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K-THEORY FOR CERTAIN C*-ALGEBRAS. II

JOACHIM CUNTZ

In a remarkable recent paper [7] M. Pimsner and D. Voiculescu established
an exact sequence for the K-groups (and Ext-groups) of crossed product C*-algebras,
that permits to compute these groups for many important C*-algebras. The method
they used is similar to the one used before in [4] to treat the special case of the alge-
bras 0,. In the present paper we follow more closely the ideas of [4] to give a very
simple proof of a result that is somewhat more general than the one of Pimsner and
Voiculescu.

We consider twisted tensor products by the C*-algebras 0,. For n > 2, 0,
is the C*-algebra generated by n isometries S, ..., S, such that ¥ .5,SF% =1,
¢f. [3]. For n=1 we define 0, as the C*-algebra generated by a single unitary S;
whose spectrum is the whole unit circle.

If of = L(3#), # some Hilbert space, is a unital C*-algebra (see 2.2 for the
non-unital case) and % = (U3, ..., U,) is a family of pairwise commuting unitaries
in Z (), implementing automorphisms o; = AdU; of o7, the twisted tensor product
& X q 0, is the C*-subalgebra of #(#) ® 0, (note that @, is nuclear) generated by
& ® 1 together with U, ® S, ..., U, ® S,. (Lissentially repeating the proof given
in [3] it can be shown that the algebra of X, @, does not depend on the choice of
the unitaries U; implementing the automorphisms «;.) For the case n =1 this
reduces to the ordinary crossed product of o by the single automorphism o,. While
the crossed product is in some sense a universal C*-algebra for which the auto-
morphisms induced by o; on the K-groups becomes trivial, the algebra o X, 0,
with U, = ... = U, is the universal algebra for which » times these automorphisms
become trivial.

We obtain an exact sequence for the K-groups of &« X, 0, that generalizes the
exact sequence of [7]. The proof we give uses a homotopy argument from [4] to
reduce the problem to a trivial exercise in homological algebra.

It should be pointed out that the additional generality gained in considering
products by @, instead of just ordinary crossed products is not very far reaching.
In fact, as in [3] the C*-algebra & X ,0, can itself be represented as a crossed product
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of a certain C*-algebra by a single endomorphism and, investing some more work,
one canapply the exact sequence for crossed products to get, for & X o, 6, essentially
the same exact sequence that we obtain here. On the other hand, the proof we give
here, is much more natural and gives some additional information that would not
be obtained the other way. A point we want to make, is that the twisted tensor
product by @, is a natural generalization of the ordinary crossed product and that
both cases can be treated in a parallel way.

Section 2 contains some remarks. In particular, we show in 2.5 that the result
on the range of the trace on K, of the irrational rotation algebras, obtained in [6],
is an easy consequence of the exact sequence for the K-groups of a crossed product.

1. THE MAIN RESULT

As in [4], [7] we will get the desired results applying the exact sequence of
K-theory to a standard extension & of < X, 0,. We consider in the following a fixed
unital C*-algebra «/ and a family % = (U,, ..., U,) as above and define & as the
C*-subalgebra of £ (#) ® 0, ,, generated by &/ ® 1 together with U; ® S, ...
..U, ®S,. If n =1, this is just the ““Toeplitz extension’ of [7].

Whenever Sj, ..., S, are isometries with pairwise orthogonal ranges such
that 1 — i S;/Si* is a non-trivial projection, the map aU; ® S; > aU, ® S/

i==1
acg/; i=1, ..., n)extends to an isomorphism of & onto the C*-algebra generated
by # ®land U, ® S1, ..., U, ® S, in L(H#) ® C*(Sy, ..., S,). For n =1 this
follows from the well-known uniqueness of the C*-algebra generated by a single
non-unitary isometry [2], while for n > 2 this is a consequence of [3, 1.12], cf. also

[4,3.1]. On @,,, one has the canonical endomorphism @, , defined by @, ,(x) =
n1

=V SxSi(x€0,.y). ThemapalU; ® S, aU; ® D,..(S) (acZ;i=1,...,m)

fe=]

defines an isomorphism ¢ of & onto some C*-subalgebra ¢(£) of £(#) ® 0,,.,.
We denote by & the C*-algebra generated by & together with @(&). Equivalently,
& is the C*-subalgebra of #() ® 0, ., generated by & together with B(&), where
the homomorphism f:§ — & is defined by f(x) =(1®S,.)x(1®S,.1)* Note
that (& ® 1) = o ® S,,1S%., < & since S, S ,=1— Y S; S,

