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SOME RESULTS ON NORM-IDEAIL PERTURBATIONS
OF HILBERT SPACE OPERATORS. II

DAN VOICULESCU

The present paper is a continuation of the study, we began in [10], of norm-
ideal perturbations, based on the invariant k,(7).

The results we obtain here, when applied to €, perturbations of commuting
n-tuples of hermitian operators, yield for # > 2 the invariance up to unitary equi-
valence of the absolutely continuous part and for » > 3 an existence theorem for
wave-operators. Let us mention that our result on wave-operators improves the
result of J. Voigt [11]. Namely, the ideal € is strictly bigger than the union of the
ideals %, with p < n and the wave-operators we consider are more general. More-
over, we show that for n > 3 all the wave-operators are equal.

Our approach to these questions is based on the following considerations.
For a commuting n-tuple of hermitian operators the singular part can be characterized
as the greatest invariant subspace, such that the restriction of the n-tuple admits
a quasicentral approximate unit relative to the ideal %, . This leads us to consider a
generalization in this sense of the decomposition into singular and absolutely conti-
noous part to the framework of representations of C*-algebras and arbitrary norm-
ideals @%. Under certain conditions the non-vanishing of k4 on the analogue of the
absolutely continuous part implies that sequences of elements of &%’ which commute
asymptotically with the algebra considered, must converge strongly to zero, which
is the source for our results on the existence of wave-operators.

The present paper has three sections.

In § 1 we give the generalization of the decomposition into singular and abso-
lutely continuous part and prove three theorems, which represent our results on the
invariance of the generalized absolutely continuous part and the existence of wave-
operators.

In § 2 we apply the results of § 1 to commuting n-tuples of hermitian operators.
Besides that, we show how the technique of taking Cesaro-means used in § 1 can
also be used to give a new proof for the vanishing of k,, for n-tuples (1> 2) of commut-
ing hermitian operators.
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In § 3 we give an example showing that the generalized absolutely continuous
part is not invariant in the absence of additional assumptions, like those in § 1.
The algebra considered here is the C*-algebra of a free group and the norm-ideal is
the Macaev ideal (¥'% in our notations).

The present paper is a revised and augmented version of INCREST-preprint
No. 37/1979 which wore the same title number III. The difference in numbers is
due to the fact that our two first preprints on this subject have been published as a
single paper [10].

§1.

Let H be a separable infinite-dimensional complex Hilbert space. By L(),
K(H), P(H), R(H), Rt (H) (or simply L, K, P, R, R{ when H is fixed) we shall res-
pectively denote the bounded operators on H, the compact operators on H, the
finite rank orthogonal projections on H, the finite rank operators on H, and the finite
rank positive contractions on H. For n-tuples of operators and norm-ideals S’ we
shall use the same notations as in [10]. Also the definition and basic properties of the
invariant k, are given in [10].

LemMa 1.1, Let 7= (Ty, ..., T,) € (L(H))". The following assertions are

equivalent :
(@) ko(r) = 0;
(i1) there is a sequence (A,)?° < R, A, = 0 and A € L(H) such that
w-lim A, = 4
Kerd =0
]im I[Ann T]|¢‘ = 0

Proof. Clearly (i) = (ii) so we shall concentrate on (ii) = (i). Since the sequence
(4,)7 is weakly convergent there is C > 0 such that 0 < 4,, < CI for all meN.
Clearly [A4, 7] = 0. Consider the spectral projection P, of A corresponding to [¢, C]
where ¢ > 0. Then it will be sufficient to prove that ky(z|P,H) = 0 for all ¢ > 0,
since k4(1)= liim k(7| P . H) by Proposition 1.4 in [10]. Then replacing 4,, by P, A4, P.H

AN

it is easily seen that it will be sufficient to prove (ii) = (i) only in the case when the
assumption Kerd = 0 is replaced by the stronger assumption A4 > ¢l for some
e > 0.

Also, since w-lim 4, = A there is a subsequence A, 4,,, ... such that for

m—oQ

Bi=— (Am + ... + Am)
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we have s-lim B, = A4. Also, clearly lim |[B,, 1]/, = 0. Thus replacing the sequence

k-y0 k00

(4,)7° by the sequence (B,)f° we may assume s-lim 4,, = 4.

Let now gjbe a C*-function on R, with compact support such that 0 < ¢ <1
and @(0) = 0, @(t) =1 for ¢ < ¢t < C. Then, s-lim ¢(4,) = L. Indeed, let P be a

polynomial such that [P(t) — @(t)| < & for all £€[0,C] and let € H, |£]| = 1.
Then we have
lim sup || @(4,)E — &l <

mM—->00

M-=>00

+ 1 P(A)E — P(AE] -+ [[P(A)E — o(A)E]) < 20.

Since 6 > 0 is arbitrary this shows that s-lim ¢(A4,,) = I.

N0

We have 0 < ¢(4,,) < I, ¢(4,,) € R and s-lim ¢(4,) = I, so by Proposition

Ni=->00

1.1 in [10], we shall have k4(7) = 0 if we can prove that lim |[¢(4,,), 7]|p = 0.

This will be achieved by the Fourier-transform method from [7]. Remark
first that
|[exp(it Am)ﬂ T]I(D <

o2 -
<Y, 71-'—71![/1,", o |4, =

n=1

== ‘[Am’ T]‘(D \t! exp (‘t HAMH)
so that

sup |[exp (it 4,,), Tl < [, ]l €.

