THE FUGLEDE COMMUTATIVITY THEOREM MODULO THE HILBERT-SCHMIDT CLASS AND GENERATING FUNCTIONS FOR MATRIX OPERATORS. II

GARY WEISS

Let \mathscr{H} denote a separable, complex Hilbert space and let $\mathscr{L}(\mathscr{H})$ denote the class of all bounded linear operators acting on \mathscr{H} . Let $\mathscr{K}(\mathscr{H})$ denote the class of compact operators in $\mathscr{L}(\mathscr{H})$ and let C_p denote the Schatten p-class $(0 with <math>\|\cdot\|_p$ $(1 \le p < \infty)$ denoting the associated p-norm. Hence C_2 is the Hilbert-Schmidt class and C_1 is the trace class.

In [5] we pointed out connections between a problem of I. D. Berg [1], namely "Is every normal operator the sum of a diagonalizable operator and a Hilbert-Schmidt operator?", and several statements regarding normal operators, Hilbert-Schmidt operators and trace class operators. Some of these statements were proven and some were left open questions. Here we settle the main question [5, statement (3)] and obtain a generalization, and we ask several new questions.

Theorem 1. If N_1, N_2 are normal operators and X is a bounded operator then

$$\|N_1X-XN_2\|_{C_2}=\|N_1^*X-XN_2^*\|_{C_2}.$$

In particular, $N_1X - XN_2 \in C_2$ implies $N_1^*X - XN_2^* \in C_2$.

We give a proof of this theorem which blends two earlier proofs. The first proof used generating functions and a kind of distribution theory. The second proof was entirely operator theoretic. The first proof was the original proof and suggests certain methods and generalizations. The second proof was a more recent proof that the author constructed from the first proof at the urging of Dan Voiculescu. It was felt that an operator theoretic proof was important.

In [5, Theorem 2c] we proved that to prove Theorem 1, it suffices to assume $N_1 = N_2 = M_{\varphi}$ (the operator of multiplication by φ) where $\varphi \in L^{\infty}(T)$, M_{φ} acts on $L^2(T)$, and for every complex number c, $m\{z : \varphi(z) = c\} = 0$.

Proof. In [5, The Main Construction] we defined the generating function for the matrix operator $X = (x_{ij})$ to be the formal Fourier series F(z, w) =

 $=\sum_{i,\ j=-\infty}^{\infty}x_{ij}z^iw^j. \text{ In other words, the entries of the matrix operator are precisely the Fourier coefficients of its corresponding generating function. In addition, when <math display="block">\varphi(z)=\sum_{n=-\infty}^{\infty}\varphi_nz^n \text{ is the Fourier series for } \varphi(z), \text{ we defined the formal product } \varphi(z)*F(z,w) \text{ in the canonical way to be the formal Fourier series } \sum_{i,\ j=-\infty}^{\infty}\left(\sum_{n=-\infty}^{\infty}\varphi_nx_{i-n},\ j\right)z^iw^j; \text{ and we defined } \varphi(w)*F(z,w) \text{ to be } \sum_{i,\ j}\left(\sum_{n}\varphi_nx_{i,\ j-n}\right)z^iw^j. \text{ (As expected, when } F(z,w)\in L^2(\mathbf{T}^2), \text{ the formal product is just the function product.) We then showed that the generating function for <math>M_{\varphi}X$ is $\varphi(z)*F(z,w), \text{ that for } XM_{\varphi} \text{ is } \varphi(w)*F(z,w), \text{ that for } M_{\varphi}^*X \text{ is } \overline{\varphi(z)}*F(z,w), \text{ and that for } XM_{\varphi}^* \text{ is } \overline{\varphi(z)}*F(z,w), \text{ and that for } M_{\varphi}^*X-XM_{\varphi} \text{ is } \overline{\varphi(z)}-\varphi(w))*F(z,w).$

The hypothesis that $M_{\varphi}X-XM_{\varphi}\in C_2$ is equivalent to $(\varphi(\overline{z})-\varphi(w))*F(z,w)\in L^2(\mathbb{T}^2)$. Indeed

$$||M_{\varphi}X - XM_{\varphi}||_{C_2}^2 = \int_{\mathbf{T}^2} |(\varphi(\bar{z}) - \varphi(w)) \div F(z, w)|^2.$$

Replacing φ by $a\varphi + b$, it is clear that without loss of generality, we may assume that Range $\varphi \subset Q$ $(Q = [0, 1) \times [0, 1)$ considered as embedded in the complex plane).

Now $(\varphi(z) - \varphi(w))*F(z, w)$ is a function in $L^2(T^2)$ and $\{(z, w): \varphi(z) = \varphi(w)\}$ has 2-dimensional Lebesgue measures 0 in T^2 . (This follows from the fact that for every complex number c, $\{z: \varphi(z) = c\}$ has linear measure 0. See [5, Proof of Theorem 4] for the details.) Therefore, we have that $\overline{(\varphi(z) - \varphi(w))}/(\varphi(\overline{z}) - \varphi(w)) \in L^{\infty}(T^2)$ with modulus 1 almost everywhere in T^2 , and so

$$\begin{aligned} (\dagger) &\equiv \frac{\varphi(z) - \varphi(w)}{\varphi(z) - \varphi(w)} \cdot [(\varphi(\overline{z}) - \varphi(w)) * F(z, w)] = \\ &= \frac{1}{\varphi(\overline{z}) - \varphi(w)} \cdot \overline{(\varphi(\overline{z}) - \varphi(w))} \cdot [(\varphi(\overline{z}) - \varphi(w)) * F(z, w)] = \\ &= \frac{1}{\varphi(z) - \varphi(w)} \cdot (\overline{(\varphi(\overline{z}) - \varphi(w))} * [(\varphi(\overline{z}) - \varphi(w)) * F(z, w)]). \end{aligned}$$

