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TOPOLOGICAL DIRECT INTEGRALS
OF LEFT HILBERT ALGEBRAS. I

NORBERT RIEDEL

INTRODUCTION

In some papers it was shown (see [8], [17]) how the theory of standard von
Neumann algebras may be used in order to improve some results in the “separable”
theory of direct integrals which goes back to J. von Neumann. In this paper we
are concerned in the following question. Using the theory of standard von Neumann
algebras, is it possible to develop a “‘non separable” theory of direct integrals such
that within this theory some of the more delicate problems may be solved, including
the questions on the types of the associated von Neumann algebras. This question
is also motivated by mathematical physics where decompositions of representations
of non separable C*-algebras are considered (see [3]), and in this context standard
von Neumann algebras play a natural role (see [19]).

Using Hilbert algebras only, the author started to develop such a theory in
{11]. We also want to mention the paper of H. Halpern [7] where the theory of stan-
dard von Neumann algebras has been used in order to decompose type 1II von
Neumann algebras with a cyclic and separating vector.

This paper is divided into three sections. First we introduce the notion of a
continuous field of left Hilbert algebras and of the corresponding direct integral
with respect to a positive Radon measure. Moreover we investigate the behavior
with respect to direct integral decomposition of some characteristic operators.
In Section 2 we prove that the type of the semifinite portion of the associated von
Neumann algebras reduces to the components. Throughout in Section 2 we assume
a countability condition to be satisfied which is the analogue of (H8) in [11], 1.8.
We will treat the corresponding problem for the type-III-portion in a subsequent
paper. Finally in Section 3 we show that the theory applies to the central decompo-
sition of a state ¢ on some C*-algebra o/ with unit if ¢ satisfies the KMS-boundary
condition with respect to some strongly continuous one parameter group of
automorphisms of 7.
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For the general theory of topological direct integrals of Hilbert spaces we refer
the reader to [4] and [10]. For the theory of standard von Neumann algebras we
refer the reader to [18], [16] and [12].

1. CONTINUOUS FIELDS OF LEFT HILBERT ALGEBRAS

Let Q be a locally compact space and let x be a positive Radon measure on .
Furthermore let {¥:}sco be a family of non trivial left Hilbert algebras (1. H. a.’s),
i.e. U, #{0} holds for any ¢ € 2. We denote the characteristic objects associaied
with 2, as usual, we only add £ as an index. For 4. (modular operator), S, F;, J:,
{o%}ter (modular automorphism group), m: (left regular representation of ;)
see [18] and for Py, Q;, R;, T, A ¢ see [12].

DerNITION 1.1, ({¥,}eeq, A) is called a continuous field of 1. H. a.’s if A is

a subset of [T U, which satisfies the following conditions:
fen
(L1) A4 is a linear subspace of II U, .

(L2) For any x € A the function g +-> i x(6)| belongs to C (1), C,(Q) being the set
of all continuous functions on © whose support is compact.

(L3) For any x, y € A the vector field & = x(E)y(¢) belongs to A.

{L4) For any x € A the vector field ¢ — x(&)* belongs to A.

(L5) For any x € A and fe C,(Q) the vector field ¢ — f(&)x(&) belongs to A.

(L6) For any &€ Q the real linear space generated by the set {x(£)¥x(¢)xc A}
is dense in ;.

(L7) For any x € A the operator field & +— m.(x(¢)) is bounded, i.e. sup “né(\(:;)) < 0

holds.
(L8) The operator field ¢ > J; is continuous with respect to 4.

For any ¢ € 2 we denote by 5, the Hilbert space which is the completion of ;.

REMARKS. (1) The remarks {1), (2), (3), (4) to Definition 1.1 in [11] remain
valid in our situation.
(2) In [10] we considered some properties wWhich operator fields may have,

such as ‘“‘continuity’’ and ‘‘strong measurability” (see [10], 1.10). In this paper we
assume these notions to be extended to fields of operators which are linear with
respect to the real numbers only. In particular condition (L8) makes sense. Similarly
we extend the notion of a ““decomposable’ operator (see [10], 1.5) or a “‘strongly
decomposable’ operator (see [10], 1.10). Observe that all statements in [10] remain
valid in this more general setting, except [10], 2.8.
(3) If A satisfies the conditions (L1), (L3), (L4) then condmon (L6) is equi-
valent to the following (see [12], p. 219):
(L6) For any ¢ € Q the set {(x(&), x(&)*)|x € 4} is dense in the graph of the opera-
tor S;.



TOPOLOGICAL DIRECT INTEGRALS. | 31

By [18], 5.1, we know that AP := {x({)|x € 4} is a 1. H. a. and by (L6) we infer
from [13], 1.3, that 22" = 2’ holds for any & € Q.

In the applications which we have in view (see Section 3) it is not so trivial to see
that condition (L8)is satisfied. However, as the following proposition shows, there
are several possibilities to substitute (L8) by some equivalent conditions. First we
need a technical lemma.

LeMMA 1.2, (a) Let K & Q be a compact subset and let L < H .ﬂ% be a

subset such that any x € L is continuous on K and the set {x()|x e L} is dense in
H e for any & € K. Furthermore let & — Z(£) be an operator field of (real or complex)
linear operators which is bounded on K such that for any x €L the vector field
&> Z(Ex(E) is continuous on K. Then & — Z(&) is also continuous on K.

