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THE BIRMAN-KREIN-VISHIK THEORY OF SELF-ADJOINT
EXTENSIONS OF SEMIBOUNDED OPERATORS

ALBERTO ALONSO and BARRY SIMON

§1. INTRODUCTION

The von Neumann theory [6] of self-adjoint extensions of a closed symmetric
operator, A, on a Hilbert space is given in many textbook presentations. It sets
up a one to one correspondence between self-adjoint extensions, 4, and uni-
taries U from Ker(4* + i) to Ker(4* — 1) .This parametrization is continuous in
a suitable sense (see §4).

The von Neumann theory is so elegant and complete that it appears to close
the subject of the general theory but this is definitely not the case. with respect to
extensions of A’s which are bounded from below. Again from the textbooks, one
learns about the Friedrichs’ extension [2] but its relation to the von Neumann theory
is not clear. Ocasionally mention is made of the theorem of Krein [5] that if 4
has finite deficiency indices and is bounded from below, then all self-adjoint exten-
sions of A are also bounded from below.

There is a much deeper and most natura! analysis possible for the self-adjoint
extensions of a semibounded operator. This analysis was presented, in part, in
the above paper of Krein and completed in papers of Birman {1] and Vishik [12].
One purpose of the present paper is to make propaganda for this Birman-Krein-
Vishik theory which seems to be virtually unknown in the English language literature!
In this sense, the present paper is semi-expository.

There is an important difference of emphasis in our presentation. Much of
the original spectral theory of bounded self-adjoint operators was discussed in terms
of quadratic forms. The development of the theory of unbounded operators by
von Neumann deemphasized forms and exploited heavily operator ideas especially
graphs and Cayley transforms. The papers of Krein-Birman-Vishik extensively
use such ideas and base their analysis on them. They are somewhat unusual for
their period in that they do consider what we would now call the quadratic form
domains but this is subsidiary after the basic analysis. In the past twenty five years,
forms have come back into favor and among other reasons has been the realization
that the Friedrichs extension is basically a form constructions. The basic objects
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in our paper are the quadratic forms of the extensions. This difference from emphasis
is illustrated by the fact that from our point of view, there is only one natural
parametrization A, of these extensions. In Birman’s paper, the extension we associate

to B, he associates to B~ (which he calls B).
Since they play a major role, let us recall a few basic facts about quadratic

forms (see also [3, 7, 8]) emphasizing the possibility that they are not densely defined,
an extension of the usual notion which has proved especially useful of late, [4, 9, 10]

DEFINITION. A guadratic form q(p)is a map from a complex Hilbert space H
to (-- 0o, oo] (the reals with -+ co added but not — co) which obeys

1.1 g(@) = allpl* for some fixed a in (— oo, 00)
(1.2) 9(p +¥) + ale — ¥) = 249(p) + 29()
(1.3) q(lp) = 1A* q(@); A€C.

The form domain of q, Q(q), is the set of ¢ with g(¢) < co. By (1.2) and (1.3),
O(g) is a vector space. q is called closed if and only if it is lower semi-continuous,
i.e. if @, » ¢ in H, then gq(¢) < lim [g(g,). (It is known [10] that this is equivalent
to O(g) being complete in the norm [q(p) + (@ + 1) llp]*12). The largest a for
which (1.1) holds is called the lower bound, y(g), of g.

DeriNITION. Let B be a self-adjoint operator which is bounded from below.
Let s(x) be the function on (— oo, co) whichis + 1 (resp. — 1) if x > 0 (resp. <0).
Let s(B) be the function given by the functional calculus [9]. Let

o[~ o & D(BI"2)
ot { (B2 o, 5(B) |BIV?g) ¢ € D(B[V?);

g5 is closed quadratic form called the form of B.
If ¢ € D(B), then qz(¢) = (¢, Bp), so we will abuse notation and use (-, B-)

for g;.
Now let M be a closed subspace of the Hilbert space H. Given a semi-

bounded self-adjoint operator B on M, we can extend gz from M to H by setting
it equal to oo on H\M. With this extension the fundamental theorem of the
theory (see e.g. [3, 7]) becomes

THEOREM 1.1. There is a one-one correspondence between closed quadratic
forms, q, and self-adjoint semi-bounded operators, B, on closed subspaces M of H,
i.e. every q is a gg.

Given a B defined on M and z ¢ spec(B), we extend (B— z)~! to H by
writting any o € H as o =0+ ¢; neM, ye M+ and (B—2)~2p = (B~ 2)~
(i.e. set (B — z)"1 = 0 on M" and use linearity).
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DEerINITION. Given two forms ¢, p, we write ¢ < p if and only if g(¢) < p(e)
for all ¢ (i.e. if and only if Q(p) = Q(g) and g(p) < p(p) < co for all ¢ € Q(p)).

