J. OPERATOR THEORY o
4 (1980) 211249 © Copyright by INCREST, 1980

HOMOGENEOUS C*-EXTENSIONS OF C(X) ® K(H).
PART II

M. PIMSNER, S. POPA and D. VOICULESCU

In the first part of this paper (J. Operator Theory, 1 (1979), 55—108) we began
studying a generalization of the Brown-Douglas-Fillmore theory of extension, in
which the ideal K(H) of compact operators is replaced by C(X)® K(H).

For X a finite-dimensional compact metrizable space and 4 a separable
nuclear C*-algebra with unit, the equivalence classes of certain extensions which
we called homogeneous extensions, of C(X)®K(H) by A, gave rise to a group
Ext(X, A4).

Based on the results about Ext(X, A) obtained in the first part of this paper,
we shall develop here further topological properties of Ext(X, 4). This includes
the study of a certain K(X)-module structure on Ext(X, 4), the long exact sequences.
for each of the two variables, the periodicity theorem and a result showing that
taking suspensions in one of the variables has the same effect on Ext(X, A4) as taking,
suspensions in the other variable.

Much of the material in this paper is derived from standard techniques in
algebraic topology and from the adaptions of these techniques due to L. G. Brown
[9] for extending the Brown-Douglas-Fillmore theory from commutative to non
commutative C*-algebras.

Since we have chosen to make this paper rather selfcontained, some of it
is almost expository.

Before passing to a more detailed description of the content of the present
paper let us briefly recall how far we had come in studying the properties of Ext(X, 4)
in Part L.

After dealing with the Ext(X, 4) is a group question, we obtained results on
homotopy-invariance and short exact sequences. Thus we proved that for a nuclear
C#*-algebra A4 and a two-sided closed ideal J of A there is an exact sequence

Ext(X, A/J) » Ext(X, A) — Ext(X, J).
Similarly, for ¥ a closed subset of X we obtained an exact sequence

Ext(X, Y; 4) — Ext(X, A) — Ext(Y, A).
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For the homotopy-invariance properties besides the usual assumptions on
the C*-algebras and compacta we had to assume generalized quasidiagonality
(abbreviated g.q.d.) of the C*-algebras.

If 415 g.q.d. and p;: 4 — B (k = 1,2) are homotopic unital *-homomorphisms
we proved that the corresponding group-homomorphisms:

Pr,t EX(X, By > Ext(X, A) (k =1,2)

coincide.
Similarly, also for 4 g.q.d., we proved that if f,: X - Y (k = 1, 2) are homo-
topic continuous maps, then the group-homomorphisms

FEExt(Y, A) - Bxt(X, 4) (k=1,2)

coincide.

Part II has three sections § 7-§ 9, with numbers continuing those of the first
part. The list of references, for the readers convenience, is a concatenation of the
list of references of Part I and of an additional list of references.

In more detail the content of the three sections of the present paper isas
follows.

In § 7 it is shown that there is a natural isomorphism Ext(X, C(SY) = K(X)
and there is a homomorphism K(X) — Ext(X, 4) related to weak equivalence.

We also exibit a natural K(X)-module structure on Ext(X, 4) and we show
that the action of fiber-preserving automorphisms of C,(X, K(H)) on Ext(X, A)
corresponds to multiplication by line-bundles.

In § 8 using the short exact sequences and the homotopy-invariance established
in Part I, long exact sequences for Ext(X, A) are derived. In the X-variable this
is absolutely standard and the proofs are omitted. For the A-variable the proofs
are given, but this is only a more detailed exposition of L. G. Brown’s adaptation
for the non-commutative case of the usual proofs.

The reader who wants some intuitive background should read the derivation
of the long exact sequence given here in parallel with the derivation of the long exact
sequence for the usual Ext in the commutative case in [{2] and think of how the
constructions at the level of spaces translate into constructions at the level of the
corresponding C*-algebras of continuous functions on those spaces.

In §9 the periodicity theorems in the X-variable and in the A-variable
are obtained. We show that there is an interchange isomorphism which expresses
the fact that taking suspensions in the X-variable or in the A-variable has the same
effect on Ext(X, x,, 4).

This makes the periodicity theorems in the two variables equivalent and our
proof will be half in the X-variable and half in the A4-variable.

The first half is an adaptation of a half of the proof for K-theory [5] and
the second half follows closely a half of the proof of the periodicity theorem for
Ext given by Brown-Douglas-Fillmore [12].
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We should mention that it had been noted by L.G. Brown in [9] that the proof
of the periodicity theorem in [12] could be adapted for the non-commutative case.

The assumptions under which we give the periodicity theorem are that X be
a pointed finite-dimensional compact metrizable space and 4 be a nuclear g.q.d.
C*-algebra, having a rank-one homomorphism.

A curious corollary of the periodicity theorem is given in 9.12.

We would like to mention that further topological propertles of Ext(X, A)
have been obtained by C. Schochet [59].

On the other hand, G.G. Kasperov has announced in the short note [50]
results for a related much more general two-variables Ext-functor, both variables
of which are non-commutative C*-algebras. His results are obtained, in part, by
connecting the Ext-functor to a generalization of his previous work on K-homology

[51].

§ 7.

In this section we discuss certain relations between Ext(X, 4) and K(X).

First, we consider the K(X)-valued index for unitary elements of C,/(X,
L(H))/C(X, K(H)), an adaption of Atiyah’s results in the Appendix of [5]. This index
gives a natural isomorphism Ext(X, C(S')) ~ K(X) and also a natural homomorphism
K(X) —» Ext(X, A) defining the weak equivalence relation on Ext(X, 4). Second,
a natural K(X)-module structure on Ext(X, A) is defined. It is shown that the action
of fiber-preserving automorphisms of C,(X, K(H)) on Ext(X, 4) can be expressed
by means of the action of the multiplicative group of classes of line-bundles in K(X).

The material in this section consists, to a large extent, of adaptations of knonw
facts, included for the sake of some completeness.

By Py(X, H), P(X, H) we shall denote the orthogonal projections in C,(X, K(H))
and respectively in Cy (X, L(H)).

7.1. LEMMA. Let P,e P(X, H), (i=1,2), be such that dimP(x)H = oo
forallx e X,i=1,2. Then there is V & Cy (X, L(H)) such that V*V = P,, VV* == P,

Proof. The projections P; determine continuous fields of Hilbert spaces
(P{x)H)xex, I';) where TI'; c IIX(P,.(X)H) is the set of (P(x)f(x)) where f
xe€

runs over C(X, H). Then by ({21], 10.8.7.) these two continuous fields of Hilbert

spaces are isomorphic. So there are unitary operators W, from Py(x)H to Py(x)H
such that

xeX

{(thx)xexl(hx)xeX € Fl} = I,

Define V(x) € L(H) by V(x) i = W, Py(x) h. Then it follows easily that V' = (X5 x —
~ V(x) € L(H)) € Cyo(X, L(H)) and V*V = P,, VV* = P,. Q.E.D.
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For P e Py(X, H), the subset U ({x} x P(x)H) of XxH together with

the natural projection onto X deﬁnes a locally trivial vector bundle over X.

Let Vect(X) be the semigroup of isomorphism classes of locally trivial vector
bundles over X endowed with the direct sum operation. For P e Py(X, H) the
equivalence class of the corresponding vector bundle will be denoted by {P] € Vect{X)
and the stable equivalence class by [Plk € K(X).

The next two lemmas are quite standard ; their proofs will be omitted.

7.2. LEMMA. The map Po(X, H)> P — [P]e Vect(X) is onto. Moreover for
Py, Py € Py(X, H) the following conditions are equivalent:
(1)) [P - [P2]
(1) there is a unitary U el + C(X, K(H)) such that UP,U% = P,.
(it) there is Ve C (X, K(H)) such that V¥V = P, and VV* == P,.
(v) there is W e Col(X, L(H)) such that W(x)Py(x) H= Py(x)H and
Ker W(x)n P(x) H=-0 for all xeX.

7.3. LEMMA. Let Py, Pye Py(X, H) e such that |P, — P, < 1. Then we
have [P{] = [P,].
The next lemma enables us to define the K(X)-valued index.

7.4. LEMMA. Let Uec C (X, L(H)/C(X, K(H)) be unitary. Then there is
a partial isometry W e C, (X, L(H)) such that p(W) = U. Moreover

U— W*Wk — I — WW¥ e K(X)
is independent of the particular choice of W (i.e. depends only on U).

Proof. Consider P;e Py(X, H), P, < P, < ..., an approximate unit of

CJ(X, K(H)) and let Ve C (X, L(H)) be such that p(¥) = U. Then
I—P) V¥V — P)=(I—P)+(I—P)(V*V —I)(I - P).
Since V¥V — Ie C,(X, K(HY)) there is some j € N such that
=PV —DHI— Pyl < L.
Set
W= V(I — P)(P; + (I — P) V*V(I — P))-'

which is a partial isometry with p(W) =

For the second assertion, let W,, W, be partial isometries such that p(W,) =
== p(W.) = U. Let j, € N be such that for j > j, we have

W — WEW)(I— P <1 (i=1,2).

Then for j = jo, P; - (I — P)) W*W (I — P;) will be invertible and we may define
partial isometries LU. = WFfW{I— P)@P;+ I— Py WEW (I — P))~"2 and pro-
jections E; = L ;L.
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Then W;; = W,E,;; will be partial isometries with the following properties:

lim |E; —(I—P)=0
J—x
J—00

Then for j = j, great enough, we have
I\WiEW,, — WEW,ll < | and || W W — Wy Wk < 1
so that Lemma 7.3. gives
[1"‘ Wl*jWIj]K - [[’“ leWI*j]K == [[* W’fjWZ_i]K — [1"“ Wz_,'W;j']K-
Thus it will be sufficient to prove that:
[ — WEW I — T — WEW ¢ =
*)
= [l — Wij”/i’l;']l( - - Wiu/i*]w

Definind R = WiW, — WEW,, S, = W WX — W, W% we have R,

ifr

S, e Py(X, H) since E; < W*W, Then W,R, is a partial isometry with

ij
(W R )W R,;) = R;; and (W.R,))(W.R,)* = S;; so that by Lemma 7.2 we
have [R;;] = [S;;]. Mow (») follows from:

[I”‘ l’V:’jWU] = [1— Wx* Wi] + [Rij]
U—wwil=U—- WW*+IS,] Q.E.D.
Now we can define the index of a unitary element U € C, (X, L(H))/C (X, K(H))
by
index U==[1— W*W, — [I — WW*]

where W is any partial isometry with p(W) = U.
The next lemma gives the main properties of the index.

