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THE FUGLEDE COMMUTATIVITY THEOREM MODULO
THE HILBERT-SCHMIDT CLASS AND GENERATING
FUNCTIONS FOR MATRIX OPERATORS. II

GARY WEISS

Let o denote a separable, complex Hilbert space and let .£(2#) denote the
class of all bounded linear operators acting on 3. Let #°(3#) denote the class of
compact operators in #(#) and let C, denote the Schatten p-class (0 < p < o0)
with || - [, (1 < p < co) denoting the associated p-norm. Hence C, is the Hilbert-
Schmidt class and C; is the trace class.

In [5] we pointed out connections between a problem of I. D. Berg [1], namely
“Is every normal operator the sum of a diagonalizable operator and a Hilbert-
Schmidt operator?”, and several statements regarding normal operators, Hilbert-
Schmidt operators and trace class operators. Some of these statements were proven
and some were left open questions. Here we settle the main question [5, statement
(3)] and obtain a generalization, and we ask several new questions.

THEOREM 1. If N,, N, are normal operators and X is a bounded operator then
[N X — XN,llc, = [[NfX — XN¥|c,.
In particular, N\ X — XN, € C, implies N¥X — XN§ e C,.

We give a proof of this theorem which blends two earlier proofs. The first
proof used generating functions and a kind of distribution theory. The second proof
was entirely operator theoretic. The first proof v/as the original proof and suggests
certain methods and generalizations. The second proof was a more recent proof
that the author constructed from the first proof at the urging of Dan Voiculescu.
1t was felt that an operator theoretic proof was important.

In [5, Theorem 2c] we proved that to prove Theorem 1, it suffices to assume
Ny = N,= M, (the operator of multiplication by ¢) where ¢ € L*(T), M, acts
on L¥T), and for every complex number ¢, m{z : ¢(z) = ¢} = 0.

Proof. In [5, The Main Construction] we defined the generating function for
the matrix operator X = (x;;) to be the formal Fourier series F(z, w)=
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[}

= Y x;zw/. In other words, the entries of the matrix operator are precisely

i, j== —00
the Fourier coefficients of its corresponding generating function. In addition, when

]
@(z) = Y, @.z" is the Fourier series for ¢(z), we defined the formal product

@(z)=F(z,w) in the canonical way to be the formal Fourier series

Y, ( Y, @uXion, j) z'w/; and we defined p(w)=F(z, w)tobe ¥, ( Y @ux;, j_,,)z"wf .
n i j n

i, jr=—00 = —00

(As expected, when F(z, w) € L¥(T?), the formal product is just the function pro-
duct.) We then showed that the generating function for M X is @(2)=F(z, w),

that for XM, is ¢(w)=F(z, w), that for M7 X is ¢(z):F(z, w), and that for XM b
1S Ep@)_:xF(z, w). Therefore the generating function for M, X — XM, is (¢(z)—
— @(w))+F(z, w), and that for M3X — XM is (9(z) — @(W))=F(z, w).
The hypothesis that M X — XM, € C, is equivalent to (¢(2) — @(w))*F(z, w)
€ L¥(T?). Indeed
1, — xugi, =\ (0(2) — p0m)sFG, W
T

Replacing @ by a@ - b, it is clear that without loss of generality, we may assume
that Rangep < Q (Q =1[0,1) X [0,1) considered as embedded in the complex

plane).

Now (¢(2) — @(W))=F(z, w) is a function in L%T?) and {(z, w): ¢(z) = @(w)}
has 2-dimensional Lebesgue measures 0 in T2. (This follows from the fact that for
every complex number ¢, {z: @(z) = ¢} has linear measure 0. See [5, Proof of Theo-
rem 4] for the details.) Therefore, we have that (¢p(z) — e(W))/(¢(2) — e(w)) € L=(T?
with modulus 1 almost everywhere in T2, and so

_ o@D —ow - _
D = =0y (@) — 90DF Wi=

1

= ——————(¢(2) — o) -[(@(2) — @(W))+F(z, w)] =
o(2) — o(w)

1

== ——————— - ((¢(2) — e(W)=[(¢(2) — e(W))=F(z, W)]).
P(2)— o(w)

The last equality holds since both are L*(T%) functions, and so the function product
and the formal product are the same. Let [4, B]= AB — BA. Then clearly