(b) Let K < Q be compact and let & — Z(&) be a bounded field of normal opera-
tors which is continuous on K such that & — Z(&)* is also continuous on K. Furthermore
let M := (U Sp(Z(f)))" and let fe C(M). Then the operator field & — f(Z(8)) is

contmuous on K.

Proof. (2) Let L, be the real linear space which is generated by all vector
fields of the form & — f(&)x(£), where x € L and fe C,(Q) is real valued. As in [4],
p. 81, Proposition 6 one can see that any vector field x which is continuous on XK
is the uniform limit on K of some sequence of vector fields in L. Since & +— Z(&)
is bounded on K and ¢ — Z()x(¢) is continuous on K for any x € L, we conclude
as in [10], 1.4, that our assertion is true. ‘

(b) Since Z is bounded the set M is compact. Let z — p1(z, 2), z = py(z, 2),..
be a sequence of polynomials which converges to f uniformly on M. For any n e N
the operator field ¢ — p,(Z(), Z(£)*) is continuous on K. Furthermore we obtain
forany neN and aec 4

1P(Z(2), Z(£))a(&) — Z(ENa@)]l < Ip, — fylla@®I <

< [lpw — fllne sup lafOl

if £e Q. Since lim ||p, — fll,; = O holds our assertion follows from this.
n—» 00

PROPOSITION 1.3. Suppose that the conditions (L1) up to (1L6) are satisfied,
Then any two of the following statements are equivalent :
(1) &~ P; is continuous. .
(2) & Q¢ is continuous.
3) & R is continuous.
(4) & — A¥ is continuous for any t€R.
(5) & C(4,) is continuous (4(4;) = Cayley transform of A,).
(6) & > J; is continuous.
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Proof. (1) < (2): £ => P; is continuous if and only if & — iP; is continuous.
Since iP; = Q.1 holds for any {eQ, ¢ iP; is continuous if and only if ¢~ Q;
is continuous.

(2) = (3): Since R; = P; -+ Q; holds for any ¢ € Q our assertion follows from
the implication (2) = (1).

(3) = (4): Suppose that ¢ — R; is continuous. Then ¢ + 2 — R, is also conti-
nuous. It is sufficient to show that for any ¢eR the operator fields £ R‘é and
¢ = (2 — R;)" are continuous (see [12], 3.2). Let # € R be given. By 1.2(b) the operator
field ¢ > f(R;) is continuous for any fe C([0,2]). Let &F:= {f e C({0,2]) |f 10,5t €
€ C]0,2[)}. Since for any fe # the function A~ f(A)A¥ belongs to & too, for any
feZ and x € A the vector field & > R¥f(R:)x(£) is continuous. Let fj, f5, ... be

a monotonely increasing sequence of positive functions in # such that sup f,(1) = 4
nEN
holds for any 4 €]0, 2[. Since the spectral measure of R; is concentrated on the

interval ]0, 2[ (see [12], p. 194) the sequence {f,(R;)}»en converges to R; in the strong
operator topology. In particular the set {f(R)x({)lneN,xeA} is dense in
{Rzx(&) x € A}. Since R; is injective and posttive the set R(#;) is dense in ;.
Hence the set {R.x({)x €A} is also dense in #;. We conclude that the set
{fRIx()|f € F, x€A} is dense in # ;. Now we obtain from 1.2(a) that £ —> R¥isa
continuous operator field. Similarly one can see that & + (2 — Rg)" is a continuous
operator field.

(4) = (5): Suppose that & — AY is continuous for any 7€R. First we want
to show that the following is true.

(i) For any f'e C,(R") the operator field { — f(4,) is continuous.

Let fe C(R*) be given. Fuitthermore let I:= [&, ] = R+ be some compact
interval which contains the support of f. Finally let #,R* be chosen so small
that the function A+~ A on I is injective. Let us denote this function by g. g is a ho-
meomorphism from 7 onto D:= g(I). We define a function /s on S*:={1eC||}| =1}
as follows

e
0 if 1e ST\D.
Since the support of fis contained in I the function 4 is continuous and we have
h(4%) = f(4,;) for any ¢ € Q. By 1.2(b) the operator field & — h(4}¥) is continuous.
Thus our assertion (i) follows from this.

Since the Cayley transform maps R* homeomorphic onto I': = {i€ S|

Tm 2 < 0} we infer from (i) that
(ii) For any f'e C(I') the operator field ¢ - f(¥(4,)) is continuous.
Since the spectral measure of ¥(4,) is concentrated on I, #(4;) is the limit of some
strongly convergent sequence of operators of the form f(¥(4;)), where fe C.(I).
From this it follows that the set {f(%(4:))x(&)|f € CAI'), x € A} is dense in .
Since the function 4 > Af(4) belongs to C.(I') we obtain from (ii) and 1.2(a) that
¢ > ¥(4,) is continuous.
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(5) = (6): Suppose that & — €(4,) is continuous. Let & be the linear subspace
of C.(R) which is generated by all functions of the form f* g, where f, g€ C.(R)
(* denotes the convolution of functions on R). Let A, be the linear subspace of J]

which is generated by -all vector fields of the form & — f(log d,)x(€), whereif'!é &,

x € A. Since & - 4(4,) is continuous we infer from 1.2(b) that any x € 4, is conti-

nuous. From [18], Lemma 10.1, we obtain

(iii) For any x € 4, we have x(¢) € % if £ € Q, and & S,(x(&)) is contained in A,.