1<l

Then taking #n € N such that |f| < n < |t| 4+ 1 we obtain

[exp (i—i—Am), T]L <

<neCd,, e < (t] + 1) e |[4,, tlle .

lfexp (it 4,,), 7llo < n

Thus denoting by ¢ the Fourier-transform of ¢ we have

|[(p(Am)’ T]](D = <

]

[S (1) exp Qnit A,,) dt, ’t]
R

< eC |4, T”*"S 1G] nlt) + 1) dt
R
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and since the last integral is finite we have

limooi[<P(Am), t)le = 0.
" Q.E.D.
Consider now a separable C*-algebra ./ with unit and # < 7, B = o,
# > 1, a dense =-subalgebra which has an at most countable basis as a vector space
over C.
Let p:.o/ —» L(H) be a non-degenerate =-representation. We shall denote by
P 4(p) (or simply £, when p is fixed) the set of all selfadjoint projections P& (p(.e7))’
such that p(#)' PH is ®&-well-behaved (see 2.1 in [10]), i.e. such that for all T3, ...
..., T e p(#) we have ko (T,|PH, ..., T,|PH) = 0.
We shall denote by E3(p) (or simply EJ when p is fixed) the projection

Eipy= V P.

Pey

We shall also write E,(0) == I — E3(p) and in case p is fixed we shall write
E, for E4(p).

THEOREM 1.2. With the above notations we have E3(p) € P4(p) and EY(p)
is a central projection in (p(2)Y. If (A0 < &8 is such that

sup ['4,,]l < co

iil

and
hm ![Am! p(b)]!d) = 0
Jor all be R then
s-lim A4,,E,, == 0.

m—co

Proof. We shall first prove that if Pe 2, and FE is the central support (see [13])
of P in (p(of)) then Fe P,. Since H is separable there are selfadjoint projections
P;e(p(s#)), P; < P and partial isometries V; € (p(#))’ such that V;*V; = P; and

Y V¥ = E (this implies k # j = (V) (Vi) = 0). For an n-tuple 7 of ele-
;n;nts of p(#) we clearly have

ko(tiPiH) = ko(t,V; Vi H)
and in view of Proposition 1.4 in [10], we have

ko(t|P;H) < ko(t|PH) = 0
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so that k(7| V;V*H) = 0. Again by Proposition 1.4 in [10] we have

n

ko(t|EH) < lim Y ky(t|V,V*H) =0.
1

n—»00 ;77
Thus E€ 2.
Denoting by & the center of (p(#))’ we have
E,= V E
E€EPpnNZ

Since P'e(p(A)), P’ < P,Pe P, = P cP,, it follows that we can find
(E)Y = o0 & such that i# j = EE; =0 and Y, E; = Ej.
j=1

That E} € Z, 0 & follows now from Proposition 1.4 in [10].
For the remaining assertion of the theorem remark that if (4,,) < R is such
that lim |4,, — A,,|, = 0 we may replace (4,,)% by (4,) and thus we may assume

>0
(A4,) = R. Also since p(#) is selfadjoint, the assumptions on the 4,’s are also
satisfied by their hermitian and antihermitian parts, so that we may assume 4, = A¥.
Consider B,, = E,4%E,. Clearly 0 < B,, < CIfor some C>0 and it will be sufficient
to prove that w-lim B,, = 0. Assume the contrary, and then replacing the B,’s by

n—oo

some subsequence we may assume

w-lim B, = X # 0.
Consider the projection P onto H © KerX. We have Pe(p()), P < E,
and w-lim PB,P|PH = X|PH. It is also clear that

H1—>00

lim |[(PB,,P|PH), (p(b)IPH)]lp =0

Hi=>»CO

for all be #. Using Lemma 1.1 we infer that k,((p(b)|PH), ..., (p(b,)|PH)) = 0
for every (by, ..., b,) € B. But this means that Pe 2, and hence P < EJ so that
necessarily P = 0 and hence X' = 0.

Q.E.D.

THEOREM 1.3. Let py, ps be non-degenerate #-representations of & in H
and assume there are unitaries U, € I - S such that

n—co
Jor all b e B. Then the following strong limits exist

V1 = s-lim U,Eq4(py)

n—»oo

Vz = s-lim U:Eq)(pg),

n->00

6 — 2692
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and Vy = V¥, VFV, = Eo(p,), ViVi'= Eolpy). In particular piiEy(p,) and ps|Eg(p.)
are unitarily equivalent.

Proof. Let & € Ey(p,)H and assume that (U,£)., is not a Cauchy sequence;
we shall prove that this leads to a contradiction.

Indeed, if (U,£)$ ., is not a Cauchy sequence then there is ¢ > 0 and there are
my < my < ...suchthat||Uy¢ — Un,,Cll > eforallk eN.For4, = Uy U, —1

we have A, € G, || 4]l <2 and

lim sup || 4,£]| > e.
k—00

On the other hand for b € # we have

linz sup |[4x, p1(D)lle =

= limsup |[U} U, , p1(®)]ls =

k->00

= limsup (US| Uyp pi(DYUE Un | — pr(B)lo <

k=00
< lim sup (1 ps(B)U3, — oo +

+ U, peb)U, , — p1(B)lo) =O.
Hence using Theorem 1.2 we infer that s-lim 4,E,(p,) =0 and hence
I]\im | 4,€]l = 0, a contradiction. o
- Thus, the strong limit
Vy = s-lim U,Ey(p,)
n=>00

exists.
Reversing the roles of p, and p,, and replacing U, by U* we also get that

Ve = s-lim UFEq(p»)

n=sc0
exists.
By the same symmetry it is easily seen that for the remaining assertions it will
be sufficient to prove that

X = s-lim E3(p;)U,Eq(p,) = 0.

n—00

Assume X # 0, then p ()X = Xp,(b) for all be A and for W the partial
isometry in the polar decomposition of X we have that W interwines p,|W*WH
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and p,|WW*H. But p(B)|W*WH is not ®-well-behaved since W*W < Eu(p,)

whereas p,(B)\WW*H is ®-well-behaved since WW* < EJ(p,). Thus we must
have X = 0.