The last equality holds since both are $L^2(T^2)$ functions, and so the function product and the formal product are the same. Let [A, B] = AB - BA. Then clearly $\overline{(\varphi(z) - \varphi(w))} * [(\varphi(\overline{z}) - \varphi(w)) * F(z, w)]$ is the generating function for the operator $[M_{\varphi}^*, [M_{\varphi}, X]]$, while $(\varphi(\overline{z}) - \varphi(w)) * [(\varphi(\overline{z}) - \varphi(w)) * F(z, w)]$ is the generating function

for the operator $[M_{\varphi}, [M_{\varphi}^*, X]]$. It is well-known and straightforward to show that these two operators are equal. Since one is a Hilbert-Schmidt operator, they both are, and their generating functions are in $L^2(\mathbb{T}^2)$ and are equal almost everywhere in \mathbb{T}^2 . Therefore, almost everywhere in \mathbb{T}^2 ,

$$(\dagger) = \frac{1}{\varphi(\overline{z}) - \varphi(w)} ((\varphi(\overline{z}) - \varphi(w)) * [(\overline{\varphi(z)} - \varphi(w)) * F(z, w)]).$$

Thus far, the ideas expressed here are similar to those in [5, Proof of Theorem 4]. However, at this point we want to remove the first * from this last expression, but cannot, as we don't even know that the expression in brackets is a function. If we could remove this *, we could cancel $\varphi(z) - \varphi(w)$, with itself, and we would be done. What we do is introduce a kind of test function which will allow more of this algebraic manipulation.

THE TEST FUNCTION

Let
$$Q_{ij}^n = \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right] \times \left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]$$
 for $1 \le i, j \le 2^n$, and let $E_{ij}^n = \varphi^{-1}(Q_{ij}^n)$.

Clearly $\bigcup Q_{ij}^n = Q$ and $\bigcup E_{ij}^n = T$. Let $\mathscr S$ denote the collection of quadruples of integers (i, j, p, q) for which $1 \le i, j, p, q \le 2^n$ and $|i - p| + |j - q| \ge 3$. Define the test function $t_n(z, w)$ for each positive integer n, as follows

$$t_{n}(z, w) = \sum_{(i, j, p, q) \in \mathscr{S}} \chi_{E_{ij}^{n}}(\overline{z}) \chi_{E_{pq}^{n}}(w).$$

We shall now show that

$$t_n(z, w) \cdot (\dagger) = 0$$

$$= \frac{t_n(z, w)}{\varphi(\overline{z}) - \varphi(w)} ((\varphi(\overline{z}) - \varphi(w)) * (\overline{\varphi(z)} - \varphi(w)) * F(z, w)) = 0$$

$$= t_n(z, w) * (\overline{\varphi(z)} - \varphi(w)) * F(z, w),$$

considered as formal Fourier series. The reader should realize that the first * in this last expression has not yet been defined. However, it is clear that since $\chi_{E_{ij}^n}(z)$ and $\chi_{E_{pq}^n}(z) \in L^\infty(T)$, the generating function for $M_{\chi_{E_{ij}^n}}XM_{\chi_{E_{pq}^n}}$ is given by $\chi_{E_{ij}^n}(\overline{z})*$ $*(\chi_{E_{pq}^n}(w)*F(z,w))$ (for every bounded operator matrix X with generating function F). For simplicity we shall simplify notation as follows. Let $\chi_{ij}(z) = \chi_{E_{ij}^n}(z)$.

Clearly * is distributive over +, since it reflects the corresponding algebraic operations of operator multiplication $(M_{\varphi}X, XM_{\varphi}, \text{ etc.})$ and operator addition. Therefore, to prove the last equality, it suffices to show that for every (i, j, p, q) for which $|i - p| + |j - q| \ge 3$, we have

$$\begin{split} &\frac{\chi_{ij}(\overline{z})\chi_{pq}(w)}{\varphi(\overline{z}) - \varphi(w)}((\varphi(\overline{z}) - \varphi(w))*[\overline{(\varphi(z) - \varphi(w))}*F(z, w)]) = \\ &= \chi_{ij}(\overline{z})*(\chi_{pq}(w)*[\overline{(\varphi(z) - \varphi(w))}*F(z, w)]), \end{split}$$

as formal Fourier series.