==1
We write j for the inclusion of & in & and k for the inclusion of &/ as &/ ® 1
in &.
ProrosiTioN 1.1. The subalgebras P(of ® 1), B(&) generate closed ideals
I F in 8, & isomorphic to A Q@ sf, 4 ®E, respectively. The quotients &[F and
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&1 F are both isomorphic to of X 4 0, and the diagram
H@ A= J>E > o %40,
lid@k lj lm
HQE=F—8 1> o x40,

. . . % A . .
is commutative (as usual A denotes the compact operators and i, i, 4, q the inclusion
and quotient maps). Moreover, the diagrams

Ko(£) =5 Ku(8) Ko Ke(6)
l =1 lid l &~ i id
Ka(f) 25K () Ko@) Ko(&)

are commutative.

Proof. We only give the proof for the case n = 1. The proof for the case

> 2 follows word by word that m [4,3.2]. Let {e;;)i,jen be a system of matrix
units for A" The closed ideal #( f) generated by B(«) (B(€)) in & (g) obviously
coincides with the closure of the set of all linear combinations of elements of
the form (U; ® SYBNU,® S)*/ with xe o (xeéf) and i, jeN. Thf map
(U ® S)BU,® S)*>e;; ® B(x) extends to an isomorphism of #(.#)onto
HQPA) 2 @A (X @ PE) 2 A ®E).

In particular (letting & = C), C*(S;) < 0, contains a closed ideal
S and CNS,)LF = 0,. Since L(H)Q F' NE = F(L(H)® F né = F),
the quotient &/ ¢ (éA"/J?\r ) is canonically isomorphic with the image of & in
L(#) ® 0,. This image is the C*-subalgebra of #(#) ® O generated by o ® 1
and U, ® S where S is the unitary generating ¢,, thus o X, @,. The rest of the pro-
position is then clear. Q.E.D.

PROPOSITION 1.2. The homomorphism ks Ka(of) — Ky(8) induced by the
inclusion k:sf — & is injective.

Proof. We follow here the proof in [7, 2.1 b)]. It suffices to prove the assertion
for ky:K(2) - K(&). The corresponding result for K, follows upon replacing
Aby CT)® & and Uy, ..., U, by 1QU,, ..., 1®U,, using the fact that the
injective homomorphism

(id @ k)y: Ky(C(T) @ ) = Ky(4) @ Ko(o2)—

= K(C(T) @ &) = Ky(8) @ Ko(é)
which then replaces k, equals k, @ k.
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Similarly, replacing o/ by M,®s/ and U, ..., U, by 1@ U,..., 1® U,
we see that we need not consider matrix algebras over & and &, but can work with
& and & themselves. Thus we have to show that any two unitaries v, ® 1 and
v, ® 1 in &/ ® 1 that are homotopic in & correspond to the same class [v,] == [v;]
in Ky(«#). Let w, (r € [0, 1]) be a continuous path of unitaries in & such that wy== ¢, ®1,
wy = v; ® 1. Set w/ = w,(0(w,)* + 1® S,+15;+;) where 0 is the endomorphism
of & defined by 0@ 1) =a® (1 — S,.155,) (@acf) and U, ® S)=
=U,® S{(1 — S,.1551) (=1, ...,n). Since g >0 =g, all the w/ are in 5,
the C*-algebra generated by ¢ together with the unit of &. Moreover, w, is a conti-
nuous path of unitaries such that

Wo = 0o®@S,4157 1 + 1@ — Sp0155,1)
and

wy = v;®Sn+1 w1l T 10 — S, <+1)-
Thus [v,] = [wg] = [wi] = [v,]in Ky(#) = Ky(HF ® o) = Ky(). Q.E.D.

ProrosiTioN 1.3. The homomorphism ¢ :& — & is homotopic to j in the topo-
logy of pointwise norm convergence in &.
Proof. The restriction of ¢ to & ® 1 < & coincides with j while (U; ® S;) =
n+1
=1@W)U;® S)(I=1,...,n) where 1@ W=1 ®( Yy SiSjS,.’-“Sj*) is a self-
=1 .
adjoint unitary in £(#) @ 0,,,. For i,j # n+ 1, the summand 1 ® S.S;S"S;"
is in &. Also
1 ® Sn+1SjS:E:+1Sj* = B(Uj ® Sj)(Uj ® Sj)*
and
1 ® S Sn+1S\ nn—l (Ul ® Sl)ﬂ(UL ® Si)*
are in 2 Since, finally, also
1 ® 82,182 = Bl ® Su+15041) eéa

one sees that 1 ® We;“’
Let W=E— F be the spectral decomposition of W and W, = E -+ ¢F

(t€[0,1]). Then 1 ® W, eé’ and we can define homomorphisms ¢,:§ — o‘ by
pla®@l)=a®1 (ac ) and ,

eU;®S)=01Q@WYU;®S)=U, @W,S;, (i=1,...,n).