7.5. LEMMA. Theindex-map frorm the unitary group of C, (X, L{H))/C(X, K(H))
to K(X)is onto. Also, index U = O if and only if there is a unitary V € C (X, L(H))
such that p(V)= U. For U,, U, unitaries in C, (X, L(H))/C(X, K(H)) we have:

(i) index(U; @ U,) = index U, + index U,
(i) index U,U, = index U, + index U,
(iii) U, — Uyl < 1 implies that index U; = index U,.
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Proof. Given a € K(X), byLemma 7.2 there are P,, P, € P(X, H) such that
a == [P]g — [Po)k. Then because of Lemma 7.1 there is ¥ € C (X, L(H)) such that
V¥V = [ — P, VV* = I — P,. Clearly p(V) is unitary and index p(V) = «.

If Vis a unitary of C,(X,L(H)) then index p(V)= 0. Conversely let
Ue Cu (X, L(H))/C(X, K(H)) be unitary with indexU = 0 and let W e C, (X, L(H))
be a partial isometry with p(W) = U. In view of Lemma 7.2 thereis Q € Po(X, H)
such that [I— W*W]+ [Q]=[I— WW*] 4 [Q]. Using Lemma 7.1 there is
S € Cy (X, L(H)) such that S*S = I and SS* = W*W. Then V;, = W — SQS¥)
Is a partial isometry, p(V))=U and [I— VFV]=[T— W*W]+[Q]=
== [I — WW* 4 [Q] = [T — V, /).

Hence using Lemma 7.2 there is L € C,(X, K(H)) such that I — V{*V; = L*L,
I— V, V<= LL*. Defining V= V,+ L we have p(VV) = U and V is unitary.

Concerning assertions (i)-(iii) we remark that (i) is quite trivial and we shall
first prove (iii) and then (ii).

To prove (iii) we shall first prove that |JU,— U,||<1/2 implies that indexU; =
~: indexU,. Indeed by the proof of the first part of Lemma 7.4 there are partial
isometries W (i == 1, 2) with p(W,) = U, and ||W,; — W,|l<1/2. Then ||(I— WW;)—
—(I — WFW)l < 1 and (I — W, W) — (I — W,WF)|| < 1 so that index U, =
= indexU, follows from Lemma 7.3.

Now if {|U; — U,ll < | we have |U,U¥ — I}l < 1 and hence there is a hermi-
tian element A4 € C,. (X, L(H))/C(X, K(H)) such that exp(i4) = U,UJ so that U,
and U, may be joined by the continuous curve exp(itd)U, (f €[0, 1]). But in view
of the previously proved fact the index is locally constant and hence index U, =
= index U,.

To prove that indexU,U, := indexU, -+ indexU, in view of (i) and (iii) it
will be sufficient to prove that U,U,®I and U,®U, can be joined by a norm-
continuous curve of unitaries. This is done with the usual trick:

UGt = (’U1 0 (cost — sint (U2 0 ( cost  sint )
0 I) sint cost) 0 Jj\—sint cost
Q.E.D.
t [0, n/2].
Identify S* with the unit-circle {z € C| |z| == 1} ; the function y € C(S?), given
by x(z) == z, is unitary and generates C(S).
The following proposition is an immediate consequence of Lemma 7.5.

7.6. PROPOSITION. The map Ext(X, C(S1) > [t]—index 1(y) € K(X) is well defined
and is an isomorphism of Ext (X, C(SY)) onto K(X).

We pass now to the discussion of the weak equivalence of homogeneous
X-extensions.

Two homogeneous X-extensions by A4, defined by unital =-monomorphisms
10 A = Cu (X, L(H))/C(X, K(H)) (i = 1, 2) are said to be weakly equivalent if there
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is a unitary U € Cy (X, L(H))/C(X, K(H)) such that Uty(a) = 1,(a) U for all ae 4.
To emphasize the distinction between weak equivalence and equivalence the latter
will be also called strong equivalence. The semigroup of weak equivalence classes
of homogeneous X-extensions by 4 will be denoted by Ext (X, 4) and there is a
natural homomorphism Ext(X, A) — Ext, (X, A). We shall write [7], for the weak
equivalence class of .

Assume [t;] € Ext(X, 4) (i=1, 2) are weakly equivalent and Ilet
Ue Cu (X, L(H))/C,(X, K(H)) be a unitary implementing the weak equivalence. Using
Lemma 7.5 it is easily seen that the strong equivalence class [t,] depends only on[z,]
and index U. Since the class of trivial X-extensions by 4 is a natural elementin Ext(X,4)
it follows that [t,] and [r,] are weakly equivalent if and only if there is [o] weakly
equivalent to the trivial extemsions such that {[r;] + [o] == [1,]. Assume now
[o] e Ext(X, A) is trivial and let U € C, (X, L(H))/C,(X, K(H)) be unitary and define
o.(a) = Ua(a) U* (a € A); then ,since [6,] depends only on indexU, there is a map
g: K(X) - Ext(X, 4) such that ¢ (indexU) = [6,]. In view of the properties of the
index, ¢ is a homomorphism and the diagram .

K(X) 5 Ext(X, A) - Ext, (X, A) -0

is an exact sequence, in the sense that [1,], = [1,],, if and only if [1;] = [1,] + &(x)
for some a € K(X). Of course if Ext(X, 4) is a group then Ext (X, A) is also a
group and exactness of the above sequence has the usual meaning.

If A, B are C*-algebras with unit and f: 4 - B is a unit-preserving *-homo-
morphism then it is easily seen that the diagram

/Ext(X, A)

i

\Ext(X, B) '

K(X)

is commutative.

In particular if 4 has a one-dimensional representation then ¢ =0 and
hence Ext(X, 4A) = Ext, (X, A4).

The next question we shall discuss is a natural X(X)-module structure on
Ext(X, A). Of course we shall assume A is nuclear, so that Ext(X, 4) is a group.

In the remaining part of this section, for T'; € C, (X, L(H)) (i = 1, 2) we shall
use the notation

T,®@ Ty = (X5x - Tn(x) ® Ty(x) e L(H Q@ H)) e Cy (X, L(H @ H)).

Consider P e Py(X, H) such that P(x) + 0, (V) x € X. In view of Lemma 7.1
there is some V € C, (X, L(H ® H, H)) such that V*V =1, ® P and VV* = I ,.
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ForTe C (X, L(H)) define
wWT)y= V(T ® P) V*e C,{X, L(H)).

Then g is a unital =-monomorphism of Cy (X, L(H)) into itself and
w(T) e C(X, K(H)) < T € C(X, K(H)).

It is easily seen that for some other P’ € Py(X, H), with [P’] = [P]and some
other ¥’ corresponding to P’, the corresponding homomorphism u’ differs from pu
by an inner automorphism of C, (X, L(H)), i.e. there is a unitary U € C,. (X, L(H))
such that p'(T) = Up(T) U* for all T'e C. (X, L(H)). Note also that for Q € P(X, H)
we have

(@) =[P ® QI

Let i be the unital z-monomorphism of C, (X, L(H))/C(X, L(H)) induced
by u. Thenfor 1: A > Cu (X, L(H))/C(X, K(H)) defining a homogeneous X-exten-
sion by A it is easily seen that ji-t also defines a homogeneous X-extension by A
and [fio1] depends only on [t] and [P]. Also for U e C, (X, L(H))/C(X, K(H))
a unitary we have

index zi(U) = [P]k indexU.
Thus for P e Py(X, H) with P(x) # 0, (V) x € X we may define
[P]-[r] = [fio1]).

It is quite standard to verify that for P;e Py(X, H), P(x) # 0 (V) xeX (i=1,2)
and [r;] e Ext(X, 4) (i = 1, 2) we have

[P]-[t] + [Pe)-[1.] = ([P] + [Pe]) - [7)]
[(Pr]- ([t1] + [r]) = [P]-[t4] + [£]-[7:]
[P)-([Pe)-[w]) = [Py ® Py]-[1a]

[Pi]-e(2) = e([P )¢ o).

From these properties we immediately infer that ([P], [t]) — [P]-[t] can be
uniquely extended to a bilinear map K(X) xExt(X, 4) — Ext(X, A) which defines
a K(X)-module structure on Ext(X, 4). Moreover ¢: K(X) - Ext(X, 4) is a
homomorphism of K(X)-modules.

The isomorphism problem for the algebras arising from homogeneous exten-
sions of C,(X, K(H)) naturally leads to the study on the action of the automorphism
group of C(X, K(H)) on Ext(X, A). All the facts concerning this group, which we
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shall use, are well known and can be found for instance in Section 2 of [53]. Thus,
every automorphism of C,(X, K(H)) is the composition of an automorphism induced
by an automorphism of the base space X and a fiber-preserving automorphism;
i.e. an automorphism acting trivially on X (the spectrum of C (X, K(H)). The group
of fiber-preserving automorphism will be denoted by Autex)(C (X, K(H))) since is
is easily seen to consist of those automorphism which preserve the C(X)-module
structure of C, (X, K(H)).

We will be interested only in the action of Autcx)(C,(X, K(H)) on Ext(X, 4)
and we shall point out below that this action can be expressed in terms of the
K(X)-module structure of Ext(X, A4).

Since the inner automorphisms, i.e. the automorphisms Inn(C,(X, K(H)))
induced by unitaries of C, (X, L(H)), act trivially on Ext(X, 4) it will be actually
the factor group

Out(X) = Autcx)(Cy(X, K(H)))/Inn(C,(X, K(H)))

which will act on Ext(X, A).

Now locally, every fiber-preserving automorphism o is given by a unitary.
That is, thereis an open cover {®};¢; of X and there are unitaries U, € C, (X, L(H))
such that a(T) = U,TU* for T e C,(X, K(H)) with supp T = w;. Moreover for
xew; 0N w;, U¥x)Ufx) = A;;(x)I where 2,(x)eC, [A;(x) =1. We get thus
a l-cocycle (A;))wine; # O. The automorphism « is inner if and only if the coho-
mology class of this cocycle in HY(X, T) is zero. The product a°f has as cocycle
the product of the corresponding cocycles. Thus we have an injective homomorphism
of Out(X) — HY(X, T).

This is also surjective because of the contractibility of the unitary group U(H)
endowed with the x-strong topology.

Now there is also a bijection from HY(X, T) to equivalence classes of line
bundles over X. In fact, if (;;) is the cocycle obtained from a fiber-preserving auto-
morphism «, then a corresponding line-bundle is the line-bundle given by a(Py)
where P, is some constant rank-one projection.

