x^*\|_*$.

$$(\beta) \quad \mathscr{X} \overset{A}{\otimes} \mathscr{X}^* = \{ x \overset{A}{\otimes} x^* \colon x \in \mathscr{X}, x^* \in \mathscr{X}^* \},$$

(7) $A \in C^0$, $\tau(A) \cap \mathbf{D}^m$ is dominating and there exists $b_A \ge 1$ such that for any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{\mathrm{le}}(A) \cap \mathbf{D}^m$, $\{c_k\}_{k=1}^n \subset \mathbf{C}$ we have

dist
$$(\varphi, B(x, b_A b^{1/2}, \mathcal{X}) (A) B(x^*, b_A b^{1/2}, \mathcal{X}^*)) = 0$$
,

where
$$\varphi = x \overset{A}{\otimes} x^* + \sum_{k=1}^n c_k \mathscr{E}_{\omega}^A(k), \quad b = \sum_{k=1}^n |c_k|.$$

(8) $A \in C^0$, $\tau(A) \cap \mathbf{D}^m$ is dominating and there exists $b_A \ge 1$ such that for any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{re}(A) \cap \mathbf{D}^m$, $\{c_k\}_{k=1}^n \subset \mathbf{C}$ we have the same relation as in (γ) .

REMARK. By Theorem 2.3 if A has property (γ) or (σ) then Φ_*^A maps homeomorphically $H^{\infty}(\mathbf{D}^m)$ onto \mathscr{A}_A and \mathscr{E}_{ω}^A is well defined.

4.1. THEOREM. If $A \in C^0$, $\tau(A) \cap \mathbf{D}^m$ is dominating and A has property (β) then A has a proper invariant subspace.

Proof. For any $\omega \in \mathbf{D}^m$, the functional \mathscr{E}_{ω}^A , defined by Theorem 2.3, is of the form

$$\mathscr{E}^{A}_{\omega}(\Phi^{A}_{*}(h)) = \langle \Phi^{A}_{*}(h) x_{\omega}, x_{\omega}^{*} \rangle, h \in H^{\infty}(\mathbf{D}^{m}),$$

consequently

$$\langle (A_1 - \omega_1) \Phi_*^A(h) x_\omega, x_\omega^* \rangle = 0.$$

This implies that either ker $(A_1 - \omega_1)$ or $\overline{\mathcal{A}_A(A_1 - \omega_1)x_\omega}$ is a proper invariant subspace of \mathcal{A}_A .

- 4.2. Proposition. The following implications hold true:
- (1) $(\alpha) \Rightarrow (\beta)$
- (2) if $\tau_{1c}(A) \cap \mathbf{D}^m$ is dominating then $(\gamma) \Rightarrow (\alpha)$
- (3) if $\tau_{re}(A) \cap \mathbf{D}^m$ is dominating then $(\delta) \Rightarrow (\alpha)$
- (4) if $\tau_1(A) = \tau_{1e}(A)$, $\tau_r(A) = \tau_{re}(A)$ then $((\gamma) + (\delta)) \Rightarrow (\alpha)$.

Proof. (1) Let $\varphi \in \mathscr{X} \overset{A}{\otimes} \mathscr{X}^*$ be given. We can find by induction two sequences $\{x_n\}_{n=0}^{\infty} \subset \mathscr{X}, \{x_n^*\}_{n=0}^{\infty} \subset \mathscr{X}^*$ such that

$$x_0 = 0, \ x_0^* = 0, \ \|\varphi - x_n \overset{A}{\otimes} x_n^*\|_* \le r^n \|\varphi\|_* \quad 0 < r < 1,$$

$$\|x_{n+1}-x_n\| \leqslant b_A r^{n/2} \, \|\varphi\|_*^{1/2}, \ \|x_{n+1}^*-x_n^*\| \leqslant b_A r^{n/2} \|\varphi\|_*^{1/2}.$$

If we put $x = \lim_{n \to \infty} x_n$, $x^* = \lim_{n \to \infty} x_n^*$ we have $\varphi = x \overset{A}{\otimes} x^*$.

(2) Let $\varphi \in \mathcal{X} \overset{\wedge}{\underline{\otimes}} \mathcal{X}^*$, $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\varepsilon > 0$, be given and put $b = \|\varphi - x \overset{\wedge}{\underline{\otimes}} x^*\|$. Because $\tau_{1e}(A) \cap \mathbf{D}^m$ is dominating and we have

$$\|(\varphi - x \overset{A}{\underline{\otimes}} x^*) \circ \Phi_*^A\|_* \leqslant c_A b,$$

applying [5], Proposition 2.8 we can find $\{c_k\}_{k=1}^n \subset \mathbb{C}$, $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{le}(A) \cap \mathbb{D}^n$, such that

$$\sum_{k=1}^{n} |c_k| \leqslant c_A b, \left\| (\varphi - x \overset{A}{\otimes} x^*) \circ \Phi_*^A - \sum_{k=1}^{n} c_k \mathscr{E}_{\omega}^A(k) \right\|_* < \varepsilon.$$

Hence we derive

$$\left\| \varphi - x \overset{A}{\otimes} x^* - \sum_{k=1}^n c_k \mathcal{E}_{\omega}^{A_{(k)}} \right\|_* < \varepsilon \| (\Phi_*^A)^{-1} \|.$$

Because we assume that A has the property (γ) we can find $y \in B(x, b_A c_A^{1/2} b^{1/2}, \mathcal{X})$, $y^* \in B(x^*, b_A c_A^{1/2} b^{1/2}, \mathcal{X}^*)$ such that

$$\left\|x \overset{A}{\underline{\otimes}} x^* + \sum_{k=1}^n c_k \mathcal{E}_{\omega^{(k)}}^A - y \overset{A}{\underline{\otimes}} y^*\right\|_{*} < \varepsilon;$$

consequently we have

$$\begin{aligned} \operatorname{dist} \left(\varphi, \, B(x, \, b_A c_A^{1/2} b^{1/2}, \, \mathcal{X}) \quad \widehat{A} \, B(x^*, \, b_A c_A^{1/2} b^{1/2}, \, \mathcal{X}^*) \right) & \leq \\ & \leq \| \varphi - y \overset{A}{\otimes} y^* \|_{*} < \varepsilon (1 + \| (\Phi_*^A)^{-1} \|). \end{aligned}$$

Choose $\varepsilon = b[2(1 + ||(\Phi_*^A)^{-1}||)]^{-1}, r = 2^{-1}.$

- (3) We repeat the proof of (2), with $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{re}(A) \cap \mathbf{D}^m$.
- (4) Let $\varphi \in \mathcal{X} \otimes \mathcal{X}^*$, $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\varepsilon > 0$ be given and put $b = \|\varphi x \otimes x^*\|_*$. As in (2) we can find $\{c_k\}_{k=1}^n \subset \mathbb{C}$, $\{\omega^{(k)}\}_{k=1}^n \subset \tau(A) \cap \mathbb{D}^m$ such that

$$\sum_{k=1}^{n} |c_k| \leqslant c_A b, \left\| \varphi - x \underbrace{\otimes}_{k} x^* - \sum_{k=1}^{n} c_k \mathscr{E}_{\omega}^{A_{(k)}} \right\|_* < \varepsilon.$$