Then ¢, is a continuous path of homomorphisms from & to & connecting j to @.
Q.E.D.
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ProOPOSITION 1.4. The homomorphism B4 K (&) — K#(éA") induced by .6 — é:
is equal 10 jy, — '}, &,le* where &i is the automorphism Ad(U; ® 1) of éA”

i=1

Proof. As in the proof of 1.2 we need not consider matrix algebras over &, é’;

For every projection p (every unitary u) in &, ¢(p) (p(u)) is the orthogonal
sum of the projections B(p) and (1 ® SHp(l ® S)* (i=1, ..., n) (the product
of the unitaries Bu) 4+ (1 — (1)) and (1 ® S)u(l ® S)* + (1 —1® S;5%).
Since [(U; ® Sop(U; ® S)*] = [plin Ky(@) and [(1 ® Spp(l ® S} =[a7(U; ®
® SHp(U;® SH¥)] = az'[p] (similarly for unitaries) it follows that @y = B+
+ Y] &g But @, = ju by 1.3. Q.E.D.

i=1 .

THEOREM 1.5. The sequence

id—Eas !

Ko(t) — > Ko(l) Kyt X 4, 0,)
T ! id~aiy 1 ‘[
Kyl X 3 0,) ~—— Ky( ) e Ky()

is exact. (Here I, is the homomorphism induced by the natural inclusion of & =
= & ®1in o x40, and the vertical arrows will be made explicit in the proof.)

Proof. If we write down the exact sequences for the K-groups derived from

the short exact sequences | > & —>> of X 5,0, and # > &> X 4 0, and take into
account Proposition 1.1 we get the following commutative diagram

Ky(st) 225 Ko (8) 20 Kyt % 4 0,) —> Ko() L5 Ko(8) 0 Kol % 4,0,) —»

lk,g l]* lld Jk, ],\, l id
A , A N Y oA A [

Ki(&) - Ky(B) 1 Ki(of % 30,) 2> Ko@) 255 Ko(8) 225 Ko X 3 0,) —

where the rows are exact. Here K;(#) and K, (/A) are identified with K#(Jaf) and
K4 (&), respectively. One has ﬁ*(K#(é”)) < j(K4(&)) since B = (id — Voc,. Y« by
1.4, and since &; ! leaves & < @“’ globally invariant.

Moreover by 1.2, ke K(L)—> K(&) (s=0,1) is 1nject1ve This implies
that Ker & = =g (X, (é”))cKer 8 = q(K(&)) (1= 1, 0), whence ¢ (K, (é“)) = g (K(&))
since the converse inclusion is obvious. Since, as remarked above, S (K,(&)) <
< j(K{&)) this shows that j, : K, ,(6’)—>K,((§) is surjective. It now follows from the fifth
lemma (more precisely the fourth lemma) that the vertical arrows ky 1Ky () = K4(&)
and jg:Ku(€)— K#((;';) are isomorphisms.
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If we identify K4(&) and K, (g) with K, (&) via the isomorphisms k. and j k.,
the homomorphism B, becomes id— ¥, oz by 1.4, Q.E.D.

i=1

2. SOME REMARKS

2.1. Let & be asaboveand U; = ... = U, = 1. Then &7 X, 0, is just the
tensor product & ® 0, and applying 1.5 one has the exact sequence

Ko(t) 5 Ky(A) — Ko( ® )
1 !

Kt ® 0,) — K(L)— K(f)

(n — 1 denotes multiplication by »n — 1). In particular, K(& ® 0,) = K(7)/
Jr—DK{f) = K(HA)®2zZ,_; for s=0,1 and n > 2 if K,(2/) is torsion-free
for ¢ —= 1, 0. For this cf. [, 2.2], [5, 6.18].

2.2. Let o/ and % = (U, ..., U,) in # () be as above but not unital. The
product &7 X, 0, is then defined as the C*-algebra generated by all linear combina-
tions of elements of the form (aU;) ® S; in Z(#) ® O, where a € o/. Let o be the
C*-algebra generated by & together with the unit of £ (). Then &/ X4 0, is a
closed ideal in &7 X 2 @, and we have a split exact sequence

0—- o XQ,G,,AJX%(O,,——»(O,,—aO.
Thus

Ko( X q0,) = Ko X 4,0,) ® Ko(0,) = Ko(A X 0,0,) ® Z,
KI(J;\ 20) =K X 50,) @ K(0,) =K (o X40,) @0, (n =2).