THEOREM 1.2. (see e.g. Kato [3]) Let q =g, p=gq,. Let z be a fixed
real, smaller than both y(q) and v(p). Then q < p if and only if (A — 2)71 <
<(B— z2)~! in the ordinary sense for bounded operators.

We write A < B if and only if g, < ¢p.

With this result, the fundamental theorem of Krein becomes:

THeEOREM 1.3. (Krein [5])). Let A be a positive symmetric operator. Then
among all positive extensions of A there exists two distinguished ones A, and A,
50 that A is the largest and Ay is the smallest such extension. The set of all
positive extensions is precisely the set of operators C with Ay < C < Ace.

In case where y(4) > 0 (in which case Ay # Ac) we prove Theorem 1.3 in § 2.
Ao is just the Friedrichs’ extension (called the “hard’ extension in [1, 5]). We will
call A, the Krein extension for obvious reasons.

Let y(4) > 0. Then N = Ker(4*) is a closed subspace of dimension equal
to the deficiency index of 4. We will set up, in §2, a one-one correspondence,
B« Ap, between positive quadratic forms, B, on N and positive extensions of A.
If dim(N) < oo, then “positive” can be dropped. This correspondence is given by:

O(4p) = O(A) + Q(B),
(where X - Y means that X n Y = {0}) and for ¢ € Q(4), n € D(B):

(@ + 1), Ap(o + m) = (¢, Ax@) + (1, Bn).

The Krein extension corresponds to B = 0 and the Friedrichs extension B = oo
(i.e. g5(¢p) = oo for all n € N). From this formula, and Theorem 1.2, Krein’s theorem.
will be obvious.

In § 3, we will compute the domain of 4y and find that:

D(Ap) = {¢ + ASYBf + 1) + flo € D(4), f€ D(B), ne N n D(B)'}
with
Ag(p + AZMBf +n) + ) = Ap + Bf + n.

In particular, D(4e) = D(4) - AZ'N and D(4,) = D(4) 4~ N.

In § 4, we begin by noting that the von Neumann parametrization U — AY)
is continuous when the unitaries and self-adjoints are given the topology of strong.
resolvent convergence. We then use the results of § 3 to prove a similar continuity
of B — Ay,

Finally, in § S, we consider the Krein extension. We begin by proving Krein’s.
theorem [5] that if A has purely discrete spectrum, then A4, restricted to N* has:
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discrete spectrum. We then consider in detail the example of — 4 on a bounded
subset of R®. We obtain a new nafural boundary condition which appears not to
have been discussed before.

Finally, let us emphasize once again that while we claim some originality
of viewpoint, virtually all theorems are already in [5], {12] and/or [1].

§ 2. FORMS

Throughout this section, we suppose that A is a closed symmetric operator
with

2.1) (¢, Ap) = llol.
We let

= Ker(4%).
One defines

O(Aw) == {p ¢ H| there exists @, € D(4), ¢, > ¢ and ((¢p — @,).4{¢ — ¢,)) - 0}
and sets (¢, Aoo®) == lim(p,, A@,). Then (see, e.g. {3, 8]) g(¢) = (P, Acp) (resp == oco)
for ¢ € Q(A,) (resp. ¢ ¢ Q(Aw)) is a well defined closed form.

Lemma 2.1. N n O(de) = {0}.

Proof. Letp € N N Q(Aw). Pick @, = @ in (-, Ax-)2norm. Then (¢, Awp)=-
== lim(p, Ap,) == lim(4*g, ¢,) = 0 since ¢ € N. Since (¢, ¢) < (¢, A«@), We have
that ¢ == 0.4

Given a quadratic form B on N, set ¢® to be the object with domain

Q(g®) = O(Ao) + Q(B)
and
4B (¢ + n) = (¢, A9} + (4, Bn)

for ¢ € Q(Ac), n € Q(B). We begin by examining when ¢*® is a closed quadratic
form.

LEMMA 2.2. Suppose that dim N < co. Let ¢, € Q(Aw), N, €N so that

a) supllp,ll < oo,  supl,ll < oo

b) llo, + .l = 0

C) Sup ((pn’ Aoo(Pn) < OO
n
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Then ¢, n, — 0 in norm.

Proof. Since N is finite dimensional, we can pass to a subsequence with
N, — n. Thus ¢, - — 5 = ¢, so by (¢) and the lower semicontinuity of (-, Ae-)
¢ € Q(Ax). Thus, by Lemma 2.1, ¢ == 0. Since 5 can be any norm limit point,
g, — .

ReMARK. Using the weak lower semicontinuity of (-, Aw-), one can see
that ¢,, n, = 0 weakly even if dimN is infinite.

THEOREM 2.3. If either B = 0 or dim(N) < oo, then ¢® is a semibounded,
closed quadratic form.