If $\{\omega^{(k)}\}_{k \leq n_1} \subset \tau_{le}(A)$, $\{\omega^{(k)}\}_{k > n_1} \subset \tau_{re}(A)$ because $\tau(A) = \tau_{le}(A) \cup \tau_{re}(A)$ by assumption, applying (γ) and (δ) we can find first $y \in B(x, b_A' c_A^{1/2} b^{1/2}, \mathcal{X})$, $y^* \in B(x^*, b_A' c_A^{1/2} b^{1/2}, \mathcal{X}^*)$, such that

$$x \overset{A}{\otimes} x^* + \sum_{k \leq n_1} c_k \mathcal{E}_{\omega^{(k)}}^A - y \overset{A}{\otimes} y^* \bigg|_* < \varepsilon$$

and then $z \in B(y, b_A'' c_A^{1/2} b^{1/2}, \mathcal{X}), z^* \in B(y^*, b_A'' c^{1/2} b^{1/2}, \mathcal{X}^*)$ such that

$$\|y \overset{A}{\otimes} y^* + \sum_{k>n_1} c_k \delta^A_{\omega}(\omega) - z \overset{A}{\otimes} z^*\|_* < \varepsilon,$$

where b'_A is provided by (γ) and b''_A is provided by (δ) . If we put $b_A = c_A^{1/2}(b'_A + b''_A)$ we have

$$\operatorname{dist}\left(\varphi,B(x,b_{A}b^{1/2},\mathcal{X})\right) A B(x^{*},b_{A}b^{1/2},\mathcal{X}^{*})) \leqslant$$

$$\leq \|\varphi - z \overset{A}{\underline{\otimes}} z^*\|_* < \varepsilon + \left\| x \overset{A}{\underline{\otimes}} x^* + \sum_{k=1}^n c_k \mathscr{E}_{\omega^{(k)}}^A - z \overset{A}{\underline{\otimes}} z^* \right\|_* \leq$$

$$\leq \varepsilon + \left\| x \overset{A}{\underline{\otimes}} x^* + \sum_{k \leq n_1} c_k \mathscr{E}_{\omega}^{A_{(k)}} - y \overset{A}{\underline{\otimes}} y^* \right\|_* + \left\| y \overset{A}{\underline{\otimes}} y^* + \sum_{k > n_1} c_k \mathscr{E}_{\omega}^{A_{(k)}} - z \overset{A}{\underline{\otimes}} z^* \right\|_* < 3\varepsilon.$$

Choose $\varepsilon = b/6$, $r_A = 2^{-1}$.

4.3. Lemma. Let $\mathscr G$ be an n-dimensional subspace of $\mathscr X$ with a basis $\{e_k\}_{k=1}^n$ of unit vectors such that

$$\left\| \sum_{k=1}^{n} e^{i\theta_k} \lambda_k e_k \right\| \leqslant a \left\| \sum_{k=1}^{n} \lambda_k e_k \right\|$$

for some fixed positive constant $a \ge 1$ and any $\lambda_k \in \mathbb{C}$, $\theta_k \in [0, 2\pi)$. Let $\{c_k\}_{k=1}^n \subset \mathbb{C}$ be such that $\sum_{k=1}^n |c_k| = 1$. Then there exist $\{\mu_k\}_{k=1}^n \subset \mathbb{C}$ and $y^* \in Y^*$ such that

$$\left\| \sum_{k=1}^{n} \mu_{k} e_{k} \right\| \leq 1, \ \|y^{*}\| \leq a, \ \mu_{k} y^{*}(e_{k}) = c_{k}.$$

Proof. Assume first that a = 1 and the norm in \mathscr{Y} is strictly convex and smooth (see [11], Ch. VII, § 2). If we put

$$\sigma = \left\{ \sum_{k=1}^{n} a_{k} e_{k} : a_{k} \geqslant 0, \left\| \sum_{k=1}^{n} a_{k} e_{k} \right\| = 1 \right\}$$

then we know that for any $x \in \sigma$ there exists a unique $y_x^* \in \mathcal{Y}^*$ such that $||y_x^*|| = y_x^*(x) = 1$ (via the smoothness of the norm in \mathcal{Y}). Because the norm in \mathcal{Y} is invariant under rotations on the axis determined by the basis $\{e_k\}_{k=1}^n$, we derive easily $y_x^*(e_k) \ge 0$, $x \in \sigma$, $1 \le k \le n$. Let $e_k^* \in \mathcal{Y}^*$ be such that

$$||e_k^*|| = e_k^*(e_k) = 1, \ e_k^*(e_j) = 0, \ k \neq j.$$

Then we have

$$\left\| \sum_{k=1}^n e^{i\theta_k} \lambda_k e_k^* \right\| = \left\| \sum_{k=1}^n \lambda_k e_k^* \right\|$$

for any $\lambda_k \in \mathbb{C}$, $\theta_k \in [0, 2\pi)$ and the functions

$$\lambda_j \to \left\| \sum_{k=1}^n \lambda_k e_k \right\|, \ \lambda_j \to \left\| \sum_{k=1}^n \lambda_k e_k^* \right\|$$

increase with $|\lambda_j|$. This, together with the strict convexity of the norm in both \mathscr{Y} and \mathscr{Y}^* , imply the following equivalence:

$$y_x^*(e_k) = 0 \Leftrightarrow e_k^*(x) = 0.$$

Suppose our lemma holds true if the dimension of the subspace does not exceed $n-1 \ (\ge 1)$. For any $t \in [0, 1]$ put

$$e_k(t) = \begin{cases} e_k & , \ k < n - 1, \\ te_{n-1} + f(t) e_n, \ k = n - 1, \end{cases}$$

where $f(t) \in [0, 1]$, $||e_{n-1}(t)|| = 1$. The function f is continuous and f(0) = 1, f(1) = 0. Using the above assumption on the dimension, the Hahn-Banach Theorem and the invariance under rotations on axis we can find $x(t) \in \sigma$, $x(t) = \sum_{k=1}^{n-1} a_k(t) c_k(t)$, $y_t^* \in \mathscr{Y}^*(y_t^* = y_{x(t)}^*)$ such that

$$||x(t)|| = ||y_t^*|| = 1, \ a_k(t) \ y_t^*(e_k(t)) = |c_k|, \ k < n - 1,$$
$$a_{n-1}(t) \ y_t^*(e_{n-1}(t)) = |c_{n-1}| + |c_n|.$$

The vectors x(t) and y_t^* are uniquely determined because if x'(t), $y_t'^*$ is another solution of the previous equations and $x'(t) = \sum_{k=1}^{n-1} a_k'(t)e_k(t)$ we have

$$y'_{t}^{*}(x(t)) + y_{t}^{*}(x'(t)) = \sum_{k=1}^{n-1} [a_{k}(t) y'_{t}^{*}(e_{k}(t)) + a'_{k}(t) y_{t}^{*}(e_{k}(t))] \leq 2.$$

But since $|c_k| = a_k(t) y_t^*(e_k(t)) = a_k'(t) y_t'^*(e_k(t))$, if we put

$$r_k(t) = a'_k(t)/a_k(t) = y_t^*(e_k(t))/y_t'^*(e_k(t))$$
 if $a_k(t) \neq 0$

we derive

$$y_t^{\prime*}(x(t)) + y_t^{*}(x^{\prime}(t)) = \sum_{a_k(t) \neq 0} (r_k(t) + 1/r_k(t)) \, a_k(t) \, y_t^{*}(e_k(t)) \leq 2$$

which is possible only if $r_k(t) = 1$, x(t) = x'(t), $y_t^* = y_t'^*$. This implies the continuity of the functions

$$t \to a_k(t), \quad t \to y_t^*$$

and in particular the function

$$t \to y_{t}^{*}(a_{n-1}(t) t e_{n-1})$$

will be continuous. Since $y_0^*(0) = 0$, $y_1^*(a_{n-1}(1) e_{n-1}) = a_{n-1}(1) y_1^*(e_{n-1}(1)) = |c_{n-1}| + |c_n|$ we can find $s \in [0, 1]$ such that $y_s^*(a_{n-1}(s) s e_{n-1}) = |c_{n-1}|$. If $c_k = e^{i\theta_k} |c_k|$ and we put

$$\mu_k = e^{i\theta_k} a_k(s), \ k < n-1, \ \mu_{n-1} = e^{i\theta_{n-1}} a_{n-1}(s) s,$$

$$\mu_n = e^{i\theta_n} a_{n-1}(s) f(s), \ y^* = y^*_s$$

we have a solution for the conditions in our lemma. The proof will be completed by induction if we observe that in case dim $\mathcal{Y} = 1$, the lemma is trivial.