Since there is a cocycle corresponding to both « and to the automorphism
constructed from «(P,), we infer that these automorphisms differ only by an inner
automorphism. Thus we have a commutative diagram

out(X) ——=——== HYX, n) - K(X)

End(Ext(X, A))

In summary, the elements [7,], [to] € Ext(X, A) are conjugated by some fiber-
preserving automorphism if and only if [r,] = f[r,] where f e K(X) is the class
of some line-bundle.

5—2443 14
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§ 8.

Using the short exact sequences and homotopy-invariance results of sections
4, 5, 6 we shall obtain in this section one-sided long exact sequences for Ext(X, xo; A).
For the X-variable this is standard algebraic topology and the corresponding result
will be mentioned without proof at the end of this section. The same techniques
were used for commutative 4 by Brown-Douglas-Fillmore, and L. G. Brown [9]
has supplied the necessary definitions for suspensions, mapping cylinders etc., to
make the same machinery work also in the non-commutative case. Since the presen-
tation in [9] is somewhat sketchy, we give below for the reader’s convenience a
more detailed presentation of the proof of the long exact sequence in the A-variable.

Let A4, B be two unital C*-algebras and p: 4 — B a unital *-homomorphism.
Then we shall consider the unital C*-algebras:

Z(p) = {& ® x € C([0, 1]), B) @ 4| &(1) = p(x)}
and : :
Clp) ={¢ ®xe ([0, 1], B) @ 4 |{(1) = p(x), &(0) € C- 1,}.

These C*-algebras are the analogous of the mapping cylinder and of the

mapping cone from algebraic topology.
' Consider further
CA = {£ e C([0, 1], 4) [£(0) € C1 4}

and X
= {£ e C([0, 1], 4) {E(0) e C1,, &(1) € C1,)

which correspond to the cone and suspension.

Since we shall need the short exact sequence in Theorem 4.1 all C*-algebras:
in this section will be assumed nuclear. Clearly Z(p), C(p), SA, CA will also be nuclear.

Further, in order to use the homotopy-invariance results in §5 we shall con-
sider  C*-algebras A4 having composition-series (J,)o<,<, With quasi-diagonal quo-
tients ‘7;,4,1/],,, a property we shall call generalized quasidiagonality (abbreviated
g.q.d.). Also, throughout this-section. all C*-algebras will be assumed to be g.q.d. .

It is easy to see that direct sums and subalgebras of g.q.d. C*-algebras are still-
g.q.d. . Also for 4 g.q.d. we have that C([0,1], 4) is g.q.d. (consider the composition
series (C([0,1], £))o<p <a)- As a consequence we infer that Z(p), C(p), SA4, CA will also
be g.q.d.

One caution is necessary: when 4 is g.q.d., it does not follow that a quotient
AlJ is also g.q.d. (in fact every separable C*-algebra is a quotient of a quasidiagonal
C*-algebra), so A/J will be assumed in what follows to be g g.d. . It is also easy to

see that if A/J and J are g.q.d. then A is also g.q. d.
Under the above assumptions we begin the proof of the long exact ' sequence

which is based on several lemmas.
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8.1. LEMMA. Let (X, x,) be a pointed, finite-dimensional compact metrizable
space p: A — B a unital x-homomorphism. Then

Ext(X, Xo; B) = Ext(X, xo; ) 2> Ext (X, xo; C(p))

is an exact sequence, where q: C(p) — A is the natural projection.
Proof. We shall consider the C*-algebra
Co(p) = {¢€ ® x € C(p)] £(0) = 0}

and the following *-homomorphisms:
i: Co(p) =+ Z(p) the inclusion,
p:Z(p) > A the natural projection,
r: Z(p) » B defined by

r€ @ x) =&0) for & ®xeZ(p),

k: A - Z(p) given by k(x) = f, @ x, where f; € C ([0,1], B) is the constant
function equal p(x).
Then the diagram

/Z(p \
\[ 1 /CO(p)
is commutative (i.e. rok = p, poi = gq).

Applymg Theorem 4.1 to the exact sequence

Colp) = Z(p) = B =0
we obtain an exact sequence
Ext(X, xo; B) = Ext(X, xo3 Z(p)) = EXt(X, x5 C(p)).

(Note that Co(p) is C(p).) .

Now pok = id, so that kyop, = id. If we can show that k o p is homotopic
to idz, then by the homotopy-invariance the maps k4 and p, are isomorphisms..
We infer that the exactness of the top row in the diagram~ '

Ext(X, x4; Z(p))_- ;

< k*l e

Ext(X, x,; A) 9«

EXt(X) Xo; B)

will imply the exactness of the bottom row, which is the desired result.

14
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Thus, consider
Gy: Z(p) — Z(p), s€[0,1]
the =-homomorphisms defined by
Gldx)=¢E¢Dx
where &(t) = &1 — (1 —s)(1 — ).
Then G, = idy(,, G, = kop and obviously G, depends continuously on s in
the point-norm topology. Q.E.D.

8.2. LMMA. Let (X, x,) be a pointed finite-dimensional compact metrizable
space, assume the C*-algebra A is unital and J = A is a closed two-sided ideal such
that A|J is contractible (of course A, J, A|J are nuclear, g.q.d.). Then the inclusion
i: J = A induces an isomorphism

ie: Ext(X, xo; A) — Ext(X, xo;J)-

Proof. Let p: A — A/J be the canonical surjection. By homotopy-invariance
we have

Ext(X, x,; A/J) = {0}

and hence by Theorem 4.1 we infer that i. is injective.
By Lemma 8.1 there is an exact sequence

Ext(X, xo; 4) -5 Ext(X, x4; )= Ext(X, xo; C(i)).
So to prove that i. is surjective it will be sufficient to prove that
Ext(X; xo; C(i)) = {0}.

Consider ¢:C(i) — S(4/J) defined by @((@x) = {, where {(t) = p(£(?)) for
1 €[0,1]. It is easily seen that ¢ is a surjection. Thus, there is an exact sequence

Ext(X, xo; S(4/7)) = Ext(X, xo; C(i)) > Ext(X, x,; Ker o).

It follows that it will be sufficient to prove that S(4/J) and Ker ¢ are contractible
C*-algebras.

It is easily seen that S(4/J) is contractible (suspensions of contractible C*-al-
gebras are contractible). Indeed, the contractibility of 4/J means that there exists a
continuous family (P )sero, 1 of +-homomorphisms of 4/ into 4/J such that &, =
== id 4,y and @, is one-dimensional. Then defining ¥,: S(4/J) — S(4/J) by (¥ &)(t) —=
= @, (E(t)) for 0 < s < 1/2 and (P E)(1) = P,(EQ2(L — 5)1)) for 1/2 < s <1 we
see that (¥);em, 1) implements the contractibility of S(A/J).

To show that Ke% is contractible remark first that Kere consists of all ele-
ments of the form £@ x, where & € C([0,1], 4), x eJN,x = {(1), &(t) €J for all 1 €{0,1]
and £(0) = 0. Thus Kerp is isomorphic to

B ={£eC(0,1], /)| {©) = 0}.
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Defining G,: B — B by G,(Ae + &) = Ae + & where &'(f) = E(st) for t [0, 1]
it is easily seen that (G,),e 10, 17 implements the contractibility of B. QED

Consider now 4, J and g: A — A/J as in the preceding lemma and let us define
c,:CA - A4 by c (&) = &(1) and

CA\U CAlJ = {E@L e CADCANT | ge &) = car(0)}-

Consider further the diagram

.
CA U CAJJ «——SAJJ

A
) T Sq
f
SA4 «———S4

where

() =<C¢@®q(E(l))  for {eSA

(N @ =£&1—1) for £eS4, 1€[0,1],
and

r(¢) =2A,@®¢ where EcSA4/J

and

é(l) = A,IA/‘].

With these preparations we can now state the next lemma.

8.3. LEMMA. The diagram (x) is commutative up to homotopy (i.e. sof is
homotopic to r-Sq).

Proof. Let H,:SA — CA ) CA/J, s€[0,1], be defined by H (&) = & @¢&,
where &) = &(1 — s1), &(0) = q(&((1 — ), t€[0,1]. Then H,=reSq,
Hl = S°f.

8.4. THEOREM. Let (X, x,) be a pointed finite-dimensional compact metrizable
space and let J be a closed two-sided ideal of a unital C*-algebra A (J, A, AlJ are nu-
clear, g.q.d.). Then there is a natural exact sequence

Ext(X, xo; AlJ) = Ext(X, x; A) - Ext(X, xo; J) -
— Ext(X, xo; SA/J) = Ext(X, xo; SA) - Ext(X, xo: ST) —
- Ext(X, xy; S2A)—> ... .
Proof. Consider

AUJCA = {x®L e ADC(0, 1], A/T) | £0) € Cl 4y, E() = g(x)}
and consider

y:AJCAT > A4
0: A\ CAJT - CA/J
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the =-homomorphisms given by the projections. We have:
Kery={0® (A ® C(0,1], 4/J)| E0) € Cly, (1) = 0}
Kerd = {x ®0e4 @ C(0,1], AJ)|xeJ}.

Hence defining S¢B = {¢ € C([0,1], B) | £(0) € C-1g, (1) = 0} we have ob-
vious isomorphisms Kerd =~ J, Kery ~ S,4/J. Thus there are exact sequences

0 — Sod/T 5> A\JCAT L 450

0= J5S AUCATS Cajg—o.

Moreover y° k is just the inclusion 7 of J into A. Also, since CA/J is contrac-
tible, Lemma 8.2 shows that k, is an isomorphism between Ext(X,x,; A\_JCA/))
and Ext(X, x,; .7). With these preparations we can now define the connectinghomo-
morphism by 0 = h, o ki'. This gives a commutative diagram

Ext(X, xo; A) ——> Ext(X, xo; A\ CA/J) s Ext(X, xo; S, AlJ)

ks

Ext(X, x,;J)

Since k.. is an isomorphism, remarking that S,4/J is S4/J and that exactness
of the top row implies exactness of the bottom row, we have thus proved exactness
of the long sequence at Ext(X, x,; f}

We pass now to the exactness at Ext(X, xo; S4/J). We shall use here the nota-
tions of Lemma 8.3. Consider also the ¥-homomorphism

LCAUCAT »AUCAL IE@ D =c) @D (.
Then [ o r = h. Using Lemma 8.3 we have that the triangles in the diagram

Ext(X, xo; CACA/S)

(sof )
(%)  Ext(X, xp; AU CAL) Y Ext(X, x,; SA)
he ™ Ext(X, xo; SALT) o)«

are commutative.
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Now r, is an isomorphism because there is an exact sequence

0 — Spd/J — CAJ CA/J » CA -0

where CA is contractible.
Moreover denoting Sgd = f(Sy,4) we have the exact sequence

0-Sid =L, caycCay >4 ca—o.