Proof. Suppose first that B > 0. Then clearly ¢® (¢ + ) =0, so ¢® is
positive and thus semibounded. Moreover,

9P + 1) + llo + 12 = (¢, Ax) -+ (1, Bn) + llo + 1l =
= llol|? -+ e + 72

Thus Cauchy in ¢® norm implies Cauchy in the norms |ig|, llo =+ 11, (¢, Ax®)
and (5, Bn). Thus ¢ converges in 4, norm and 5 in B-norm, so ¢ + 5 converges
in ¢'® norm since 4 and B are closed.

Now suppose that dim(N) < oo. Suppose first that ¢'® is not bounded from

below. Since Ao is bounded below we can find ¢, € O(4e), 1, € N, with |, =1
and

9B(p, + 1) < — nlo, + nl2
Let b = y(B). Then ¢®)(¢p, + n,) = b so
llo, + n,l2 < |6l n?

goes to zero. Moreover, (¢,, 4wp,) < — (1,, Bn,) < |b| so the hypothesis of Lemma
2.2 hold. The conclusion that |, | > 0 is false so we can have a contradiction esta-
blishing the fact that ¢'® is bounded from below.

Now suppose that ¢, -+ 5, is Cauchy in L? and in ¢®(-). Suppose that
14|l = oo. Then let @, = @,/lIn,ll; 7, = n,/lln,’|. Hypothesis (a), (b) of Lemma 2.2
clearly hold. Moreover, ¢®(y, + ¢,) — 0, so as in the proof of closure, (c) holds.
So #,, — 0. This contradiction shows that no subsequence of ||, can diverge. Thus

sup lin,ll < co. Pass to a subsequence with %, — . Then ¢, — ¢ so

((pn = QP> A(q’n - (pm)) + (nn — Nm> (B —b + 1) (nn - nm)) -0

and thus ¢, = @ in Ag, 1, — n in B-norm. Since limits are unique in Ag-norm,
¢ is the unique norm limit point so we have est ablished convergence.
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REMARKS 1. Let 0 < o < 1. Let = a/(1 — «). Then

el + Bllo + nit — alnlP = (1 + B) lol® + (B — o) Inl* — 2Bllell Inli=0

since B2 = (1 4 B) (B — «). It follows that so long as y(B) > — 1, our proof that g®

is semibounded and closed will go through. If dim(N) = o0 and ¢®¥ < — 1, we
expect that it is possible that ¢ is not semibounded. '
2. We emphasize that the theory is more satisfactory when dim(N) < oo

than when dim(N) = co. However, in the later case by replacing 4 by A+ ¢,
we can, in principle, describe all semibounded extensions.

PRrOPOSITION 2.4. Let B be positive or dim(N) < oco. Then ¢'® is the form
of a self-adjoint operator, Ay, which is an extension of A.

Proof. By construction of A ([3,7]) one must show that for ¢ € D(4),
e 0(g®):
22 9P, ¢) = (¢, 4p)

where g®)(-,-)is the sequilinear form on Q(¢®) obtained from g®)(-) by polarization.
Write = ¢" + 5", ¢’ € O(4w), " € N. Since 0’ € N (i, Ap) == (4*y', @) = 050

(¥, 4p) = (¢, Ap) = (¢', Ap) = 4P, @)

proving (2.2). 7

LemMa 2.5. ([1, 5, 12)) D(4*) = D(A,)4-N.

Proof. Let YeD(A*). Then ¢ = AZ! A* Y € D(4o) and A — @) =
=AY — A% = 0son =y — @ € Nso D(4*) = D(A,) + N.Let p e N n D(Ao).
Then, by Lemma 2.1, ¢ = 0. 7

PROPOSITION 2.6. Let A be a positive self-adjoint extension of A. Then, there
exists B on N sothat A = Apg.

Proof. Since D(A) = Q(Z) and g3| D(4) = q 4., we have that Q(4w) < Q(Z),
Let ¢ € D(4) < D(A*). Then, by Lemma 2.5, ¢ = ¢ + 7, with ¢ € D(As), 1 € N.
It follows that 1€ Q(4). Let N = N n Q(4) and let

pzqglﬁ.

Since g+ is closed and positive so is p and thus p = g, for some B on N. We extend

p to N by setting it equal toco on N \\V and view Bas a partially defined operator.
Now, let ¥ = ¢ + n € D(A) as above. Then picking ¢, € D(A) with ¢, — ¢
in Ao -norm, we see that

(¢, An) = lim(g,, An) = lim(4g,, n) = lim (p,, 4*) = 0.



BIRMAN-KREIN-VISHIK THEORY 257

Thus
W, AY) = (@, 4p) + (1, An) = (@, Accp) + (1, Bn).

This establishes that g | D(A) = ¢®| D(A). But D(A) is clearly a form core of q9;.
By a simple argument, D(A) is also a form core of ¢®. Thus, 4 = Aj.

LEMMA 2.7. D(A) = D(A) + AZIN.