Further if a=1 and $\|\cdot\|$ is not strictly convex and smooth then for any $0 < \varepsilon < 1$ let $\|\cdot\|'_{\varepsilon}$ denote the norm in $\mathscr Y$ determined by duality with the norm in $\mathscr Y^*$ determined by the equation

$$\left\| \sum_{k=1}^n \lambda_k e_k^* \right\|_{\varepsilon}' = (1-\varepsilon) \left\| \sum_{k=1}^n \lambda_k e_k^* \right\| + \varepsilon \left(\sum_{k=1}^n |\lambda_k|^2 \right)^{1/2}$$

and define the norm $\|\cdot\|_{\epsilon}$ in \mathscr{Y} by the equation

$$\left\| \sum_{k=1}^n \lambda_k e_k \right\|_{\varepsilon} = (1-\varepsilon) \left\| \sum_{k=1}^n \lambda_k e_k \right\|_{\varepsilon}' + \varepsilon \left(\sum_{k=1}^n |\lambda_k|^2 \right)^{1/2}.$$

The norm $\|\cdot\|'_{\epsilon}$ in \mathscr{Y} is smooth, because $\|\cdot\|'_{\epsilon}$ in \mathscr{Y}^* is strictly convex and the norm $\|\cdot\|_{\epsilon}$ in \mathscr{Y} is both smooth and strictly convex as well as invariant under rotations on axis. Thus we can find a solution x_{ϵ} , y_{ϵ}^* . Finally using the compactness of the closed unit ball in finite dimensional spaces and the relations $\lim_{\epsilon \to 0} \|z\|_{\epsilon} = \|z\|$, $\lim_{\epsilon \to 0} \|z^*\|_{\epsilon} = \|z^*\|_{\epsilon}$, uniformly with respect to z and z^* in compact sets, we can find a solution $\{\mu_k\}_{k=1}^n$, y^* for the conditions in our lemma as a limit of ϵ -solutions.

Now assume a > 1. If we introduce the norm

$$\left\| \sum_{k=1}^{n} \lambda_{k} e_{k} \right\|_{0} = \sup \left\{ \left\| \sum_{k=1}^{n} e^{i\theta_{k}} \lambda_{k} e_{k} \right\| : \theta_{k} \in [0, 2\pi) \right\}$$

and $x = \sum_{k=1}^{n} \mu_k e_k$, $y^* \in \mathcal{Y}^*$, $||x||_0 \le 1$, $||y^*||_0 \le 1$ is a solution, we have $||x|| \le 1$, $||y^*|| \le a$, thus the assumption a = 1 is not a restriction.

Now recall that a scalar operator (in the sense of Dunford, [12], § 3) acting in $\mathscr X$ is an integral of the form $\int \lambda E(\mathrm{d}\lambda)$, where E denotes a strongly countably additive spectral measure with compact support, with domain the Boolean algebra all Borel subsets in $\mathbf C$ and value projections in $\mathscr X$. For any continuous complex function f defined on $\sigma\left(\int \lambda \, E(\mathrm{d}\lambda)\right)$ we have

$$\left\| \int f(\lambda) E(\mathrm{d}\lambda) \right\| \leq v(E) \sup |f(\lambda)|,$$

where v(E) is a positive constant depending on E.

4.4. THEOREM. Suppose there exist $K \in \mathcal{L}(\mathcal{X})$, $K' \in \mathcal{L}(\mathcal{X}^*)$, compact injective scalar operators. If $A \in C_0$, $\cap C_{0}$ and $\tau(A) \cap \mathbf{D}^m$ is dominating then A has a proper invariant subspace.

Proof. Because we have in particular $A \in C^0$, applying Theorem 3.5, Theorem 4.1 and Proposition 4.2 we shall show that A has properties (γ) and (δ) . Let $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\{c_k\}_{k=1}^n \subset C$, $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{le}(A) \cap \mathbf{D}^m$, $\varepsilon > 0$, be given and let E denote the spectral measure of K. Because K is compact and injective, $E(\sigma)$ is a finite rank projection whenever σ is a finite set and $||E(\sigma)x - x||$ can be made arbitrarily small if σ is suitably chosen (see [12], § 3). By Corollary 1.9 we also know that

$$\{\Phi_*^A(h) \ x \colon h \in H^\infty(\mathbf{D}^m), \ ||h||_\infty < 1\}$$

is a compact set in the strong topology of \mathcal{X} .

We can choose finite disjoint subsets $\{\sigma_k\}_{k=1}^n$ of $\sigma(K)$ and pick e_k such that e_k (ker x^*) $\cap E(\sigma_k) \mathcal{X}$, $||e_k|| = 1$, $1 \le k \le n$ and

$$|||(A-\omega^{(k)}) e_k||| \leq \varepsilon, \quad ||E\left(\bigcup_{k=1}^n \sigma_k\right) \Phi_*^A(h) x|| \leq \varepsilon ||h||_{\infty}.$$

Since we have

$$\left\| \sum_{k=1}^{n} e^{i\theta_k} \lambda_k e_k \right\| \leq v(E) \left\| \sum_{k=1}^{n} \lambda_k e_k \right\|$$

applying Lemma 4.3 and Hahn-Banach Theorem, we can find $\{\mu_k\}_{k=1}^n \subset \mathbb{C}, z^* \in E\left(\bigcup_{k=1}^n \sigma_k\right)^* \mathscr{X}^*$ such that

$$\left\| \sum_{k=1}^{n} \mu_{k} e_{k} \right\| \leq 1, \ \|z^{*}\| \leq v(E)^{2}, \ \mu_{k} z^{*} \left(e_{k} \right) = c_{k} \left(\sum_{j=1}^{n} |c_{j}| \right)^{-1}$$

$$\||(A - \omega^{(k)}) e_k|| \le \varepsilon, \quad \|E\left(\bigcup_{k=1}^n \sigma_k\right) \Phi_*^A(h) x\| \le \varepsilon \|h\|_{\infty}.$$

If we put

$$w = v(E) \left(\sum_{k=1}^{n} |c_k| \right)^{1/2} \sum_{k=1}^{n} \mu_k e_k, \ w^* = v(E)^{-1} \left(\sum_{k=1}^{n} |c_k| \right)^{1/2} z^*,$$

$$b_A = v(E), u = x + w, u^* = x^* + w^*$$

we have
$$u \in B(x, b_A \left(\sum_{k=1}^n |c_k|\right)^{1/2}, X), u^* \in B\left(x^*, b_A \left(\sum_{k=1}^n |c_k|\right)^{1/2}, X^*\right)$$

Since

$$\mu_k z^*(e_k) = c_k (\sum |c_k|)^{-1} \text{ and } \|\mu_k\| \le v(E),$$

we have

$$\left\| \sum_{k=1}^{n} c_{k} \mathcal{E}_{\omega}^{A}(k) - w \overset{A}{\otimes} w^{*} \right\|_{*} \leq \sup_{\|h\|_{\infty} \leq 1} \left| \left(\sum_{k=1}^{n} c_{k} \mathcal{E}_{\omega}^{A}(k) - w \overset{A}{\otimes} w^{*} \right) (\Phi_{*}^{A}(h)) \right| =$$

$$= \left(\sum_{k=1}^{n} |c_{k}| \right) \sup_{\|h\|_{\infty} \leq 1} \left| \sum_{k=1}^{n} \mu_{k} \left\langle \left(h(\omega^{(k)}) - \Phi_{*}^{A}(h) \right) e_{k}, z^{*} \right\rangle \right| \leq$$

$$\leq v(E)^{2} \left(\sum_{k=1}^{n} |c_{k}| \right) \sup_{\|h\|_{\infty} \leq 1} \left(\sum_{k=1}^{n} |\mu_{k}| \|(h(\omega^{(k)}) - \Phi_{*}^{A}(h)) e_{k}\| \right) \leq$$

$$\leq v(E)^{3} \left(\sum_{k=1}^{n} |c_{k}| \right) \left(\sum_{k=1}^{n} \sup_{\|h\|_{\infty} \leq 1} \|(h(\omega^{(k)}) - \Phi^{A}(h)) e_{k}\| \right).$$

Since $z^* \in E\left(\sum_{k=1}^n \sigma_k\right)^* x^*$, we have

$$||x \overset{A}{\underline{\otimes}} w^*||_{*} \leq \sup_{||h|_{\infty} \leq 1} |\langle \Phi_{*}^{A}(h) x, w^* \rangle| =$$

$$= v(E)^{-1} \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2} \sup_{||h|_{\infty} \leq 1} \left| \left\langle E \left(\bigcup_{k=1}^{n} \sigma_{k} \right) \Phi_{*}^{A}(h) x, z^* \right\rangle \right| \leq$$

$$\leq \varepsilon v(E) \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2}.$$