Thus the top row in diagram (i) is exact and r, being an isomorphism the bottom
row will also be exact. Since @ = /. ° ki ! where k. is an isomorphism it follows that
the exactness of the bottom row in (#x) is in fact equivalent to the exactness at
Ext(X, x,; SA/J) of the long exact sequence. .

We haven’t mentioned until now exactness at Ext(X, x,; 4), which is the con-
tent of Theorem 4.1.

In order to obtain exactness also for the rest of the sequence from what has
been already proved, there is still a point to be established, namely that the inclu-
sion KerS"g < S"J induces an isomorphism between Ext(X, x,; S"f) and
Ext(X, xy; Ker S"g). But this follows from Lemma 8.2 applied to the exact sequence
0 - Ker S"q - 87— 8"C - 0. -

~ This ends the proof of the exactness of the long sequence.

The naturality of the long exact sequence refers to x-homomorphisms p:4 — A4’
and ideals J < 4, J" = A4’ such that p(J) < J'. Then p induces also a *-homomor-
phism A/J — A'[J’ and the naturality property is the commutativity of the diagram

Ext(X, xo; A'lJ') = Ext(X, xo; A') — Ext(X, xo; J') = Ext(X, xo; SA'/J') —

l l l |

Ext(X, xo; A/J) = Ext(X, Xy; A) — Ext(X, xo;J) = Ext(X, x,; SA/J) —

The easy verification is left to the reader. : Q.E.D.

A consequence of Theorem 8.4. which we shall use is given in the next lemma.

8.5. LEMMA. Let (X, x,) be a pointed finite-dimensional compact metrizable
space and let h: A — B be a surjective x-homomorphism (A, B nuclear, g.q.d.). Assume
moreover there is a %-homomorphism j: B — A such that h-j = idg. Then we have
the split exact sequence:

h, —~
0 = Ext(X, x,; B) 5_" Ext(X, xo; A) — Ext(X, x,; Ker &) = 0

so that Kerj, is naturally isomorphic to Ext(X, x,; Ker h).
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Proof. Since hej=id, it follows that j.oh, = idewy,x,;s and
(S/x)° (Sh)y, = idgxx, x,; s Thus A, and (Sh)., are injective and the Lemma follows
from Theorem 8.4. Q.ED.

Since we want to discuss reduced suspensions, we shall consider “pointed”
C*-algebras and their “smash-product”.

But first we need some remarks concerning the fact that the tensor product of
nuclear g.q.d. C*-algebras is still nuclear g.q.d.

It is known that the tensor product of two nuclear C*-algebras is still a nuclear
C#-algebra. Moreover if an exact sequence

0->J—>A4-5 A4A/J]->0

is tensored by a nuclear C*-algebra, the new sequence will again be exact (use [58]).
Now, the spatial tensor product of two quasidiagonal C*-algebras is easily
seen to be again a quasidiagonal C*-algebra. If the quasidiagonal C#-algebras are

also nuclear, then there is a unique tensor product, which must then be quasidiagonal.
Consider 4, Bnuclear g.q.d. C*-algebras with composition series (1,),e 5, (Jp)ge s

where &, ¥ are well-ordered sets. Then A ® B is nuclear and is also g.q.d. as can be
seen using the composition series ([, @B + I, 41 ®Jp)w.pesx s Where # X £ has been
given the lexicographical order.

The “pointed’” C*-algebras we shall consider will be unital C*-algebras A
together with a specified one-dimensional unital x-homomorphism y:4 — C. Then

it is natural to define the “smash-product™ of (4,, ;) and (4,, x,) as (Ker xl®f{€r—_y’(2)
together with the one-dimensional x-homomorphism x such that Ker y =Ker 1, ®
®Ker ys.

Consider now unital nuclear g.q.d. C*-algebras A4, A4,, 4, and unital *-homo-
morphisms y,: A, - C (k = 1,2). Consider further the following four #-homomor-
phisms corresponding to natural inclusions

11 ARA; > ARA,®4,
Joi A®A; > ARA, R4,

it A®(Kery,®@Kery,) > AQRA,QA4,
Ji 4> A®(Kery; ®Kery,)

and consider the left inverses of jj, /., j obtained by tensoring the distinguished
one-dimensional representations of 4,, 4, and Kery, ® Kery,:

h: ARA,®A, > AR A,
hy ARA, ®A; > AR A,

h: A®(Kery, ®Kery,) - A.

With this notation we have the following lemma.
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8.6. LEMMA, The map i, gives a natural isomorphism of Kerjix N Kerjyx
onto Ker jy. _

Proof. Applying Lemma 8.5 to h,oj, = id4e4, We see that, denoting by k,

. . ——ee— s’ . . . .
the inclusion of A®A4,® Ker y, into 4 ® 4, ® 4,, the map k4 gives an isomorphism
o~ —eee s
of Kerj,, onto Ext (X, x,; Ker /1) = Ext (X, x0; AQ A, @Ker y,).
- . —— . — ’

Denote by j; the inclusion of A®Ker y, into A®A4,®Ker y, and by h:
A® A, @Ker y, » A®Ker y, the left inverse of j{ which is the restriction of /.
Let also k, be the inclusion of A@Ker z; @Ker y, into A @4, @Ker z,. Applying
Lemma 8.5 to (4, j;) and remarking that Kerh; = A®Ker y; ®Kery, it follows
that k,, gives an isomorphism of Kerjj, onto Ext(X, x,; A®Ker x;@Ker y,).
Thus we infer that (ky o k,), gives an isomorphism of Ker(k, o jj), N Ker j,; onto
Ext (X,x,; ARKery, ®Kery,). )

On the other hand, applying Lemma 8.5 to (4, j) and denoting by k the inclu-
sion of Kerh = ARKery, ®@Ker y, into AQ(Kery, ®Ker z,) we have that k,
gives an isomorphism of Kerj, onto Ext(X, x,; A®@Kery, ®Ker y,).

Since i o k == k; o k, and k, [Ker j, is an isomorphism, it follows that in order
to conclude the proof it will be sufficient to show that

Ker(ky o ji)g N Ker jo, = Ker jy, N Ker joy.
Consider the split exact sequence

0> A@Ker g, — A®Ay 2> A — 0

where ¢, r are the canonical inclusions and s=1,®y,. Then (k o j}),=(ji° ). Thus,
if a € Ker(k; c ji); we have j .o = 5,8 where B = (jy o r),&. Now, j, o r is the na-
tural inclusion of A4 into 4®4; ® 4,. Hence, if ais also in Ker j,4 then (j, o r),a = 0,
so that we get the desired conclusion. v Q.E.D.

Let us also indicate a generalization of Lemma 8.6, the proof of which can
be based on using Lemma 8.6 and Lemma 8.5 several times and which will be
omitted.

8.7. LEMMA. Let A be a g.q.d. nuclear C*-algebra and let (A,, x) (k=
=1, ...,n) be “pointed” g.q.d. nuclear C*-algebras. Consider j, the inclusion of
ARAI® ... ®A,_1®A 11 ® ... ®A, into ARA,R® ... ®A,, j the inclusion
of A into AQ(Ker 7, ® ... ® Ker x,) and i the inclusion of A®(Kery, ® . .. @ Ker 1,)
into AQA,1® ... ®A,. Then i, gives a natural isomorphism of Ker ji, 0 ... N
n Ker j,. onto Ker jy.

Remark that in case 4 = C the preceding lemma gives a description of
Ext(X, x,; Ker }T@ ... ®Ker x,) as a subgroup of Ext (X, xo; 4,®...®4,).
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For (4, y) a “pointed” nuclear, g.q.d. C*-algebra we shall consider the “re-
duced suspension” S(4, x) of (4, y) which is:

S(A4, x) = {feS4 | g f(¢) is constant}
or equivalently .
S(4, ) = { /e C(O]T], A f®) = 0, ¥ £ €[0,1],f(0) = f(1) =0}

which makes S(4, y) a “pointed”” C*-algebra. The “‘reduced suspension’ of (4, x)
defined in this way coincides with L. G. Brown’s suspension [9] of ker y with a
unit adjoined. Denoting by J the ideal

{reC(o,1}, 4) | xf(t) =0, ¥ t€[0,1], £(0) = f(1) = 0},

we have an exact sequence

0->J—->8S4-C(0,1) -0

and since C([0,1]) is contractible and J =S(4, ¥) it follows that the inclusion §(A,x) c
< SA gives a natural isomorphism of Ext(X, x,; S4) and Ext(X, xo; S(4, x)).

More generally it is easily seen that this holds also for iterated suspensions, i.e.
there is a natural isomorphism between Ext(X, x,; S"4) and Ext(X, xo; S"(4, x))-
Thus, for “pointed’” C*-algebras, as faras only Ext is involved, we can always replace
the usual suspensions by reduced suspensions.

Now, the “reduced suspension’ can be viewed as a ““‘smash product”. Indeed,
consider (C(SY), €) where ¢: C(S*) - C is any character of C(SY). Then there is a

natural isomorphism between S"4 and Kery®@Kers® ... ® Kere. Consider

n-times
h: C(SH® ...C(SH> ARC(SH ® ... ® C(SY,

-~
n-times n-times

the natural inclusion and consider also

hi: AQC(SY® ... ®C(SY) - ARC(SH®...®C(SH) (1 <j<n)

(n— 1;tima n-times
the injection obtained by omitting the j-th C(S*)-factor. Then we have the following
consequence of Lemma 8.7 (see also the remarks after this lemma).

8.8. COROLLARY. There is a natural isomorphism of Ext(X, xo; S"(4, 1)) onto
Kerhy, 0 Kerlye 0 ... 0 Kerh,,.

This concludes our discussion in this section concerning the A-“variable”
and we shall now briefly summarize the coresponding facts for the X-*“variable”
(without proofs).

Thus, let X be a finite-dimensional compact metrizable space, ¥ < X a closed
subset and x, € Y a common basepoint for X and Y. We denote by SX the suspension
of X, by SX the reduced suspension, and by g: SX — SX the canonical surjective map.
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Then for a nuclear, g.q.d. C*-algebra A we have:

1°, g*: Ext (SX, 0; A) — Ext (SX, o,; A)
is an isomorphism (o, g, are basepoints).
2°. There is a natural exact sequence

Ext (Y, xy; A) « Ext (X, xo; A) « Ext (X, Y; A) «
« Ext (SY, xp; A) « Ext (SX, x,; 4) « Ext (SX, SY; 4) « ...