Now $|i-p|+|j-q|\geqslant 3$ implies one of |i-p| or $|j-q|\geqslant 2$. Say $|i-p|\geqslant 2$. Then either i< p or i>p, say i< p. The reader will see, after reading this proof, that the proofs for the other three cases are essentially identical. Let $c=\frac{i-1}{2^n}+\frac{j-1}{2^n}$. Then $(\overline{z},w)\in E^n_{ij}\times E^n_{pq}$ implies $\varphi(\overline{z})\in Q^n_{ij},\ \varphi(w)\in Q^n_{pq},\ \varphi(w)-c\neq 0$, and finally that $\left|\frac{\varphi(\overline{z})-c}{\varphi(w)-c}\right|<1$. Therefore $\frac{\chi_{ij}(\overline{z})\chi_{pq}(w)}{\varphi(\overline{z})-\varphi(w)}=0$ if $(\overline{z},w)\notin E^n_{ij}\times E^n_{pq}$ and otherwise

$$\begin{split} \frac{\chi_{ij}(\overline{z})\chi_{pq}(w)}{\varphi(\overline{z}) - \varphi(w)} &= \frac{1}{(\varphi(\overline{z}) - c) - (\varphi(w) - c)} = \\ &= -(\varphi(w) - c)^{-1} \left[1 - \frac{\varphi(\overline{z}) - c}{\varphi(w) - c} \right]^{-1} = \\ &= -(\varphi(w) - c)^{-1} \sum_{k=0}^{\infty} \left(\frac{\varphi(\overline{z}) - c}{\varphi(w) - c} \right)^{k} . \end{split}$$

If we now let

$$\varphi_k(z) = \chi_{ij}(z)(\varphi(z) - c)^k$$

and

$$\psi_k(w) = \chi_{pq}(w) (\varphi(w) - c)^{-(k+1)},$$

we have $\varphi_k \in L^{\infty}(T)$. Also since p > i and $|i - p| \ge 2$, we have $\psi_k(w) = 0$ if $w \notin E_{pq}^n$ and otherwise $\varphi(w) \in Q_{pq}^n$, which implies

$$|\varphi(w) - c| = \left| \varphi(w) - \left(\frac{i-1}{2^n} + i \frac{j-1}{2^n} \right) \right| \ge \frac{p-i}{2^n} \ge \frac{2}{2^n}$$

Therefore $\psi_k \in L^{\infty}(\mathbf{T})$ also. In addition, if $(\overline{z}, w) \in E_{ij}^n \times E_{pq}^n$, then $\varphi(\overline{z}) \in Q_{ij}^n$ and $\varphi(w) \in Q_{pq}^n$, and so $|\varphi(\overline{z}) - c| \leq \frac{\sqrt{2}}{2^n}$ and $|\varphi(w) - c| \geq \frac{2}{2^n}$. Therefore

$$\sum_{k} \|\varphi_{k}\|_{L^{\infty}(\mathbf{T})} \|\psi_{k}\|_{L^{\infty}(\mathbf{T})} \leq 2^{n-1} \sum_{k} 2^{-k/2} < \infty.$$

We now claim that if G(z, w) is the generating function for any bounded matrix operator for which $(\varphi(\overline{z}) - \varphi(w)) * G(z, w) \in L^2(\mathbb{T}^2)$, then

$$\frac{\chi_{ij}(\overline{z})\chi_{pq}(w)}{\varphi(\overline{z}) - \varphi(w)}(\varphi(\overline{z}) - \varphi(w)) * G(z, w) =$$

$$= \chi_{ij}(\overline{z}) * \chi_{pq}(w) * G(z, w).$$

The proof of this claim requires some work and we give it next. The above functions φ_k , ψ_k can now be used to say

$$\frac{\chi_{ij}(\overline{z})\chi_{pq}(w)}{\varphi(\overline{z})-\varphi(w)}=-\sum_{k=0}^{\infty}\varphi_k(\overline{z})\psi_k(w)$$

where the sum converges in $L^{\infty}(\mathbf{T}^2)$. Now

$$\begin{aligned} \varphi_k(\overline{z}) \, \psi_k(w) [(\varphi(\overline{z}) - \varphi(w)) * G(z, w)] &= \\ &= \varphi_k(\overline{z}) \, \psi_k(w) * [(\varphi(\overline{z}) - \varphi(w)) * G(z, w)] &= \\ &= [\varphi_k(\overline{z}) \, \psi_k(w) * (\varphi(\overline{z}) - \varphi(w))] * G(z, w). \end{aligned}$$

This last equality follows since if we let G denote the matrix operator with generating function G(z, w), the former expression is the generating function for $M_{\varphi_k}[M_{\varphi}, G]M_{\psi_k}$ and the latter expression is the generating function for $M_{\varphi_k}M_{\varphi}GM_{\psi_k}-M_{\varphi_k}GM_{\varphi}M_{\psi_k}$, which are equal as operators. Therefore

$$\frac{\chi_{ij}(\overline{z}) \chi_{pq}(w)}{\varphi(\overline{z}) - \varphi(w)} [(\varphi(\overline{z}) - \varphi(w)) * G(z, w)] =$$

$$= -\sum_{k=0}^{\infty} [\varphi_k(\overline{z}) \psi_k(w) * (\varphi(\overline{z}) - \varphi(w))] * G(z, w)$$

where the convergence is in $L^2(\mathbf{T}^2)$. But considering the corresponding finite sum of operators,

$$\begin{split} &-\sum_{k=0}^{K}\left(M_{\varphi_{k}}M_{\varphi}GM_{\psi_{k}}-M_{\varphi_{k}}GM_{\varphi}M_{\psi_{k}}\right)=-\sum_{k=0}^{K}\left(M_{\varphi_{k}}M_{(\varphi-c)}GM_{\psi_{k}}-M_{\varphi_{k}}GM_{(\varphi-c)}M_{\psi_{k}}\right)=\\ &=-\sum_{k=0}^{K}\left(M_{\chi_{ij}(\varphi-c)^{k}}M_{(\varphi-c)}GM_{\chi_{pq}(\varphi-c)^{-(k+1)}}-M_{\chi_{ij}(\varphi-c)^{k}}GM_{(\varphi-c)}M_{\chi_{pq}(\varphi-c)^{-(k+1)}}\right)=\\ &=-\sum_{k=0}^{K}\left(M_{\chi_{ij}(\varphi-c)^{k+1}}GM_{\chi_{pq}(\varphi-c)^{-(k+1)}}-M_{\chi_{ij}(\varphi-c)^{k}}GM_{\chi_{pq}(\varphi-c)^{-k}}\right)=\\ &=-M_{\chi_{ij}(\varphi-c)^{K+1}}GM_{\chi_{pq}(\varphi-c)^{-(X+1)}}+M_{\chi_{ij}}GM_{\chi_{pq}}. \end{split}$$