Finally since $\langle e_k, x^* \rangle = 0$, we have

$$\|w \overset{A}{\otimes} x^*\|_{*} \leq v(E) \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2} \sup_{\|h\|_{\infty} \leq 1} \left| \sum_{k=1}^{n} \mu_{k} \langle \Phi_{*}^{A}(h) e_{k}, x^* \rangle \right| \leq$$

$$\leq v(E)^{2} \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2} \left(\sum_{k=1}^{n} \sup_{\|h\|_{\infty} \leq 1} |\langle \Phi_{*}^{A}(h) e_{k}, x^* \rangle| \right) =$$

$$= v(E)^{2} \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2} \left(\sum_{k=1}^{n} \sup_{\|h\|_{\infty} \leq 1} |\langle (\Phi_{*}^{A}(h) - h(\omega^{(k)})) e_{k}, x^* \rangle| \right) \leq$$

$$\leq v(E)^{2} \left(\sum_{k=1}^{n} |c_{k}| \right)^{1/2} \|x^*\| \left(\sum_{k=1}^{n} \sup_{\|h\|_{\infty} \leq 1} \|(\Phi_{*}^{A}(h) - h(\omega^{(k)})) e_{k} \right).$$

Now using the relations

$$\left\|x \overset{A}{\otimes} x^{\pm} + \sum_{k=1}^{n} c_{k} \mathcal{E}_{\omega}^{A}(k) - u \overset{A}{\otimes} u^{*}\right\|_{\pm} =$$

$$= \left\|\sum_{k=1}^{n} c_{k} \mathcal{E}_{\omega}^{A}(k) - w \overset{A}{\otimes} w^{*} - x \overset{A}{\otimes} w^{*} - w \overset{A}{\otimes} x^{*}\right\|_{\pm} \leq$$

$$\leq \left\|\sum_{k=1}^{n} c_{k} \mathcal{E}_{\omega}^{A}(k) - w \overset{A}{\otimes} w^{*}\right\|_{\pm} + \|x \overset{A}{\otimes} w^{*}\|_{\pm} + \|w \overset{A}{\otimes} x^{*}\|_{\pm}$$

and Theorem 2.1 we deduce that $\left\|x \overset{A}{\otimes} x^{n} + \sum_{k=1}^{n} c_{k} \mathscr{E}_{\omega^{(k)}}^{A_{(k)}} - u \overset{A}{\otimes} u^{*}\right\|_{*}$ can be made arbitrarily small, thus A has the property (γ) .

The first part of the proof implies that A^{\oplus} has property (γ) , too, thus if $\{\omega^{(k)}\}_{k=1}^n \subset \tau_{re}(A)$, we can find

$$u^{**} \in B\bigg(x,\; b_A\left(\sum_{k=1}^n |c_k|\right)^{1/2},\; \mathscr{X}^{**}\bigg)\;, \quad u^* \in B\left(x^*,\, b_A\left(\sum_{k=1}^n |c_k|\right)^{1/2},\; \mathscr{X}^*\right)$$

such that

$$\sup_{\|h\|_{\infty} \leq 1} \left| \left\langle \Phi_*^A(h) x, x^* \right\rangle + \sum_{k=1}^n c_k h(\omega^{(k)}) - u^{**} (\Phi_*^A(h)^* u^*) \right| \leq \varepsilon.$$

Because

$$\{\Phi_*^A(h)^*u^*: h \in H^{\infty}(\mathbf{D}^m), \|h\|_{\infty} \leq 1\}$$

is a compact set in the strong topology of \mathcal{X}^* and the unit ball of \mathcal{X} is weak* dense in the unit ball of \mathcal{X}^{**} , we may suppose $u^{**} \in \mathcal{X}$. This shows that A has the property (δ) .

4.5. COROLLARY. Suppose \mathscr{X} is reflexive and there exists $K \in \mathscr{L}(\mathscr{X})$ a compact injective scalar operator. If $A \in C_0$, $\cap C_{0}$ and $\tau(A) \cap \mathbf{D}^m$ is dominating then A has a proper invariant subspace.

Proof. By [12], Theorem 18, (iv), $K^* \in \mathcal{L}(\mathcal{X}^*)$ is a compact scalar operator. It is obvious that K has dense range, thus K^* is injective and we can apply Theorem 4.4.

4.6. COROLLARY. Suppose \mathscr{X} has an unconditional basis and either \mathscr{X} is reflexive or \mathscr{X}^* has an unconditional basis. If $A \in C_0$, $\cap C_0$ and $\tau(A) \cap \mathbf{D}^m$ is dominating then A has a proper invariant subspace.

Proof. Let $\{x_n\}$ be an unconditional basis in \mathcal{X} (see [26], Definition 14.1, p. 396). Put $\sigma = \{0\} \cup \{1/n\}_{n \ge 1}$. Using [26], Theorem 17.1 we can define a spectral measure E on the Borel subsets of σ as follows: for any $\delta \subset \sigma$ and $x \in \mathcal{X}$ we put

$$E(\delta) x = \sum_{k=1 \in \delta} \lambda_k x_k$$
, if $x = \sum_{k \ge 1} \lambda_k x_k$.

It is easy to check that $K = \int \lambda E(d\lambda) \in \mathcal{L}(\mathcal{X})$ is a compact injective scalar operator thus either by Corollary 4.5 or by Theorem 4.4 we deduce that A has a proper invariant subspace.

4.7. Theorem. Suppose there exists $K \in \mathcal{L}(\mathcal{X})$ a compact injective scalar operator (or suppose, in particular, that \mathcal{X} has an unconditional basis). If $A \in C_0$ and $\tau_1(A) \cap \mathbf{D}^m$ is dominating then A has a proper invariant subspace.

Proof. Because $A \in C_0$, the proof of Theorem 4.4 shows that A has the property (γ) and by Theorem 3.5, Theorem 4.1 and Proposition 4.2, A has a proper invariant subspace.

4.8. THEOREM. Suppose there exist $K' \in \mathcal{L}(\mathcal{X}^*)$ a compact injective scalar operator (or suppose, in particular, that \mathcal{X}^* has an unconditional basis). If $A \in C_{\cdot,0}$ and $\tau_r(A) \cap \mathbf{D}^m$ is dominating then A has a proper invariant subspace.

Proof. Because $A \in C_{\cdot 0}$ we derive as in the proof of Theorem 4.7 that A has the property (δ) and that A has a proper invariant subspace.

Recall now that \mathscr{X} is called *uniformly convex* if whenever $\{x_n\}_{n=1}^{\infty} \subset \mathscr{X}$, $\{y_n\}_{n=1}^{\infty} \subset \mathscr{X}$ are sequences such that

$$\lim_{n \to \infty} ||x_n|| = \lim_{n \to \infty} ||y_n|| = 1/2 \left(\lim_{n \to \infty} ||x_n + y_n|| \right) = 1$$

we have

$$\lim_{n\to\infty}||x_n-y_n||=0.$$

A uniformly convex space is reflexive (see [11], pag. 188-189).

Consider the following possible properties of $A \in C^0$, if Φ_*^A is a homeomorphism:

 (γ') For any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\varepsilon > 0$, b > 0, there exists $0 \le r < 1$ such that

$$\operatorname{dist}\left(\varphi,B(x,\ b^{1/2},\ \mathscr{X})\bigcap B(x^*,\ b^{1/2},\ \mathscr{X}^*)\right)<\varepsilon$$

whenever
$$\varphi = x \stackrel{A}{\underline{\otimes}} x^* + \sum_{l=1}^n c_l \mathscr{E}_{\omega}^A(l), \sum_{l=1}^n |c_i| = b, \{c_l\}_{l=1}^n \subset \mathbb{C}, \{\omega^{(l)}\}_{l=1}^n \subset \tau_{le}(A) \cap \mathbb{D}^m,$$

$$\min_{1 \le k \le m} |\omega_k^{(l)}| \geqslant r, \quad 1 \le l \le n.$$

(δ') For any $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\varepsilon > 0$, $\delta > 0$ there exists $0 \le r < 1$ such that

$$\operatorname{dist} \ (\varphi, \ B(x, \ b^{1/2}, \ \mathcal{X}) \ \bigcirc B(x^*, \ b^{1/2}, \ \mathcal{X}^*)) < \varepsilon$$

whenever
$$\varphi = x \otimes x^* + \sum_{l=1}^n c_l \mathcal{E}_{\omega}^A(l), \quad \sum_{l=1}^n |c_l| = b, \ \{c_l\}_{l=1}^n \subset \mathbb{C}, \ \{\omega^{(l)}\}_{l=1}^n \subset \tau_{re}(A) \cap \mathbb{D}^m,$$

 $\min_{1 \le k \le m} |\omega_k^{(l)}| \ge r, \quad 1 \le l \le n.$

- 4.9. PROPOSITION. Suppose $A \in C^0$ and Φ^A_* is a homeomorphism. Then the following implications hold:
 - (i) if $\tau_{1e}(A) \cap \mathbf{D}^m$ is dominating, $(\gamma') \Rightarrow (\alpha)$
 - (ii) if $\tau_{re}(A) \cap \mathbf{D}^m$ is dominating, $(\delta') \Rightarrow (\alpha)$
 - (iii) if $\tau_{\epsilon}(A) \cap \mathbf{D}^m$ is dominating, $((\gamma') + (\delta')) \Rightarrow (\alpha)$.