Q.E.D.

Before giving the next theorem, we shall point out two facts that will be used

in its proof.
Let (X, Jp.qen < S8 be such that s-lim X, , = s-lim X} , = 0 for all peN.

g—o0 g—>00

Then there are k; < ks < k3 < ... such that

. 1
Iim - }Xp,kl 4+ ... —|—-/\/,,,kj|q,— |)(,,’k1 @ @X,kjlq; =0

Jooo J
for all peN.
Indeed, since s-lim X, , = s-lim X}, =0 it is easily seen that we can find
q—->00 q—>0
ky < k; < k3 < ... and finite rank orthogonal projections Q; such that

m # n = Qan =0

. 1
0 Sp<j= !QjXP,kaj — X[l,kjl(b < .
J
Then we have

. 1
lim sup - |X17,k1 + ...+ X[),kjld) - I‘Xp,k, ®...d X, ,kjlzp <

J=roo ¥i

. 1
< lim sup - (| Xp,x, — Q1 X5, 4,04l + ... + 1 Xp ke, — QjXp,kajld)) +

jmoo J

+ limsup (X, — Q1 X5, 15,00) @ ... D Xk, — @3 X 1,00 = 0.

1
Jo00 _/

The second fact we shall use is that if S’ #%, then forevery X € G we have

im - X® ... @ X|,=0.

j—>co ]

Jj-times

When X is a rank-one orthogonal projection this is a result of Kuroda (see
[8], ch. X, § 2, the proof of Theorem 2.3). For general X € G this follows imme-
diately now from the fact that rank-one orthogonal projections are total in S.

THEOREM 1.4. Assume @) # %, and let py, p, be non-degenerate %-repre-
sentations of s on H, so that E3(p;) = 0, E¢(ps) = 0 and py(b) — py(b) € S for all
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be . Assume moreover there is a sequence of unitaries u,€ B nZ(Z) (Z()
the center of &f) such that

w-lim p,(#,) = w-im py(u,) =0

n=>00 n—-o0

and p,(u¥)p,(u,) is weakly convergent for n — co. Then for

W = w-lim py(u¥) py(u,)
we have KerW == 0, KerW* = 0 and p(b)W = Wp,(b) for all be B. In particular
Py and p, are unitarily equivalent.

Proof. That p())W = Wp,(b) is easily seen, as follows. We have
Wpi(b) — poAO)W = w-lim p,(u;)(po(b) — pa(b))p1(1t,)

n—00

and since p;(b) — po(b) is compact and w-lim p,(u,) == 0 we have

s-lim (py(b) — p2(b)) p1(1,) =0
so that
w-lim p,(u57) (p1(b) — pa(b)) pa(u,) == 0.

Thus if we can prove that Ker® = KerW* = 0 it will be immediate that
p1 and p, are unitarily equivalent. Also clearly, by symmetry, it will be sufficient to
prove that Kerl¥ = 0.

Let P € (p(7)) denote the projection onto Ker W and denote by W, the unitary
pa(u¥)pi(u,). Assume P # 0 and we shall show that this leads to a contradiction.
Thus we assume there is £ € PH, |l = 1. Since w-lim W, P = 0, replacing

n—oo
the u,’s by some subsequence we may assume that m # n = |W,Z — W, ¢ > 1.
Put 4, = w7, W, — I for a sequence n;<ny<... which we shall define
<+ 1 3

recurrently below. Clearly P has infinite rank, since otherwise P < E§(p,), so that
there is an orthogonal basis (£,)7°., for PH. Letalso (,)7 , be a basis for the vector
space 4. We take n, = 1. Suppose #; < ... < n, have been chosen. Then we can
find #n,., > n, such that

“(pl(bj) — pa(b)) Pz(“nk“) pz(llflkk) pl(unk) & < 1k,
1(oab) — paby)) palutn ) paak. ) palata, ) 41y < 1k
for 1 <i,j < k + 1. This is indeed possible, since p,(b;) — ps(b;) being compact
and py(u,,) > 0, po(u)pi(u,)P > 0 we have
lim [(p1(b;) — p2(8)) pottm) po(uy) pr(u, )Eili = O

n—00

Jim [i(pa(5;) — pa(5;)) polttn) polum) prluy) &l == 0.
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For the above choice of the sequence n, < n, < ... we shall prove that

s-lim [PA,P, p,(b)] = O
k—>c0

s-lim [PAXP, p;(b)] =0
k—>co
for all be 4.
Since [PALP, py(b)] = P[Ay, p1(D)IP, [PAEP, py(b)] = PAE, py(B)]P, it is easily
seen that it will be sufficient to prove that for all /, j € N we have

klim Ak pr(BIEill = O

I}im A4z, Pl(bj)] &l =0.

We have
[Ak’ pl(bj)] - [W::‘ +1”/"A’ Pl(b;)] =
= [pa(uf, ) palt,_, ) pau) ps(u,), pa(b)] =
= pl(u:k . 1) pZ(unk . I“:‘k) (pl(bj)_ Pz(bj)) pl(unk) -
— paliy ) (pa(By) — pa(B)) pal ) Pals ) pattn)-
Thus

11'21 sup ([[4, p(B)] ENl <

< ]i‘:l sup ([i(p+(B;) — pa(b;)) Pl(“nk) &l 4+

+ il{p1(b)) — pa(b))) Pz(“nk“) Pe(uffk) Pl(”nk) &ilh=0
because of w-lim p,(u, ) = 0, the compactness of p,(b;) — p(b;) and the choice
k=0 d

of the n’s.