(0(z) — e(W)=[(e(z) — (W)= F(z, w)] is the generating function for the operator
[M%, [M,, X]), while (¢(2)—@W)*[(9(2) — @(W))=F(z, w)] is the generating function
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for the operator [M,, [M}, X]]. It is well-known and straightforward to show that
these two operators are equal. Since one is a Hilbert-Schmidt operator, they both
are, and their generating functions are in L2(T?) and are equal almost everywhere
in T2, Therefore, almost everywhere in T2,

() = ——t——— (@(D) — 9 H(@(Z) — P *F(z, W).
0(2)— o)

Thus far, the ideas expressed here are similar to those in [5, Proof of Theorem 4].
However, at this point we want to remove the first « from this last expression, but
cannot, as we don’t even know that the expression in brackets is a function. If we
could remove this *, we could cancel ¢(z) — @(w), with itself, and we would be done.
What we do is introduce a kind of fest function which will allow more of this alge-
braic manipulation.

THE TEST FUNCTION

Let Qf = [’ ;--1-, 5’—) . {f ;1 ZL) for 1<i,j<2" and let El—@™(Q%).

Clearly U Q5 = Q and UE,'} T. Let & denote the collection of quadruples of
integers (7, /, p, q) for which 1 <4i,j,p,q < 2" and [i — p| + {j — ¢q| = 3. Define
the test function ¢,(z, w) for each positive integer », as follows

t(z, W) = Z XE?J(—Z—) XE;;q(W)-

G jmpes

We shall now show that

1(2, w)- (1) =

= BB (o(2) — pOn)=(e() — PFC W) =
9(5)— o)

= 1,(z, W)x(@(Z) — @(W)) xF(z, w),

considered as formal Fourier series. The reader should realize that the first  in this
last expression has not yet been defined. However, it is clear that since XE,,j(z) and

XE;;,,(Z) € L=(T), the generating function for i/ g, XM, - is given by Xgr, (2)*
(X gn (W)*F(z, w)) (for every bounded operator matrix X with generating function F).

For simplicity we shall simplify notation as follows. Let X;;(z) = X £2,(2).
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Clearly = is distributive over -, since it reflects the corresponding algebraic
operations of operator multiplication (M,X, XM, etc.) and operator addition.
Therefore, to prove the last equality, it suffices to show that for every (i,/,p,9)
for which |i — p| -+ |j — ¢| > 3, we have

Xij (E)X pq(W)

= ((9(2) — oW)=l(0(2) — P(W))=F(z, W))) =
o(2) — o(w)

= Xii(2)#(pW)=l(@(2) — @(W))= F (2, W)]),

as formal Fourier series.

Now |i — p| + |j — q] = 3 impliesoneof |i — plor|j— g| = 2.Say |i — p| =2.
Then either i < p or i > p, say i < p. The reader will see, after reading this proof,

. . . i —1
that the proofs for the other three cases are essentially identical. Let ¢ = Z—z-n—— +

J—1 — . _
+ 1J_ér-. Then (Z,w) € E x Ep, implies ¢(Z) € QF, o(w)e Q, ow) —c # 0,

and finally that |2Z) € < 1. Therefore 24 _ o ¢ (3, ¢ Eb % EL,
lo(w) — ¢ ¢(z) — o(w)
and otherwise
Xij(E)XPq(w) — 1

oD — o)  @F) —— (M) —c)

— —otm— o [1 - 2=

o(w) —c

ey o(z) —c\
(00— 3 (2D=1Y.

If we now let

@iz = Xij(z)(‘P(Z) — o)
and

V(W) = 2p() (W) — )=+,

we have ¢, € L2(T). Also since p > iand |i — p| = 2, we have y,(w) =0if w ¢ E],
and otherwise ¢(w) € Q},, which implies

| (i—l ._;-1)[ p—i_ 2
w) — ¢ = | o(w) — 1 \ .
lp(w) — ¢ ‘(p() > o
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Therefore Y, € L*(T) also. In addition, if (z,w) e E} X Ej,, then ¢(z)e Q and

2 2
e(w) € QFyy and so |@(2) — ¢| < lg—,zland lp(w) — ¢| = o Therefore

@il Loory 1Ykl ooy < 2772 Y, 27%2 < 0.
- (T) (T) 2

We now claim that if G(z, w) is the generating function for any bounded
matrix operator for which (¢(z) — (W)= G(z, w) € L3(T?), then

Ll () — o)) Gz, w) =
o(z) — o(w)
' = 1:;(2) % xpg(W)* G(z, w).
The proof of this claim requires some work and we give it next. The above functions
@ Vi can now be used to say