Proof. Let R = Ran(A) which is closed since A is closed. Then ¥ € R* if and
only if 4¥) = 0so R* = N. Thus given any ¢ € D(4y), we write Aoy = Ap 41
with @eD(4) and neN. Then Y=¢+A5", s0 D(dw) = D(4A) + AN, If
@ € D(4) n AN, then (A, Ap) = (AAZM, Ap) =, Ap) =030 ¢ =0.8)

ProrosiTION 2.8. If dim(N) < oo, then every self-adjoint extension of A is
semibounded and is equal to Ay for some B.

Proof. Let Abea self-adjoint extension and suppose that dim (N) =m < oo.
If dim & (oo, o(A) >2m + 1, we can find 0 % ¢ € D(4) 1 Rané—c, o(4) since
D(A*) = D(A) 4~ AZ'N 4 N by Lemmas 2.5 and 2.8. But then (¢, Ap) > lo||2
and (¢, Ap) < 0,50 ||| = 0. This contradiction shows that dim & e, o (Z) <
< 2m (of course more work shows it is <m) and so A4 is bounded below. We can now
follow the construction in Proposition 2.6 exploiting the fact that every quadratic
form on a finite dimensional space is closed.

We summarize the last three propositions in a theorem which is the fundamental
theorem of the theory. We emphasize that our proof is really just chasing one’s
tail with forms and that the result, proven by other means, is essentially in [1].

THEOREM 2.9. There is a one to one correspondence between positive self-
adjoint extensions, Ag, and positive forms, B,on N. If dim(N)<oo, the word positive
may be dropped in both places.

Of course, while we developed the theory with y(4) > 1, by scaling there is
no real difference if y(4) > 0.

THEOREM 2.10. Ay > Ay if and only if B > B
Proof. Obvious given the basic formula ¥ = ¢ -+ n:

(2.3) W, Agf) = (¢, Aep) + (1, Br).
We can now prove Krein’s theorem (Theorem 1.3):

THEOREM 2.11. A, the Friedrichs’ extension is the largest s.a. extension
of A. Ay, the Kretn extension is the smallest positive extension. The set of positive ex-
tensions is precisely the set of C's with Ay < C < Ac.

Proof. Clearly Aes = Ay = Ayif co 2 B = 0, so the theorem is evident except
for the last sentence. If 4y < C < Ao, then Q(Ax) = Q(C)=Q(4,) = Q(Aw) + N.
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In addition, since Ag| Q(Aw) = Aw, C|Q(Aw) = Aw. Moreover if ne€N,
¢ € Q(4x)

(¢, Aop) = (@ + 2n, Ale + ) < (@, Awp) + 2Re(F(n, Cop)) + 1412 (1, C),

so (1, Ce) = 0 and (4, Cy) = 0. Thus C = Ay for some B.
In the remainder of this section we treat a number of special features of the
theory. First is a result of Krein:

THEOREM 2.12. ([S]) Let (2.1) hold. Then Ay is the only self-adjoint extension
with lower bound 1 if and only if for all ye N, n # 0

(1, @)1

oeD(d (¢, (4 — Do)
(1, @)#0

(2.4)

Proof. Let ¢ € Q(4), n € N. Then
(@ + An), Ap(e + 4n) = o + An|?
if and only if
(¢, (Ao — 1)9) + 21 (1, (B — 1) 1) = 2Re (Ao, n)).
Thus, 45 = 1 if and only if for all 0, (@, n) % O,
(1, (B— D) = 1n, ) I*/(o, (4s, — 1)9).

If (2.4) holds, then this is only consistent with B = co. Conversely, if the sup in
(2.4) is a < oo for some 7, then

B = (o0 + 1) Py, + ool — Py,)
yields a B with Ag > 1.

REMARK. Notice that if y(4) > 1, then p(45) > 1 for all B < B, so if therc
are two extensions with y(4) = 1, there are infinitely many.

2
EXAMPLE 2.1. Let 4 = — Tid? on C{ < L2(0, n). Then A, has Dirichlet
X
boundary conditions. The lowest eigenvector is sin(x) so (2.1) holds. The operator
with boundary condition #(0) == —u(n), ¥'(0) = —u'(x) is another with the same

lower bound. There are many others; see the discussion in Example 2.4.

THEOREM 2.13. Let A obey (2.1). Let y(B) = 0. Then
ay(B) < y(4p) < y(B)
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with a = -
b+ 1

Proof. Clearly, if n € N, (n, Agn) = (1, Bn) so y(B) > 7y (4p). On the other
hand, using x = [lpll, y = linll, & = »(B)

and b = y(B). In particular, y(Ag) = 0 if and only if y(B) = 0.

¥W(Ap) 2 min [(x* + by*) [ (x* + »* + 2xy)] = ab.
Xy ¥

COROLLARY 2.14. If (2.1) holds and dim(N) =1, then the Krein extension
is the unique one with y(Ag) = 0.