...

3°. The group Ext(S"X, xo; A) is naturally isomorphic to the subgroup of
Ext(S" X X, (0, xp); A) (where 6 € S", x,€ X are basepoints) which have trivial
restrictions to both 8" X {x,} and {c} X X.

§ 9.

This section deals with periodicity for Ext (X, A). First we establish some pro-
perties of a certain clutching construction. Besides its use in the proof of the perio-
dicity theorem, this yields the fact that, roughly speaking, taking suspensions in
the X-variable or in the A-variable has the same effect on Ext (X, x,; A). This makes
the periodicity theorems in the X-variable and in the A-variable equivalent.

The proof of periodicity that we give has two parts. Half is an adaption of a
half of the proof for K-theory in[5]; half is almost a repetition of half of the proof
for the usual Ext given in [12]. '

In addition to the usual assumptions: X finite-dimensional, 4 nuclear, g.q.d.
we will obtain our results under the additional assumption that 4 has a one-dimen-
sional representation.

For the clutching construction, consider X a finite-dimensional compact me-
trizable space, S* the one-dimensional sphere identified with {z € C| |z] = 1} and let

r: xx[0,1] = X, r(x, h) = x

51 X x[0,1] » X x S, s(x, h) = (x, exp(2rih))
X > XxS, t(x) =(x, 1)

i:X = X' x[0,1], i(x) = (x, h), h €[0,1].

Let further p:4 — C,, (X, L(H)) be a unital x-homomorphism such that pop
defines a trivial X-extension by 4 and let U e Cy, (X, L (H)) be a unitary such that
.U, p(A)] = C(X, K(H)). We shall use p and U to construct an X x S-extension
by A and moreover we shall prove that the corresponding element of Ext (X X S, A)
depends only on the class in Ext(X, A®C(SY)) naturally defined by p and U.
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Consider U e C, «s (X X [0,1}, L(H)) any unitary such that U(x, 0) == U(x) and
U(x, 1) = I (such unitaries exists since the unitary group of L(H) is contractible
in the =-strong topology). Since U(x) p(@)U-Y(x) — p(a) € C,(X, K(H)) we can
find R(a) € C,; (X% SY, L(H)) such that

R(@) o s — Up(a)or) U1 e C,(X x[0,1], K(H)).

Clearly p(R(a)) depends only on p and U and the map a - p(R(a)) is a *-homomor-
phism which defines a X' X S'-extension by A.

Let us now make some remarks concerning the preceding construction

1) Let U’ € C,(X x[0,1], L(H)) be another unitary such that U'(x, 0) == U(x)
and U’ (x, 1) == I and let R'(@) be defined in the same way as R(a) using U’ instead
of U. Then there is a unitary ¥ e Cy, (x@®S", L(H)) such that Vos:= U’ U-t.
We have VR(a) — R'(@)V e C (XX S, K(H)), so that the X x S! -extensions by
A defined by a - p(R'(a)) and a — p(R(a)) are equivalent. Thus the class of the
X x S1-extension by A defined by @ — p(R(a)) depends only on p and U. Denote it
by a(p, U).

2) Assuming that p': 4 - C,, (X, L(H)) is another unital x-homomorphism
such that po p = pop’, it is straight-forward to check that a(p, U) == a(p’, U).

3) Consider p and U as above and let U’ ¢ C (X, L(H)) be a unitary such
that U’ — U e C (X, K(H)). To prove that a(p, U') = afp, U) we shall need the
fact that p has a one-dimensional representation. Consider W= U-! U'el+4-
+ CAX, K(H). _ N

We shall construct a unitary WecC,, (Xx[0,1], L(H)) such that W(x, 0)=:
s W(x), W(x, 1)=:1I and [W, pla)orle C(XX[O, l] K(H)) for all ae 4. This
will then easily give the desired conclusion by taking U’ = U W, so all we have to
do is to construct W. Since Wel+ C (X, K(H)) there is a projection Pe
e Cy (X, L(H)) with dimP(x) = co and dim(/ — P) (x) = oo for all x € X, such
that | W — (PWP + (I — P))|| < 1/2. Define W(x, h) for hel0,1/3] the unitary
obtained from the polar decomposition of (1 — 3A)W(x) -+ 3H(P(xX)W(x)P(x) +
+ (I — P(x)).

Consider now y: A — C a one-dimensional unital *-homomorphism. It fol-
Iows from Theorem 2.10 that there is a projection Q € C, (X, L(H)) with dimQ(x)==
== dim(l — Q) (x) == oo for all x € X, such that p(a) Q — x(a)Q € C,(X, K (H))for
all a€ 4. Using Lemma 7.1 we easily constructa unitary V e C, (X, L(H)) such that
VPV* = Q and because of the contractibility of the unitary group of L(H) with
respect to the =-strong topology there isa unitary Ve Cys (Xx[1/3,2/3), L(H))
such that V(x, 1/3) = I, V(x, 2/3) = V(x). Define W on XX [1/3, 2/3] by W(x, h) =
= V(x, )W(x, 1/3)V*(x, h). Remark that W(x, 2/3) (I — O(x)) == I — Q(x).
By Lemma 7.1 there is some S € Cy (x, L(H)) such that SS* = Q, S*S = I. Then
S*(x) W(x, 2/3) S(x) is unitary. Let M € Cy (X X[2/3,1], L(H)) be any unitary such
that M(x, 2/3) = S*(x)W(x, 2/3) S(x) and M(x, 1) = I. Define W on Xx[2/3,1]
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by W(x, ) = S(X)M(x, B) S*(x) + (I — Q(x)). Tt is now easy to check that W has
the desired properties. Thus we have proved that

alp, U)=alp, U’).

4) For (p', U’) another pair with the same properties as (p, U) it is immediate
that a(p@p’, UBU’) = a(p, U) + alp’, U’). Also if Ve Cy(X, L(H)) is a unitary
such that Vp(a) = p'(@)V, (V)ac Aand VU = U’V itis quite straightforward that
a(p, U) = a(p’, U"). This Jast remark together with 2) and 3) shows that more gene-
rally if there is a unitary V e Cy (X, L(H)) such that Vp (a) — p'(a)V € C,(X, K(H))
then a(p, U) = a(p’, U’) (of course we assume that 4 has a one-dimensional repre-
sentation).

The pair (p, U) defines a *-homomorphism of 4A@C(SY) into C, (X, L(H))/
JC(X, K(H)). If this +-homomorphism defines a trivial X-extension by A® C(SY)
it is immediate (in view of the additivity of @ and of the equivalence of trivial exten-
sions) that a(p, U) = 0.

5) Consider 7n;: 4 > AR C(SY), 7y C(S*) > A®C(SY) the natural homo-
morphisms and let [o] € Ext(X, A®C(SY)) be such that m,,[0] = 0, 7myfo] = 0.
Let (p, U)be a pair as above defining ¢. Then 4) implies that a(p, U) depends only
on [6]. Thus we may write «([¢]) for such oe(p, U) and by 4) it follows that o isa
homomorphism from

{lo] € Ext(X, AQC(S") |m4lo] = 0, 7y4[0] = 0}
into Ext(X® S*, 4). Also clearly t*a([o]) = 0.

Moreover if (p, U) is any pair for which we did define a(p, U), then (p, U)
gives rise to a unital +-homomorphism of 4 ®C(S) into Cy, (X, L{H))/C,(X, K(H)).
For (p’, U’) a trivial X-extension by A®C(S) we may consider a(p@p’, UGU’).
By 4) it follows that a(p, U) =a{p®p’, U®U’). Thus we may add to (p, U)

some trivial X-extension by 4® C(S*) and this leaves « (p, U) unchanged.
6) We shall prove that

a:{[o] € Ext(X, A®C(SY) | myeo] = 0, maylo] = 0} -

—{[r] € Ext(X x §*, A) |t*[z] = 0}
is injective.

Proof. Assume affa]) = 0 and let (p, U) be a pair deﬁnmg [o]. In view of the

construction of a(p, U) this means that there is a unitary Ve Cys (XX [0,1], L(H )
such that V(x, 0) = Vix, 1) for all x € X and

VU(p(@)or) U=V "1 — p(a) o r € CXX[0,1], K(H))
for all a e A. Since U(x, 1) = I, denoting V(x) = I7(x, 0) = V(x, 1) we have

[V, o(A] € CX, K(H)).
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Hence defining
U,=Wern-17V0
we have
Ui(p(@) )Tt — pla)er e CLX X[0,1], K(H))
forae A and
Uy(X, 0) = U(x), Uy(X, 1) = 1.
Since [U,, p(a)° r] € CXX[0,1], K(H)), it follows that U, and the p(a)° r (a € A)
define a unital =-homomorphism of 4 ® C(S") into C, (X x[0,1], L(H))/C(X X
x[0,1], K(H)) and by direct sum with some trivial X ><[0,1]-extension by
A® g(Sl) we get an element [§] € Ext(X'x[0,1], 4 ® C(SY). Since U;(x,0) = U(x)
and Uy(x, 1) = I it follows that i#[0] = [o] and i¥[5] = 0. Thus by the homotopy
invariance property we infer [o] = 0.
7) We shall prove that

a: {{o] € Ext(X, A ® C(SY) | mpfo] = 0, myulo] = O} —
— {[c] € Ext(Xx S, A4) | 1*[z] = O}

is onto. In view of 6) this will show that « is an isomorphism.

Proof. Assume [] € Ext (X x 8%, A) is such that #*[t] = 0 and for eachaec 4
let R(a) € Cy (X X S, L(H)) be such that 7(a) = p(R(a)). Since 1*[t} == 0 there is a
unital #-homomorphism p: 4 - C, (X, L(H)) defining a trivial X-extension by 4
such that p(a) — R(a)° t € C,(X, K(H)) for all a € A. Also, from s- i, == t we infer
i¥(s*[1]) = O and hence by homotopy s*[1] = 0. '

Thus there is a unitary ¥ e Cy(X x[0,1], L(H)) such that

Pip(a) - r) V=1 — (R@> ) € C,(X X[0,1], K(H)).

Because of (p(a)er)oi; — (R(a)e s)° i, e C,(X, K(H)) this implies [V, p(4d)]l=
c C(X, K(H)) where V =-Vei.