Similarly we have
(A%, pa(B)] =
= pa(uy) pa(un ) (po(B;) — pa(b))) Pl(”uk“) -

k k k+1

- Pl(“ffk) (p2(8)) — pa(b))) Pz(unk) Pz(”:“l) P1(unk+l)’
so that
liiﬁ sup [|[4F, pu(B)I1&ill <

< lii“ sup (| (p1(b) — pa2(b))) P1(“nk+l) &N+

+ [1(0s®7) — palby) palitn) s ) palty Y EN) = O
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again because of w-lim pl(”nw ) = 0, the compactness of p,(b;) — ps(b;) and the
k—oo 1

choice of the n’s.
Remark now that
A;?Ak == AkAI? = — Ap — Af

since A4, -+ I is unitary. Thus, we shall have
s-lim [PAZALP, py(b)) =
k—>oco
= s-lim [p,(b), PAP + PAFP] =0,
kw—oo

for all be 4.
Since % is selfadjoint we clearly have also:

s-lim ([PAEAP, pa(B))* = O,
k- oo

for all b € 4. Remark further that u, € & implies W, € [ + S& and hence A4, € P,
The #-strong convergence of [PAFAP, py(b)] to O, easily gives that we can find
k, < ky < ... such that

.ol
hm ! | . ([PAI?‘;A’\;P’ pl(b)] + L + [PAltjAijs pl(b)]) I(D -

1 . [
— j- (P45, AP, px D)) @ ... ® ([PALALP, pu(B)Dlp| =0
i
for all be 4.
Now, since
[PAFAP, py(b)] = PLAFA,, py(B)IP =
= Plp,(b), Ai -+ AFIP = P(V(p(b) — po(b)) V. + V,:'(pl(b) -
— poBOWVIYP + P(Vi(ps(b) — po®))Vi + Vi (py(b) — poAO)YVI") P
where Vi, Vi, Vi, V', V., 17,\’,, VY, Vi’ are unitaries, it follows that

([PALAGP, p1(B)]) @ ... @ ((PAEALP, p1(B)D)]o <

<41 (p1(6) — p(0) @ ... @ (pa(b) — pa(B)) o

v
J-times

Since G # ¥, by the remark preceding the theorem, we have

1
}f,’f}, i FHp(D) — po(0) @ - .. ® (py(b) — po(b)) |6 =0
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so that for B; = L (PAZALP + ... + PAZ A, P) we have lim ([B;, p,(b)]lo = O
J jroo
for all b € 2. Since EJ(p,) = 0 and || B;l| < 4 using Theorem 1.2, we obtain

s-lim B; = 0.
J=00
To end the proof, recall now that ||W, & — W, E|l > 1 for m # n, so that
NALN = || A PEIl > 1. This gives (PA¥APE L) > 1 so that also (B¢, &) > 1

which is a contradiction.
Q.E.D.

ReMark. The assumption that p.(u})p,(u,) is weakly convergent for n - o,
in the statement of Theorem 1, is not necessary for deriving the unitary equivalence
of p, and p, since we may always replace (#,);° by some subsequence so that
p(u¥) pi(u,) becomes weakly convergent.

For a more restricted class of norm-ideals a much stronger existence result
for wave-operators is given in the next theorem.
THEOREM 1.5. Assume the norm-ideal GY is such that
limn=12¢(1, ...,1,0,0...)=0
n-oo v ot

n-times

{such norm-ideals are for instance €, and € for p > 2). Let p,, p, be non-degenerate
s-representations of o/ on H, such that p,(b) — py(b) € S for all be B. Assume
there are unitaries u, € B N Z( L) (Z(F) the center of o) such that

w-lim p,(u,)Eq (p1) = 0.
n—o00
Then the following strong limit exists:
W = s-lim py(uy) ps(,) Eg(ps)- |

Proof. Put W, = py(u¥)p,(u,) and assume that the W, E,(p,) are not strongly
convergent. We shall prove that this leads to a contradiction. Since the W,E(p,)
are not strongly convergent we can find & € Eg(p)H, ||E]l = 1,¢ > 0and n, < n, <
< ... such that ||W,,j“§ — W, Cli>¢ for all jeN. Let A, =W} w, —1I.

k+1 k
Clearly ||4,£|| > eand 4, € @P. For b ¢ # we have:

Eo(p1) [4rs p1(D)] Eo(py) =

= Eo(p)) pruy ) poltn, ) Py ) (01(B) — po(b))p1(un,) Eo(p1)—
— E4(py) Pl(u;kk“) (pa(b) — pa(b)) Pz(unkﬂ) Pz(u:fk) pl(unk) Eo(py) =

= Eg(py) Vio(d) V;(Edl(pl) + Eq;(Pl) Vi;"’(b) VIL"E¢(P1)



88 DAN VOICULESCU

where a(b) = py(b) — pa(b), Vi = ps(us

k+1

=~k ) Vi = palty_, ) poltit) pal,)- We have

) palt, , ) o), Vii=ps(up), Vi' =

”k

w-lim Vi Eg(p,) = w-lim (V')*Ey(p,) = 0
k=0 k=0

so that, o(b) being compact, we have

S'gim Eo(py) V1o (b) ViEy(ps) = 0
S-Alim (Eo(p) Vi'a(b) Vi"Eo(pr))* = 0.
(=920
Similarly we have:

Eg(p,) [4], p1(B)] Eo(py) =

= Eg(py) pr(u)) Pe(unk) Pe(u:_ )a(b) Pl("nH 1) Ey(p) —

— Eq(py) Pl(u:k) a(b) Pz(l‘nk) Pz(“:;i“) P1(unk“) Eglp1) =
= Ey(py) Vio(b) ViEo(ps) + Eolpy) Vi'o(8) Vi Eqlpy)
where ¥, = pa(u) o) 2 )y Vi = pulty )y Vi = —pi(uk), Vi =

Py’
= ps(U,) Pz(u:k . 1) p1(u, , )-

Since

w-lim Vi Eo(py) = w-lim (V')*Eo(p,) = 0
k—oo k->co

and o(b) is compact, we have

s-lim Eq(p,) ;k a(b) vI:Ed’(pl) =0
k—oo

s-lim (Eq(r) Vo(8) Vi Eo(p0)*=0.
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Let (b)), = % be a basis of # and put
Xi. i == Eo(p1) Vio(b) ViEg(py) + Eolpy) Vio(b) ViEo(py)

Yy o= Eo(py) Vi'o(b) Vi 2(P1) + Eg(p1) ?éla(bi) v/:‘”Em(PJ,)
so that X, ;, Y, ;€ &Y and

s-lim X, ; = s-lim Y, =0
k=0 k—o0

Eo(p1) [Ax + A%, pi(b)] Ey(py) = X i 1+ Yo

For a > 0 let 6(b;) be a finite rank operator such that {o(b;) — o, (b)le <
< af4. By X{@;, Y{®; we shall denote the operators given by the same formulae
as X, ;, Y, ; with o(b;) replaced by o,(b)).

Remark now that we can find k; < k, < ... and finite rank orthogonal
projections (Q)f° such that

m#n=Q,0,=: 0

Xk, i — Xk, iQle < 1/j

1<i<j=>{ i
!Qijj,i — ij,f[tb < ]/.

Then
lim sup ( ¥ X 1S Vi
imsup — kei| T Ky ) =
jow g sg,l !m | .le ‘d)
. 1 (1 | |
:Jlmsup*7<IZXk_,,st -+ zQsYks,il )<
P B W lo | s=1 o

. i J
<o+ limsup - ( ¥ X0,

J=»00 7

Consider left and right polar decompositions X{*,Q, = L, R, ;, Q. ¥, =
= R; ; L;,; where

R i = QXX 00, R, ;= (@Y, YOHQ ™

s d

Consider further

j J
Mj,i :j'l/z Z Ls’i, MJ', :j*llz 2 L;,;-
s=1 s=1

It is easily seen that |
WM <1, | Ml < L.
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We have:

LT
lim sup — (a)’ s B (a)
msup (yg 0.] zQ

i

, ] J D& Y agr |
=llmsupf1/2(,Mj,,-ZRs,il +}(2R3,i)Mj,i[ )S
j~oo s=1 le  \so !o

_ I ! Vo ': i
< llmsupj'1/2(| VR, + 5 V. R;,i] ):limsupjl/z(l ® Rs,ig +
i §a21 ) | 5= ‘o I i

jo Jj=roo s:1 @

=:1 P

J t . _ P 1J !
® R )= limsup j 1’2( ® ‘“’,Qs +1@ oYe | <
R @ oo s ‘ !s»_.l Iy

J
< lim sup j 172 (f ® 4+ @)
j—oo !

] | g
X \ Y ) <
L s=1 o ) s=1 i3

| J |
< lim sup j /2 (i @ Eolpr) Vi 0.(b)Vi Ealp)) | +
Jro0 s

ps=1

o

+ ‘ (‘B Ex(py) Vlé’o'a(b) V'” @(pl) + ' @ Eolpy) Vk O'a(b ) Vk Eo(Pl)

,(p i s=1 0
+| @ Eolon) Pioub) Vi'Eatod) | ) <
ts=1 ]
L limsup 4/ 12 g (b) @ ... @ 6,(b)le-
= j-times
Now if X is a finite rank operator we have lim; 2| X @ ... @ X|, = 0.
Jjo oo

j-times
Indeed if X is a rank-one orthogonal projection, this is just our assumption on ¢

and the general case follows ffom the fact that every finite rank operator is a linear
combination of such projections. This gives

hmsupA—(l‘Vj‘_'st +§EYA51{ ) o
j—=oo | §== 1P

s=1

and since « > 0 is arbitrary we have

hm——( ZX" i

—-)OO] '3
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Since A, + I is unitary, we have A¥4, = — A, — A} and hence, by what has been
just proved, we have

.1 J
lim -~ ! Eq(p1) [Z AltsAksv pl(bi):l Ep(py)| =0.
Jroo | s=1 @
J
Thus for B, = 1 }:, Eo(p;) i Ax Eo(p)) we have |[Bj| <4, B; >0, B;e S
J =

and
!im LB, p1(B)]lp = O
joo

for all b 4.

Now, (Ea(p1)AFALEL(p)¢, &) = €% and hence also (B¢, &) > €2 But by virtue
of Theorem 1.2, we must have

s-lim B; = s-lim B;Eg(p,) = 0.

j—oo j=c0
This contradiction concludes the proof.
Q.E.D.

REMARK. The wave-operator W in the preceding theorem does not depend on
the particular sequence (,).>0. Indeed, mixing two different such sequences, one
gets a new sequence of unitaries for which the theorem applies.

COROLLARY 1.6. Assume G is such that

limn2@(1,...,1,0,0,...)=0.
e n-times

Let p be a non-degenerate =-representation of o/ on H and let T € L(H) be such
that [T, p(B)] = SP. Assume there are unitaries u, € B N Z(s4) such that

w-lim p(u,) Eqfp) = 0,
Then the following strong limit exists:

s-lim p(u¥) T p(u,) Eo(p)-

Proof. First, note that it will be sufficient to prove the corollary for hermitian
operators T. Indeed, if [T, p(#)] = S then also [T -+ T*, p(#)] < &9 and
[T — T*, p(#B)] =« SP.