Furthermore we obtain (see the proof of [18], Theorem 10.1)

(iv) Forany xeA, and a € C we have x(£) € 2(4%) if e Q, and { > A%x(¢) is
contained in A,.

Since x(£) € {f(log 4)x(&)|f € £} holds for any x € A and since {x(¢)|x € A} is dense

in #; we obtain in addition

V) {(x(Oix € Ao} is dense in .

Since J:x(&) = S:4;2x(£) holds for any x € A, (see [12], p. 219, Proposition (3))

we infer from (iii) and (iv) that & — J.x(£) belongs to 4,. From this and from (vi)

as well as from 1.2(a) we obtain that & — J; is continuous.

(6) = (1): Suppose that ¢ ~> J; is continuous. Let A, be the real vector space
of vector fields which is generated by vector fields of the form & — x(&)*x(&), where
x € A. Using [12], 2.3(1), we infer from (L6)

i) {x(&) + iJy(©)|x, y € Ay} is dense in H#; for any &e Q.
Moreover for any x,y e A; and £ € Q the following identity holds

Pyx(&) + iJ:9(8) = x(&).
From this and from (vi) as well as from 1.2(a) we infer that £ — P, is continuous.

DEeFINITION 1.4. For any continuous field of 1. H.a.s ({}ecn, A) let
AF = J AU, for any £€Q, and let A* := {& > Jx(&)x € A}. (It is easy to see
that ({Af}eeq, A%) is also a continuous field of 1. H. a.’s.) We call ({2}};qq, 4%)
the dual continuous field of . H. a.’s associated with ({U}een, A).

For the remainder of this section we assume that ({U.}zeq, 4) is an arbitrary
continuous field of I. H.a.’s. As in [10] let H be the set of all square integrable

@
vector fields in [f o ¢ and let # :S H Au(&) be the Hilbert space consisting of
cen

all classes of equivalent vector fields in H.

PROPOSITION 1.5. The set U consisting of all classes in € which contain at
least one representative in A is a l. H.a. whick is dense in #. The operations of
U are defined canonically.

Proof. Asin[l11], 1.5, one can see that the set U is an involutive algebra which
is dense in J#. Also as in [11], 1.5, one can show that the conditions (1), (2), (3) in
[12], 5.1, are satisfied. We still have to verify the condition in [12], 5.5. Let 4" be
the real vector space which is generated by all elements of the form X*X, where x € 4.

3 — 2692
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Let x € H such that ¥ €4 n i . Then there are two sequences, {x,}sen and {},}neN
respectively, such that x, as well as y, is a real linear combination of vector fields
of the form & > x(&)*x(¢), where x € 4, and in addition the following holds

lim x,(¢) = lim iy, (£) = x(¢) almost everywhere (a.e.).

Since for any ¢ € 2 and n € N the components x,(¢) and y,(¢) belong to ", we obtain
from this that x() € 5¢°; N 1A', holds a. e. Since U, satisfies the condition in [12],
5.5 we infer that x(&) = 0 a. e. Hence ¥ = 0 holds.

DEerINITION 1.6. The 1. H. a. Win 1.5 is called the direct integral of the conti-
®
nuous field ({We}ee o, A) with respect to the measure u. We also write S A, du(®)

instead of .
®
Similarly we define A* :=S AT du(é) to be the direct integral of the dual

continuous field ({UF};co, A¥) with respect to u. According to the notation
which was introduced in [18] and [12] we denote the objects associated with A

byd,S,F,J,0,(teR),n,P,Q0, R, T, A .

® ®
PROPOSITION 1.7. The following identities hold .'J=S T, du(®), P=S P, du(®),

=

@ €] . @ |
0=\"0:du®, R=\ Reau(@), 4"=("dtdu®), for any 1R, wit)=
®
= 6y aud.
®
Proof. In order to prove the identity J :S J:du(¢) it is sufficient to show that

®
the operator J, ::S Je du(€) satisfies the conditions in [12], 2.3. J, is selfadjoint

as a real linear operator. For, we have for any x, y € 4
Re(JpX, 7) = Re S (Iex(8), y(&)) du(&) = S Re(Jex(8), y(&)) du(&) =
= Re(x(®), /(©)) du(®) = Rel) (+:0), Jey(®) du(©) = Re(X, Ji3).

Furthermore J2 is orthogonal. For, we have

® ]
7= auo = 1 due) = 1d.
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Next we want to show that J, " = 1/ holds. Let x € H such that X €. Then we
have x(§) € 4'; a. e. Furthermore let y € H such that ¥ € #". Since iy(¢) €14, holds
a.e. and J(A'y) = iA'¢ is satisfied for any & € Q we obtain

Re(J,¥, iy) = g Re(Jox(2), ip(®) du(&) = .