This corollary and the possibility of adding constants leads to a complete
analysis of the one dimensional case.

THEOREM 2.15. Suppose that dim(N) = 1. Then, for any extension Ay other
than Ac, the form domain Q(Ap) = Q(Aw) + N, is the same. In addition, either:

a) A is the unique extension with y(Ae) = y(Z). In that case, there exists a
strictly monotone and concave function ¢: (—o0, 00) to (—o0, Y(Ax)) with y(4,) =
= ¢(b).
or

b) There is a by < oo with y(A,) = y(Ae) for b €[by, 00) and a strictly mono-
tone and concave function ¢ from (— oo, by) to (—o0, Y(As)) with y(A4y) == c(b).

Proof. By Corollary 2.14, when cy<7y(A), thereis a unique b with y(4,)=c,.

Concavity of ¢ follows from the fact that it is an inf of linear functions.

2
ExXAMPLE 2.2, let 4 = — —;—T + 1 on C§(0, o0). Then N = multiples of
X

ﬁe”‘. Q(As) consists of functions which are absolutely continuous with f(0)=0.
Then an arbitrary f in Q(Ax) 4+ N has the form

S=( = [0 + fi0)e >

and

(fs Asf) = Soo [/(x) — f(0)e~>*dx + Sw If"(x) + f(0)e~*j*dx -+ —21— bif(0)*=

0

=SwWW@HHﬂﬂﬂdx+(§~b—lyﬂ®ﬁ

b = co corresponds to f(0) = 0 b.c. and b =2 to f'(0) = 0 b.c. . In general, 4,
has f'(0) = (-i—b - 1) f(0) b.c. (the boundary conditions are determined by inte-
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grating by parts and demanding symmetry)

y(b) =1 for b>=2

y(b)=1—<13b—1)2b<2.

2

ExaMPLE 2.3, Let 4 = — »c-:i— ,on L0, n) with the boundary conditions,
X

u(0) = u(n) =0, w'(x) = 0.

N consists of multiples of V 3 =32 x, The composition Q(A4.)--N corresponds to

S [ f— I(n)-x] + f(m) 2 and all functions in 0(A,) obey f(0) = 0. Moreover
T n

, A,,f)=S: 1700 2 dx + (’? ~ %)lf(n)lz

and the boundary conditions for A4, are

£0) =0, fi(m) = — ( ”—; - %)f(n)

(b)) = k(b)* b >0

where k(b) is the inverse function to

b:i(L___k%) o<k<l.
n\=x tankr
and

y(b) = — K(b)* b<0

where K(b) is the inverse function to

p=2 L___"_) 0<K<oo
T\ m tanh(Krn)
Notice this is an example with b, = oco.
2
ExaMpLE 2.4, let 4= — -5—2— on L*0, n) with the boundary conditions
X

u(0) = u(r) = 0; ¥'(0) = —u'(n).
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. . T\
N consists of multiples of (x - E)V 12 #¥2 since A* has the boundary condition

S(0) = —f(n). As usual Q(As) consists of functions with f(0) = f(z) = 0 and thus
functions in Q(4,) obey f(0) = —f(n). The Dbasic descomposition of Q(4,) =
= Q(dx) - N is

2 T 2 T
f= [f“ ;f(”) (x— E—)]—f—?f(n) (X — ?)
and therefore

(f, Anfy = 1feax [% _ %]If(n) 2,

The boundary conditions are:

£0) == —f(m);  f'(m) + F1(0) = (—931‘- + %)f(n)-

b = oo yields Dirichlet boundary conditions and b = 1—2 yields antiperiodic boun-
T

dary conditions. The lowest eigenfunction even about x = % has eigenvalue 1. The

lowest odd eigenfunction has eigenvalue &% or — K2 where &, K solve (0 < k < 2)

krn brn 4 kr
2.5 2kcos [ — = — — ___Isin] —
@ (5)-(=5+5)=(3)
or the analog
Kr br 4 Kn
@2.6) 2Kcosh(~— =(“— 4 sinh(—
2 3 + 7 2)
the lower bound is
yb) =1 b= 12
7'[2
12
= k(b)? 0<k<l, 0<b<—2
Fi

=—Kb)? 0<K<oo,b<0

where k solves (2.5) and K solves (2.6).
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§ 3. GRAPHS

Our main goal in this section is to prove and understand the following
result:

THEOREM 3.1. Under the notation of Section 2:

B.1)  D(4y) = {p + AZMBf + ) + | @ € D(4), fe D(B), neNnDB)}
with

32 Ap = A" | D(Ap)

Remark. This is equivalent to a rather different looking result in Vishik [12]}
and Birman [1].

ExAMPLE 3.1. If D(B) = {0}, i.e. B = oo, then we see that D(4c) == D(4)-}
-~ AZIN, a result which is not new (Lemma 2.7).