Now since

$$\|\chi_{ij}(\varphi-c)^{K+1}\|_{L^{\infty}(\mathbb{T})} \leq \left(\frac{\sqrt{2}}{2^n}\right)^{K+1}$$

and

$$\|\chi_{pq}(\varphi-c)^{-(K+1)}\|_{L^{\infty}(\mathbb{T})} \leqslant \left(\frac{2^n}{2}\right)^{K+1}$$
,

we have that

Hence the partial sum of the operators converges in the uniform norm to $M_{\chi_{ij}}GM_{\chi_{pq}}$ with the generating function $\chi_{ij}(\bar{z})\chi_{pq}(w)*G(z,w)$. The uniqueness of the generating function (equivalently, the uniqueness of the matrix in the standard basis) gives us that

$$-\sum_{k=0}^{\infty} [\varphi_k(\overline{z})\psi_k(w)*(\varphi(\overline{z})-\varphi(w))]*G(z,w) =$$

$$= \chi_{ii}(\overline{z})\chi_{na}(w)*G(z,w),$$

and we have proved the claim. Thus we have that

$$t_n(z, w) (\dagger) = t_n(z, w) * \overline{(\varphi(\overline{z}) - \varphi(w))} * F(z, w)$$

where $|t_n(z, w)| \le 1$ for all z, w, and (†) is a function in $L^2(\mathbf{T}^2)$. In other words

$$t_n(z, w) * [\overline{(\varphi(\overline{z}) - \varphi(w))} * F(z, w)]$$

is a sequence of functions in $L^2(\mathbf{T}^2)$ with L^2 -norm uniformly bounded by the L^2 -norm of $(\varphi(\bar{z}) - \varphi(w)) * F(z, w)$. Therefore for every n, the corresponding operator statement is

$$\|\sum_{(i, i, p, q) \in \mathscr{L}} M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}}\|_{C_2} \leq \|[M_{\varphi}, X]\|_{C_2}.$$

It is elementary to show that if $\{T_n\}$ is a sequence of bounded operators such that $T_n \to T$ in the weak operator topology and $\|T_n\|_{C_2} \leq M$ for every n, then $T \in C_2$ and $\|T\|_{C_2} \leq M$. Therefore our proof will be finished if we can show that $T_n \to [M_{\varpi}^*, X]$ in the weak operator topology, where

$$T_n = \sum_{(i, j, p, q) \in \mathscr{S}} M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}}.$$

To do this, let us recall some facts. Let $f \otimes g$ for $f, g \in L^2(T)$ denote the rank one operator $f \otimes g$ (h) = (h, g)f. It is elementary to verify that if $A \in \mathcal{L}(\mathcal{H})$ with

matrix entries $(a_{ij})_{i,j=-\infty}^{\infty}$ relative to the standard basis $\{z^n\}_{n=-\infty}^{\infty}$, then $a_{ij}=(Az^j,z^i)$. Furthermore, the matrix for $z^j\otimes z^i$ has a 1 in the j,i entry and 0 elsewhere and so a simple verification shows that $a_{ij}=\operatorname{trace} A(z^j\otimes z^i)$. That is, $(Az^j,z^i)=$ = trace $A(z^j\otimes z^i)$. From this it follows directly that if $f,g\in L^2(T)$, then (Af,g)= = trace $A(f\otimes g)$. The reader should take care to realize that (Af,g), as well as $f\otimes g$, are linear in f and conjugate linear in g.

Now to compute
$$[M_{\varphi}^*, X] - T_n$$
, note that $\sum_{1 < i, j < 2^n} M_{\chi_{ij}} = I$. Define

$$\mathscr{S}' = \{(i, j, p, q) \notin \mathscr{S} \text{ and } 1 \leq i, j, p, q \leq 2^n\}.$$

Clearly also

$$\mathscr{S}' = \{(i, j, p, q) : 1 \le i, j, p, q \le 2^n \text{ and } |i - p| + |j - q| \le 2\}.$$

Then

$$[M_{\varphi}^*, X] - T_n = \sum_{(i, j, p, q) \in \mathscr{S}'} M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}}.$$

If we now fix $f, g \in L^2(\mathbf{T})$, then

$$(([M_{\varphi}^*, X] - T_n)f, g) = \sum_{(i, j, p, q) \in \mathscr{S}'} (M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}}f, g) =$$

$$= \sum_{(i, j, p, q) \in \mathscr{S}'} \operatorname{trace} (M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}}) (f \otimes g).$$