Next, remark that the corollary for T unitary implies the corollary for T her-
mitian.
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Indeed, if T is hermitian, there is no loss of generality in assuming [T} < 1.
Using as in Lemma 1.1 the Fourier-transform method of [7], we have that
[T, p(#)] = S implies that [(I — T2)V2, p(B)] = CP. Then T, = T + i(I — T?)'2
is unitary and [Ty, p(#)] = ©%’. The corollary applied to the unitaries T3, T3 will

imply the corollary for the hermitian operator 7.
Thus it will be sufficient to consider only the case when T is unitary. Defining

in this case py(a) = T*p(a)T for ac o and p, = p, the representations p; and p,
satisfy the assumptions of the preceding theorem. It follows that

s-im p(u;)T p(u,)Eo(p) =

n-s>00

= T's-lim py(uf) ps(u,,) Ep(py)

n—»00

exists.
Q.E.D.

From the preceding corollary a two-spaces version of Theorem 1.5 is easily
obtained.

COROLLARY 1.7. Assume S is such that

limn2 @(1, ...,1,0,0,...)=0.
n—-00 R
n-times

Let p,, p, be non-degenerate =-representations of < on Hilbert spaces H, and
respectively H, and let J € L(H,, H,) be such that

pob)] — Jp(b) € S
for all b € B. Assume there are unitaries u, € B N Z() such that

w-lim p, (1) Eolp) =0 (k= 1,2).

Then the following strong limit exists:

W = s-lim py(u¥) Jpy(un)Ea(py)-

n->co

Proof. Consider H= H, @ H,, p = p, ® p, and

00
T= ( :
J 0
The present corollary follows immediately from the preceding corollary applied

to p and T.
Q.E.D.
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§ 2.

This section deals with applications of § 1 to n-tuples of commuting hermitian
operators.

First we show how Theorem 1.4 can be used to prove the invariance under
% -perturbations of the absolutely continuous part for n>2, thus improving the
result we had obtained in [10] where this was obtained only for the case when the
multiplicity-function of the absolutely continuous part is integrable. We also for-
mulate explicitely the consequences of Theorem 1.5 for commuting n-tuples of
hermitian operators.

Next we show how the technique of taking Cesaro-means, used in §1, can
be also used to prove that the invariant k, for certain norm-ideals like the & -classes
with p > 1, takes only the values O and oo. This seems to indicate that in general
the results about &k, with p > 1 are not sharp. We also show that this gives a new
proof for the vanishing of k, for commuting n-tuples (n > 2) of hermitian operators.

We begin with the application of Theorem 1.4 to the invariance of absolutely
continuous parts.

Let 6 = (Dy, ..., D,) be such an n-tuple, K = R" its spectrum and H = H, &
@ H, the decomposition of H into the absolutely continuous and singular subspace
for 8. Consider & < C(K), # > 1, the #-subalgebra generated by the restriction to
K of the coordinate functions on R" and of some sequence (¢;);° of C*-functions on
R”. Let further p be the representation of C(K) which takes the coordinate functions
into Dy, ..., D,. Then we assert that £} (p), Ey, (p), where i) = €, are just the
projections onto H, and H. " !
We have E.?,"('P)H < H, since k,j(éiE,?,n(p)H) = 0, which by Corollary 4.6 in
110] implies that 5|E3,"(p)1-] has spectral measure singular with respect to Lebesgue-
measure. In order to prove also the reverse inclusion, H, < E.‘,),n(p)H, we must show
that for gy, ..., g, €@ we have &k, ((p(g)IH), - .., (p(gw)H,)) = 0. Now, by Pro-
position 4.1 in [10] we have k; (6|H ) = 0, so that there are X; € R (H) such that
X; M and
lim {[X;, (OIH)Y,, == 0.
jooo
‘We shall prove that
jli'll 11X, (p(g) H)Nl, = 0
for k=1,..., m. This will be shown by the Fourier-transform method of [7].

Let hq,..., A, be C®-functions on R" with compact support, such that /1,|K = g,.
We have

p(gy) =S exp Qui(Z,D;y + ... + EDDAEs ..., E)dE, .. e,
R'I
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where l?,{ is the Fourier-transform of /,. We have
l[exp 2ni(¢,Dy + ... + EDDIH), Xl <
S C(+ &l + .o+ 16D IGIH), Xlir

for some constant C > O.
Hence

< Cll(6lHy), Xj]ln"g (A + &+ oo+ 16D G - E1AE  dg,
Rn

and the last integral being finite we have

j

thus establishing our assertion.

LEMMA 2.1. Let 9,3" € (L(H))" be n-tuples, with n > 2, of commuting her-
mitian operators. Assume the spectral measures of 6 and &' are absolutely continuous
with respect to Lebesgue measure and assume 6 — 0 €(%,))". Then § and &' are
unitarily equivalent.

Proof. Let K = R” be a compact set containing the spectra of 6 and §’ (which
are in fact equal) and consider # < C(K), & > 1 the =-subalgebra generated by the
coordinate-functions and by f(x,, ..., x,) = exp (ix,), restricted to K. Denote by
P1, Pe the representations of C(K) which take the coordinate functions into 6 and
o' respectively.