In a similar way we have. also [7° I, p(AD1=C(X, K(H)). Hence defining
U= V- r)~ltand U = Us io we have:

Ulp(@)s )T~ — (R(a)* s) € CXx{0; 1], K(H)),
[U, p(d))< Cy(X, K(H)),
Usij=1.

¥

These relations show that [t] = a(p, U), ‘which proves our assertion.
It is quite straightforward from our construction that a is functional in X and A.
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Summing up the preceding discussion, we have proved:
9.1. THEOREM. The above defined homomorphism
a: {[o] € Ext(X, 4 ® C(SY) | mylo] = 0, mpyf0] = 0} —

- {[t] e Ext(Xx §', A) | t*[r] = 0}

is a natural isomorphism.

In view of Corollary 8.8 there is a natural isomorphism
{le] € Ext (X, 4 ® (5V) | m[o] = 0, maylo] = 0} = Ext(X, S(4, X)).

Assuming we have a ‘poi‘nted space (X, x,) and denoting by y, the basepoint of SX,
using § 8 and the functoriality of a we easily get:

- 9.2. COROLLARY. The isomorphism o induces a natural interchange isomorphism
(still denoted by a): :

a: Ext (X, xo; S(4, X)) - Ext (§X, Yoi A).

For the proof of the per10d1c1ty theorem we shall need the following technicat
result:

9.3. LEMMA Let ne Ext (X>< S, 4 ® C(Sl)) be such that el = 0, 7o, = 0,
t*n = 0. T hen there is-a umtal x-homomorphism p: 4 — C*S(X X S, L(H)) defining
a trivial X X S™-extension by A and a unitary U € Cy (X X S1, L(H)) with [U, p (A)]<
cC, (XX S, K(H)) such that the following properties hold: .

(i) p is constant with respect to XX S',
(i) U(x, z) with x € X, z € S* is norm continuous in 7, unlformly with respect
o xeX.
(iii) p and U deﬁne a X x S*-extension by A ® C(Sl) of class 11

Proof. For a.tensor product of unital C*-algebras A1 ® A, ® A;, we shall
denote by n; and =; . the natural injections of 4; and A, ® A into 4, ® A, ® As.
Since 1*n = O it follows from Theorem 9.1 that _&t’here is some class

0 eExt (X, 4@ C(sH ® C(Sl).)

with 7r12*9 =0, ;gyb = 0 such that oc(H) = Smce nl*r/ = O ”2*71 =0, wé mfer by
the naturallty of « that a0 = 0, Ty5,8 = 0. Since 7150 = 0, 75,0 = 0, n3*9 0,
a X-extension by 4 ® C(SY) ® C(SY) of class @ can be described by means of a
unital *<homomorphism u: 4 — C,,;s(X; L(H)) and unitaries U,, U, & Cy (X, L(H)).
Since nm*() = 0 we may suppose u and U, are constant with respect to X and
[,u(A) U,).= 0. To. construct a(0) we must construct, U3 € Cyu (X X[0,1], L{H)) with
Useiy= Us, Ue iy =1. Since U, is constant we can take Uy © i, = f,(U,) where
fi: St —. .St is given by f}, (exp (2nim)) = exp 2nim(1 — h)) for m €[0,1). It follows
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that U, is norm-continuous and [173, p(a)o r] = 0 for all a € A. In view of the con-
struction of «(f) the norm-continuity of U, implies (ii) and the commutation
‘[(73, u(@)° r] == 0 together with the fact that p is constant with respect to x
implies (i). Q.E.D.

Consider now: p: 4 - C (XX S, L(H)) a unital *-homomorphism cons-
tant with respect to XX S defining a trivial XX S'-extension by A4 and let
UeC,(XxS', L(H)) be a unitary such that [p(4), Ul=C,(Xx S, K(H)). Then
p and U determine a unital x-homomorphism of 4 ® C(SY) into C, (XX S, L(H))/
[C (X< S, K(H)). By taking the direct sum of this homomorphism with some tri-
vial X' X S'-extension by 4 ® C(S?) we get an XX S'-extension by A ® C(SY), the
-equivalence class of which will be denoted by T(p, U). Clearly n,,T(p, U) = 0,
T2, T(p, U) = 0. In fact every element 5 e Ext(Xx S, 4 ® C(SY)) with 7,0 =0,
T4t = 0 Is of the form T(p, U), where p can even be supposed fixed in view of
"Theorem 2.10.

In case GeCu(XXS', L(H)) is an invertible element and [p(4), Gl
< C (XX S, K(H)) we may consider T(p, w(G)), where o(G) = G(G*G) " V* is the
unitary part in the polar decomposition of G. Two such invertible elements
G; € Cyu (XX SY, L(H)) (j = 1,2) with [p(4), G}] c~C,,(X X S, K(H)) will be called
homotopic if there is an invertible element G e Cy(Xx S'x[0,1], L(H)) with
E(x, z, 0) = Gy(x, z), 6(x, z, 1) = Gy(x, z) and (G, (A<= C (X< S1x{0,1], K(H))
where (0(a)) (x, z, k) = p(a) (x, z). It is immediate that if G,, G, are homotopic then
T(p, o(Gy) = T(p, w(Gyp)).

Also, if [p(4), G] = 0 then T(p, &(G)) = 0.

9.4. LeMMA. We have
I(p, 0(G,Gy)) = T(p, w(GyGy)) = T(p, w(Gy) w(Gy)) =
= T(p, 0(Gy) w(Gy) = T(p ® p, w(G, @ Gp)) =
= T(p, w(GY) + T(p, &(Gy)).
Proof. 1t is sufficient to prove that T(p, w(G,G5)) = T{(p & p, w(G,® Gs)). We

have T(p, 0(G,G,)) = T(p ® p, (G,G, @ I)). Thus it will be sufficient to prove
that G, ® G, and G,G; @ I are homotopic. This is established by the usual trick:

Gy(x,z) O cos%}i sin _1;211\ I 0 cos%’l _ sin.nz,li

G(x, z, h) = . . } l
. T T . mh nh
0 I} —sin 57 0085 0 Gy(x, 2) J\sin 5 cos—5-

Q.E.D.
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9.5. LEMMA. Let 1€ Ext(X X SY, A ® C(SY) be such that mygn = 0, men =
= 0, t*¥n = 0. Further, let p: A — Cy (XX S, L(H)) be a unital x-homomorphism,
constant with respect to X X S, defining a trivial X x S'-extension by A. Then there is
some integer n and Dy, Dy, . . ., D, € Cy (X, L(H)) satisfying [D;, p(a)° t] € C,(X, K(H))
forj=0,1, ...,nandforall a € A, such that

G(x, z) = En: 2/ D{(x)

j=~0

is invertible in C, (X' x S, L{H)) and

T(p, 0(G)) = 1.

Proof. The fact that p in the statement of Lemma 9.3 can be given in advance
is a'consequence of Theorem 2.10. Thus using Lemma 9.3 there is a unitary
U e Cy (XX S, L(H)) satisfying the conditions specified in the statement of Lemma
9.3 so that n=T(p, U). Let ¢ =0 be a scalar C*®-function on S! with

@(&) dA(€) = 1 (dA-Lebesgue measure) and define G € Cy (XX S, L(H)) be the
st

convolution:
G(x, 2) = S U(x, &) o(zE™Y) dA(Z).
Sl

Then, because of property (ii) in the statement of Lemma 9.3, if the support
of ¢ is in some small enough neighborhood of 1 € S we shall have |[U — G'|| < 1/2.
Also it is easily seen that [G’, p(4)] = C,(XxSY, K(H)) and U and G’ are homo-
topic so that n = T(p,w(G")). Since G’ is a convolution by a C®-function, its Fourier
series:
G'(x,z) = Y, Z7Dj(x)

JeZ
with D} e Cy (X, L(H)) is uniformly absolutely convergent,. i.e.
Y 1Dj1l < 0.

jeZ

Moreover it is immediate from the formulae giving the Fourier-coefficients Dj that

[D;, p(a)° t] € C,(X, K(H)) for ac A.
Defining
G'(x,2)= Y, ZDj(x)

j=—=m

for m great enough, in view of the absolute convengence of the Fourier qerles of G’
we shall have ||G" — Ul} < 1/2} so that T'(p, co(G")) = 1. Defining 3

2m

G(X, Z) B 2 z Dj m(xD I

6.~2443
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we shall prove that

T(p, x(G)) = 1.

Let us consider Z(x, z) = zI. Then [p(4), Z"] =0 so that T(p, Z™) = 0.
Using Lemma 9.4 we have

T(p, w(G)) = T(p, o(Z"G")) = T(p, Z™) + T(p, 0(G")) =

= T(p, o(G")) = 1.
Q.E.D.

For the next two lemmas p: 4 = C, (XX 8%, L(H)) will be a given unital
s-homomorphism, constant with respect to X'x S* and defining a trivial X X S*-ex-
tension by A.

9.6. LEMMA. Let n e Ext(X X S*, A ® C(SY) be such that myun = 0, moyn = 0,
t*n == 0. Then there are Dy, D, € C, (X, L(H)) satisfying [D;, p(a)- t] € C,(X, K(H))
for j==0,1 and ac A, so that G(x,z)= Dy(x)+ zD(x) is invertible in
C.(Xx S, L(H)) and

T(p, »(G)) = n.
Proof. In view of Lemma 9.5 we have n = T(p, w(G,)) where

Golx, 2) = ¥ 2 Dj(x)

i=0

and [D}, p(a)- t]cC(X, K(H)) for all aeA4 and j=1,...,n. Let us consider
n—k
Z(x,2) = zI and Gy(x,z) = Y, 2/ Pj 1 (x).
Jj==0
We have the matrix-identity:

Dy Dj..... D,
—Z I
—Z 1 =
-z I
I G Gy...G, G, 1
I I —Z I
I I -z I
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Let I' denote the matrix in the first term of the above identity; we have
I'(x, z) = Fy(x) -+ zI'y(x) where I'y, I' € Co (X, LLH® ... @ H))and [T}, (p D. ..
@) @) tleCX,KH® ... ® H)) for j=0,1 and ae 4. The first and
third matrix in the second term of the identity are of the form 7 -+ nilpotent, and
hence homotopic to 7. Thus we have:

T @ ... @p, o) =
=T @ ... p, (G ®ID ... &)= T(p, w(Gy)) = 1.

By the non-commutative Weyl-von Neumann type theorem there is a constant
unitary Ve Cyo (XX S, L(H, H® ... ® H)) such that

VYo @ ... ®p)(a) V— pla) e CLXXS", K(H))
for a € A. Then we may take G = V-V, D; = V=TV, (j=0,1). Q.E.D.