We apply now the exact sequence 1.5 to o X o 0, where @; = AdU; are the natural
extensions of «; to automorphisms of ./ and get

id—Sg 7!
Ky(?) @ Z Ky(Z) ® L —— Ko(A Xq0,) ®Z, 4
7 l
id-Sg !
K Xq0,) @0 < K(A) DO Ky() @ 0.

Since

id — Yar!=(3d — Yoarh) @ — 1id,

it follows that the exact sequence of 1.5 generalizes without modification to the
non-unital case (the same argument works for n = 1).
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2.3. Consider again the endomorphism @, of ¢, defined by @,(x) = ; SxS;.
-1

The endomorphism id ® @, of Z(H#) ® 0, leaves o7 X ,, 0, globally inva{riant thus
defines an endomorphism ¥ of «/®,0,. Repeating the argument in 1.3, cf. also
[4,2.2], one sees that y is homotopic to the identity automorphism on &7 X, 0,.
On the other hand, y, = ¥, a4 on K4 (o X, 0,) where o; are the automorphisms
AdU; ® 1 of o X4 0,, cf. 1.4. Thus ¥ 07! = id on Ky (o X 40,).

24, Let S}, S, ... be a sequence of isometries with pairwise orthogonal
ranges and @, the C*-algebra generated by these isometries, cf. [3]. Then O, is
the inductive limit of the subalgebras &, generated by the isometries S, ..., S,.
If of is any C¥-algebra, of ® &, is the standard extension of & ® ¢, and by
the proof of 1.5 the embedding k, of & in o ® &, induces an isomorphism
ki, Ke() - Kp(of ® &€,). The diagram

M@éﬁ"q"déaéa“q.l
Tkn id Tkn+1
o T o

is commutative. Since K4 (o ® 0.) is the inductive limit of the groups Ky(«# ® &)
with the homomorphisms induced by the inclusions of &/ ® &, in &f ® &, +1, We
see that Ky (o ® 0) = K4() for every /. The same remark holds for twisted
tensor products by 0. If »7 is any simple C*-algebra, &/ ® 0, is a simple C*-al-
gebra, which is infinite in the sense of [3] and has the same K-theory as /.

2.5. For every irrational 0 € (0,1) let 4, be the unique C*-algebra generated
by two unitaries « and v such that up = e*™%pu. Using the exact sequence in 1.5 one
can give a simple proof for the result of Pimsner and Voiculescu in [6] that the range
of the homomorphism t4:Ky(4,) — R induced by the unique trace T on A4, is con-
tained in Z -+ 8Z. Let f be the characteristic function of the interval exp([0, 276})
in the unit circle T and & the smallest C*-algebra of functions on T (with the supre-
mum norm) containing f and invariant under the rotation by the angle 2n0. Then
%(T) =« @ and we have a commutative diagram

Ay =C(T) x,Z >R
N ’ }id
9 x,L->-R

where ¥(T) X, Z and @ x ,Z are the crossed products of %(T) and 2 by the auto-
morphism o induced by the rotation by 2n0, respectively, and 7,7’ are the trace
states on the crossed products that extend the Lebesgue measure on 4(T) and 2.
Since Ky (2) =0 it follows from 1.5 that Ko(@ X, Z) = [, (Ky\(2)) where [: 2 —
-9 X, Z isthenatural inclusion, and it is immediate that 5./ (Ky(2)) = Z+ 0Z.
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2.6. Let & be a C*-algebra such that Ky (&) == Ky(#) @ Ky (&) is torsion-free.
Let N be the class of C*-algebras £ for which the Kiinneth formula

K#(ﬂ ® ,99) = K#(ﬁ)(@ K#(-@)

holds. Using standard homological algebra one sees that N is closed under taking
inductive limits, extensions (if the ideal and the quotient are in N), quotients (if
the algebra and its ideal are in N), and ideals (if the algebra and the quotient are
in N). The exact sequence 1.5 shows that N is also closed under taking crossed
products by a single automorphism. Thus N presumably contains all nuclear C*-
algebras. (Note that N clearly contains all finite-dimensional C*#-algebras.)

Work supported by the Deutsche Forschungsgemeinschaft.
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