Setting $Y = [M_{\varphi}^*, X] M_{\chi_{pq}}(f \otimes g)$, we obtain $Y \in C_1$ and hence $\operatorname{trace} M_{\chi_{ij}} Y = \operatorname{trace} Y M_{\chi_{ij}}$. Therefore

$$\operatorname{trace}(M_{\chi_{ij}}[M_{\varphi}^*, X] M_{\chi_{pq}})(f \otimes g) = \operatorname{trace}[M_{\varphi}^*, X] M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}.$$

It is easy to see that if R is any trace class operator (in particular, $R = M_{\chi_{pq}}(f \otimes g)M_{\chi_{tj}}$) and $A, B \in \mathcal{L}(\mathcal{H})$, then trace [A, B]R = trace[R, A]B. Indeed,

$$trace([A, B]R - [R, A]B) = trace(ABR - RAB + ARB - BAR) =$$

$$= trace[AB, R] + trace[AR, B] = 0,$$

since R and $AR \in C_1$. Hence,

$$\begin{aligned} |(([M_{\varphi}^*, X] - T_{\mathsf{n}})f, g)| &= |\sum_{(i, j, p, q) \in \mathscr{S}'} \operatorname{trace}[M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}, M_{\varphi}^*] X| \leqslant \\ &\leqslant \sum_{(i, j, p, q) \in \mathscr{S}'} |\operatorname{trace}[M_{\varphi}^*, M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}] X| \leqslant \\ &\leqslant \sum_{(i, j, p, q) \in \mathscr{S}'} ||X||_{\mathscr{L}(\mathscr{H})} ||[M_{\varphi}^*, M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}]||_{C_1}. \end{aligned}$$

Note that the commutator in this last expression is the difference between two rank one operators and hence is a rank 2 operator. It is well-known that there exists C > 0 such that $||A||_{C_1} \le C||A||_{C_2}$ for every rank 2 operator A. This allows us to obtain an upper bound on the trace norm of this commutator by looking at its Hilbert-Schmidt norm. That is,

$$||[M_{\omega}^*, M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}]||_{C_1} \leq C||[M_{\omega}^*, M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}]||_{C_2}.$$

Next, we need to know the generating function for this commutator. We start by considering the generating function for $f \otimes g$.

The matrix for $z^i \otimes z^j$ has a 1 in the i, j entry and 0 elsewhere. Hence its generating function is $z^i w^j$. It follows that if $f, g \in L^2(\mathbf{T})$, then $f \otimes g = \sum \hat{f}(i) \overline{\hat{g}(j)} z^i \otimes z^j$. Therefore the generating function of $f \otimes g$ is

$$\sum_{i,j} \hat{f}(i)\overline{\hat{g}(j)}z^i w^j = (\sum_i \hat{f}(i)z^i)(\sum_j \overline{\hat{g}(j)}w^j) = f(z)\overline{g(w)}.$$

Earlier remarks then give that the generating function for $M_{\chi_{pq}}(f \otimes g)M_{\chi_{ij}}$ is $\chi_{pq}(\overline{z})\chi_{ij}(w)f(z)\overline{g(w)}$, and finally the generating function for $[M_{\varphi}^*, M_{\chi_{pq}}(f \otimes g)M_{\chi_{ij}}]$ is $(\varphi(\overline{z}) - \varphi(w))\chi_{pq}(\overline{z})\chi_{ij}(w)f(z)\overline{g(w)}$. Therefore after a change of variables of \overline{z} to z,

$$\|[M_{\varphi}^*, M_{\chi_{pq}}(f \otimes g) M_{\chi_{ij}}]\|_{C_3}^2 = \int_{E_{pq}^n \times E_{ij}^n} |(\varphi(z) - \varphi(w)) f(\overline{z})g(\overline{w})|^2 \leq$$

$$\leq \left(\frac{3\sqrt[n]{2}}{2^n}\right)^2 \iint_{E_{pq}^n \times E_{IJ}^n} |f(\overline{z})g(\overline{w})|^2.$$

This last equality follows by $(z, w) \in E_{pq}^n \times E_{ij}^n$ where $(i, j, p, q) \in \mathcal{S}'$ implies $|i - p| + |j - q| \le 2$. This puts $\varphi(z) \in Q_{pq}^n$, $\varphi(w) \in Q_{ij}^n$ and so $|\varphi(z) - \varphi(w)| \le \frac{3\sqrt{2}}{2^n}$ by the location of these squares relative to each other.

Hence,

$$\begin{split} |(([M_{\varphi}^*,X]-T_n)f,g)| & \leq \\ & \leq \frac{3\sqrt{2}C}{2^n}\|X\| \sum_{(i,j,p,q)\in\mathcal{S}'} \left(\int\limits_{E_{pq}^n\times E_{ij}^n} |f(\overline{z})g(w)|^2 \right)^{1/2} \leq \\ & \leq \frac{3\sqrt{2}C}{2^n}\|X\| \left[\sum\limits_{(i,j,p,q)\in\mathcal{S}'} \left(\int\limits_{E_{pq}^n\times E_{ij}^n} |f(\overline{z})g(w)|^2 \right) \right]^{1/2} [\int\limits_{(i,j,p,q)\in\mathcal{S}'} 1]^{1/2}. \end{split}$$

This last inequality follows from Hölder's inequality. The last bracketed expression indicates that we need to compute the cardinality of \mathscr{S}' . Recall that \mathscr{S}' is the set of all 4-tuples (i,j,p,q) for which $1 \le i,j,p,q \le 2^n$ and $|i-p|+|j-q| \le 2$. The number for which |i-p|+|j-q|=0 is clearly $2^n \cdot 2^n$. The number for which |i-p|+|j-q|=1 is the number for which i=p and |j-q|=1, or |i-p|=1 and j=p. This is $2 \cdot 2 \cdot 2^n (2^n-1)$. Finally consider the number for which |i-p|+|j-q|=2, that is |i-p|=|j-q|=1, or |i-p|=2 and j=q, or i=p and |j-q|=2. This is $2 \cdot 2 \cdot (2^n-1)(2^n-1)+2(2^n \cdot 2 \cdot (2^n-2))$. The crucial point is that the total of these quantities, namely the cardinality of \mathscr{S}' , is less than or equal to $k \cdot 4^n$, where k is some positive number independent of n.