9.7. LEMMA. Let n e Ext(Xx S, A ® C(SY)) be such that n, n = 0, Tyen = 0,
t*n = 0. Then there are orthogonal projections Py, P, € Cy (X, L(H)) satisfying

[Pj, p(@)- tle C(X, K(H)) P;= P} =P}, Py+ P =1

Jor j=0,1 and ac A, so that for G(x, z) = Py(x) + zP,(x) we have T(p, G) = n.

Proof. In view of Lemma 9.6 we bave 5 = T(p, »(G')) where G'(x,z) =
= Dy(x) + zDj(x). Defining Dj(x, z) = Dj(x), we infer from ¢*n = 0 that

T(p, w(Dy + D})) = 0.
Hence using Lemma 9.4 we have
T(p, o(Dg + DD~1 G)) = n.

Thus taking D; = (Dg + D)~'D; (j=0,1) and G"(x, z) = Dy(x) + zD,(x) we
have T(p, o(G'")) =15 and Dy, + D, = I. The invertibility of D, + zD; for all
z € C with |z] = 1 is equivalent to that fact that the spectrum of D, does not meet
{{eCl|Re{=1/2}. Let then Q, denote the spectral projection of D, for
{eCiRe{ > 1/2} and Q, = I — Q,. Since Q, is an idempotent we have

(Q0@5)* — Q0@ = QI — Qo)* (I — Qo) 05 > 0
so that the spectrum of Q,Q is contained in {0} U [1, co). It follows that the spectral

projection Py of Q,Q¥% for [I, co0) is contained in C, (X, L(H)), [Py, pa)et]l€
€ C,(X, K(H)) and it is easily seen that PyQ, = Q, and QyP, = P,. Thus S =1 ~
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— PyQo(I — Py) is invertib_l_e and SP,S~! = @Q,. We define G""'(x, z) =: Qg(x) +
+ z0:(x), Py =1I— Py, S(x,z)= S(x} and G(x,z) == Py(x) + zPy(x). Taking

I(x,z, ) = (1 — h) Dy(x) + hQy(x) + z((1 — h).Dy(x) -+ hQ(x))

it is easily seen that I' gives a homotopy connecting G’ and G’ so that n =
== I(p, o(G")) = T(p, w(G"")).
Using Lemma 9.4 we have

. T(p, o(SG"" S71)) = T(p, »(G""))
so that #n = T(p, w(G)). . : , “Q.E.D.

We define now the maps
L, Ext(Xx S, 4) » Ext(X xS, 4 ® C(SY)

in the following way: for [t] € Ext(X x S, 4), t and Z* determine 2 homomorphism
of 4 ® C(SY) into C,(Xx S, L(H))/C,(Xx S, K(H)) which after adding a trivial
X x S'-extension by 4 ® C(SY) determines a XX S%-extension by A ® C(SY).
The class of this XX S'-extension by 4 ® C(S?) is easily seen to depend only on [7]
and will be denoted by L,[z]. Then L, is a homomorphism, 7, L,[t] = [z}, Ty Ly[t]- -0
and ¢*L,[t] does not depend on k. o . »

Denoting by u: XxS; —» X, the projection u(x,z)= x for [1] € Ext(X, A)
we define R . :
Blt] = Lu*{t} — Lyu*[x].

It is immediate that
Ty Blt] = 0, muyplt] = 0, t*p[r] = 0.
So we have a homomorphism

B: Ext(X, A) — {n € Ext(Xx S, 4 ® C(SY) imystt = 0, mapn = 0, t¥n = O}.

Now Lemma 9.7 is equivalent to the fact that f is surjective. Indeed, with
the notations of Lemma 9.7, taking P = P, @ I ® 0, Pi =P, ®0 DI, G'(x, ) =
== Po(x) -+ 2(P{(x)) we have T(p @ p @ p, G') = T(p, G) + T(p, 1) + Tip, Z)=
== T(p, G) = n and considering [z,}, [7,] the X-extensions by 4 obtained by “‘restrict-
ing” *(p@p ®p) to P; and P it is immediate that [7o] + [r] =0 and
n="Tp ®p ®p, )= Pzl

The periodicity theorem is equivalent to the assertion that f is an isomorphism.
Since we have already proved that § is.surjective we must now prove that it is also
injective. ' L
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To this end, we shall use a map
v: {n € Ext(X, 4 ® C(S") ® C(S")] mazynn = 0} — Ext(X, A)

related to the periodicity map for Ext, given in [12].

We shall prove that (y-a=*e ) [t} =[] for all [r] € Ext(X, 4) which in
particular shows that f is injective. In fact after finding a suitable description of
(x=*e B) [7] the proof of (yoa~'e f)[z] = [r] will be an ad literam repetition of
the surjectivity of the periodicity map for Ext.

Let g: S*xS8'— S? be obtained by collapsing (S*x{1})u({1} xSY) to
a point and let P’ be a projection in C(S) ® C(SY ® M, ~ C(S'xSY) ® M,
corresponding to the pull-back from S to S'x S* via g of the Hopf line-bundle
(an explicit realization of P’ will be given later). Let further P=1,® P'c 4 ®
® C(SH® C(SHY ® M, and let [4] € Ext(X, 4 ® C(S') ® C(SY)) be such that
Taae [1] = 0. Then [n] gives rise to an element [y ® idas,] € Ext(X, 4 ® C(SY) ®
® C(SY) ® M;) such that (5 ® idyy,) restricted to 1, ® C(S*) ® C(SY) ® M, is
trivial. Then (n ® idar,) (P)is a projection in Cy/C, which lifts to a projection in Cy;.
Since moreover (1 ® idar,) (P) commutes with (5 ® idas,) (m,(4)) it follows that
we can define a homogeneous X-extension by A4, by restricted (n ® idas,)e 7, to
(n ® ida,) (P).

The class of this X-extension by A in Ext(X, A) will be denoted by y([1]).

Of course, since the construction of y([]) implies the choice of a lifting of P,
y([n]) will be defined only up to weak-equivalence, but in view our assumption that 4
has a one-dimensional representation, weak and strong equivalence for homoge-
neous X-extensions by A4 coincide. So the map y is well-defined and is, of course, a
homomorphism.

We pass now to the description of (x=1° f) [1].

Thus consider 1: A — Cy (X, L(H))/C(X, K(H)) defining an X-extension by 4
and let further

Tot A = Cy X, L(H,))/C(X, K(H,))

and B, = B¥ € C, (X, L(H)) be such that 1, and p(B,) define a trivial homogeneous
X-extension by 4 ® C([— 1, 1]). Consider also R(a), Ro(a) such that p(R(a)) =
= ©(a), p(Ro(@)) = 1o(@) for ac A. Let further R(a), B e Cy(XX[0,1], L(H)) be
defined by (R(@) (x, ) = (R@)(x), B(x,h) = 2h — 1) I and let similarly Ry(a),
B, eC, +s(X X[0, 1], L(H,)) be defined by (Ro(@)) (x, h) = (Ro(@)) (x) and By(x, h) =
= B(,(x) By 7, T, we shall denote the X x[0,1] extension by A defined by the R(a)
and R(,(a) Because of homotopy we infer that the XXx[O, 1] extensions of
AR C([—— 1,1]) defined by (7 @ ro,p(B @ Bo)) and (T @ 7, p(I @ BO)) are equiva-
lent. Hence there is a unitary ¥ e Cuo(X %[0, 1], L(H @ Hp)) such that ‘

V(R(@) ® Ro(@)) — (R(@) ® Ro(@)) V & C,X [0, 1], K(H @ Hy)
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and
VI @ By) — (B @ By) Ve C(XX[0, 1], K(H @ Hy)).

Defining U = (I7° fo) (170 i)~' we have:

[U, R(a) ® Ro(@)] € C,(X, K(H & H,))
U @ By) —(— 1) @ By) Ue C(X, K(H ® Hy)).

Consider now W = — exp(ni(l @ B,)) € Cy (X, L(H @ Hy)). The triple (x @ 1,
P(W),p(U)) defines then a unital s-homomorphism of A ® C(SY) ® C(S?) into
C,. (X, L(H ® Hp))/C,(X, K(H ® H,)) which defines (after adding a trivial extension)

an element {g] € Ext(X, 4 ® C(S") ® C(SY)).
Consider also k: 4 ® C(S?) ® C(SY) — 4 the unital x-homomorphism such
that k(e ® f ® g) = af(1) g(1). With these notations we shall prove the foliowing

lemma.
9.8. LeMMA. We have: .
(@™o B) [1] = [o] — k,ft].

Proof. Of course this is equivalent to proving that a([o] — k[t]) = B[z], which
in turn can be seen as follows.

Let R_(a) € C. (X, L(H)) (a € A) be elements defining (—{z]). Then 7ny,,([c]--
—k,[7]) is defined modulo a trivial X-extension by A ® C(S) by the elements R(a) ®
@ Ry(a) ® R_(a), (ac A), and by unitary I @ (— exp(riB;)) @ I. Putting together
the first and third summands of these elements it is seen that m;,,(fo] — kyl7]) =0.
Also modulo the same trivial extension, the unitary to be used in the construction
of « is U@ I and its extension to Xx[0,1] can be taken (¥(V-i°r)-) @ 1.
But then

(Ve irer)™) @ D), (R(@) ® Ro(@) ® R_(a))°r] €

e C(Xx[0,1], K(H ® H, ® H))
and
(Vi) L@ D(W D Der)(V(Veipo ) @D —

~ (— exp(i(B ® By)) ® I« C,(Xx[0, 1], K(H ® H, ® H)).

In view of the fact that B(x, h) = (2h — 1)I and By(x, h) = By(x) it is now immediate
that a(fo] — kylt]) = Blt]. Q.E.D.

Note that it is a consequence of the preceding lemma that n,.([o] — kg[7]) = 0,
Tas([0] —k4[t]) = 0 and masy([0]— k4[7]) = O. Indeed this follows from the defini-



HOMOGENEOUS C*-EXTENSIONS 241

tion of the domain of « and from the fact that n,,f[t] =0 and m,.f[7] = 0. In
particular since 7ag.(ky[t]) = 0 it follows that myyfe] = 0.

Thus in order to prove that (yo o=t f§) [t] = [t], remarking that y(k[]) = [1],
it follows that it will be sufficient to prove that y[o] = 2[t].