Proof. The condition $\min_{1 \le k \le m} |\omega_k^{(l)}| \ge r$, $1 \le l \le n$, makes no obstruction if we repeat the proof of Proposition 4.2, (2), (3), (4).

4.10. Lemma. Suppose there exists a compact injective scalar operator $K \in \mathcal{L}(\mathcal{X})$ with the spectral measure E such that v(E) = 1 (i.e. $\|\int f(\lambda) E(d\lambda)\| = \sup_{\lambda \in \sigma(K)} |f(\lambda)|$, for any continuous complex function f defined on $\sigma(K)$) and \mathcal{X}^* is uniformly convex. If $A \in C^0$, $A_1 \in C_0$, $\|A_1\| = 1$ and Φ_*^A is a homeomorphism then A has the property (γ') .

Proof. We imitate that part of the proof of Theorem 4.4 in which it is shown that A has the property (γ) . Using the same notation, everything goes smooth except the fact that $\|x \otimes w^*\|_*$ can be made arbitrarily small, because the argument involving compactness is not available. We shall show that $\|x \otimes w^*\|_*$ can be made small if $0 \le r < 1$ is properly chosen and $|\omega_1^{(l)}| \ge r$, $1 \le l \le n$. Since $w^* = b^{1/2}z^*$ because of v(E) = 1 and z^* is produced by Lemma 4.3 we have

$$||z^*|| = 1 = z^* \left(\sum_{l=1}^n |\mu_l| e_l \right)$$

(see the proof of Lemma 4.3). Let $\eta > 0$ be given and put

$$\begin{split} \mathscr{U} &= \big\{ S \in \mathscr{L}(\mathscr{X}) \colon \ A_1 S = S A_1, \ \| \, S \| \, \leqslant \, 1 \big\}, \\ \\ \mathscr{U}_{\eta} &= \big\{ S \in \mathscr{U} \colon \| S x \| \, \leqslant \, \eta \big\}, \\ \\ \mathscr{U}_{\eta}' &= \big\{ S \in \mathscr{U} \colon \| S x \| \, > \, \eta \big\}. \end{split}$$

Since $||x \overset{A}{\otimes} w^*||_* \le \left(\sum_{k=1}^n |c_k|\right)^{1/2} \sup_{\|h\|_{\infty} \le 1} |\langle \Phi_*^A(h)x, x^* \rangle|$ and each $\Phi_*^A(h)$ com-

mutes with A_1 it suffices to show that we have

$$|z^*(Sx)| \leq \eta, S \in \mathcal{U},$$

if $|\omega_1^{(l)}| \ge r$ and r is enough close to 1. Since the above relation holds true if $S \in \mathcal{U}_{\eta}$, pick $S \in \mathcal{U}_{S}$. If we put

$$d_{S} = \inf \left\{ \left\| \lambda Sx - \sum_{t=1}^{n} |\mu_{t}| e_{t} \right\| : \lambda \in \mathbf{C} \right\}$$

and if we choose $\lambda_S \in \mathbb{C}$ such that

$$d_{S} = \left\| \lambda_{S} S x - \sum_{l=1}^{n} |\mu_{l}| e_{l} \right\|$$

we have $|\lambda_S| \le 2\eta^{-1}$ and since $||A_1|| = 1$ and $||S|| \le 1$ for any natural number k

$$d_{S} \ge \left\| A_{1}^{k} \left(\lambda_{S} S x - \sum_{l=1}^{n} |\mu_{l}| e_{l} \right) \right\| \ge$$

$$\ge \left\| \sum_{l=1}^{n} |\mu_{l}| (\omega_{1}^{(l)})^{k} e_{l} \right\| - 2\eta^{-1} \|A_{1}^{k} x\| - \left\| \sum_{l=1}^{n} |\mu_{l}| (A_{1}^{k} - (\omega_{1}^{(l)})^{k}) e_{l} \right\|.$$

Now letting k to be enough large and then letting r to be close to 1 and choosing properly $\{e_i\}_{i=1}^n$, it becomes obvious that we may suppose that $(1-d_s)$ is arbitrarily small, uniformly with respect to S. By Hahn-Banach Theorem we can find $z_s^* \in \mathcal{X}^*$ such that

$$||z_S^*|| \le d_S^{-1}, \ z_S^*(Sx) = 0, \ z_S^*\left(\sum_{l=1}^n |\mu_l| e_l\right) = 1.$$

Finally the assumption on the uniform convexity of \mathcal{X}^* implies that $||z^* - z_S^*||$ is small if $|1 - d_S|$ is small and this concludes the proof.

- 4.11. THEOREM. Let A be a polynomially bounded m-tuple. Suppose there exists a compact injective scalar operator $K \in \mathcal{L}(\mathcal{X})$ with the spectral measure E such that v(E) = 1. Then A has a proper invariant subspace in case at least one of the following conditions is fulfilled:
- (i) \mathscr{X} and \mathscr{X}^* are uniformly convex, $\tau(A) \cap \mathbf{D}^m$ is dominating and there exist $1 \leq k \leq m$, $1 \leq j \leq m$ such that $A_k \in C_0$, $A_i \in C_{\cdot 0}$, $||A_k|| = ||A_i|| = 1$,
- (ii) \mathscr{X}^* is uniformly convex, $\tau_1(A) \cap \mathbf{D}^m$ is dominating and there exists $1 \leq k \leq m$ such that $A_k \in C_0$, $||A_k|| = 1$.

(iii) \mathscr{X} is uniformly convex, $\tau_{\mathbf{r}}(A) \cap \mathbf{D}^m$ is dominating and there exists $1 \leq j \leq m$ such that $A_j \in C_{0,0}$, $||A_j|| = 1$.

- *Proof.* By Proposition 3.4 and Theorem 4.5 we may assume $A \in C^0$, Φ_*^A is a homeomorphism and $\tau_1(A) = \tau_{1e}(A)$, $\tau_r(A) = \tau_{re}(A)$. Using Lemma 4.10 we infer that A has the property (γ') in cases (i), (ii) and the property (δ') in cases (i), (iii). To conclude the proof we apply Proposition 4.9, Theorem 4.1 and Proposition 4.2.
- 4.12. THEOREM. Suppose \mathcal{X} is a Hilbert space and $T, S \in \mathcal{L}(\mathcal{X})$ are commuting contractions. Put B = (T, S). Then B has a proper invariant subspace in case at least one of the following conditions is fulfilled:
 - (i) $\tau(B) \cap \mathbf{D}^2$ is dominating and $T \in C_0$, $S \in C_{0}$,
 - (ii) $\tau(B) \cap \mathbf{D}^2$ is dominating and $T \in C_0$. $\cap C_{\cdot 0}$,
 - (iii) $\tau_1(B) \cap \mathbf{D}^2$ is dominating and $T \in C_0$,
 - (iv) $\tau_r(B) \cap \mathbf{D}^2$ is dominating and $T \in C_{\cdot 0}$.

Proof. By the theorem of Ando [2] (see also [28], Ch. I. § 6) B follows to be polynomially bounded, thus we can apply Theorem 4.11.