Continuing on from this last inequality we obtain

$$\begin{split} |(([M_{\varphi}^{*},X]-T_{n})f,g)| &\leq \frac{3\sqrt{2}}{2^{n}} C\|X\| \left[\int\limits_{\substack{\dot{\cup}\\ (i,j,p,q)\in\mathcal{S}'}} |f(\overline{z})g(w)|^{2} \right] [k4^{n}]^{1/2} \leq \\ &\leq 3\sqrt{2} C\sqrt{k}\|X\| \left[\int\limits_{\substack{\dot{\cup}\\ (i,j,p,q)\in\mathcal{S}'}} |f(\overline{z})g(w)|^{2} \right]^{1/2} \cdot \end{split}$$

Now our proof will be complete if we can show that this last bracketed expression approaches 0 as $n \to \infty$. To see this, note that $(z, w) \in \bigcup_{(i,j,p,q) \in \mathscr{S}'} E_{pq}^n \times E_{ij}^n$ implies that $\varphi(z) \in \mathcal{Q}_{pq}^n$, $\varphi(w) \in \mathcal{Q}_{ij}^n$ and $|i-p|+|j-q| \le 2$. Considering the location of these squares relative to each other, we obtain $|\varphi(z)-\varphi(w)| \le \frac{3\sqrt{2}}{2^n}$. Hence the sets $\bigcup_{(i,j,p,q) \in \mathscr{S}'} E_{pq}^n \times E_{ij}^n$ are nested downward and

$$\bigcap_{n} \bigcup_{(i,j,p,q) \in \mathscr{L}'} E_{pq}^n \times E_{ij}^n \subset \{(z,w) : \varphi(z) = \varphi(w)\}.$$

This last set has Lebesgue measure 0. Set $\chi_n(z) = \chi$ \vdots $E_{pq}^n \times E_{ij}^n(z)$. Then $\chi_n(z) \downarrow 0$. Hence by the Lebesgue dominated convergence theorem,

$$\iint_{\substack{\dot{\mathbf{L}} \\ J, p, q, \bar{\mathbf{p}} \in \mathcal{S}'}} |f(\overline{z})g(w)|^2 = \iint_{\mathbf{T}^2} \chi_n |f(\overline{z})g(w)|^2 \to 0$$

as
$$n \to \infty$$
, since $\chi_n |f(\bar{z})g(w)|^2 \le |f(\bar{z})g(w)|^2 \in L^2(\mathbb{T}^2)$. Q.E.D.

Historically, the original Fuglede Theorem was proved for $N_1 = N_2$. C. R. Putnam noted the generalization. We now have evidence of possible further generalizations. We ask the following questions. Let $\{M_n\}$ and $\{N_n\}$ denote any two sequences of commuting normal operators. (Employing the Putnam 2×2 matrix trick to the following question, the reader will see that without loss of generality we may also assume $M_n = N_n$ for every n.) Let $X \in \mathcal{L}(\mathcal{H})$.

QUESTION 1. a) Does
$$\sum_{n=1}^{N} M_n X N_n = 0$$
 imply $\sum_{n=1}^{N} M_n^* X N_n^* = 0$?

b) Does
$$\sum_{n=1}^{N} M_n X N_n \in C_2$$
 imply $\sum_{n=1}^{N} M_n^* X N_n^* \in C_2$ and are the

Hilbert-Schmidt norms of both expressions equal?

QUESTION 2. Suppose $\sum_{n=1}^{\infty} \|M_n\| \|N_n\| < \infty.$

a) Does
$$\sum_{n=1}^{\infty} M_n X N_n = 0$$
 imply $\sum_{n=1}^{\infty} M_n^* X N_n^* = 0$?

b) Does
$$\sum_{n=1}^{\infty} M_n X N_n \in C_2$$
 imply $\sum_{n=1}^{\infty} M_n^* X N_n^* \in C_2$ and are their Hilbert-Schmidt norms equal?

Recently C. Apostol employed Theorem 1 to settle Question 1a and b in the affirmative in the case when N=2. The other cases remain unsolved but we have some evidence. First of all, when generating functions are applied, the statements all appear "formally" to be true. Also, if all the M_n 's and N_n 's were simultaneously diagonal matrices, then straightforward matrix calculations prove all the statements in this case.

We next give the case for N=2. Apostol's contribution was the use of projection operators to pass from the case where the normal operators are invertible to the case where they are 1-1.