It is easily seen that p,(b) — p,(b) € €, for all b € 4. Also, since the spectral
measures of §, &' are absolutely continuous with respect to Lebesgue measure it is
easily seen that

welim p,(f7) = wlim py () = 0.

n— oo m

Moreover, by the discussion preceding the statement of the present lemma,

we have Eé?:(pl) = E(O,),(pz) = 0. Since n > 2 we may then use Theorem 1.4 and the

Remark following Theorem 1.4 with & = C(K), & = ¥, u, = f" to obtain that
p1, p» are unitarily equivalent.

Q.E.D.

THEOREM 2.2. Let 6, 0" € (L(H))* be n-tuples, with n = 2, of commuting her-

mitian operators, such that & — &' € (€,7)". Then the absolutely continuous parts of

o and O’ are unitarily equivalent.
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ﬁroof. Consider a third n-tuple 8" = (L(H))" of commuting hermitian opera-
tors, the spectral measure of which is absolutely continuous with respect to Lebesgue
measure, the spectrum of which contains the spectra of §, §* and which has a cyclic
vector. Clearly the spectrum and the essential spectrum of 6" are equal. Let now
0=120, ®J, 0 =, @ J; be the decompositions of § and &’ into absolutely conti-
nuous and singular part. Let .« denote the C*-algebra generated by §, @ 6" which
is isomorphic to C(K) where K is the spectrum of ¢"'. Let further # < o be the
x-algebra generated by I and 6, @ 6”. Since the spectrum and essential spectrum
of 5, @ &' are equal, it follows that the canonical map p: L — L/K is injective on 7.
Thus p(&) is isomorphic to C(K) and since the spectrum of §, is contained in K
there is a non-degenerate *-representation p:p(.sf)— L(H) such that p(p(5,@®d""))=4,.
Since the spectral measure of J, is singular it follows by Proposition 4.1 of
[10] that p(p(#)) is ¥,-well-behaved. Applying Theorem 2.4 of [10] to p, o, B
which we have just defined, we obtain that there is a n-tuple t € (L(H @ H))" which
is unitarily equivalent to §,@®45’’ and such that (3,@9,P0")—1=(0D')—1€ ¥, .
By the same kind of argument there is 7', unitarily equivalent to J, ® &”
and such that (8’ @ 6"y — ' € ¥, . Since 6 — &' €, it follows thatt — v € €,;
and hence by Lemma 2.1 7 and 7’ are unitarily equivalent. This implies that §, @ 6"’
and §; @ o'' are unitarily equivalent. Thus for m1, m’, m'’ the multiplicity functions
of d,,d,, 0" we have m + m’ = m’ + m’" almost everywhere with respect to Lebes-
gue measure. Now since 6’ has a cyclic vector, it follows that m'’ is an L®-function,

so that the preceding equality implies m = m’ almost everywhere.
Q.E.D.

We pass now to the application of Theorem 1.5 to commuting n-tuples of
hermitian operators. This runs much in the same way as the application of Theorem
1.4, so that we shall only state the result and leave the details to the reader.

THEOREM 2.3. Let 6, &' € (L(H))Y" be n-tuples of commuting hermitian operators,
withn > 3 and such that 6 — 8" € €. Let (f,)%-. be C®-functions in some neighbor-
hood of the union of the spectra of 6 and &', such that |f,,| = 1 and assume (f,,)?° is
weakly convergent to zero in L*(K) (K is the spectrum of 0 and the L2-space is with
respect to the restriction of Lebesgue-measure to K).

Then the following strong-limit exists,
W = s-lim (£,(6")* f()E,
m— 00
where E, is the projection onto the absolutely continuous subspace of 6. Moreover,
W does not depend on the particular sequence (f,,).

In the same way there are corresponding results for the two corollaries of
Theorem 1.5 which the reader will have no difficulty to state.
We pass now to the application of the technique of Cesaro-means.
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We shall say that S has property (Z) if the following condition is satisfied:
For every sequence (X,)° = R(H) such that sup | X, s < oo we have

o1
lim-—-X @ ... ® X, =0.
It is easily seen that the ideals ¥, with p > 1 have property (), and that the
ideals ¥, do not have property (2).

PROPOSITION 2.4, Let 1 = (T}, ..., T,) € (L(H))" and assume G has properiy
(2). Then k(1) is either O or co.

Proof. It will be sufficient to prove that k,(7) < co implies kq(t) = 0.
Thus assume k4(t) < co. Then in view of the definition of k, it is easily seen
that we can find a sequence (4,,) < Ry, 4,, T I such that the subspaces

H,= 3 A, TH + Y [4,, T)J*H

J j

.. . . i
are pairwise orthogonal and sup {[4,, 1], <oco. Defining B, = — (4;-+ ... -+ 4.,)
m m
we have B, € R;", B, t I and

. D B '
hm J[Blll) T]{@. = ]11’1’1 “‘! @ [Am’ T] = O
n :j.;l

ni— 00 ik de ] ‘D
because of property (X).
Q.E.D.

Proposition 2.4 can be used to give a new proof for the fact that k(1) =0
Jor an n-tuple © of commuting hermitian operators, when n > 2. Indeed, it is sufficient
to prove this only for the case when 1 has a cyclic vector. Using Proposition 2.4
we have to prove only that k(1) < oo which can be seen easily as follows. Let ¢
be the cyclic vector of t and assume also |{ti] < 1, which is no loss of generality.
Then there are (2m)” disjoint Borel sets Z; in R, of diameter < n/m, which cover the
spectrum of t. Let £; be the spectral projection of 7 for the Borel set Z; and consider
the orthogonal projection P, onto

CE¢ + ... + CEgyl.

o) n ,
Then ([P, 1] < (2171)"-(:-’—1—) == (4n)" and P, 5 I, which shows that k,(7) < co.
n

§ 3.