1O 2
oD —pn 2O

where the sum converges in L®(T?). Now
@ (2) YrW(9(Z) — o)) * G(z, w)] =
= @u(2) YW * [(@(Z) — e(W))* G(z, w)] =
= [0u(2) (W) = (9(2) — 9(W)]* G(z, w).
This last equality follows since if we let G denote the matrix operator with generating
function G(z, w), the former expression is the generating function for Mq,k[M(,,, GM, Ve

and the latter expression is the generating function for M, M,GM, — M, GM,M, ,
which are equal as operators. Therefore

M [(@(Z2) — (W)= G(z, w)] =
@(2)— o(w)

= = 3, [0,EW0)+ (0(2) - o0 Gz

where the convergence is in L?(T?). But considering the corresponding finite sum of
operators,

K K
— Y (M, M,GM, —M, GM,M, )=~ hy (M, Mg—e\GMy, —M, GMy_ oM, )=
=0

k:=0

K
== Z (Mxij(w—C)"M(rp—C)GMqu(w—C)‘(““’ - ]‘{X”((l"‘c)kGM(‘P_c)Mqu((ﬂ—C)_("+l)) =
k=0

X
= 2 (Mzu(w—C)"“GMqu(fp—C)‘(’”1’ - Mx,j(tp—C)"GMqu(tp—C)"‘) =
k=0

- — qu((p—c)x‘l‘lGMqu(qJ-—c)'(-7<+1) + MxijGMqu'
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Now since

1/5)1(4-1

%0 — C)K+1”L°°(T) < (27
and

an K+1
12 — )~ E+D ey, < (?) ’

we have that

1 K+1
”Mxij((p—c)x+XGMqu(¢—c)—(K+17”.T(a(’) < (ﬁ) ”G“ - 0.

Hence the partial sum of the operators converges in the uniform norm to Mxi,Gszq

with the generating function ¥;;(z)%,,(w)* G(z, w). The uniqueness of the generating
function (equivalently, the uniqueness of the matrix in the standard basis) gives us
that

= 3, D0 @) — o0l G, W) =

= Xiy(2) Xpy(w)* G(z, W),

and we have proved the claim. Thus we have that

12, w) (1) = 2.2, W) * [(@(2) — @(w)) * F(z, w)]

where [£,(z, w)| < 1 for all z, w, and (}) is a function in L3(T?). In other words

1(z, W)= [(@(2) — o(W)) * F(z, w)]

is a sequence of functions in L*T?) with L2-norm uniformly bounded by the L*-norm
of (¢(z) — (W)= F(z, w). Therefore for every n, the corresponding operator state-
ment is
Y M, M3 XIMy, lic. < My, X]lc,
Giipng €S

It is elementary to show that if {7’} is a sequence of bounded operators such
that T, — T in the weak operator topology and |T,[lc, < M for every n, then
T e C, and ||T|lc, < M. Therefore our proof will be finished if we can show that
T, = [M}, X] in the weak operator topology, where

T,= Y M, [M:XIMy,

GisP)ES

To do this, let us recall some facts. Let f ® g for f, g € L¥(T) denote the rank
one operator f ® g (h) = (h, g)f- It is elementary to verify that if 4 € Z(5) with
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matrix entries (@;;);;_ _, relative to the standard basis {z"}32 _, then a;; = (42/, Z').
Furthermore, the matrix for z/@ z has a 1 in the j, i entry and O elsewhere and so
a simple verification shows that a;; = trace A(z/® z). That is, (42/,z) =
== trace A(z/ ® z). From this it follows directly that if f, g € LXT), then(Af, g) =
= trace A(f®g). The reader should take care to realize that (Af, g), as well as
f ® g, are linear in fand conjugate linear in g.
Now to compute [M}, X] — T, note that Y, M, = I Define

1<y, j<2t i

S ={0,j,p, )¢ and 1 <i,j,p,q < 2.
Clearly also

S ={(,jpP:1 <ijp,g <2" and |i—p| + |j— g <2}
Then

M3, XI—T,= Y My M} XIM,,
G, i )ES’

If we now fix £, g € L¥T), then

(M3 X1 — T )= X  (MyIMJ, XIM,, f.8) =

(virp ) ES”

= Y. trace (My,[ME, XIM,,,) (f ® g).

(i ET!

Setting Y = [M}, X]M,,,(f ® g), we obtain YeC; and hence traceMy Y =
= trace YMy,,. Therefore

trace(My, [M}, X] My,) (f ® g) = trace[M¥, X} My, (f ® g) Mx,,.