From this we infer that Jy(#") < i’ holds. Hence, in order to prove the identity
Jo(H) = it it is sufficient to show that "+ iJ,(¢) is dense in 4. Let A, be the
real vector space which is generated by all vector fields of the form & => x(&)*x(¢),
where x € A. Let Af 1= {¢ > IJx(8)lx € 4,} and A, 1= A, + AF. A, s a real linear
subspace of H. For any x € A, and for any real valued function e C,(Q) the vector
field & = f(&)x(&) belongs to A, too. Furthermore {x({)ix € A,} is dense in ;.
Hence we conclude that a continuous vector field y is the limit of some uniformly
convergent sequence of vector fields in A, if the function & ~ |[y(£)|| has a compact
support (see the proof of [4], p. 81, Proposition 6). In particular ¥ lies in the closure
of the set {X|x e A,}. Hence we obtain that {X¥|xe4,} is dense in . Since
{X|x € A;} < A holds our assertion follows from this.

We still have to show that Re(Jyx, %) > 0 holds for any » €. (Since J,
is conjugate linear we then also know that Re(Jy%, ») < O holds for any xe€iX’.)

Let x € H such that X e . Since x({)eA’y a.e. and thus Re(Jx(&), x(£)) >0
holds a. e. we obtain

Re(o¥, 3) = | Re(Ux(9), x(9) du(®) > 0.

Hence we conclude that J, = J holds.

For any x € 4, and y € A} we have P(X + ¥) = X. Since x(&)=P(x(&) + y(£))
holds for any £ € Q and since {X|x € A4,} is dense in " as well as {X|x € A¥} is dense
in 2+ we obtain that & +— P, is a decomposition of P.

Since iP = Qi and iP, = Q,i holds for any £ < Q we obtain that £ — Q. is
a decomposition of Q.

Since R= P + Q holds as well as R, = P; + O, for any (€ Q, ¢ R,
is a decomposition of R.

By [10], 2.8, for any fe C([0,2]), in particular for any € #, := {f e C([0,2])|
| f(0) = 0} the operator field £ > fi (Ry) is a decomposition of f(R). If f lies in #, then
the function A = f(1)A" lies in £, too for any ¢ ¢ R. Hence for any x € 4 and for any
e F, the vector field &+ REf(R,)x(¢) is a decomposition of RY(R)X, if 1€R.
In particular ¢~ R¥R.x(¢) is a decomposition of R'RX for any xe A, teR.
Since R is injective and positive R(3#) is dense in 5#. By [10], 1.7, it follows from
this that ¢ ~ RY is a decomposition of R" for any 7 €R. Similarly one can see that
(2 — Ré)“ is a decomposition of (2 — R)*for any f€R. Hence we conclude
that & — 4% is a decomposition of 4" for any z &R (see [12], 3.2).
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For some fe C(R*) let t, € R and /1 € C(S*) be chosen as in the proof of the
implication (4) = (5) in 1.3. Then the following identities hold, i(4i") - = f(4) and
h(4¥) == f(4,) for any ¢ € Q. Since £ — 4 is a decomposition of A" this implies
that ¢ = f(4,) is a decomposition of f(4) (see [10], 2.8(b)). Since this is true for any
S C.(R*Y) and the Cayley transform maps R* homeomorphic onto I' := {AeC,
Tm 4 < 0}, the operator field & — f(%(4,)) is a decomposition of f(%(4)) for any
fe CAI). Since the set {f(¥(4)X fe CAI'), x € A} is dense in o and the function
%+ Af(%) belongs to C(I) if f does, we infer from [10], 1.7, that { — €(4;) is a

decomposition of €(4).
CoroLLARY 1.8. The following identity holds, A*" = A",
Proof. The assertion follows immediately from the fact that JU = 9* holds.

THEOREM 1.9. (see [11), 1.7) For any element a € H the following is true
(@) 4a is left-bounded with respect to U (see [18], Definition 14.1) < a(&) is
left-bounded with respect to ¥, a. e. and the operator field £ — ma()) is essentially

bounded.
(b) If @ is left-bounded then the operator field & w— n(a(¥)) is a strongly

measurable decomposition of n(d).

Proof. (a) <= : Suppose that a({) is left-bounded and that 'm.(a()i < m
holds a. e. for some m > 0. Then we obtain for any x € A*

[re(x(ENa@ ] = || ra(@)x()} < mix(@)i a.e. .

From this we infer !'n’'(X)d|; < m||X1ll. Since A* is dense in 5 this implies that @
is left-bounded.