COROLLARY 2. Let $\{M_1, M_2\}$ and $\{N_1, N_2\}$ denote commuting pairs of normal operators and let $X \in \mathcal{L}(\mathcal{H})$. Then

$$||M_1XN_1 + M_2XN_2||_{C_0} = ||M_1^*XN_1^* + M_2^*XN_2^*||_{C_0}$$

In particular, if one of these two expressions are in C_2 , then the other is in C_2 , and if one is 0 then the other is 0.

Proof. We first claim that the corollary holds true when M_2 or N_2 is 0 (the case N=1 in Questions Ia and Ib). Indeed, applying Theorem 1 to $M_1XN_1 \in C_2$, where M_1 is the normal operator and XN_1 is the bounded operator, we obtain $\|M_1XN_1\|_{C_2} = \|M_1^*XN_1\|_{C_2}$. Similarly, $\|M_1^*XN_1\|_{C_2} = \|M_1^*XN_1^*\|_{C_2}$. Therefore, $\|M_1XN_1\|_{C_2} = \|M_1^*XN_1^*\|_{C_2}$.

We now claim that in Questions 1 and 2 we may assume, without loss of generality, that $M_n = N_n$ for all n. Set $A_n = M_n \oplus N_n$ and $Y = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$. Then A_n is normal and

$$\sum A_n Y A_n = \begin{pmatrix} 0 & \sum M_n X N_n \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \sum A_n^* X A_n^* = \begin{pmatrix} 0 & \sum M_n^* X N_n^* \\ 0 & 0 \end{pmatrix}.$$

From these equations, it is clear that to settle any of the Questions 1 or 2, it suffices to assume that $M_n = N_n$.

Therefore we must prove that if M and N are commuting normal operators and $X \in \mathcal{L}(\mathcal{H})$, then $||MXM + NXN||_{C_2} = ||M^*XM^* + N^*XN^*||_{C_2}$.

The next reduction is to the case where M and N are 1-1. To indicate why this is important, note that if M and N were invertible, then $MXM + NXN \in C_2$ if and only if $N^{-1}MX + XNM^{-1} \in C_2$, and Theorem 1 would apply to this expression being that $N^{-1}M$ and $-NM^{-1}$ are normal operators. Let $M = M_1 \oplus 0$ be the orthogonal decomposition of M relative to $\mathscr{H} = (\ker M)^1 \oplus \ker M$. Since N and N^* commute with M (that N^* commutes with M follows by the classical Fuglede Theorem), then $\ker M$ is an invariant subspace for N and N^* and therefore it is a reducing subspace for N; say $N = N_1 \oplus N_2$. If then $X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, we have

$$MXM + NXN = \begin{pmatrix} M_1AM_1 + N_1AN_1 & N_1BN_2 \\ N_2CN_1 & N_2DN_2 \end{pmatrix}$$

and also the corresponding adjoint equation. But, for example, $||N_1BN_2||_{C_2} = ||N_1^*BN_2^*||_{C_2}$ (and so on) by Theorem 1. In other words, the question reduces to the operator in the upper left corner. That is, if $M_1AM_1 - N_1AN_1 \in C_2$ where M_1 is 1-1, together with the earlier hypotheses, must $M_1^*AM_1^* + N_1^*AN_1^* \in C_2$? Similarly, we may assume without loss of generality, that N_1 is 1-1, and hence that M and N are 1-1.

If M and N are commuting normal operators that are 1-1, then using the spectral theorem we can obtain a sequence of projection operators P_n which commute with M and N such that $P_nM \to M$ and $P_nN \to N$ uniformly and P_nM is bounded below on $(\ker P_nM)^\perp$ and P_nN is bounded below on $(\ker P_nN)^\perp$. In other words, use the spectral theorem to obtain M_{φ} and M_{ψ} representing M and N respectively. Then use the projections determined by $\left\{|\varphi|>\frac{1}{n}\right\} \cap \left\{|\psi|>\frac{1}{n}\right\}$. Let E_n denote the orthogonal projection onto $L^2\left(\left\{|\varphi|\leqslant\frac{1}{n}\right\} \cup \left\{|\psi|\leqslant\frac{1}{n}\right\}\right)$. Then $P_nE_n=0$,

and $P_nM + \frac{1}{n}E_n$ and $P_nN + \frac{1}{n}E_n$ are commuting normal operators that are invertible. Therefore

$$P_n(MXM + NXN)P_n = P_nM(P_nXP_n)P_nM + P_nN(P_nXP_n)P_nN =$$

$$= \left(P_nM + \frac{1}{n}E_n\right)(P_nXP_n)\left(P_nM + \frac{1}{n}E_n\right) +$$

$$+ \left(P_nN + \frac{1}{n}E_n\right)(P_nXP_n)\left(P_nN + \frac{1}{n}E_n\right).$$

Hence here we have a situation where $AYA + BYB \in C_2$, A, B are commuting, normal, invertible operators, $Y \in \mathcal{L}(\mathcal{H})$. Let us assume that we have established the corollary in this case. That is, $||AYA + BYB||_{C_2} = ||A^*YA^* + B^*YB^*||_{C_2}$. Then

$$\|P_{n}(M^{*}XM^{*} + N^{*}XN^{*})P_{n}\|_{C_{2}} =$$

$$= \|(P_{n}M)^{*}P_{n}XP_{n}(P_{n}M)^{*} + (P_{n}N)^{*}P_{n}XP_{n}(P_{n}N)^{*}\|_{C_{2}} =$$

$$= \left\|\left(P_{n}M + \frac{1}{n}E_{n}\right)^{*}P_{n}XP_{n}\left(P_{n}M + \frac{1}{n}E_{n}\right)^{*} +$$