It is easy to see that if R is any trace class operator (in particular, R = My, (f ®
®g)Mz,) and A4, B € L (), then trace[4, B]R =: trace[R, A]B. Indeed,

trace([4, BJR — [R, A]B) = trace{ABR — RAB + ARB — BAR) =
= trace[4B, R] -+ trace[4R, B] = 0,
since R and AR € C;. Hence,

M, X1 —=T) 9l =] 3 tracelMy, (f ® &) My, M} X| <

Grjep ES

< Y | trace[MX M, (f®g) My ]X| <

(i, ir0, ) €S’

< Y [ Xleen M3, My, (f ®g) My, ]llc,

(hispy ) €S



10 GARY WEISS

Note that the commutator in this last expression is the difference between two rank
one operators and hence is a rank 2 operator. It is well-known that there exists
C > 0 such that [|4]lc, < C||A]c, for every rank 2 operator 4. This allows us to
obtain an upper bound on the trace norm of this commutator by looking at its
Hilbert-Schmidt norm. That is,

MG, My, (f ® ) My, Jlic, < CIIME, My, (f ® g) My, Jllc..

Next, we need to know the generating function for this commutator. We
start by considering the generating function for f ® g.
The matrix for z'® z/ has a 1 in the i, j entry and 0 elsewhere. Hence its generat-

ing function is z'w/. It follows that if f, g € LXT), then f@ g = ¥} f(z)g(])z
Therefore the generating function of f ® g is

Y, JORGY = (X A0 (K B ) = feg®).-

Earlier remarks then give that the generating function for M, (f ® g)Mx,
is %,,(Z)1;w)f(2)g(), and finally the generating function for [M¥, My, (f ® g)Mx,)
is (@(2) — eW))xp(Z)xi;(W) f(2)g(W). Therefore after a change of variables of
Z to z,

HME, Moo (f ® £) M 12, = SS (0(2) — @(w) @R <

Epq % EYy
(L2 ot
Ep X EYy

This last equality follows by (z, w) € Ej, X EF; where (i, j, p, ) € &' implies |i — p| +

3)2

+1j—4gl <2. This puts ¢(z)€Qp, @(w)eQij and so |o(z) — oWl < =,

by the location of these squares relative to each other.
Hence,

(M5, X1 - T)f 8l <
31/2c

) B ) o) <

Ep, X EY

3]/2c

1/2
S ”X“[<,~,,-,p§)e9'( SS |f(5)g(w)i2)] [(i,j’pg_;,ey,l]”'-
E%, X EYy
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This last inequality follows from Hélder’s inequality. The last bracketed expression
indicates that we need to compute the cardinality of &’. Recall. that &’ is the set
of all 4-tuples (i, /, p, q) for which 1 <i,j,p,q <2" and |i—p|+ |j— g <2.
The number for which |i —p| +|j— ¢/ =0 is clearly 27-2". The number for
which |i — p| & |j — g} = 1 is the number for which i=p and |j—¢q| =1, or
i —pl=1 and j==p. This is 2-2.27(2" — 1). Finally consider the number for
which | —p|-+1|j—¢q| =2, that is |i—p|=]|j—¢q|=1, or |i—p]=2 and
j=g, ori=pand|j—q| =2. Thisis 2-2-(2" — 1)(2" — 1) + 2(2"-2-(2" — 2)).
The crucial point is that the total of these quantities, namely the cardinality of &,
is less than or equal to k-4, where k is some positive number independent of n.

Continuing on from this last inequality we obtain
* 312 : = 2 e <«
(M5, X1 — T)f, 8)l < —5— ClIX]| f(2)gW)PF | k4] <

G EpxEY
G ipDES’

<3)z kx| [ SS |f<2)g(w)|2]1/2 :

U En, X EY
G, J,pDES”

Now our proof will be complete if we can show that this last br_acketed expression

approaches 0 as n — oo. To see this, note that (z,w)e \J  En, X E}} im-
. (isp )ES”

plies that ¢(z) € OF,, @(w) € Of and |i — p| + |j — q] < 2. Considering the loca-

57

tion of these squares relative to each other, we obtain |¢(z) — e(W)| <

211
Hence the sets  |UJ E}, X El} are nested downward and
G, j o €S
U Ep, X Ej < {(z, w)ie(@) = o(w)}.
n (Lj,p,a)eESL’
This last set has Lebesgue measure 0. Set y,(z) =% O En o (z). Then
rq ij
(i j.o, ) €S’