=: We need the following result on 1. H. a.’s (see [6]):

(+) Let Bbe al. H. a. and let £ be the completion of B. Then for an element
x in Z the following two conditions are equivalent
(1)  x is left-bounded with respect to B.
(2) There is some sequence {x,},e~ in B such that

lim f[x — x,f =0 and supin(x,)| < co holds.
neN

n—-o0

Now we suppose that @ is left-bounded. By (--) we can find some sequence
{xu}nen in A4 such that

lunSHx,,(ﬁ) — a®)|Pdu€) =0 and sup [n(F,)] < co holds.
neN

n— oo

By [6] we can choose {x,},en in such a manner that sup e < {n(@) ]|
neN

holds. Chosing a suitable subsequence of {x,},cn instead of {x }nen We can arrange
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the situation such that in addition for some subset M < Q whose measure is zero
the following is satisfied
(i) lim || x,(&) — a(&)|] =0 holds for any & e M©,

n-+00

By extending M by a certain set of measure zero we can assume that the following
is true (see [10], 1.11(b))
(ii) sup | T (x,(O)Il < [[n(a)ll  holds for any & e M-

neN

From (i), (ii) and (+) we obtain that a(¢) is left-bounded for any & € M¢. Moreover
it follows from (i) and (i) that the sequence {m(x,(¢))},en converges strongly to
ng(a(&)) for any £ e M°. Using (ii) again we deduce from this for any ¢ € and
yeH,

mea(E)y Il = lim |r (e (O]l < sup [ EH(S) IS

n—o0

< sup | (e, NIyl < im(@) vl
neN

ie., [[na(®)ll < [|n(@)| holds for any ¢ & M=,
(b) Let M be chosen as above. Furthermore let Z(¢) := n(a(f)) if &e M°®
and Z(&) := 0 if £ e M. Since for any y € A* the operator field & = n(¥({)) is a

decomposition of n'(¥) the following holds
m'(y)a(l) = nyy(E))a(l)  a.e. for any ye A*.

This condition is equivalent to the following
@)y (&) = Z(Ey(&) a.e. for any ye€ A*,

By [10], 1.7 we obtain from this that & — Z(&) is a decomposition of n(@).

It remains to show that & — Z(£) is strongly measurable. Let K < Q be a
compact subset and let ¢ > 0 be given. By [4], p. 90, théoréme de Lusin, there is a
compact subset K, = KN M¢ such that u(K\K,) < ¢ and a is continuous on X,
Since for any y € A* the operator field £ —~ nz(¥(&)) is continuous on K, the vector
field & — Z(&)p(€) is continuous on K, for any y € A*. (Observe that the identity
ZOy(&) = ny(©)a(®) holds for any &€ K,.) Since &~ Z(£) is bounded on K,
we infer from this that & — Z(&) is continuous on K, (see 1.2(a)). Since the compact
subset K = Q and ¢ > 0 have been chosen arbitrarily we conclude that Z is strongly
measurable.

CoROLLARY 1.10. For any element a € H the following holds.
a € W' < The following conditions are satisfied
(@) a@)eA; a.e.
(B) The vector field & — a(&)* belongs to H.
(y) The operator field ¢ — n(a(£)) is essentially bounded.
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Proof. = : Let b e H such that b = G*, By 1.9(a) the elements a(g) and b(¢)
are left-bounded a.e. and £+ 7. a(&)) is essentially bounded. Since n(b) n(a)®
holds we obtain from 1.9(b) as well as from [10], 1. 11(c) and 1.12, that ng(a({))* =
= m,(b(¢)) a. e. . This implies that a(¢) lies in A a.e.and a(&)* = b(¢) holds a.e. .
Thus we have shown that the conditions (), (8), (y) are fulfilled.

<= : Let us denote the vector field & —> a(¢)* by a*. By 1.9(a) the elements @
and a* are left-bounded. By 1.9(b) we obtain for any x, y € A*

(ﬂazir=ymw@»ﬂ@u«»dmo~

SNQ%M&W@NM@=

So@mm@m@ﬁw@=

= &, w'(P)a*) = (X, n(@)y).

This implies that the identity n(@)* = n(a*®) is true, i. ., & is bounded and we have
a* = a*.

2. REDUCTION OF THE SEMIFINITE PORTION OF THE
VON NEUMANN ALGEBRA £(%)

Throughout in this section we keep the notation of Section 1 and we assume
in addition that the following condition is satisfied :
(L9) There is a sequence {x,},en Of vector fields in H such that the set
{Zx,(8)Z e L(U,), neN} is total in H#, locally a. e..
Just as in the case of continuous fields of Hilbert algebras we obtain the following
result (see [11], 1.8).

THEOREM 2.1. The von Neumann algebra L (W) is regularly decomposable
(i. e. every operator in L(W) is strongly decomposable). Furthermore £ (N) is coun-
tably decomposable in the sense of [2], 1.1.2.

REMARK. (1) Since the von Neumann algebra 3 of all diagonalisable opera-
tors is contained in £ (), 3 is also countably decomposable. Since 3 is :-isomorphic
to L=(82, 1) (see [10], 1.14) we may assume p to be a o-finite 1egular Borel measure.
In particular a subset of Q has locally the measure zero if and only if it has the
measure Zzero.

®
(2) Just as in [11], 1.9, one can show that for any & ———S Z(Hdu(H)e L (W),
we have Z(£) e £(U,) a.e..
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@ @
LemMa 2.2. Let &, :S Z,(&) du(®), Z, :S Z(&) du(®), . . . be a sequence

(]
of operators in L (N) which converges sirongly to some operator % =g Z(Eydu(é).

Then there is a subsequence {Z,};cn Of {Zuinen such that {Z,(&)};cn converges
strongly to Z(&) a.e.. l ‘

The proof of this lemma is quite similar to the verification of the corresponding
result in [11], 3.3. Thus we omit the proof here.