Let us now recall the realization given in [12] for the projection P’ € C(S) ®
® C(S*) ® M,, corresponding to the pull-back of the Hopf line-bundle and which
is used in the definition of y. Consider j: C(SY) ® C(SH @ M, - C([— 1,1 ®
® C(SY) ® M, the x-homomorphism j=j ® id ® id where j' is induced by
the map [— 1, 1] 3 t = (— exp(rit)) € S*. Then j(P’) can be described as the matrix-
valued function on [— 1, 1]x S* given by

( 12 —(trz ) )1 — t2')
—(@trzmi 4 ) [T — ¢ 11—

where 1= = (1/2) (|t] 4 1).

In view of the description we have given of [¢] (modulo a trivial extension
which we shall no longer mention) we see that putting B= I @® B, and B* =
= (1/2) (|E| -+ B) we have that (¢ ® idag,) (P) corresponds to

( ( B? —B+(I — B)'2U—B (I — B?)'?\ )
p L.
—B*(I — B)"2U-! — B~(I — B I— B }

\

Hence y[o] will be given by restricting the elements

((T D 7o) (@) Y

0 (T @ 1) (a))
to this projection. '

Let now Q, denote the constant projection in Cy (X, L(H @ H,)) which pro-
jects H @ H, onto 0 @ H,. We shall prove that y[¢] = 2[t] by showing that the

restrictions of
Agaq((r@ra)(a) 0 )
0 (z ® 1) (@

to p(Ey) (6 ® idas,) (P) and (I — p(E,)) (0 ® idarg,) (P) where

Ey= (Q° 0),
0 Qo

are both equivalent to [z]. Of course we must first check that p(F,) and (o ® ida,) (P)
commute. This amounts to proving that p(Q,) commutes with p(B2) (which is obvious)
and p(F*) p(U) where F* = — B*(I — B2,



242 M. PIMSNER, S. POPA and D. VOICULESCU

Now, [p(U), p(F*)] =0 and F*Q, = Q,F* = F* which immediately give
the desired commutation.

We_have
(I — p(Ey)) (6 ® idpr,) (P) =
_ (1 ~p(Q) O
0 0
which shows that the restrictions to this projection of the elements
( (r @ 1) (@) 0 )
0 (t ® 1) (@)

defines an extension equivalent with [z].
For the other restriction, to be shown equivalent, consider

| UB++B~ 0
D= = 1.
- — 32)1/2 0
Using the definitions of U, B+, B-, B and the relations connecting them it is not
difficult to see that

p(DY*p(D) = (; g)

P(D) p(DY* = p(Ey) (x ® idus,) (P)

[”(.D)’ (997 con )]

and that

These relations give the desired equivalence of the restriction to p(Ey) (o6 ®
® idas,) (P) with []. This ends the proof of y[¢] = 2[t]. Summing up our discussion
and taking into account Theorem 9.1 we have proved the following proposition
which is equivalent to the periodicity theorem.

9.9. PROPOSITION. We have natural isomorphisms:

Ext(X, A) 5 {n € BExt(Xx 5%, A ® C(SY) |yt = O, 7y = 0, ¥y = 0} -
(e Bxt(X, A ® C(S) ® C(SY) [Myogtt = 0, Tygutt = 0, Mgyt = 0} —
L Ext(X, 4)
and ye a“vlﬂ is the identity automorphism of Ext(X, A).

Our next aim is to bring the periodicity theorem to a more familiar form.
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For the A-variable, since A4 hasﬁa one-dimensional representation, Corollary
8.8 gives an isomorphism of Ext(X, S*4) and

{neExt(X, A ® C(SY) ® C(SY) Imyoqpt = 0, Tygept = 0, Tpgyit = 0.
Then y, via this isomorphism, induces an isomorphism
Ext(X, S24) - Ext(X, A)

which we shall denote by Per,. This map coincides with the straightforward genera-
lization of the periodicity map in [12]. The apparent difference in the constructions.
consisting in the “multiplying” by pull-back of the Hopf line-bundle instead of the
Hopf line-bundle minus a trivial line-bundle is inessential, since replacing in the
definition of y the Hopf line-bundle by a trivial line-bundle yields a map which
1S Zero on

{1 e Ext(X, 4 @ C(S") @ C(SY) |myagpt = 0, Tzt = 0, Togupt = 0}.

In particular when X is reduced to one point we get the same map as in [12].
We want also to remark that in the constructions we did, the projections to which
we did restrict extensions did lift to projections, a fact which is not true in general.

For the periodicity in the X-variable it is better to consider a pointed space
(X, xo). In view of the naturality of f, we see that B gives an isomorphism:

EXt(X, xp; A) 2 {n € EXt(X x SL, A ® C(SY) |myght = 0, Moy = 0, d*n = 0}

where d is the inclusion of (X x{1}) U ({x,} x $") into XX S
Using § 8 and Theorem 9.1 we see that ¢ 8 gives an isomorphism

Ext(X, xo; 4) = Ext(S2X, ; A)

(where * denotes the basepoint). ~

This isomorphism will be denoted by Per* and we shall show that it is the
obvious generalization of the periodicity map in K-theory. Let 6,: XX S1x S* - X
be the projection and by 0,: XX S1x S* —» §2 the projection onto S*x S* composed
with the map ¢: S*x S* —» S? we have already used. We want to prove that

Per*[z] = (6(IL] — [11))-611x],

where Ext(S2X,*; A) has been identified .in the usual way with a subgroup of
Ext(X X S1x S'; 4). As usual, L is the Hopf line-bundle.

This can be seen as follows:

Letf: XxS'*x[0,1] - X denote the projection and let [#], [ro] € Ext(X, xo; A)
be such that [z]+ [#] =0, [1,] =0. Consider further 7’ =f*1, 5 =f*y,
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7 = f*1y and Ue Co(Xx S*x[0, 1], L(H@® H @ H)) such that U(x,z, 1) =
== IH@H@H and

zI 0 0 -
Uxz0=lo 1 0
0 0 z71
Then the elements p((~/) (' @y @ 1) (@) p(ﬁ)‘1 are the images of elements in
Cps(X XSS, L(H@® H® H))/C(XXS'XS, K(H® H® H))
which define, modulo a trivial extension, an extension equivalent with
a(Lyu[t] + Lou®[n] 4 L_wu*r]) =
= (Ly*[x] — Lou*[c]) = (2= B) [1].
To prove our assertion remark that U can be chosen of the form

(a;(x, 2z, 1))1<i,j<3®I; where the unitary 3 x3 matrix V(x, z, ) = (a;;(x, 2, 1)) <i, j<3
has scalar coeflicients. Since the projections

1 0 0
Vix,z,)]0 0 o) V-Yx,z,1)
\0 0 ©

oy

. (o 0 0
Vix,z,t)[ 0 o) V-x,z,1)
0 0 0

0 0 0
Vix, z, t)(o 0 o) V-i(x,z,t)
0 0

are pullbacks of projections in C(X'x S1X S') ® M, corresponding to line-bundles
of class 6F[L], 6F[1], 0}F[L~"] it is easily seen that:

(@= B) Iz} = 6F[L)-037] +
+ O0F(1]-63[n] + OF[L]-63(z0] =
= O[L]-63[z] — 671)- 63[x]

which is the desired fact.
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Thus we can formulate the periodicity theorem as follows:

9.10. THEOREM. Let (X, xp) be a pointed finite-dimensional compact metrizable
space and let A be a unital nuclear, g.q.d. C*-algebra having a one-dimensional
representation. Then the maps considered above

Per*: Ext(X, xo; A) — Ext(S2X, %; A)
Per,.: Ext(X, xo; S24) — Ext(X, x,; 4)

are natural isomorphisms and

Per* e o—%o Pery, = 1dexux, »; 4)-

To conclude this section we will give two corollaries of the periodicity theorem.

The first corollary is that we can now compute Ext(X, x,; C @ C) a fact which
clarifies the problem of lifting projections from C, (X, L(H))/C,(X, K(H)) to pro-
jections in Cy (X, L(H)). Indeed, we have isomorphisms

Per* a-1

Ext(X, x,; C @ C) S Ext(S2X, »; C@ O) S
gExt(ng, x; C(SY) ~ K%SX) ~ K-1(X).
9.11. COoROLLARY. There is a natural isomorphism
Ext(X, xo; C ® C) =~ K~-1(X).
The second corollary is related to the injectivity of the map f8; it will be stated

for the sake of simplicity only for the case when X is a point.
Let r: 4 — L(H)/K(H) be an injective unital =-homomorphism. Consider the group:

UC(r) = {U e L(H) |U unitary, [p(U), 1(4)] = {0}}.

Clearly UC(z) up to isomorphism depends only on [t). On UC(r) we shall
consider two topologies: the norm-topology and a second topology we shall call
the commutators-topology. The commutators-topology is defined as the weakest
topology for which the following maps are continuous:

UC(t)a2U—-»UteH
UC(tysU- U*cH

UC(t)> U = [U, X]<€ K(H),
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where ¢ runs over H, X runs over p~(t(4)) and H and K(H) are given the norm-
tepologies. .
Consider also the following loop denoted by ¢:

Slsz - zI € UC(7).

9.12. CorROLLARY. Let A be a wnital nuclear, g.q.d. C*-algebra having @
one-dimensional representation and let v: A — L(H)/K(H) be a unital s=-monomorphism..
Then the following assertions are equivalent:

() [7]=0
(i1) @ is homotopic to zero for the norm-topology on UC(7)
(iii) @ is homotopic to zero for the commutators-topology on UC(1).

Proof. Clearly (ii) = (iii).

That (i) = (ii) can be seen as follows. Since UC(t) depends only on the equi-
valence class of 7, we may assume H = H, ® H, (where H,, H, are infinite-dimen-
sional) and 7 = p° (p @ In,) where p is a unital *-homomorphism. Then ¢(z) ==
= In, ® (zIy,) and by Kuiper’s theorem the loop z — Iy, ® (z/n,) is zero-homo-
topic in Iy, ® U(H,) which is contained in UC(7).

Next, we prove that (iii) = (i). Let : S'X[0, 1} -» UC(z) be continuous
for the commutators-topology and assume (z, 0) = zI and ¥(z,1) = 1. Then
is a unitary element of C,(S'x[0,1], L(H)) such that [(g*1)(4), p(¥)] =0
where g: §*x[0, 1] > {*} and [r] is viewed as an element of Ext({x}, 4). Then
g*t and Y determine a (S'x[0, 1])-extension by 4 ® C(SY) which restricted
to S1x {0} and S*x {1} gives extensions equivalent to Lu*[t] and Lou*[t), where
u: St — {x}. By homotopy it follows that L,u*[t]= Lu*[t] which means
Blz] = 0. By the injectivity of.f it follows that [t] = 0. Q.E.D.
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