ExampLE 3.2. (Krein [5]). If B == 0, then
(3-3) D(4o) = D(A) + N

and this is the only extension with this property. In particular
(3.4 Ker(A4,) == N.

EXAMPLE‘ 3.3. Consider Example 2.2. Then A3! (¢~*) = —;: xe~* since g=

= —211~xe"" obeys — g” + g = e~ with the right boundary conditions at 0 and infi-

nity. Thus, an arbitrary function in D(4,) obeys

. 1
with ¢ € D(4). Thus #(0) = a, #'(0)= (—2— b — l) a and we obtain the boundary
conditions one obtains by trial and error.

Lemuma 3.2, The right side of (3.1) is contained in the domain of Ap.

Proof. We need only show that for n € N n D(B), fe D(B), ¢ € Q{Ax) and
/€ Q(B), we have that

(3.5) (¢ + 7 Bf+n)=q® (¢ + f, ASNBf + n) + /).
The right side of (3.5) is equal to

(@, Bf +n) + (/s Bf)



BIRMAN-KREIN-VISHIK THEORY 263

which equals the left side since (f, n) = 0. 7

All that remains is to show that A* on the right side of (3.5) defines a maximal
symmetric extension of 4. Let X be a subspace of D(4*) = D(A4) - AZ'N - N
and which contains D(4). Let

F(X)r—{(a, BY>eN X N Ag'a + pe X},
Clearly X is determined by r'(x }. Now let

o {a, f, (o ) = (a, B — (B, &)

be the natural symplectic form on N X N. By a direct calculation
(A’ + ), A¥AZ x + ) — (AMAZ' + ), (A5 o+ B))=
= —w(< Ct’, ﬁ’>’ <°‘7 ﬁ>)

so we see that if 4¥| X is symmetric, then I (X) is a Lagrangian subspace for w
(i.e. w(x, ¥) =0 for all x, y e I'(X)). The converse is also fairly easy to see so we
have proven that:

LEMMA 3.3. A* | X is symmetric if and only if f(X ) is a Lagrangian subspace
Jor o. Maximal symmetric extensions of A correspond to maximal Lagrangian sub-
spaces.

Given a quadratic form g, on N, let

r(8) = {<o, Bo +n> | ¢ € D(B) = Q(B), n € Nn Q(B)'}.

“This is just the natural extension of the notion of the graph of B.

THEOREM 3.4. Every I'(B) is a maximal Lagrangian subspace. Conversely, if N
is finite dimensional, every maximal Lagrangian subspace is of the form I'(B) for
Some B.

REMARKS 1. dim(N) < oo comes not only because we require B to come from
forms but also because of the existence of non-self-adjoint maximal symmetric
-operators.

2. The converse is not needed to prove Theorem 3.1.

Proof. The symmetry of B shows that I'(B) is Lagrangian. Suppose that
{@o, ¥o» is w-orthogonal to I'(B). Thus

for all ¢ € D(B), n € Q(B)L. Taking ¢ = 0, we see that @, € Q(B)** = Q(B). More-
-over (3.6) then implies that o, € D(B*) and Py, = B*@, where P == proj. onto Q(B).
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Since B is self-adjoint, we conclude that Y, = Bo, + 5, with 5, € D(B)*. Thus
{@o, Yoy € I'(B). It follows that I'(B) is maximal Lagrangian.

Conversely, let dim(V) < co and let M be a maximal Lagrangian subspace.
Let

DB)={peNi{p, ¥ yeM for some y €N }.
Let n € D(B)L. Then for (¢, Y, {¢', Y'Y e M:

0)(<(p, W + Y}>, <(PI: ‘l’,>) == (D((([), l/")>a <(P', R/l'))

so by the maximality, (g, ¥ -+ i) € M also. Conversely, let (o, ¥), {p, V') € M.
Then (0, ¥ — ¥’) € M so y — ' must be orthogonal to D(B). It follows that for
@ € D(B), there exists a unique Bp € D(B) with (@, Bp) € M. Thus M =: I'(B). N

Proof of Theorem 3.1. Let X denote the right side of (3.1). Then F~(X ) is a maximal
Lagrangian subspace by Theorem 3.4 and the sign flip of w under (a, §)— (B, 2.
Thus, by Lemma 3.3, A* | X is a maximal symmetric extension of 4. By Lemma 3.2,
A* | X <= Ag| D(Ap), so, by the self-adjointness of Az, we see that Ag == A% | X.N

REMARK. The constructions show how one can arrive apriori at (3.1). The
association B—I'(B) is natural for non-densely defined B. With it and our convention
on (B -+ i)~1, one finds that norm resolvent convergence is equivalent to graph
convergence in the Krein sense [3] even for non densely defined operators.