$$+ \left(P_{n}N + \frac{1}{n}E_{n}\right)^{*}P_{n}XP_{n}\left(P_{n}N + \frac{1}{n}E_{n}\right)^{*}\right\|_{C_{2}} =$$

$$= \left\|\left(P_{n}M + \frac{1}{n}E_{n}\right)P_{n}XP_{n}\left(P_{n}M + \frac{1}{n}E_{n}\right) +$$

$$+ \left(P_{n}N + \frac{1}{n}E_{n}\right)P_{n}XP_{n}\left(P_{n}N + \frac{1}{n}E_{n}\right) +$$

$$+ \left(P_{n}N + \frac{1}{n}E_{n}\right)P_{n}XP_{n}\left(P_{n}N + \frac{1}{n}E_{n}\right)\right\|_{C_{2}} =$$

$$= \|P_{n}(MXM + NXN)P_{n}\|_{C_{2}} \to \|MXM + NXN\|_{C_{3}}.$$

Clearly if a sequence of operators $T_n \to T$ uniformly and $||T_n||_{C_a} \leq M$, then $||T||_{C_a} \leq M$ (recall this fact used in the proof of Theorem 1, where we only needed the hypothesis that $T_n \to T$ in the weak operator topology). Therefore

$$||M^*XM^* + N^*XN^*||_{C_2} = ||MXM + NXN||_{C_2}.$$

Finally, to complete the proof it suffices to prove the case where M and N are invertible.

$$MXM + NXN = N(N^{-1}MX + XNM^{-1}) M \in C_2.$$

Hence, $N^{-1}M$ and $-NM^{-1}$ are normal operators and $N^{-1}MX + XNM^{-1} \in C_2$. Applying Theorem 1 twice we obtain

$$\begin{split} \|MXM + NXN\|_{C_2} &= \|N^*(N^{-1}MX + XNM^{-1})M^*\|_{C_2} = \\ &= \|N^{-1}M(N^*XM^*) + (N^*XM^*)NM^{-1}\|_{C_2} = \\ &= \|(N^{-1}M)^*(N^*XM^*) + (N^*XM^*)(NM^{-1})^*\|_{C_2} = \\ &= \|M^*XM^* + N^*XN^*\|_{C_2}. \end{split}$$
 Q.E.D.

We do not yet see how to apply these techniques to settle Question 1 when N=3. We do have some positive indications. For instance, if both expressions are in C_2 , then we can prove that their Hilbert-Schmidt norms are equal.

REMARK. Donald Hadwin has proven that $(2) \Rightarrow (1)$ in [5]. Namely, if a normal operator is the sum of a diagonalizable operator and a Hilbert-Schmidt operator, then an operator can be chosen with an arbitrary small Hilbert-Schmidt norm.

Since this paper was written, Dan Voiculescu has settled Berg's question in the affirmative [7]. This result implies Theorem 1, but does not settle Questions 1 or 2 nor does it provide another proof of Corollary 2.

Finally we wish to ask another question relating commutators of normal operators, Fuglede's Theorem modulo the *trace class*, and the trace.

In [5, Theorem 8] we proved that if N is a normal operator, $X \in C_2$ and $NX - XN \in C_1$, then $\operatorname{trace}(NX - XN) = 0$. If we merely assume $X \in \mathcal{L}(\mathcal{H})$, the statement fails. For example, let N be the bilateral shift and X the unilateral shift viewed as a 2-way infinite matrix. Then $\operatorname{trace}(NX - XN) = 1$. However, can we only assume X is a compact operator?

QUESTION 3. If N is a normal operator and $X \in \mathcal{K}(\mathcal{H})$ such that $NX - XN \in \mathcal{C}_1$, must trace(NX - XN) = 0?

This relates to another open question. In [4] we asked if the Fuglede theorem was true modulo C_1 . Suppose it were. That is, N normal, $X \in \mathcal{L}(\mathcal{H})$, and $NX - XN \in C_1$ implies $N^*X - XN^* \in C_1$. We claim then that this would settle Question 3 in the affirmative. To see this, note that $X^* + X$ and $X^* - X$ are diagonal, and so trace $[X^* + X, T] = \text{trace}[X^* - X, T] = 0$.

REFERENCES

- 1. Berg, I. D., An extension of the Weyl-von Neumann Theorem to normal operators, *Trans. Amer. Math. Soc.*, 160(1971), 365-371.
- VON NEUMANN, J., Charakterisierung des Spektrums eines Integraloperators, Actualites Sci. Indust., no. 229, Hermann, Paris, 1935.

- 3. Weiss, G., Commutators and operator ideals, dissertation, University of Michigan, 1975.
- 4. Weiss, G., Fuglede's commutativity theorem modulo operator ideals, *Proc. Amer. Math. Soc.*, to appear.
- 5. Weiss, G., The Fuglede Theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I, *Trans. Amer. Math. Soc.*, 246(1978), 193-209.
- 6. WEYL, H., Uber beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. Mat. Pelermo, 27(1909), 373-392.
- 7. Voiculescu, D., Some results on norm-ideal perturbations of Hilbert space operators, *J. Operator Theory*, 2(1979), 3-37.

GARY WEISS
Department of Mathematics,
University of Cincinnati,
Cincinnati, OH 45221,
U.S.A.

Received November 27, 1978; revised April 8, 1980.