7{(2) 4 0. Hence by the Lebesgue dominated convergence theorem,

SS 1f(2)gw)i® = SS%,.If(E)g(WN2 -0
O Exgx E T
Ginpes”

as n = 0o, since y,| f(2)g(W)® < |f(2)ew)|* € LAT?). QE.D.
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Historically, the original Fuglede Theorem was proved for Ny = N,. C. R.
Putpnam noted the generalization. We now have evidence of possible further gene-
ralizations. We ask the following questions. Let {M,} and {N,} denote any two
sequences of commuting normal operators. (Employing the Putnam 2 x 2 matrix
trick to the following question, the reader will see that without loss of generality
we may also assume M, = N, forevery n.) Let X € £ ().

N N
QuesTION 1. a) Does ¥, M, XN, =0 imply Y, MFXNy =0?

n=1 n=1

N N
b) Does ¥} M, XN,eC, imply ¥, MiXNyeC, and are the
n=1 n=1

Hilbert-Schmidt norms of both expressions equal?

QUESTION 2. Suppose ¥, [ M, || IV} < oo.
n=1

a) Does §, M, XN, =0 imply Y}, MJXN;}=0?

n=1 n=1

(=] (=]
b) Does ¥, M,XN,€C, imply Y MiXN¥eC, and are their

n==1 n=1

Hilbert-Schmidt norms equal?

Recently C. Apostol employed Theorem 1 to settle Question la and b in
the affirmative in the case when N = 2. The other cases remain unsolved but we
have some evidence. First of all, when generating functions are applied, the state-
ments all appear “formally” to be true. Also, if all the M,’s and N,’s were simul-
taneously diagonal matrices, then straightforward matrix calculations prove alt
the statements in this case.

We next give the case for N = 2. Apostol’s contribution was the use of pro-

jection operators to pass from the case where the normal operators are invertible
to the case where they are 1-1.

COROLLARY 2. Let {M;, M,} and {N,, N,} denote commuting pairs of normal
operators and let X € L(H#). Then

I M XN, + MoXNyfic, = || MPXNT + MFXN{|c,.

In particular, if one of these two expressions are in C,, then the other is in Cs, and if
one is 0 then the other is 0.

Proof. We first claim that the corollary holds true when M, or N, is O (the
case N =1 in Questions la and 1b). Indeed, applying Theorem 1 to M, XN, € C,,
where M, is the normal operator and XN, is the bounded operator, we obtain
M XN, lic, = IM{*XN,llc,. Similarly, [[M#XN,llc, = [|M{FXN#lc,, Therefore,
| M XN, lc, = MFXN; |ic,.
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We now claim that in Questions 1 and 2 we may assume, without loss of

generality, that M, = N, for all n. Set 4, = M, ® N, and ¥ = (g ?),) Then

A, is normal and

0 Y M,XN,

¥ *
PR L 0 L uE)

) and Y Aix4) = (0 0

From these equations, it is clear that to settle any of the Questions 1 or 2, it suffices
to assume that M, = N,.

Therefore we must prove that if M and N are commuting normal operators
and X € Z(#), then || MXM + NXN|c, = | M*XM* -- N*XN*||c,.

The next reduction is to the case where M and N are 1-1. To indicate why
this is important, note that if M and N were invertible, then MXM + NXN e C,
ifand only if N'MX + XNM™ e C,, and Theorem 1 would apply to this expression
being that N M and —NM™ are normal operators. Let M == M, @ 0 be the
orthogonal decomposition of M relative to 4 == (kerM)* @ kerM. Since N and
N¥* commute with M (that N* commutes with M follows by the classical Fuglede
Theorem), then kerM is an invariant subspace for N and N* and therefore it is a

reducing subspace for N; say N =N, @ N,. If then X = (‘é ﬁ), we have

MXM -+ NXN = (MIA-Ml + N, AN, NIBNg)

N,CN, N,DN,

and also the corresponding adjoint equation. But, forexample, || N1 BN,llc, =N BNF|c,
{and so on) by Theorem 1. In other words, the question reduces to the operator
in the upper left corner. That is, if M,AM, -- NyAN, € C, where M, is 1-1,
together with the earlier hypotheses, must M¥AM¥* 4+ NFANF € C,? Similarly, we
may assume without loss of generality, that N, is 1-1, and hence that M and N
are 1-1.