§ 4. CONTINUITY OF OUR PARAMETRIZATION

Since the number of elements in U(n) for any n < oo are the same, one might
argue that it is only a matter of convenience that one chooses in the von Neumann
theory to parametrize the extensions, in the deficiency index & case, by U(k) and not
U(n). However, since U(n) is not homeomorphic to U(k) for k # n, once one estab-
lishes continuity, the labelling is demostrated to be “‘natural”’. We begin by noting
the continuity of the von Neumann parametrization.

THEOREM 4.1. The von Neumann map U — AUfrom unitaries mapping K, ==
= Ker(4* +1) to K_ = Ker(4d* — 1) to self-adjoint extensions of A is open and
continuous if U is given the topology of strong (resp. norm) convergence and the ex-
tensions the topology of strong (resp. norm) resolvent convergence.

Proof. Let C: Kt - K+ by

C=(+i) 4—D1
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and extend C to H by setting it equal to 0 on K,. Extend U: K, — K_ by setting
it equal to 0 on K%, Then the map from U to AV is given by:

(A9 + i) (4Y — )1 = CW)=C+ U
since [C(U) — 1] (20)~1 = (4"Y? — i)~ we see that strong (norm) convergence of U
is equivalent to strong (norm ) convergence of (4Y) — i)~1,

The usefulness of strong graph limits is shown by:

THEOREM 4.2. {f B,, B are all positive or if dim(N) < oo, and if (B, +1)"! —
— (B -+ i)~ strongly, then (Agz, + 1)~ — (Adg + 1)~ strongly.

Proof. We begin by noting that B, — B in strong graph sense (see [7] for the
definition; the proof of Theorem VIII.26 ecasily extends to non-densely defined
B’s). By our analysis in § 3, Ay, — Ay in strong graph sense and thus in strong resol-
vent sense.

ReMARKS 1. If dim(V) < oo, by compactness, the map is automatically also
open. Moreover, norm convergence is equivalent to strong convergence.

2. If dim(N) < oo and if B is everywhere defined, this theorem follows also
from the results of [10].

§ 5. THE KREIN EXTENSION
We begin this section by recovering an abstract result of Krein [5] on the
discreteness of the spectrum of A, and 4,. Then, we discuss Krein extensions of
d
— —d—; on C(0,1) and of —Aon CP(Q), 2<=R".
X
THEOREM 5.1. Let A = 1. Let B= A, | N+. [N is an invariant space for A,

(indeed, it is Ker(Ay)) and so Nt is also.] Let u,(C) be given by the min-max prin-
ciple (so

(C) = inf {A| dimé(-s,  (C) = k}).
Then '

CRY u(B) = p(Aco).

In particular (Krein {5]), if Ao has discrete spectrum, then, except possibly for A = 0,
Ag also has discrete spectrum.

Proof. Let Q be the orthogonal projection from H onto Ni. We claim that O
is a bijection from Q(As) onto O(4,) N Nt and that

(5.2) (Q(9), A:Q(@)) = (¢, Ax0).
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For let P =1 — Q = orthogonal projection ontc N. Then given ¢ € Q(4.),
Q(9) = ¢ — Pp € Q(4d) + N == Q(4,) so Q maps into Q(4y) n Ni. Moreover,
if ¢ €Q(4ds) and Qp =0, then @ € Q(4e) N N, so ¢ =0 by Lemma 2.1. Thus
Q is 1-1. Moreover, since

O(@) = ¢ +n,n=—PpeN,
(0(9), AsQ(9)) = (@, Ap) + (1, On) = (¢, Axp)

50 (5.2) holds. Finally, for any ¢ € Q(4,), we can write Y = ¢ - # uniquely by
Lemma 2.1. Let Ty = ¢. Then

Oy = Q(TY)

s0 for ¥ € Nt 0 Q(4y), ¥ = Q(TY) so Q is outo.

Given ¢, k, find @,, ..., @, orthonormal in &_ o uypy+e (B). Given ¥y, ...,
Y-, € H, we can find f= Yo,0; # 0 so that Tf1y,. This is possible since T is
one-one and thus T[e,, ..., @] has dimension k. Since (Tf, Tf) = (f.f) {f=-
== Q(Tf)), (5.2) implies that

w(B) + ¢ >(f’Bf) > g}.ﬁ?m R

N - T T

"Therefore:

min (g, 4-8)/(g, &) < u(B) + &.

ge[Wi]'L

Since & is arbitrary, we can set ¢ to zero and then maximize over y/; to obtain

(5.1). &

2

on CY(0,1). Then N consists of the span of

ExampLE 5.1, let 4 = — d
dx?