®
LEMMA 2.3. Let .9”:8 Z(E du(é)y e L) be a normal operator and let

[ Sp(Z) = C be a bounded function of first Baire class, i.e., there is a sequence
JisSas oo of functions in C(Sp(2)) which converges pointwise to f. Then the identity

&) = S®f(Z(§)) du(&) holds.

Proof. By [10], 2.8(a) we have Sp(Z(¢)) = Sp(Z) a.e. and Z(¢) is normal
a.e.. In particular f(Z(£)) and £,(Z(¢&)) is well defined a. e. for any n € N. We may
assume that the sequence {f,},en is uniformly bounded. By [10], 2.8(b) we have

®
J(&)= S JZ(E)du(&)forany ne N. Now the sequence {fl@)}nen converges strongly

to f(Z) and {f,(Z(£))}nen converges strongly to f(Z(£))a.e. . By 2.2 there is a
subsequence {f, };en of {f,},en such that {£o(Z(£))}ien converges strongly to

G(¢) a.e. if f(fZ)=S® G() du(&) holds. Since { f,,i(Z(é))};eN also converges
strongly to f(Z({)) a.e. the identity f(Z(£)) = G(£) must be valid a.e. .

REMARK. Let us mention that the assertion of 2.3 is even true if fis any bound-
ed measurable function on Sp(Z). Since we do not need this general result in the
sequel we suppress its proof.

LEMMA 2.4. Let @(@y) be the weight associated to W (WA;) which is defined
on L(A)YH(LU)*F) for e Q (see [1] or [16], 10.16) and let S be an involutive

®
ideal in £ (M). Moreover assume that for 4 =S G(&) du(é) e L(N) the weight

LWy s Z+ > 0(G*ZY) takes only finite values on the positive elements of #. Then
@ . _ .
for any & =S Z(&)du(&) € F+ (S is the strong closure of I in L (N)) the function

¢ = @[G)*Z(E)G(E)) is measurable and @(4*ZY) ~ S P(G(O*Z(9G(E) du(&)

holds.
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Proof. First we will show

) ®
) If (Z) < oo holds for some % :S Z(&) du(é) e L(AW+ then the function
& = @(Z(%)) is measurable and ¢(Z) =S 0 (Z(£)) du(¢) holds.

®
Let & :S Z(#) du(&) e L(U)+ be chosen such that (%) < oo holds. Then

there is some vector field a € H such that @ is left-bounded and n(a) = 2/ holds.
By 1.9(a) a(¢) is left-bounded a.e. and by 1.9(b) we have n(a()) = Z(&)* a.e. .
Clearly the function & +> (a(&), a(€)) is measurable and by the definition of the weights
¢ and ¢: (¢ e Q) we obtain

?»(Z) = (@, a) = S (a(®), a(&))y du(d) = S PL(Z(£)) du(®).

Hence (i) is satisfied.
®
From (i) we obtain for any % :S Z(©E) du(®) e S+ that

PG+ 2G) = S 0{(GE*Z(E)G(®)) du(e).

® _
Now let & =S Z(€) du(é) e £+ be chosen arbitrarily. Since .Z (%) is countably

decomposable we infer from {2], p. 43, Corollary 5 and [2], p. 31, Corollary to

®
Proposition 1, that there is a monotonely increasing sequence %, = S Z (&) du(é),

®
Zs :S Zy(&) du(é), ... of positive operators in £ which converges strongly to

Z. By 2.2 we can assume that {Z(¢)},cn converges strongly to Z(¢) a.ec. .
Hence the sequence {@:(G(£)*Z,(£)G(E))}nen is monotonely increasing a. e. and
(pg(G(é)‘:’Z(é)G(é))-—:sgg QAG(EY*Z,(E)G(E)) holds a.e.. By (i) the function

& 0 (G(E)*Z,(5)G(E)) 1s measurable. Hence the function & = @ (G(E)*Z(£)G(E))
is also measurable and from (i) we conclude by Lebesgue’s monotone convergence
theorem

P(E*ZYG) = lim @(9%2,9) = S 11}; P(G(*Z,(DG(E)) du(d) =

n—co

= g 0(G()*Z(O)G(&)) du(®).

®
THEOREM 2.5. Let & = S E(EYdu(&) be the maximal central semifinite projection

in (W) (we may assume that E(&) is a central projection in L) for any ¢ € Q).



TOPOLOGICAL DIRECT INTEGRALS. I i 41

Furthermore let T be a positive semifinite normal and faithful trace on L(N);. Then
E(&) is a semifinite projection a.e. and for any & € Q there is a positive semifinite
ﬂormal trace t; on L (W) f iz such that the following holds:

(1) =, is faithful a. e.;

(2) For any & = SeZ(f) du(®) e L)} the function &> 1(Z(&)) is measurable

and we have 1(%) = 5 T(Z(&))du(&).