If M and N are commuting normal operators that are 1-1, then using the
spectral theorem we can obtain a sequence of projection operators P, which commute
with M and N such that P M — M and P,N — N uniformly and P,M is bounded
below on (kerP,M)L and P,N is bounded below on (kerP,N)L. In other words, use
the spectral theorem to obtain Af, and M, representing M and N respectively. Then

use the projections determined by {[(p] > —1} N {W; > 1—} Let E, denote
n n

the orthogonal projection onto L2 ({Iqo[ < —l~} U {[x/xl < —1—}) Then P,E,=0,
n n
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1 .
and P M - —l-E,l and P,N 4+ — E, are commuting normal operators that are
n P

invertible. Therefore

P(MXM + NXN)P, = P,M(P,XP,)P,M + P,N(P,XP,)P,N =

= (P,,M + L E) (P,XP,) (P,,M + g, ) +
n n

+ (P,,N + L1k ) (PXP) (P,,N + g, ) :
n n

Hence here we have a situation where AYA4 + BYBe C,, 4, B are commuting,
normal, invertible operators, ¥ € £ (). Let us assume that we have established the
corollary in this case. That is, ||4YA + BYB|c, = {|A*YA* -+ B*YB*|ic,. Then

I P(M*XM* + N*XN*) P,lc, =

= {(P,M)*P,XP,(P,M)* + (P,N)*P,XP,(P,N)"|lc, =

Il s §
- (P,,M + L ) P.,XP,,( pM+LE ) +
0 n n

Cy

n

#* B
+ (P,,N + iE") P,,XP,,(P,,N + 1 E)
n

= ‘(P,,M + -l—E,,)P,,XP,,(P,,M +LE ) +

1 n n

i
[

n

4 (P,,N-!— I—E,,)P,,XP,,(P,,N + -I—E,,)
n

= || P,(MXM + NXN)P,llc, > | MXM -+ NXN/c, .

Clearly if a sequence of operators T, ~ T uniformly and || T, llc,< M, then || Tjlc,< M
(recall this fact used in the proof of Theorem 1, where we only needed the hypothesis
that T, » T in the weak operator topology). Therefore

IM*XM* + N*XN*|lc, = | MXM + NXN|lc,.

Finally, to complete the proof it suffices to prove the case where M and N

are invertible.
MXM 4 NXN = N(NTIMX + XNM )M € C,.
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Hence, N'M and —NM™ are normal operators and N MX + XNM1eC,.
Applying Theorem 1 twice we obtain

| MXM + NXNc, = | N¥(NMX -+ XNM YM*|ic, =
= [|[NIM(N*XM¥*) + (N*XM*)NM™|c, =
= [(NM)*(N*XM*) + (N*XM*) (NM )*jc, =

= | M*XM* 4+ N*XN*|c,.

‘ Q.E.D.

We do not yet see how to apply these techniques to settle Question 1 when

N = 3, We do have some positive indications. For instance, if both expressions are
in C,, then we can prove that their Hilbert-Schmidt norms are equal.

REMARK. Donald Hadwin has proven that (2) = (1) in [5]. Namely, if a normal
operator is the sum of a diagonalizable operator and a Hilbert-Schmidt operator,
then an operator can be chosen with an arbitrary small Hilbert-Schmidt norm.

Since this paper was written, Dan Voiculescu has settled Berg’s question in
the affirmative [7]. This result implies Theorem 1, but does not settle Questions 1
or 2 nor does it provide another proof of Corollary 2.

Finally we wish to ask another question relating commutators of normal
operators, Fuglede’s Theorem modulo the trace class, and the trace.

In [5, Theorem 8] we proved that if N is a normal operator, X € C, and NX —
— XN € C,, then trace(NX — XN) = 0. If we merely assume X € Z(s#), the state-
ment fails. For example, let N be the bilateral shift and X the unilateral shift viewed
as a 2-way infinite matrix. Then trace (NX — XN) = 1. However, can we only
assume X is a compact operator?

QuEsTION 3. If N is a normal operator and X € #° (o) such that NX — XN e
€ C;, must trace(NX — XN) = 0?

This relates to another open question. In [4] we asked if the Fuglede theorem
was true modulo C,. Suppose it were. That is, N normal, X € £ (o), and NX — XN €
e C; implies N*X — XN* ¢ C,. We claim then that this would settle Question 3
in the affirmative. To see this, note that X* 4+ X and X* — X are diagonal, and
so trace[X* + X, T] = trace[X* — X, T = 0.
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