1 and x. The decomposition
f=@+mn neN, ¢cQ(4)
is given by:

n=f0)+[fD)—fOlx; o=1—n.
‘Thus:

(f, Af) = S I/ —) %
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But, since V2 = 0:

§<5}’“)<w) = S V() =

(5.3) = SM v n):s v = {1y

a0, 1

where (5.3) follows from t};e.fact that f'= 5 on 0[0,1]. Therefore:
(54) (s Aof)= | 1V Pax—(f)) ~ fO)):
¢}

From this formula, one easily sees that A, is smaller than the Neumann form which
one might well think was the smallest extension. Moreover, since |f(1) — f(0) | <
1
< S [7f(x) |dx, A, is clearly positive.
0
One can either read off the boundary conditions from (5.4) or from the general
theory in § 3. By the general theorem in § 3, f'€ D(A,) is of the form f=c¢ + dx + g
with g(0) = g(1) = g'(0) = g'(1) = 0. Thus f is given by the boundary conditions:

(5.5) ‘ O =f(1) =10) — f0).

Finally, let us compute the spectrum of 4, and compare it with 4., and with
Ay, the Neumann extension. By standard calculations:

(5.6) Him(Aos) = (mm)?

(.7) Bl Ay) = [(m — D,

To study p(Ay), we note that D(4,) is left invariant by f(x) - f{l — x) and thus

all eigenfunctions obey either f” (%) =0 or f(i ): 0. The f’(—;—) eigenfunc-
. 1

tions are cos(k (x ___2,>) and (5.5) becomes sin(% k): 0sok=0,2n,4n, ....

1y . . . :
The f (—5) eigenfunctions are sm(k(x — %)) 0 (5.5) becomes

’ 1 1
5.8) . : . —k=tanf — k|-
(5.8) s (2 )

8 — 2443
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k = 0 solves (5.8) but one must check there is a solution corresponding to this.

The function f(x) = (x — —;»)is such a function. Thus the lowest solution k; of

(5.8) is ky = 0. There is no other solution in (0, g—)and then one each with

_;-k,.e(n(i-— 1), ﬂ(j—‘lz—))

\

with kj—Zn(jv_;—)l-»O as j - co. Thus

Hm(Ag) = [(m — Dz]*  m odd

Ha(Ao) = (k1 ) m even.
2
So for m even
(5.9) [n(m — P < pa(4y) < [n(m — DI
We see explicitly that p,(4,) <p,.(Ay) with inequality for m=2,4,6 ... . Moreover,

(5.1) reads pt,, 10 (Ag) = p,,(A); notice that the inequality is always strict,

ExampLE 5.3. Let @ < R" be an open set which is bounded and for which
dQ has measure zero. Let 4 =—A on C$(R). Then N is precisely the set of functions
in L2(Q) which are harmonic on Q. Thus, if n > 1,

N = Ker(4,)

has infinite dimension. Since 4, has discrete spectrum, Theorem 5.1 implies that 4,
has discrete spectrum away from zero. If 9Q is smooth, then for any fwhich is smooth

up to the boundary, we can find a harmonic function, A(f), with H(f) = f on 022.
Moreover, f— H(f) € Q(A). Thus, by the calculation (5.3)

, Aof)=5 ik dx—g I7(H () 1? dx.
0 Q

For fto lie in D(4,) we need f to obey the special boundary condition

()

5.10
( ) dn an

(x); xeof.

Notice that the right side only depends on the values of f on dQ so that (5.10) is a
boundary condition, albeit a non-local boundary condition in a natural sense.
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Finally, in this example, we note that the map M: g — g | 92 on N is one-one.
Thus, for any boundary conditions the boundary part of §®(f) given by

qBf = 5 IS 12 dx + GES)
GOf = (M1 (f10Q), BM~* (f]0R)) — S IJ(H(F))PE dx
is only a function of /| Q. Thus, at least formally,

FO(f)= S J() ) K(x, y)do(x)da().

0 x 0N

Of course, in thinking of this formula one must remember that §®)(f') may be infinite
for some fs.

It seems to us that the Krein extension of — A, i.e.—A with the boundary con-
dition (5.10), is a natural object and therefore worthly of further study. For example:
Are the asymptotics of its non-zero eigenvalues given by Weyl-s formula? What
happens to the operator under subdivision [11]? Is there any method of images for-
mula for the Green’s function in simple cases?

Added in proofs

W. Faris and H. Kalf have kindly pointed out to us some other English language papers
on the BKV theory:

1. There is discussion of the BKV theory in T. Ando and K. Nishio, Positive self-adjoint
extensions of positive symmetric operators, Tohoku Math. J., 22 (1970), 65—75 and in Section 15 of
W. Faris, Self-Adjoint Operators, Springer Math Lecture Notes, 437 (1975). Our presentation
turns out to be very close in point of view to that of Faris. See also C. Skau, Math. Scand., 44
(1979), 171--195.

2. What we call the **Krein extension™ is the extension introduced by von Neumann on pg.
102 of his paper, our ref. 6. Ando-Nishio call it the ‘‘von-Neumann extension”.

3. Ref. 12 is available in an English translation in AMS Translations, (2) 24 (1963), 107—172.

Research partially supported by U.S.N.S.F. under grant MCS—78—01885.
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