Proof. Let ¢ (¢;, & € Q) be defined as in 2.4. Let  be the following weight
LWt s Z > o((Id — &)%) + t(6Z). ¢ is normal semifinite faithful and invariant
with respect to the modular automorphism group {o,}rer. By [9], 5.12, there is a
selfadjoint positive and regular operator % which is affiliated with the von Neumann
algebra (W) = {Z e L(W)|6(%) = Z for any teR} such that ¢ = @(%1.)
holds (see [9], p. 62). For any ¢ e R we set %, :== %*. Since the restriction of y on
L)} is a trace (hence the modular automorphism group of Y| L (W), =t is
trivial) we infer from [9], 4.6,

) #Zur = A"ZA-"* holds for any e L(N), and reR.

Since all projections of the spectral measure of ¥ belong to Z() the

®
Cayley transform of %, €(%), belongs also to Z (). Let 4(¥9) = S V(&) du(é).

Since #(¥) is the Cayley transform of a non singular selfadjoint and positive ope-
rator the numbers 1 and —1 are not contained in the point spectrum of %(%)
(see [14], 13.19(b)), i. e., 31, 1,(€(¥)) = 0 holds (y(_;,1) is the characteristic function
of the set {—1,1} on S') and the spectrum of %(%) is contained in I'y {—1, 1}

(I' ={Ae SYImA < 0}). By 2.3 we have y¢,, 1(%(¥)) = g® %, n(VENdu(é).

Hence x(_1,1;(¥(£)) vanishes a. e., or equivalently, the numbers —1 and 1 are not
contained in the point spectrum of V(£) a.e.. Furthermore we infer from [10],
2.8(a), that the spectrum of V(¢) is contained in I' u {—1,1} a.e.. Thus we obtain
from [14], 13.19 that V(&) is the Cayley transform of some non singular selfadjoint
and positive operator. Hence there is a sequence K; < K; = ... =@ of compact
subsets such that the following conditions are satisfied :

(a) The support of u|K, is K, for any n e N and u(M¢) = 0 holds for M :=|_J K, .

n=1

(b) &~ E(&) is continuous on K, for any n e N.

(¢) &+ V(&) is continuous on K, for any »e N and for any £ e M the operator
V(&) e L(Ay) is the Cayley transform of some non singular selfadjoint and
positive operator G. :

We set G,:=1d, if {eMe. Since {f-%|feC)}=C.R") holds (%(r) =

= (t —1)/(t +1)) and fo B(G;) = f(V(£)) holds for any feC/l), {eM we

infer from (c) (see 1.2(b))
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(i) For any fe C,(R*) and for any n e N the operator field ¢ — f(G;) is continuous
on K" .

[©)
Since ¢(%) :S %(G) du(®) holds we obtain from [10], 2.8(b),

i) £ =S® f(G,) du(&) holds for any fe C,R*).

Since for any fe C(R*) and any reR the function A > Ai’f(4) belongs also to
C.(R*) we infer from (ii) that for any fe C(R*), teR and a€ A the vector field
& = G¥ f(Gya(&) is continuous on K, for any neN. Since for any ¢ € 2 the set
{f(G2a(®)! f e C,(R*), a e A} is dense in #, we obtain from this (see 1.2(a))
(iv) &+ G¥ is continuous on K, foranyne N, reR.

Since the set { f(%)xi f € C.(R™), % € U} is dense in o it follows from (iif), (iv),
and [10], 1.7,

®
v @, =S G¥ du(¢) holds for any teR.
For any ¢ € Q, t € R we set U(¢) := G¥. From (a), (b), (i), (iv), (v) as well as from
® .
the fact that 4¥ = g A¥ du(¢) holds and & > A} is continuous on K, for any n€ N

we obtain for any -é eM,teR,aecAd
ULOE©)r (&)U )* = A¥E()n(a(©)As .
Since {E(&)n (a(¢))ia € A} is strongly dense in L (Uy)g, for any e Q@ we obtain
from this
(Vi) U(OZULE)* = A¥ZA; " holds for any £ e M, teR and Ze L (Wp)ge -
By [9], 7.4 this implies that E(¢) is a semifinite projection for any £ € M. Forn e N let
LR A AL 4 /)7L

For any neN f,(9™) (f,(Gz")) is a bounded positive operator and the sequence
{1 @ hen {fi(GiD}en) is monotonely increasing (¢ € 2). Asin the proof of (v)
we can see that the following is true

(i) f,(@ 1) = ng,,(Gg‘)du(é), holds for any 7 € N.
For any neN we define a weight on L(); and L(U;)z s respectively as follows
W LA 5 X > o(f(THZ
™ LUk 2 Z = ofi(GENHZ)  if EeQ.

The sequence {1}, ¢ x is monotonely increasing and by [9], p. 62, forany & € L(A)}
we have lim 1"(2)=1(Z). Similarly for any ¢ € Q the sequence {t{"},en is monotonely

n—+oo

increasing and by (vi) as well as by the proof of [9], 7.4, for any £ € M there is a

positive semifinite normal and faithful trace 7 on L (U,)Z, such that lim tP(Z) =
n-»Q

= 1,(Z) holds for any Z e L(W)f: . We set 7, := 0 if £ e M. There is an ideal

4 in Z(A), which is strongly dense in £ (A), such that I+ ={Z € L(W),11(Z) < oo}
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holds. Since ¢ is dominated by 7 the weight T is finite on #*+, Thus we obtain {rom
®
(vii) and 2.4 for any 2 — S Z(0) du(&) e LA and neN

(2 = S “(Z() du(®).