4.13. THEOREM. Suppose there exists $K \in \mathcal{L}(\mathcal{X})$ a compact injective scalar operator (in particular suppose that \mathcal{X} has an unconditional basis) and \mathcal{X} is reflexive Then any polynomially bounded operator $T \in \mathcal{L}(\mathcal{X})$ such that $\sigma(T) \cap \mathbf{D}$ is dominating has a proper invariant subspace.

Proof. It is easy to see that if T has no proper hyperinvariant subspace then we have

$$\sigma(T) = \tau_{\rm le}(T) = \tau_{\rm re}(T)$$

and by Proposition 3.4 we may assume $T \in C_0$. Now we can apply Theorem 4.7.

§ 5. INVARIANT SUBSPACES AND OUASISCALAR OPERATORS

Let \mathcal{Y} be a complex Banach space including \mathcal{X} as a subspace and let

$$A = (A_1, \ldots, A_m) \in \mathcal{L}(\mathcal{X})^m, \quad B = (B_1, \ldots, B_m) \in \mathcal{L}(\mathcal{Y})^m$$

be given. We shall call B an extension of A if

$$B_{k}\mathcal{X} \subset \mathcal{X}, \ B_{k}|\mathcal{X} = A_{k}, \ 1 \leq k \leq m.$$

If \mathcal{M} is a compact Hausdorff space we denote by $\mathcal{C}(\mathcal{M})$ the supnorm algebra of all continuous complex functions defined on \mathcal{M} . A spectral distribution

$$\mathscr{V}:\mathscr{C}(\mathscr{M})\to\mathscr{L}(\mathscr{Y})$$

will be a linear multiplicative continuous map such that $\mathcal{V}(1) = I(=)$ the identity operator). If B is a commutative m-tuple, then the carrier space \mathcal{M}_B of the Banach algebra generated by $\{B_k\}_{k=1}^m$ and I, can be canonically identified with a compact subset of \mathbb{C}^m (see [22], Ch. III, § 1). We shall call B a quasiscalar m-tuple if B is commutative and there exists a spectral distribution $\mathcal{V}_B : \mathcal{C}(\mathcal{M}_B) \to \mathcal{L}(\mathcal{Y})$ such that

$$\mathscr{V}_{R}(p) = p(B_1, \ldots, B_m)$$

for any polynomial p. It is obvious that a quasiscalar operator is a generalized scalar operator of order 0, in the sense of [10], Ch. IV, § 1. If \mathcal{Y} is reflexive then any quasiscalar operator is a scalar operator (see [12], Theorem 18).

Let $S \in \mathcal{L}(\mathcal{Y})$ be given. A spectral maximal space of S will be an invariant subspace \mathcal{L} of S, such that $\mathcal{L}_0 \subset \mathcal{L}$ whenever \mathcal{L}_0 is an invariant subspace of S and $\sigma(S|\mathcal{L}_0) \subset \sigma(S|\mathcal{L})$ (see [10], Ch. 1, § 3). We shall call S a decomposable operator if for any open covering $\{G_k\}_{k=1}^n$ of $\sigma(S)$ there exists a system $\{\mathcal{L}_k\}_{k=1}^n$ of spectral maximal spaces of S such that (see [10], Ch. II, Definition 1.1)

$$\mathscr{Y} = \sum_{k=1}^{n} \mathscr{Z}_{k}, \ \sigma(S|\mathscr{Z}_{k}) \subset G_{k}, \quad 1 \leqslant k \leqslant n.$$

If S is decomposable then S has the single-valued extension property and for any closed set σ ,

$$\mathscr{Y}_{S}(\sigma) = \{ y \in \mathscr{Y} : \ \sigma_{S}(y) \subset \sigma \}$$

is a spectral maximal space of S such that $\sigma(S|\mathscr{Y}_S(\sigma)) \subset \sigma$ ([10], Ch. II). If S is a quasiscalar operator then by [10], Ch. III, Theorem 1.19, S follows to be decomposable. An operator $T \in \mathscr{L}(\mathscr{X})$ will be called *subdecomposable*, resp. *subquasiscalar*, resp. *subscalar* if it has a decomposable, resp. quasiscalar, resp. scalar extension $S \in \mathscr{L}(\mathscr{Y})$. Analogously, we call A a subquasiscalar m-tuple if it has a quasiscalar extension $B \in \mathscr{L}(\mathscr{Y})^m$.

5.1. PROPOSITION. Let $T \in \mathcal{L}(\mathcal{X})$ be such that T is power bounded and T^* is subdecomposable. Then either T^* has a proper hyperinvariant subspace or $T \in C_0$. or T is a scalar multiple of the identity.

Proof. Assume $T \notin C_0$, $\sigma_p(T^*) = \emptyset$. Applying Lemma 3.1 we can find two compact sets σ , $\delta \subset \sigma(T^*)$ such that

$$\sigma \cap \delta = \emptyset, \ \mathcal{X}_{T^{\bullet}}^{\bullet}(\sigma) \neq \{0\}, \ \mathcal{X}_{T^{\bullet}}^{\bullet}(\delta) \neq \{0\}.$$

If $S \in \mathcal{L}(\mathcal{Y})$ is a decomposable extension of T^* , we have

$$\overline{\mathscr{X}_{T^{\bullet}}^{\bullet}(\sigma)} \cap \mathscr{X}_{T^{\bullet}}^{\bullet}(\delta) \subset \mathscr{Y}_{S}(\sigma) \cap \mathscr{Y}_{S}(\delta) = \{0\},\$$

thus $\mathcal{X}_{T^*}^*(\sigma)$ is a proper hyperinvariant subspace of T^* .

If $\sigma_p(T^*) \neq \emptyset$ then ker $(T^* - \lambda)$, $\lambda \in \sigma_p(T^*)$ is either a proper hyperinvariant subspace of T^* or $T = \lambda I$.

5.2. COROLLARY. Let $T \in \mathcal{L}(\mathcal{X})$ be power-bounded and subdecomposable. If \mathcal{X} is reflexive then either T has a proper hyperinvariant subspace or $T \in C_{\cdot 0}$ or T is a scalar multiple of the identity.

Proof. Since $T^{**} = T$ we apply Proposition 5.1.

5.3. THEOREM. Suppose A is subquasiscalar, $\sigma(A_k) \subset \mathbf{D}$, $1 \le k \le m$ and $\tau_1(A) \cap \mathbf{D}^m$ is dominating. Then A^* has a proper invariant subspace.

Proof. Let $B = (B_1, \ldots, B_m) \in \mathcal{L}(\mathcal{Y})^m$ be a quasiscalar extension of A such that \mathcal{Y} is generated by the set

$$\{\mathscr{V}_{B}(f)x_{0}: x_{0}\in\mathscr{X}, f\in\mathscr{C}(\mathscr{M}_{B})\}.$$

Proceeding as in [10], Ch. III, § 1, we derive easily $\mathcal{M}_B \subset \widetilde{\mathbf{D}}^m$ and this implies that A is polynomially bounded. By Proposition 3.4 we may assume $A \in C^0$ thus applying Theorem 3.5, Theorem 4.1 and Proposition 4.2 we shall show that A has the property (γ) . Let $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$, $\{c_l\}_{l=1}^n \subset \mathbf{C}$, $\{\omega^{(l)}\}_{l=1}^n \subset \tau_{l_c}(A) \cap \mathbf{D}^m$, be given. Choose $0 < \eta < 1$ such that $\max_{1 \le k \le m} |\omega_k^{(j)} - \omega_k^{(l)}| > 2\eta$, $j \ne l$. For any $\varepsilon > 0$

there are $e_l \in \ker x^*$, $1 \le l \le n$, such that

$$||e_l|| = 1, |||(A - \omega^{(l)}) e_l||| < \varepsilon.$$

Take $f_n \in C(\mathbb{C})$ such that

$$0 \leqslant f_{\eta} \leqslant 1$$
, $f_{\eta}(\lambda) = 1$, $|\lambda| \leqslant \eta$, $f_{\eta}(\lambda) = 0$, $|\lambda| \geqslant 2\eta$,

and define $f_{\eta}^{(l)}, g_{\eta}^{(l)} \in \mathcal{C}(\mathcal{M}_B), 1 \leq l \leq \eta$ by

$$f_{\eta}^{(l)}(\omega) = f_{\eta}(\omega_{1}^{(l)} - \omega_{1}) \dots f_{\eta}(\omega_{m}^{(l)} - \omega_{m}), \quad \omega \in \mathcal{M}_{B},$$

$$g_{\eta}^{(l)}(\omega) = (\omega_{1}^{(l)} - \omega_{1})^{-1}, \quad |\omega_{1}^{(l)} - \omega_{1}| > \eta/2, \quad \omega \in \mathcal{M}_{B}.$$