In this section we shall study k5 for the regular representation of the free
group on n-generators F,. This will provide an example where the generalized
absolutely continuous part is not invariant up to unitary equivalence under per-
turbations.
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The n generators of the free group F, (n > 2) will be denoted by gy, ..., g,.
The C*-algebra of F, will be denoted by 7, = C*(F,) and we shall consider 8, = 7,
the x-subalgebra generated by the unitaries u;, . . ., u, which correspond to the gene-
rators gy, ..., g,. The norm-ideal ¥ is defined as S :o where

Yel(E)ren) = ¥, &4
iz

with {F denoting the decreasing rearrangement of (|¢;]);en. This ideal coincides
with the well-known Macaev-ideal (see for instance [5], § 15, where this ideal is
denoted &).

We begin with a result that will not be used in the sequel, but which seems to
be independently of interest.

ProposITION 3.1. Let t = (T4, ..., T,) € (L(H))". Then we have
ke(t) < 2|7l In(2n + 1).

Proof. In view of Proposition 1.4 of [10] there is no loss of generality if we
assume that there is a finite set {&, ..., &,,} © H which is cyclic for (z, 7). We

define recurrently ﬁnite dimensional subspaces H, by H,=C& + ... +C¢&,
and H,,, = H, + z T;H, + Z T¥H,. It is easily seen that dim H, <m(2n + 1)*
ji=1

and that the matrix of t with respect to the decomposition H=H,®(H, 8 H)® . .
. ® (Hyp1 © Hy) @ ... is tri-diagonal. Define

1
Ak:‘k—(PoJf‘n-—F'Pk_l)

where P, is the orthogonal projection onto H, . Then ||[A4, 7]l < (2/k)||t]| and the
ank of A, T;] is <2m(2n + 1)*. This gives:

M4i, tlle < —2~1111le(1, ...... ,1,0,0, ..))
k PrmrS e
and hence
lim sup [[4;, ]l < 2|7l In@n + 1).

k—+oo

Since A, 1 I this concludes the proof.
Q.E.D.

We return now to the left regular representation of F, on [2(F,). Let Uy,..., U,
be the unitaries in L(I2(F,)) corresponding to gy, . . ., &, i.€.

Ui(¢g)ser, = (Mg)gerF.

7 — 2692
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where 7, = fg-lg for (£,); er, € I*(F,). As in §3 0of [10] we shall also consider the
J
operators T4, ..., T, acting on I5(F,) defined by

Tji(ég)yel’,, = (ng)g €F,

where 1, = ?jgjg for (&,)eer, € lo(Fy).

LemMA 3.2. For n > 2 we have
ko(Uy, ..., U) > 0.
Proof. In view of Proposition 3.1 of [10] it will be sufficient to prove that

inf { max |Tj — 9ie | n€lx(F), 1. =1} > 0

1€jgn

where e € F, is the neutral element of F, .
To this end we shall construct elements Gy, ..., G, in the dual of /5(F,) such

that
Y (G T — Gy =0,
j=1

where J, is the functional on IZ(F,) corresponding to evaluation at e.
Let F} be the semi-group in F, generated by {e, gy, ..., g,} and denote for
g= g,l‘;lg{.‘: ... gkme Fy its length by I(g) =k, + ... + k,, (of course /(e) = 0).
We define G; as a function on F, by
Gg) = {0 , redali,
n-leif geg,F}.
It is easily checked that

n [0 if g#e
3 Geo-c@={ | 570

To see that G; defines a functional on I3(F,) remark that the non-zero values
of G; in decreasing order are

nln2 .. .,n2 wl..,n8 .
—_— e
n-times n2-times

and hence for (£,);er, € I5(F,) we have
Y 1GHE),l < nXF + 17+ ..+ &)+

gEF,
+n_3(£:+2 + ...+ é:z.{_n-;-l) + ... < |élo_o

where (¢#)c»1 denotes the decreasing rearrangement of (/¢ eDgeF,-
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Thus for n € I5(F,) with 5, = 1 we have

i Z éGj(g)‘(Ugflg—ng) <
F i

8EF, \ j=1 | g €F, j=1

1={ Y (z (Gy(g;8) — Gj(g)))ng;:

n
<Yy T — 1yl < nmax T — qle =

j=1 l<jgn

=nmax [T — 1l&-

lgjsn
Q.E.D.
Consider now 7, = C*(F,) and %, < «f, the =-subalgebra generated by
Uy, ..., 4, Let p_be the left regular representation of C*(F,) on I3(F,).

LemmMA 3.3. For n =2 we have
E (p) = 0.

Proof. Since k(p (uy), ..., p(u,)) > 0 by the preceding lemma, it follows that
Ey (p,) # 0 and since p, is a factor-representation and Ey_(p,) is in the center

of (p(o£,))" we infer Ep_ (p,) = L.
Q.E.D.

With these preparations we can now give the example announced at the
beginning of this section.

Consider a faithful representation p, of .#/, which is a direct sum of finite-
dimensional representations (it is folklore that such a representation exists). Consider
further unitaries U;, ..., U, € L(I3(F))) such that each of them is diagonal (i.e. for
each U; there is a basis of eigenvectors) and U; — U/ €% for 1 <j < n. Let
p’ denote the representation of 7, on [3(F,) such that p’(u)) = Uj.

Then, for p, = py ® p, and p, = py @ p’ we have p,(b) — py(b) € €5 for
be A,

Moreover Ey_(p,) is the projection onto [*(F,) by Lemma 3.3 and Ey_(p,) <
<Ey_(py). On the other hand it is clear that p, and p’ are disjoint representations of

o, and hence the generalized absolutely continuous parts of p; and p, are disjoint.
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