Moreover ¢ = 1(Z(£)) is measurable and from Lebesgue’s monotone convergence
theorem we conclude

(%) = lim 1"(Z) = lim S T@(Z(8)) dp(€) =

n—-+oo =00

= 1im <@ du(©) = (22 duce).

COROLLARY 2.6. Let &, E(&), 1 and 1. be chosen as in 2.5. Furthermore let
B = g B(&) du(é) € (W), be a projection such that 1(B) < co. Then B(&) is a finite

projection in L (W), a.e. .

Proof. From (%) :Sré(B(f)) dp($) < oo we infer that 1.(B(¢)) < oo holds

a.e. . Since 7; is a faithful trace a. e. this implies that B({) is a finite projection in
L(U)pe a.e. .

Using 2.6 one can prove now the following theorem in the same manner
as the corresponding assertions in {11], 3.1, 3.5, 3.6, 3.8.

®
THEOREM 2.7. Let & :S E(&)du(&) be the maximal central projection in

L(N) such that £ (N), is a von Neumann algebra of type 1, type 11, finite type, pro-
perly infinite type respectively. Then £ (Wy)g ) is a von Neumann algebra of type 1,
type 11, finite type, properly infinite type respectively a. e. .

3. APPLICATION: THE CENTRAL DECOMPOSITION OF KMS-STATES

Let o/ be a C*-algebra with unite and let {6,};cr be a one parameter group of
automorphisms of .o such that for any a € &7 the function ¢ ~ ¢ (a) is continuous
with respect to the uniform topology on 7. A state ¢ is said to satisfy the KMS-
condition if one of the following statements (KMS I) or (KMS II) respectively is
satisfied, which are known to be equivalent (see [5], p. 26)

(KMS I) For any a, b € o there is some bounded continuous function on
{ze C'0 < Imz < 1} such that F is holomorphic in {z€ C/0 < Im z < 1} and for
any t €R the following holds

(1) = ¢lbo(a)), F(t+ i) = ¢(c(a)b).
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(KMS II) For any a,b < ./ and for any test function f the following holds

Sf(t — i)p(bo,(a)) dt = gf(t)q)(a,(a)b) dt,

where f(z) = S fA(s) et? ds for any ze C.

A state ¢ which satisfies the KMS-condition is called a KMS-state. Let %,
be the set of all KMS-states on 7. By using (KMS II) it was shown in [3}, Theorem
1.1, that &, is a simplex, the topology on &, being the weak-#-topology. Moreover
it was shown there that the extremal points of &, are exactly the factorial states in
&, and for any € &, the support of the corresponding central measure u is con-
tained in &,. The restriction of i to &, coincides with the maximal measure with
respect to the simplex ;. Hence we may consider u as a measure on %;.

For any ¢ € &, let 7, be the corresponding GNS-representation on the Hilbert
space #’, and for any a€ &/ let a,, be the canonical image of ain #,,. By using (KMS I)
it was shown in [19], Proposition 1.3, that e, is a separating vector for n,(s7)"” for
any ¢ € &,. Let ¥, be the 1. H. a. corresponding to 7,(s/)" and e, (see [18], Theorem
12.1), and let 4, be the modular operator associated with 2. Then for any a € «7,
teR we have 7m,(0(a)) = Aim(a)4;" (see [19], Proposition 1.3). Let A be the

linear subspace of JT ¥, which is generated by all vector fields of the form &, 2 ¢ >
PES

> f(®)a,, where fe C(¥)),ae .

Treorem 3.1. (1) ({W,}y e, A) is a continuous field of I. H. a.s.
2) Let € &, and let u be the corresponding central measure. Then there

®
is an isomorphism @ from the Hilbert space 3, onto JK"’:S H, dpp) such

that the following holds :
®
(@) & maps the |. H. a. AY ::g U, du(e) isomorphic onto a subalgebra U

of U, and Ny’ = A, holds.
(b) The set {@-Z° d1Z en () Nn, ()} coincides with the set of all
diagonalisable operators.

Proof. (1) Obviously the conditions (L1) up to (L5) and (L7) are satisficd.
By using [2], p. 43, Theorem 3, one can see that (L6) is also valid. By 1.2(a) it is
clear that condition (4) in 1.3 is satisfied. By 1.3 this implies that condition (L8) is
satisfied. Thus we have shown that ({2}, ¢, 4) is a continuous field of 1. H. a.’s.

(2) Using [15], 3.1.3, one can show as in [11], 4.1, that there is a unique iso-
morphism @ which maps the Hilbert space #,, onto #¥ such that for any a € o7 the
image of the element a, € #, with respect to & is the element in #¥ corresponding
to the vector field ¢ > a, and in addition (b) is satisfied. Moreover it is seen that the
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restriction of ®7 to AY is an isomorphism of the 1. H.a.’s UY and AY. Since
P (W) 2 {a,la € o} holds it is clear that Y’ = A, is valid.

Since in our situation the condition (L9) is satisfied the results of Section 2

are available here.
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