Since $1 - f_n^{(1)}(\omega) = (1 - f_n^{(1)}(\omega)) \cdot g_n^{(1)}(\omega)(\omega_1 - \omega)$, we have

$$\|\mathscr{V}_{B}(1-f_{\eta}^{(l)}) e_{1}\| = \|\mathscr{V}_{B}((1-f_{\eta}^{(l)}) g_{\eta}^{(l)})(\omega_{1}^{(l)} - A_{1}) e_{l} \| \leqslant \frac{2\varepsilon}{\eta} \|\mathscr{V}_{B}\|.$$

Let $e'_l = \mathscr{V}_B(f_\eta^{(l)}) e_l$. Since $f_\eta^{(j)} \cdot f_\eta^{(l)} = 0$, $j \neq l$ and \mathscr{V}_B is multiplicative it is easy to see that

$$\left\| \sum_{l=1}^n e^{i\theta_l} \lambda_l e_l' \right\| \leq \| \mathscr{V}_B \| \left\| \sum_{l=1}^n \lambda_l e_l' \right\|,$$

thus applying Lemma 4.3 we can find $\{\mu_l\}_{l=1}^n \subset \mathbb{C}$, $y^* \in \mathscr{V}^*$ such that

$$\left\| \sum_{l=1}^{n} \mu_{l} e'_{l} \right\| \leq 1, \ \|y^{*}\| \leq \|\mathcal{V}_{B}\|, \quad \mu_{l} y^{*}(e'_{l}) = c_{l} \left(\sum_{k=1}^{n} |c_{k}| \right)^{-1}.$$

Let z_0^* be the restriction of y^* to $\mathscr X$ and define $z^* \in \mathscr X^*$ by the equation

$$z^*(x_0) = \left\langle \mathscr{V}_B \left(\sum_{l=1}^n f^{(l)} \right) x_0, \ y^* \right\rangle, \quad x_0 \in \mathscr{X}.$$

We can choose ε (depending on η and n) such that $\sum_{l=1}^{n} |\mu_l| \|e'_l - e_l\|$,

$$\sum_{l=1}^n \left| \mu_l y^*(e_l) - c_l \left(\sum_{k=1}^n |c_k| \right)^{-1} \right| \text{ and } \left\| \left| v_B \left(1 - \sum_{l=1}^n f_\eta^{(l)} \right) \left(\sum_{k=1}^n \mu_k c_k \right) \right\| \text{ are arbitrary small.}$$

If we put

$$w = \|\mathcal{Y}_B\| \left(\sum_{l=1}^n c_l \right)^{1/2} \sum_{l=1}^n \mu_l e_l, \quad w^* = \|\mathcal{Y}_B\|^{-1} \left(\sum_{l=1}^n |c_l| \right)^{1/2} z^*,$$

$$b_A = 2 \|\mathcal{Y}_B\|, \quad u = x + w, \quad u^* = x^* + w^*$$

we have

$$\begin{split} u \in B\left(x, \ b_{A}\left(\sum_{l=1}^{n} c_{l}\right)^{1/2}, \ \mathcal{X}\right), \quad u^{*} \in B\left(x^{*}, b_{A}\left(\sum_{l=1}^{n} |c_{l}|\right)^{1/2}, \ \mathcal{X}^{*}\right) \\ & \left\|x \overset{A}{\underline{\otimes}} x^{*} + \sum_{l=1}^{n} c_{l} \mathcal{E}_{\omega}^{A}(\iota) - u \overset{A}{\underline{\otimes}} u^{*}\right\|_{*} \leq \\ & \leq \left\|\sum_{l=1}^{n} c_{l} \mathcal{E}_{\omega}^{A}(\iota) - w \overset{A}{\underline{\otimes}} w^{*}\right\|_{*} + \left\|x \overset{A}{\underline{\otimes}} w^{*}\right\|_{*} + \left\|w \overset{A}{\underline{\otimes}} x^{*}\right\|_{*}. \end{split}$$

But using the relation

$$\left\| \left(\sum_{l=1}^{n} \mu_{l} e_{l} \right) \overset{A}{\otimes} \left(z^{*} - z_{0}^{*} \right) \right\|_{*} \leqslant c_{A}^{\circ} \left\| \mathscr{V}_{B} \left(1 - \sum_{l=1}^{n} f_{\eta}^{(l)} \right) \sum_{l=1}^{n} \mu_{l} e_{l} \right\| \|y^{*}\|$$

we may suppose that $\left\| \left(\sum_{l=1}^{n} \mu_{l} e_{l} \right) \stackrel{A}{\underline{\otimes}} (z^{*} - z_{0}^{*}) \right\|_{*}$ is arbitrarily small and following

the proof of Theorem 4.4 we can make both $\left\|\sum_{l=1}^{n} c_{l} \mathscr{E}_{\omega}^{A}(t) - w \overset{A}{\otimes} w^{*}\right\|_{*}$ and $\left\|w \overset{A}{\otimes} x^{*}\right\|_{*}$

arbitrarily small. To conclude the proof we shall prove that $\|x \otimes w^*\|_*$ becomes small if η is small and $\sigma_p(A_1^*) = \emptyset$. Indeed if we suppose the contrary, we can find $1 \le l \le n$, $\{h_r\}_{r=1}^{\infty} \subset H^{\infty}(\mathbf{D}^m), \|h_r\| \le 1, \{\eta_r\}_{r=1}^{\infty}$ tending to 0 such that

$$\lim_{r\to\infty} \langle \mathcal{V}_B(f_{\eta_r}^{(l)}) \Phi^A(h_r) x_0, y^* \rangle = y_0^*(x_0), \quad y_0^* \in \mathcal{X}^*, \ y_0^* \neq 0.$$

Since we have

$$|((A_{1} - \omega_{1}^{(l)})^{*}y_{0}^{*})(x_{0})| = \lim_{r \to \infty} |\langle \mathscr{V}_{B}(f_{\eta_{r}}^{(l)}) \Phi^{A}(h_{r})(B_{1} - \omega_{1}^{(l)}) x_{0}, y^{*} \rangle| \leq$$

$$\leq \lim_{r \to \infty} 2 c_{A} ||\mathscr{V}_{B}|| \eta_{r} ||h_{r}||_{\infty} ||x_{0}|| ||z_{0}^{*}|| = 0$$

we derive $y_0^* \in \ker (A_1 - \omega_1^{(l)})^*$, whence it follows $y_0^* = 0$.

5.4. THEOREM. Suppose A is subquasiscalar, $\sigma(A_k) \subset \overline{\mathbf{D}}$, $1 \leq k \leq m$ and $\tau(A) \cap \mathbf{D}^m$ is dominating. If there exists a compact injective scalar operator $K \in \mathcal{L}(\mathcal{X})$ (in particular if \mathcal{X} has an unconditional basis) and \mathcal{X} is reflexive then A has a proper invariant subspace.

Proof. By the proof of Theorem 5.3 we know that A is polynomially bounded. Using Corollary 5.2 we may suppose $A \in C_{.0}$. If we use the notation of Theorem 5.3 we observe that in case $\|(A - \omega^{(l)})e_{l}\|$ is small and

$$e_l^* \in \mathcal{X}^*, \ \|e_l^*\| = \|e_l\| = e_l^*(e_l) = 1$$

then $e_l^*(\mathscr{V}_B(f_\eta^{(l)})e_l)$ is close to 1. Defining $x_l^* \in \mathscr{X}^*$ by the equation

$$x_{l}^{*}(x) = \langle \mathscr{V}_{B}(f_{n}^{(l)})x, y_{l}^{*} \rangle, x \in \mathscr{X},$$

where $y_I^* \in \mathscr{Y}^*$ is an extension of e_I^* we may suppose $||x_I^*|| \ge 1/2$. But referring again to the last lines in the proof of Theorem 5.3 we can make $|||(A^* - \omega^{(l)})x_I^*|||$ arbitrarily small and hence we derive the inclusion $\tau_I(A) \subset \tau_r(A)$. To conclude the proof we apply Theorem 4.8.

5.5. THEOREM. Suppose there exist $K \in \mathcal{L}(\mathcal{X})$ a compact injective scalar operator (or suppose, in particular, that \mathcal{X} has an unconditional basis) and \mathcal{X}^* is uniformly convex. If A is polynomially bounded, $\tau(A) \cap \mathbf{D}^m$ is dominating and each A_k is subscalar with a scalar extension $B_k \in \mathcal{L}(\mathcal{Y}_k)$ such that $\|\mathcal{V}_{B_k}\| = 1$ then A has a proper invariant subspace.

Proof. As in the proof of Theorem 5.4 we may suppose $A \in C_{.0}$ and then show the inclusion $\tau_1(A) \subset \tau_r(A)$. For simplicity we shall prove the implication

$$0 \in \tau_1(A) \Rightarrow 0 \in \tau_r(A)$$
.

Thus if |||Ae||| is small and

$$e^* \in \mathcal{X}^*$$
, $||e^*|| = ||e|| = e^*(e) = 1$

then $||e - \mathscr{V}_{B_k}(f_n)e||$, $1 \le k \le m$ is small (see the proof and the notation of Theorem 5.3). If $y_k^* \in \mathscr{Y}_k^*$ is an extension of e^* and we define $x_k^* \in \mathscr{X}^*$ by the equation

$$x_k^*(x) = \langle \mathscr{V}_{B_k}(f_\eta)x, y_k^* \rangle, x \in \mathscr{X}$$

we have

$$||x_k^*|| \le 1$$
, $|x_k^*(e) - 1| \le ||\mathcal{V}_{B_k}(f_\eta)e - e||$

consequently, in view of the uniform convexity of \mathcal{X}^* , we may suppose that $||e^* - x_k^*||$ is small. Since we have

$$\begin{aligned} \|A_k^*e^*\| &\leq \|A_k^*x_k^*\| + \|A_k^*\| \|e^* - x_k^*\|, \\ |A_k^*x_k^*(x)| &= |\langle \mathcal{V}_{B_k}(f_\eta) B_k x, \ y_k^* \rangle \mid \leq 2\eta \ \|x\|, \ x \in \mathcal{X}, \end{aligned}$$

the proof is concluded.

5.6. COROLLARY. Suppose \mathscr{X} is a Hilbert space, A is polynomially bounded $\tau(A) \cap \mathbf{D}^m$ is dominating and A_k is subnormal, $1 \leq k \leq m$. Then A has a proper invariant subspace.

Proof. Since A_k is subnormal it has a normal extension $B_k \in \mathcal{L}(\mathcal{Y}_k)$, where \mathcal{Y}_k is a Hilbert space. Now we apply Theorem 5.5.

5.7. COROLLARY. Suppose A has a normal extension $B \in \mathcal{L}(\mathcal{Y})^m$, (i.e. \mathcal{Y} is a Hilbert space and $\{B_k\}_{k=1}^m$ are commuting normal operators) $\sigma(A_k) \subset \overline{\mathbf{D}}$, $1 \leq k \leq m$ and $\tau(A) \cap \mathbf{D}^m$ is dominating. Then A has a proper invariant subspace.

Proof. Since A is polynomially bounded (see the proof of Theorem 5.3)we apply Corollary 5.6.

- 5.8. THEOREM. If $T \in \mathcal{L}(\mathcal{X})$ is subquasiscalar and $\partial \mathbf{D} \subset \sigma(T) \subset \overline{\mathbf{D}}$ then T^* (and in particular T if T is subscalar and \mathcal{X} is reflexive) has a proper invariant subspace.
- **Proof.** If T has no proper invariant subspace then we derive easily $\sigma_1(T) = \tau_1(T) = \sigma(T)$. Now if $\sigma(T) \cap \mathbf{D}$ is not dominating in \mathbf{D} then T has a hyperinvariant subspace by [3], Lemma 2.1 (though the lemma is stated for operators in Hilbert spaces its proof is valid in Banach spaces). We conclude the proof applying Theorem 5.3.
- 5.9. THEOREM. Let m be a finite, positive, Borel measure in C with compact support and let T denote the restriction to an invariant subspace of the multiplication by the argument in $L^p(m)$, 1 . Then T has a proper invariant subspace.

Proof. Proceeding exactly as in [4] we reduce to the case $\partial \mathbf{D} \subset \sigma(T) \subset \overline{\mathbf{D}}$ and then we apply Theorem 5.8.

REFERENCES

- 1. AGLER, J., An invariant subspace theorem, Bull. Amer. Math. Soc., 1 (1979), 425-427.
- 2. Ando, T., On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88-90.
- 3. Apostol, C., Ultraweakly closed operator algebras, J. Operator Theory, 2 (1979), 49-61,
- Brown, S., Some invariant subspaces for subnormal operators, J. Integral Equations and Operator Theory, 1 (1978), 310-333.
- 5. Brown, S.; Chevreau, B.; Pearcy, C., Invariant subspaces for contractions with rich spectrum, J. Operator Theory, 1 (1979), 123-136.
- 6. Brown, L.; Shields, A. L.; Zeller, K., On absolutely convergent exponential sums, *Trans. Amer. Math. Soc.*, 96 (1960), 162-183.
- 7. Bunce, J., The joint spectrum of commuting nonnormal operators, *Proc. Amer. Math. Soc.*, 29 (1971), 499-505.
- 8. Сноі, М. D.,; Davis, Cн., The spectral mapping theorem for joint approximate spectrum, Bull. Amer. Math. Soc., 80 (1974), 317—321.
- 9. CIORĂNESCU, I., Duality mappings in non-linear functional analysis (Romanian), Editura Academiei, 1974.
- 10. COLOJOARĂ, I.; FOIAȘ, C., Generalized spectral operators, Gordon and Breach, 1968.
- 11. DAY, M. M., Normed linear spaces (Russian translation), 1961.
- 12. DUNFORD, N., Spectral operators, Pacific J. Math., 4 (1954), 321-354.
- 13. DUNFORD, N.; SCHWARTZ, J. T., Linear operators. I (Russian translation), 1962.
- FRUNZĂ, ST., A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl., 16 (1971), 1055-1058.
- 15. Gamelin, T., Uniform algebras (Russian translation), 1973.
- GROTHENDIECK, A., Produits tensoriels topologiques et espaces nucléaires, Memoirs AMS, 16 (1955).
- 17. Harte, R. E., Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A., 72 A (1972), 89-107.
- 18. HOFFMAN, K., Banach spaces of analytic functions (Russian translation), 1963.
- 19. LINDENSTRAUSS, J.; TZAFRIRI, L., Classical Banach spaces. I, Springer Verlag, 1977.
- MLAK, W., Semi-spectral measures of two commuting contractions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), 695-698.
- 21. RADJABALIPOUR, M., Equivalence of decomposable and 2-decomposable operators, *Pacific J. Math.*, 77 (1978), 243-247.

- 22. RICKART, C. E., Banach algebras, Van Nostrand, 1960.
- 23. Rubel, L. A.; Shields, A. L., The space of bounded holomorphic functions on a region, Ann. Inst. Fourier (Grenoble), 16 (1966), 235-277.
- 24. RUDIN, W., Function theory in polydisks (Russian translation), 1971.
- 25. Schaefer, H. H., Topological vector spaces (Russian translation), 1971.
- 26. SINGER, I., Bases in Banach spaces. I, Springer Verlag, 1970.
- 27. STAMPFLI, J. G., An extension on Scott Brown's invariant subspace theorem: K-spectral sets, J. Operator Theory, 3 (1980), 3-21.
- 28. Sz.-NAGY, B.; FOIAŞ, C., Analyse harmonique des opérateurs de l'espace de Hilbert, Budapest, 1967.

C. APOSTOL

Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Păcii 220, 79622 Bucharest, Romania.

Received April 25, 1979.